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RESEARCH MEMORANDUM 

SUMMARY OF SUBSONIC-DIFFUSER DATA 

By John R. Henry, Charles C .  Wood, 
and Stafford W .  Wilbur 

SUMMARY 

The subsonic-diffuser data available i n  the literature are reviewed, 
reduced t o  cer ta in  appropriate performance coefficients,  and presented as 
functions of the significant geometric and flow variables. The presenta- 
t ion  is  divided into the following parts:  
( i n l e t  Mach numbers of approximately 0.20),  the e f fec ts  of increasing the 
i n l e t  speed up t o  choking Mach numbers, i l l u s t r a t ions  of the effectiveness 
of boundary-layer controls, and i l l u s t r a t ions  of the e f f ec t s  of d i s tor ted  
i n l e t  velocity distributions as obtained a t  subsonic speeds with spoi le rs  
upstream from the i n l e t  and as obtained from compression shocks i n  super- 
sonic in l e t s .  A n  analysis based on typ ica l  supersonic-inlet data indi -  
cates total-pressure losses chargeable t o  shock-boundary-layer interac-  
t ion,  and or iginal  data on a 5 O  converging-diverging conical diffuser 
i l l u s t r a t e s  these e f fec ts  on the f l o w  development throughout the diffuser .  

perfomance a t  low speeds 

IXTRODUCTION 

- .  

AERONAUTICS 

I n  recent years, the successful design of a i r c r a f t  ducting has 
become essent ia l  i n  order t o  realize the desired a i r c r a f t  performance. 
This s i tua t ion  i s  the r e su l t  of the t ransfer  of the propulsion systems 
f o r  mil i tary a i r c r a f t  from the propeller t o  the air-breathing j e t ,  which 
requires internal  air  flow measurable i n  tons per minute. The th rus t  
and general operation of the je t  propulsion system are  d i rec t ly  dependent 
on the duct pressure recoveries and flow character is t ics .  

One c r i t i c a l  component of a i r c ra f t  duct systems i s  the subsonic 
diffuser .  
promotes a rapid growth of the boundary layer, leading t o  various degrees 
of flow dis tor t ion,  pressure pulsation, total-pressure loss ,  and flow 
i n s t a b i l i t y  i f  flow separation takes place. 
required between the supersonic i n l e t  and the engine face, between the 
compressor and the combustor, and between the turbine and the afterburner.  
Thus, sat isfactory subsonic-diffuser performance becomes a necessity f o r  
sui table  engine performance. 

The adverse pressure gradient attendant on subsonic diffusion 

Subsonic diffusers  a re  
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The state of the knowledge of boundary-layer growth i n  adverse pres- 
sure gradients does not approach that required t o  derive diffuser design 

pose of this paper i s  t o  sumnaxize i n  a concise and useful form the best  
subsonic-diffuser data available with a view toward i t s  use by duct 
designers and analysts of duct-system performance. 
speeds (essentially incompressible) w i l l  be reviewed and summarized. 
Although several  such reviews a re  available i n  the l i t e r a tu re  (see r e f s .  1 
t o  3) ,  the data have never been f u l l y  exploited with a view toward current 
needs. In addition, the e f fec ts  on diffuser  performance of increasing the 
i n l e t  Mach nuniber up t o  the choking condition, the effectiveness of 
boundary-layer controls, and the e f f ec t s  on performance of shock- 
boundary-layer interact ion w i l l  be covered as extensively as available 
data permit. 

information; therefore, designers must r e ly  on empirical data. The pur- -. 

Data a t  l o w  i n l e t  

As is the case fo r  any presentation of knowledge which uses empirical 
correlations as a basis,  a given set of duct design conditions generally 
w i l l  not coincide exactly with any set of data presented herein. 
s i tua t ion  w i l l  prevent the accurate prediction of performance and the 
accurate choice of an optimum configuration. The object of the presenta- 
t i on  necessarily i s  limited t o  i l l u s t r a t i n g  the e f fec ts  of the pr incipal  
variables f o r  the l e s s  complex configurations. The designer must use the 
i l l u s t r a t ions  as a guide i n  designing specif ic  configurations f o r  specif ic  
conditions and i n  estimating the performance of the resul t ing design. 
Refined designs and performance figures s t i l l  must be obtained by experi- 
merit i n  many cases. 

This 

> 
.I 

SYMBOLS 

n 

P 

P W  

rectangular-duct cross-sectional width (see f i g .  22(c))  

rectangular-duct cross-sectional height (see f i g .  22(c) ) 

vortex-generator span 

vortex-generator chord 

f r i c t i o n  

exponent 

absolute 

absolute 

factor,  (see r e f .  1) 

i n  boundary-layer equation, 

s t a t i c  pressure 

(y/6)'In = U/U 

s t a t i c  pressure from w a l l  s ta t ic -or i f ice  measurements 
*r 

CI 
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AR 

D 

H 

He  

HRef 

H 

K 

L 

M 

M* 
* 

dynamic pressure, 

compressible dynamic pressure, 

mass-weighted dynamic pressures corresponding t o  q and s,, 

H - p 

respectively 

r ad ia l  distance t o  a point i n  a duct cross section 

spacing between adjacent vortex generators, measured on the 
duct inner surface a t  the 114-chord point 

loca l  velocity 

average velocity over a duct cross section 

horizontal and ve r t i ca l  distances from duct w a l l ,  respectively 

duct cross-sectional area 

r a t i o  of diffuser  e x i t  area t o  i n l e t  area 

duct dime te  r 

absolute stagnation pressure 

effect ive t o t a l  pressure, defined as mass-momentum t o t a l  
pressure i n  reference 4 

absolute stagnation pressure a t  reference s t a t ion  

mass-weighted stagnation pressure 

m l s  diffuser l o s s  factor ,  

duct length along axis 

Mach number 

Mach number at i n l e t  reference s t a t ion  f o r  the choked 
condition 

one-dimensional, compressible pressure gradient ( f ig .  
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R 

R 

R 

RN 

U 

U 

rad ia l  distance t o  duct w a l l  a t  a given s t a t ion  

-. r 
b- one-half the i n l e t  gap f o r  an annular-diffuser i n l e t  

r a t i o  of suction or inject ion quantity t o  t o t a l  flow, percent 

Reynolds number based on hydraulic diameter 

maximum velocity i n  a velocity prof i le  at  a given duct s t a t ion  

angle of attack of a vortex generator measured with respect t o  
the duct center l i n e  

r a t i o  of specific heat a t  constant pressure t o  specif ic  heat a t  
constant volume 

Y 

boundary-layer thickness t o  the point of maximum velocity 6 

6* two-dimensional, incompressible displacement thickness of 

boundary layer,  E = s’ 
(1 - :)d-i 1-(6/R) 

diffuser effectiveness ‘1 

A difference between values of a given parameter a t  two different  
duct s ta t ions or a t  two points a t  a given s ta t ion,  used as a 
prefix f o r  another symbol 

A* three-dimensional, imcompressible displacement area, 

_ .  

- .  
A*C three-dimensional, compressible displacement area, 

28 

28, 

t o t a l  diffuser expansion angle 

equivalent conical-diffuser expansion angle (included w a l l  angle 
of a cone of the same length and i n l e t  and e x i t  areas)  

diffuser expansion angle (included angle between w a l l s )  .- 
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2ecc diffuser expansion angle (included wall angle of a cone circum- 
scribed about a rectangular diffuser) 

0 two-dimensional, incompressible momentum thickness of the 

., 

2'- 

9.- 

three -dimensional, incompressible momentum area; 
8 1 ' = [[1-(f5/Rq2 g ( l  - t)d@2 

O3 

three-dimensionar, compressible momentum area; 
2 1 8 c 3  

0c3 - 'u(1 - ;)d(E) A - Jl-(a/nf12 PZu 

P mass density 

mass density at the edge of the boundary layer P l  

'. 
A primed quantity indicates a one-dimensional value consistent with 

continuity, the existing static pressure, and stagnation temperature. 

Subscripts : 

d diffuser 

f friction 

i inner wall 

I injection boundary-layer control 

0 outer wall 

. .  

2 

S shock location or suction boundary-layer control 

s+v 

tP tailpipe 

suction boundary-layer control with a vane installation 

sb shock-boundary-layer interaction 

> 

. 
*r 

? 
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Subscripts fo r  subsonic-diffuser s ta t ions (see f i g .  21(d)) :  

1 i n l e t  

2 e x i t  

2a s l igh t ly  downstream of e x i t  (a lso see f i g .  30) 

3 1.07 t a i lp ipe  diameters downstream of i n l e t ,  annular diffuser 

4 2.09 ta i lpipe diameters downstream of inlet ,  annular diffuser  
( a l s o  see f i g .  30(d)) 

Subscripts fo r  supersonic-inlet configuration (see f i g .  3’3) : 

0 free-stream conditions 

1 upstream of cowl l i p  

la  upstream of normal shock 

2 downstream of normal shock or subsonic-diffuser i n l e t  

3 subsonic-dif fuser e x i t  

W oblique shock-wave angle 

2 cowl l i p  angle 

S spike angle 

SELZCTION OF SIGNIFICANT VARIABLES 

I n  order t o  prepare a s m y  of diffuser performance data, the 
geometric and flow variables which are  most appropriate f o r  use as inde- 
pendent variables i n  presenting the performance had t o  be determined and 
defined. I n  addition, the most desirable diffuser  performance parameters 
had t o  be selected from the many variations available i n  the l i t e r a t u r e .  
In  both cases, the quantit ies had t o  be determinable from the information 
available i n  the majority of reports.  

I-. 

Independent variables may be broken down in to  two general groups, 
geometric and f l o w .  
of the diffuser i s  significant;  however, no parameter has been devised 

general class of configurations i s  considered individually herein. 

With regard t o  the former, the general configuration 

which represents an expression of the many possible diffuser  shapes. Each 
/- 

Area 
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r a t i o  and expansion angle are the other geometric variables used. 
case of a straight-walled conical diffuser, the expansion angle 28 is 
defined as the included wall angle, and as such is  a prime fac tor  governing 
the diffuser  pressure gradient. 
sion angle t o  other configurations w i l l  be discussed i n  later sections.  

I n  the 

The application of the concept of expan- 

Independent flow parameters used t o  define i n l e t  conditions include 
boundary-layer displacement thickness and shape factor ,  Reynolds number, 
and Mach number. Displacement thickness is used as an index t o  the pro- 
portion of t o t a l  flow occupied by the boundary layer a t  the i n l e t  s t a t i o n  
and is  defined as follows: 

'. 

The two-1 imensional def ini t ion is used because of its prevalence i n  t 
l i t e r a tu re  and because it i s  as sat isfactory as a three-dimensional 

ne 

def ini t ion f o r  the purposes intended. 
section, the average displacement thickness of the inner and outer w a l l s  
is referenced t o  one-half the gap width. For diffusers i n  which only 
two w a l l s  diverge the average i n l e t  displacement thickness is refer- 
enced t o  one-half the distance between the two diverging walls a t  the  
i n l e t .  
thickness i s  ident i f ied by the same notation, 
def ini t ion varies according t o  the configuration. 
layer shape fac tor  i s  defined as 

In  the case of an annular cross 

For simplicity i n  a l l  cases the i n l e t  boundary-layer displacement 
s"l/R1, even though the  

The i n l e t  boundary- 

where 

The value of shape factor  is  indicative of the amount of pressure gradient 
which the boundary layer may experience pr ior  t o  reaching a condition 
where separation i s  imminent. 
the duct diameter; however, a Reynolds number based on boundary-layer 
thickness may be obtained through use of the values fo r  the i n l e t  boundary- 
layer parameters. Mach number a t  the i n l e t  i s  used as an index t o  speed 

. 
(See r e f .  5 .  ) Reynolds number is  based on 

> 

3 

r 
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e f fec t s  on diffuser performance. In most available data the t rue  com- 
p res s ib i l i t y  o r  Mach number effects  on performance cannot be separated 
f rm Reynolds number e f fec ts  because increasing i n l e t  speeds produce 
both higher Reynolds and higher Mach numbers. 

* 

-- 

The independent parameters selected cover roughly a l l  s ignif icant  
parameters used i n  boundary-layer theory, 
parameters 28, AR, 6*1/R1, and S*i/O1 may be combined t o  produce 
the ideal one-dimensional value of 

(See refs. 6 and 7.) The 

which i s  indicative of the average pressure 
diffuser and, therefore, i s  the counterpart 

dient  - - dq used i n  boundary-layer theory. 
9 d x  

gradient throughout the 
of the loca l  pressure gra- 

The foregoing comparison 

is not intended t o  imply that the average pressure gradient i s  necessarily 
a correlating or governing parameter. I 

There are many signif icant  variables which a re  not covered i n  d e t a i l  
because of the lack of sui table  data. Such variables are flow obstruc- 
t ions,  surface roughness, configuration of downstream ducting, flow 
asymmetry at the i n l e t ,  turbulence, and so for th .  In  addition, some d a t a  
available i n  the l i t e r a tu re  were not included herein e i ther  because 
suff ic ient  data were not available t o  i l l u s t r a t e  a trend over a range of 
values for some parameters, or because a l l  pertinent t e s t  conditions were 
not defined. For instance, the former reason applies t o  cer ta in  odd 
configurations fo r  which only one or two data points were available. 

1 

The performance quantit ies or  dependent variables of most i n t e re s t  t o  
designers and analysts are  total-pressure loss  and e x i t  flow dist r ibut ion.  
The total-pressure loss is  d i rec t ly  re la ted  t o  the drag of the system, and 
the e x i t  flow dis t r ibut ion a f fec ts  c r i t i c a l l y  the operation of duct units 
or  parer-plant components located downstream of the diffuser .  A t h i r d  
performance quantity of i n t e re s t  because of i t s  ease of measurement and 
because of i t s  re la t ion  t o  the former two quantit ies i s  the static-pressure 
rise. The static-pressure rise re f l ec t s  the a b i l i t y  of the diffuser t o  
accomplish i ts  purpose, which i s  t o  convert kinet ic  energy in to  pressure 
energy. 

Previous investigators (see re fs .  8 t o  10) have shown that for  a 
given expansion angle and fixed i n l e t  conditions the total-pressure loss  
of a diffuser i s  proportional t o  the theoret ical ,  incompressible value of 
total-pressure loss f o r  a sudden expansion of the same area r a t io .  
corresponding proportionality constant, referred t o  herein as the loss  

The 
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factor ,  is  defined as follows: 

4 

e 

- .  

. I  

D 

I'. . 

where the denominator i s  the sudden-expansion loss and the t o t a l  pressures 
a re  average values. When other variables a re  fixed, the loss fac tor  K 
is  approximately constant over wide ranges of area r a t io .  
l o s s  factor  K 
it eliminates one variable. 

Therefore, the 
w i l l  be used as the total-pressure-loss parameter because 

Several methods of averaging or weighting t o t a l  pressures f o r  non- 
uniform flows a re  prevalent i n  the l i t e ra ture ,  and i n  many cases the d i f -  
ferences between the resu l t s  obtained by the several  methods a re  not 
negligible. Wyatt ( r e f .  4)  presents an analysis of errors  introduced by 
several  weighting methods. 
ate various flow parameters by using one-dimensional re la t ions the t o t a l  
pressures from surveys a t  a given duct s t a t ion  should be converted in to  
an effect ive t o t a l  pressure (referred t o  as mass-momentum method i n  
r e f .  4 ) .  The effect ive t o t a l  pressure corresponds t o  a value which 
would be obtained by mixing the flow i n  a f r i c t ion le s s  duct u n t i l  the 
dis t r ibut ion becomes uniform. The calculation procedure inherently 
includes total-pressure losses due t o  mixing. Thus, the use of e f fec t ive  
t o t a l  pressure t o  determine loss values charges mixing losses t o  the 
ducting where the flow nonuniformity originates.  
more reasonable accounting procedure than that fo r  mass- or  volume- 
weighted t o t a l  pressure, where the downstream ducting is  charged with 
the mixing losses.  

The analysis indicates that i n  order t o  evalu- 

This appears t o  be a 

A large portion of the total-pressure-loss data presented herein i s  
based on measurements made a t  t h e  point of maximum s t a t i c  pressure i n  the 
ta i lp ipe  downstream of the diffuser.  Thus, the total-pressure losses 
correspond t o  the effective t o t a l  pressure previously discussed except 
t ha t  f r i c t i o n  losses i n  the ta i lpipe a re  included. The f r i c t i o n  losses  
are  normally of less  magnitude than the data sca t t e r .  Some of the lo s s  
data are  based on mass-weighted t o t a l  pressures and some on %ass-derived" 
t o t a l  pressures. The l a t t e r  i s  a calculated value which i s  consistent 
with continuity, the existing s t a t i c  pressure, and the stagnation tem- 
perature. Thus, a mass-derived t o t a l  pressure charges the en t i r e  excess 
dynamic pressure associated with a nonuniform velocity d is t r ibu t ion  as a 
loss  and i s  the most pessimistic value of the several common types i n  use. 

I n  order t o  obtain some numerical values i l l u s t r a t i n g  the differences 
between the various averaging procedures, the methods presented by Wyatt 
( r e f .  4 )  were used t o  calculate mass-weighted, mass-derived, and effect ive 

uNEU@@fW 
3 
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M '  = 0.2 

- -." 
t o t a l  pressures fo r  a number of assumed velocity dis t r ibut ions and Mach 
numbers. The calculations were performed f o r  the case of two-dimensional 

The results of  the calculations are  summarized i n  the following table  i n  
terms of the difference between the mass-weighted and mass-derived t o t a l  
pressures and the difference between the effect ive and mass-derived t o t a l  
pressures. 
dimensional o r  mass-derived, compressible, dynamic pressure. The d i f fe r -  
ence between the mass-weighted and effect ive values may be obtained by 
simple subtraction of corresponding values f o r  the two coefficients given. 

flow w i t h  power-profile boundary layers meeting on the duct center l i ne .  --.  

The differences a re  nondimensionalized by dividing by the one- 

M '  = 0.5 

- 6* 
0 

1.29 

1.67 
1.80 
2.60 
3.00 

1.40 

- H '  
% I  

0.04 
907 
* 17 
.23 
* 72 

1.03 

H, - H'  

%' 

0.03 
05 
.l2 
.16 
.48 
.66 

- 
H - H '  

qc' 

0.05 
.09 
.20 
27 

.81 
1.15 

He - H' 

s, '4 

0.03 
.06 
-13 
* 17 
.46 
.61 

E - H '  
%' 

0.05 
.10 
.22 
29 

c 

The va lues  i n  the table  show t h a t  differences between the various 
weighting and averaging methods fo r  boundary-layer shape factors  corre- 
sponding t o  incipient separation (6*/0 2 1.8) are  of the same order as 
diffuser  lo s s  coefficients.  For t h i s  reason, the methods used i n  
obtaining a mean t o t a l  pressure become important. For cases where the 
boundary layer does not extend t o  the duct center l ine ,  the values given 
i n  the table would be reduced accordingly. 

Three performance values re la ted t o  the e x i t  f low dis t r ibut ion w i l l  
be presented because each has i t s  own par t icular  m e r i t s .  The quantit ies 

are the ex i t  dynamic-pressure d is tor t ion  - 

area A*2, - and the e x i t  velocity dis t r ibut ion.  

dis tor t ion i s  a quantity which may be measured or may be calculated from 
measurements of the static-pressure r i s e  and total-pressure loss. 
e x i t  displacement area is of In te res t  t o  designers because it indicates 
the relationship between geometric area and effect ive area.  The actual 

- 
.,  

, the e x i t  displacement Q2fQ2' 

QJ%' 
The dynamic-pressure 

A;! 

The 
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velocity dis t r ibut ion is  the information required t o  give a l l  the details 
of the f l o w  dis t r ibut ion necesswy f o r  matching the diffuser performance 
t o  the requirements of a downstream unit .  

The static-pressure-rise quantity w i l l  be given i n  terms of the 

The incom- 
diffuser  effectiveness, which i s  defined as the actual rise i n  pressure 
energy divided by the idea l  reduction i n  kinet ic  energy. 
pressible expression f o r  the effectiveness is as follows: 

I n  equation (1) the ideal  reduction i n  kinet ic  energy is defined as the 
difference between w h a t  i s  available a t  the i n l e t  and w h a t  would be 
available a t  the e x i t  i f  the diffuser produced the same kinetic-energy 
dis t r ibut ion a t  the e x i t  as that entering the i n l e t .  
regarding the type of idea l  e x i t  kinetic-energy dis t r ibut ion i s  based 
on the prac t ica l  consideration that the diffuser should not be required 
t o  produce an e x i t  velocity distribution which i s  superior t o  t h a t  
entering the i n l e t .  
t i o n  (l), it appears possible that in  cer ta in  instances the effect ive-  
ness may reach values i n  excess of 100 percent, par t icular ly  f o r  l o w -  
angle diffusers w i t h  separated flow entering the in l e t .  

The assumption 

Using the definit ion of effectiveness of equa- 

If the dynamic-pressure quantities are defined as  

and 

equation (1) becomes, f o r  no radial  gradient i n  s t a t i c  pressure, 
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The l a t t e r  expression is  the r a t i o  of the actual  static-pressure r i s e  t o  
the ideal static-pressure rise as  determined from the mean dynamic pres- 
sure a t  the i n l e t  and the area ra t io .  
static-pressure r i s e  can be determined from the mean compressible 
dynamic pressure a t  the inlet  

For compressible f l o w ,  the idea l  

the irllet s t a t i c  pressure pl, and 1' 
the area ra t io ,  i f  the flow i s  assumed t o  be isentropic.  
can be performed by using any of the several  published compressible-flow 
tables .  

The calculation 

Three of the performance parameters previously discussed may be 
related through use of Bernoulli 's  equation, as follows: 

= = (q - q) - (p2 - Pl) 

which converts t o  

K = (1 '1 )AR + 

AR - 1 (AR - 

c 

Through use of equation (2)  any one of the three parameters maybe 
determined, provided the other two are  known. 

METHODS OF PERFORMANCE MEASUREMENT 

. .  

. .  
The review of the l i t e r a tu re  and previous experience indicate that 

cer ta in  methods fo r  making the performance measurements are  most satis- 
factory. 
pressure pl, a reference t o t a l  pressure HRef, and total-pressure S u r -  

veys a t  the i n l e t  s ta t ion.  The i n l e t  s t a t i c  pressure can be measured 
most accurately and ef f ic ien t ly  by wall static-pressure or i f ices  i n  a 
longitudinal location where negligible transverse static-pressure gradients 

The i n l e t  measurements required consist  of the upstream S ta t i c  

ex is t .  S t ream static-pressure surveys a re  d i f f i c u l t  t o  make, subject t o  i 
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er ror  i n  proximity t o  L e  w a l l ,  sensitive t o  t u e  misalinement, and 
unnecessary f o r  i r ro ta t iona l  flow. The longitudinal location of the 
w a l l  s tat ic or i f ices ,  s t a t ion  1, should be far enough upstream from 
the start of the geometric expansion t o  be f ree  from regions of l oca l  
acceleration i n  the v ic in i ty  of the change i n  w a l l  slope a t  the i n l e t  
and should be close enough t o  the s t a r t  of the geometric expansion t o  
eliminate unnecessary penalties t o  static-pressure r i s e  due t o  i n l e t  
ducting f r i c t i o n  loss. (See f ig .  1). The optimum location varies 
w i t h  the  design, but it appears t o  range from a value of 1/4 t o  1 
hydraulic diameters upstream from the break i n  w a l l  slope a t  the i n l e t .  

Since total-pressure surveys shouldbe made a t  only one s t a t ion  a t  
a time, a correlating parameter, such as pl/HRef, i s  required. 
reference total-pressure tube shouldbe fixed and located, i f  possible, 
i n  a plenum chamber or large duct upstream from the i n l e t .  The e f f ec t  
of the reference total-pressure tube on the diffuser flow must be 
negligible.  I n  addition t o  the reference total-pressure measurement, 
upstream total-pressure surveys a re  required a t  s t a t ion  1 i n  order t o  
determine the diffuser total-pressure loss  and a l so  the inletboundary- 
layer parameters. 

The 

Downstream total-pressure surveys are  required a t  two locations f o r  
sa t i s fac tory  accuracy. 
desired a t  the end of the geometric area expansion, and total-pressure- 
recovery measurements should be taken a t  a location which corresponds t o  
a minimum of velocity dis tor t ion.  The velocity surveys at  the diffuser 
e x i t  w i l l  be i n  e r ror  because of d i f f icu l t ies  associated with measuring 
i n  a region of high velocity gradient (see refs. 11 t o  15). However, the 
measurements are necessary t o  indicate the character of the e x i t  velocity 
dis t r ibut ion.  The total-pressure-recovery measurements should be located 
i n  a ta i lp ipe  a t  a downstream location where the velocity dis t r ibut ion has 
become reasonably uniform. This location may be as  much as 6 diameters 
damstream from the diffuser ex i t ,  depending on the diffuser  design and 
flow conditions. An al ternat ive procedure is t o  locate a venturi about 
3 hydraulic diameters downstream of the diffuser e x i t  and t o  measure the 
total-pressure recovery i n  the throat. I n  most cases, the added f r i c t i o n  
loss of the ta i lp ipe  i s  negligible compared w i t h  errors  introduced by 
attempting t o  measure recovery near the diffuser ex i t .  

Diffuser-exit velocity dis t r ibut ions a re  generally 

RESULTS 

A l l  the data presented i n  figures 1 t o  32 correspond t o  favorable 
i n l e t  boundary-layer distributions such as would be obtained i n  turbulent 
flow with negligible longitudinal pressure gradient unless otherwise 
noted. 
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Conical diffusers.-  Total-pressure-loss data i n  terms of the loss 
fac tor  K f o r  conical diffusers tes ted  by Gibson ( r e f s .  8 and 9 )  and 
Peters ( ref .  10) are  given i n  figure 2 as a function of expansion angle. 
A logarithmic scale w a s  used f o r  expansion angle i n  order t o  increase 
the spacing a t  the lower expansion angles, which are of most i n t e re s t .  
The figure presents two types of l o s s  factors:  
quantity indicated by the curves fa i red  through data symbols (which a re  
identified i n  tab le  I) ,  and Kf, the calculated fr ic t ion-loss  factor  
which was determined by using the expression noted i n  the figure.  
friction-loss-factor expression resulted from an integration of the 
d i f fe ren t ia l  form of the expression f o r  f r i c t i o n  loss  i n  a s t ra ight  pipe 
as given i n  reference 1. The expression noted i n  f igure 2 assumes t h a t  
f r i c t ion  losses i n  a d i f fe ren t ia l  length of the conical diffuser can be 
estimated by using the straight-pipe expression. This assumption i s  only 
approximate because as  the flow proceeds through the diffuser the boundary 
layer becomes distorted,  producing a reduction i n  the skin-fr ic t ion coef- 
f i c i e n t  (see r e f .  7 ) .  However, approximate values a re  suf f ic ien t  f o r  t h i s  

K, the t o t a l  or measured 

The 

analysis. 

As the expansion angle approaches zero, the total- loss  fac tor  
approaches the value f o r  the f r ic t ion-loss  fac tor  because the ra te  of 
diffusion becomes negligible. A t  intermediate expansion angles, on the 
oriier of 5' t o  loo, Kf may be about one-half of the t o t a l  K.  The 
variation of l o s s  factor  with changes i n  expansion angle, as described, 
r e su l t s  in  the well-known f a c t  that f o r  conical diffusers an optimum 
expansion angle ex is t s  i n  the range of 5 O  t o  80 which produces the l e a s t  
total-pressure l o s s  f o r  a given area r a t i o .  

Peters'  investigation covered a wide range of i n l e t  boundary-layer 
thicknesses for  an area r a t i o  of 2.34 while Gibson's data cover a wide 
range of area r a t io s  a t  one i n l e t  boundary-layer thickness (6* l /R1  = 0.01). 
For both se t s  of data, the total-pressure-loss fac tor  i s  based on measure- 
ments i n  the ta i lp ipe  a t  the point of greatest  static-pressure recovery, 
which corresponds t o  a velocity dis t r ibut ion approximating f u l l y  developed 
pipe f low.  Therefore, the data should correspond t o  effect ive t o t a l  pres- 
sures previously discussed and should be f u l l y  comparable. 
of a l l  the data curves were fa i red  i n  such a way that a t  very low angles 
the t o t a l  K would become equal t o  Kf .  

The le f t  ends 

For expansion angles between 100 and 20°, a range of i n t e re s t  f o r  
pract ical  application, the data curves f o r  area r a t i o s  of 2.25, 4.00, and 
9.00 fo r  a tj*l/R1 of 0.01 (Gibson) tend t o  coincide, i l l u s t r a t i n g  the 
lack of dependence of the loss factor K on area r a t i o .  For expansion 
angles less than loo the f r i c t i o n  component of the loss  becomes substan- 
t ia l ,  as i s  indicated by the calculated f r i c t i o n  curves. The fr ic t ion-loss  . 

-. 

.'. 

c 
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fac tor  is defin,-=ly a function of area ra t io ,  as ,adicated by the 
expression noted i n  the figure.  
f o r  law-angle diffusers  with area ra t ios  other than those corresponding 
to  the data, it is  suggested that the value from the data curves be 
corrected f o r  the difference i n  f r ic t ion-loss  factor  due t o  the change 
i n  area r a t i o .  For instance, f o r  a 4O diffuser  with an area r a t i o  of 
4.0 and a 6*l/Rl of 0.029, the estimated loss fac tor  is obtained as 
follows : 

In  order t o  estimate the lo s s  f ac to r  

K = 0.27 - (0.14 - 0.09) = 0.22 

, 

. .  

. _  

I n  the range of expansion angles corresponding t o  the lowest l o s s  
factors  the i n l e t  boundary-layer thickness has a substant ia l  e f f ec t  on 
the value of loss factor .  
20° separation becomes the controlling fac tor  and i n l e t  boundary-layer 
thickness becomes irrelevant.  Diffusers with expansion angles greater  
than 50' produce loss coefficients greater than that fo r  a sudden expan- 
sion (K of 1.0). 

As the expansion angle is  increased beyond 

Peters '  data a re  compared with more recent data taken a t  higher 
i n l e t  Reynolds numbers ( re fs .  13, 16, and 17; see table  I)  i n  f igure 3 .  
The l o s s  factors  f o r  the diffusers w i t h  area r a t i o  of 2.0, whichwere 
tes ted  a t  the highest Reynolds numbers, a l l  agree well with Peters '  data 
except f o r  two low points. This resul t  may be circumstantial, however; 
the loss coefficients f o r  the diffusers w i t h  area r a t i o  of 2.0 a re  known 
t o  be l o w  (see r e f .  13) since the pressure recoveries were measured a t  
the diffuser  ex i t s  i n  large velocity gradients and since the t o t a l  pres- 
sures a re  mass-weighted instead of effective values. Squire 's  data 
( r e f .  16) f o r  diffusers with AR of 4.0, which appear t o  be higher than 

Peters ' data and were taken a t  2- times the Reynolds number, are probably 

more accurate than the data f o r  diffusers with of 2.0 because the  
measurements were taken 1 diameter downstream of the diffuser  ex i t .  It 
appears possible that the l o s s  coefficient does increase with Reynolds 
number as indicated by boundary-layer theory ( r e f .  7); however, su f f i c i en t  
data a re  not available t o  substantiate this point. 

2 

AR 

Figures 2 and 3 show that Peters'  data have a cer ta in  degree of uni- 
form variation w i t h  respect t o  change i n  i n l e t  boundary-layer thickness. 
The curves are  very similar i n  shape, which suggests that the loss f ac to r  
can be broken down into the product of two functions as follows: b 

.' 

4 
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This process was'accomplished, and the two functions a re  plot ted i n  
f igure 4. 

a t  any given expansion angle i n  figure 3. 
f i t s  the data closely, shows that KRef i s  a function of (a) . 
Above values of 28 of 20' the relationship does not hold, probably 
because the extensive flow separation i n  such diffusers produces a radi- 
c a l  change i n  flow pattern.  For values of 28 below about 8 O ,  the data 
points diverge appreciably from the empirical relationship, indicating 
that the l a w s  of f r i c t i o n  loss are  becoming predominant. 

The function of expansion angle, (p(2e) = KRef, w a s  determined 
by assuming that KRef i s  approximately equal t o  the maximum value of K i v  

The empirical re la t ion,  which 
1.50 

The boundary-layer function Jr 6*1 R1 = K KRef w a s  evaluated 

The resu l t s  a re  plot ted i n  figure 4 f o r  values of 

( 1 )  
di rec t ly  from the measured values of K 
values of KRef. 

and the previously determined 

expansion angle between approximately 8' and 20'. All the data of 
f igure  3 within t h i s  angle range a re  included although, as previously 
noted, the data f o r  the diffusers with an AR of 2.0 are known t o  be 
low. The function of appears t o  be l inear  with 6X1/Rl and 
of high slope up t o  a value of 6*& of 0.04. A t  this point, the 

curve breaks and assumes a much reduced slope. The sharp break i n  the 
curve can probably be associated with a change i n  flow pat tern brought 
about by the f i l l i n g  of the diffuser  cross section with boundary layer .  
The f a c t  that K KRef appears t o  be approaching a value of 1.0 a t  the 
maximum possible value of 6++ suggests that K i s  equal t o  KRef 
f o r  fu l ly  developed pipe f l o w  a t  the i n l e t .  

,- 

L 

I 

Rectangular and square diffusers.-  Figures > ( a ) ,  (b) ,  and ( c )  con- 
t a i n  l o s s  data on square and rectangular diffusers.  
equivalent conical expansion angle (defined as the included angle between 
the w a l l s  of a cone of the same length and i n l e t  and e x i t  areas)  I s  used 
as the independent variable. 
angle i s  t o  obtain an angle which is  indicative of the same longitudinal 
pressure gradient that the conical diffuser has. 
the data do not correlate  with the conical-diffuser curve and that other 
factors  besides longitudinal pressure gradient must be s ignif icant .  

I n  f igure 5(a), 

The purpose of using the equivalent cone 

It i s  apparent that 
. .  

. . 
Figure 5(b)  contains the same data as figure 5(a) except that the 

included w a l l  angle i s  used as the independent variable. 
with the conical-diffuser curve is  sat isfactory except f o r  the square- 
diffuser data and Young and Green's data for  rectangular diffusers with 
an AR of 4.0 ( r e f .  18; see table  I) .  The Young and Green data are  
higher than the other diffuser  data because the e x i t  t o t a l  pressure w a s  

The correlation 

calculated from the s t a t i c  pressure and mass flow. This procedure ' I  

charges the nonuniformity i n  dis t r ibut ion against 

.- 
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the loss  coefficient,  which i s  inconsistent with the other data. 
degree of success obtained by using included w a l l  angle as a correlat ing 
parameter suggests that the actual  maximum change i n  flow direct ion from 
the mean direction i s  important i n  determining the loss  fac tor .  

The 

Data f o r  several designs of shaped diffusers developed by Gibson 
( re fs .  8 and 9 )  are also included i n  f igure 5(b)  t o  show the advantage of 
special  w a l l  shapes i n  reducing losses, especially a t  expansion angles 
greater  than about 18'. 
behind these designs is  that f o r  short diffusers the r a t e  of area 
increase should be small a t  f irst  i n  order t o  obtain the max imum pres- 
sure r i s e  possible pr ior  t o  boundary-layer separation. After separation, 
the area i s  increased a t  a high rate  compatible with the shortness of the 
diffuser .  
velocity distributions; however, the dis t r ibut ions may o r  may not be 
worse than those f o r  any other w a l l  shape. 

A crude statement of the apparent philosophy 

Such a design undoubtedly produces highly d is tor ted  e x i t  

"he independent variable used in figure 5 (c )  i s  the included w a l l  
angle of a cone circumscribed about the diffuser.  U s e  of the 
circumscribed-cone angle represents an extension of the thought that 
performance is a function of the angle of the maximum change i n  flow 
direction, which occurs i n  the corners of the diffuser.  The circum- 
scribed cone correlates the square-diffuser data w e l l ,  fu r ther  substan- 
tiating the conclusion relative t o  the importance of the change i n  flow 
direction. 

Annular diffusers.-  The measured loss  factors  f o r  annular diffusers  
a re  compared with conical-diffuser data i n  figure 6(a) .  
p lo t ted  against included w a l l  angle where possible. 
expanding inner and outer walls the included w a l l  angle becomes con- 
verging; therefore, equivalent conical angles were used i n  t h i s  case. 
"he annular diffuser data of figure 6(a) do not correlate  w i t h  the  
conical-diffuser data, apparently because of the differences i n  f r i c t i o n  
losses between annular and conical diffusers. The calculated f r i c t i o n  
losses included i n  the figure show that f o r  the annular diffusers  with 
lower angles the losses are  almost ent i re ly  f r i c t ion .  

The data are 
I n  the case of 

I n  order t o  obtain a correlation, the calculated f r i c t i o n  losses  
were subtracted from the measured losses t o  produce a lo s s  f ac to r  Kd 
which is  chargeable t o  diffusion only. 
show good correlation with the conical data except for  the 
1.91 data, which are known t o  be low because the downstream t o t a l  pres- 
sure w a s  measured i n  a highly distorted velocity dis t r ibut ion.  
correlat ion appears t o  be val id  f o r  engineering approximations. 

The resu l t s  given i n  figure 6(b)  
AR of 

The 
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Conical diffusers.-  In accordance with equation 2 and i n  order t o  
obtain values of the sane order of magnitude as the loss  factor ,  the 
data on diffuser effectiveness w i l l  be presented i n  terms of l o s s  i n  
effectiveness 1 - q. Conical-diffuser data from several sources and 
corresponding t o  several area ra t io s  are presented i n  f igure 7. 
correlation i s  indicated by the presentation. The data f o r  similar values 
of 6*l/R1 and AR agree well except fo r  a few isolated points f o r  an 
AR of 2.0. The data indicate that 1 - q is  not independent of area 

N o  data 

r a t i o .  

The dependence of 1 - q on AR is  i l l u s t r a t e d  i n  figure 8 f o r  both 

of 0.006 i s  an extrapola- 
t h i n  ( 6*1/Rl = 0.006) and thick (6* 
The curve f o r  an area r a t i o  of 2.34 and 
t i o n  of Peters'  data ( r e f .  10) based p a r t i a l l y  on the data f o r  
2.0. The curves indicate that AR has a large e f fec t  on 1 - q f o r  
t h in  boundary layers, corresponding t o  the following approximate 
proportion: 

= 0.082) i n l e t  boundary layers.  

s/ 
1/Rl 

6* R1 

AR of 

The thick-boundary-layer curves were calculated by using the e x i t  velocity- 
dis t r ibut ion data of reference 15 and the assumption that the data of ref- 
erence 15 correspond t o  Peters '  loss-factor resu l t s ,  which the loss-factor 
discussion indicates t o  be a val id  assumption. The curve f o r  an AR of 
2.3 i s  Peters'  data. 1 - 7 
i s  almost independent of 4. The extreme difference i n  the dependence of 
1 - q on AR f o r  the two boundary-layer conditions a l so  may r e su l t  from 
the flow phenomena produced by the f a c t  that the boundary layer f i l l s  the 
diffuser i n  one case and does not f i l l  it i n  the other case. The curves 
of figure 8 emphasize the need t o  consider a l l  pertinent conditions i n  
predicting o r  comparing diffuser performances. 

The thick-boundary-layer curves indicate that 

.. 
Peters'  data are  presented as a product of two functions i n  f igure 9 

i n  a manner pa ra l l e l  t o  the loss-factor presentation of figure 4. 
function of 20 represents a curve of the maximum values of 1 - q 
occurring a t  any expansion angle as determined from cross plots  of f i g -  
ure 7. 
approximately 0.056. The function of 28 i s  l inear  with 20 i n  con- 
trast t o  the power function f o r  the K fac tor .  Owing t o  the nature of 

The 

Maximum values occur a t  an i n l e t  boundary-layer thickness of 

the 28 function, the function of 6* reaches a value of 1.0 a t  r 

c 
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6*1/R1 of 0.036 and then decreases s l igh t ly  with fur ther  thickening of 

the boundary layer.  This result indicates that f o r  a given diffuser 
expansion angle the ex i t  velocity distribution m u s t  improve s l igh t ly  
with fur ther  thickening of the inlet boundary layer a f t e r  the condition 
of complete f i l l i n g  of the diffuser with boundary layer i s  attained, 
because the loss fac tor  continues t o  increase i n  this region. 
correlations apply t o  expansion angles ranging f rm 50 t o  200 f o r  reasons 
discussed i n  connection with the K correlation. In addition, the corre- 
la t ions  apply t o  an area r a t i o  of 2.34 only, because of the dependence of 
1 - 7 on AR. 

The 

Rectangular diffusers.-  Rectangular-diffuser data from several  
sources a re  presented i n  figure 10. 
both equivalent conical angle and included w a l l  angle. 
that the included wall angle is  a be t te r  correlating parameter, which is  
i n  agreement with the analysis of the loss-factor data. The data indi-  
cate that area r a t i o  has a substantial  influence f o r  rectangular 
diffusers  a lso.  

Some of the data are  plot ted against  
It is  apparent 

A l l  the data of figure 10 a re  presented i n  figure 11 as a function 
of included w a l l  angle, which considerably reduces the data spread due 
t o  the area-ratio variation a t  t j* l /Rl  of 0.008. The data spread was 
fur ther  reduced by d iv id ing  1 - 7 by the a rb i t ra ry  factor  ARO*~, as 
indicated by figure 12. The correlating factor  AR'.~ indicates much 
l e s s  dependence of 1 - 7 on AR for rectangular diffusers than f o r  
conical diffusers  a t  tj* R of 0.006 (f ig .  8) .  A power of 1.6 would 
have been required f o r  the l a t t e r  case. Judging from the var ia t ion i n  
the dependence of 1 - 7 on AR f o r  conical diffusers,  the correlat ion 
of figure I 2  cannot be r e l i ed  on t o  apply t o  thick boundary layers.  

11 1 

Annular diffusers.-  Data on annular diffusers a re  sumnarized i n  
figure 13, where included wall  angle is the independent parameter used 
except f o r  the one case noted. 
low expansion angles, f a l l  below the conical-diffuser data f o r  comparable 
boundary-layer thicknesses. 
w h a t  more static-pressure r i s e  than conical diffusers under the same flow 
conditions. 

All the data plotted, except those a t  

Apparently, annular diffusers produce some- 

The data f o r  
cone angle) appear not t o  correlate well e i ther  i n  magnitude or  trend. 
These two points, however, are  the only ones which have f r i c t i o n  compo- 
nents s ignif icant ly  different from the conical diffuser of the  same 
angle, a s i tua t ion  resul t ing from the use of equivalent cone angle. If 
the f r i c t i o n  component of 1 - 7 were subtracted from the measured 

AR of 1.75 (plotted i n  f i g .  13 against equivalent 
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values, the dath f o r  these two diffusers would correlate;  however, the 
correlation of the other data would not be improved. -- 

Recovery of Diffuser Effectiveness i n  Tailpipe 

Peters (ref. 10) measured static-pressure r i s e  i n  the ta i lp ipe ;  
these measurements are summarized i n  figure 14. 
presents the maximum gain i n  effectiveness i n  the ta i lp ipe  re fer -  
enced t o  the loss  i n  effectiveness i n  the diffuser proper as a 
function of expansion angle. Since the static-pressure r i s e  i n  the 
ta i lp ipe  is  en t i re ly  due t o  the velocity dis t r ibut ion becoming more 
uniform through natural mixing, the coeff ic ient  plot ted is  a m e a s u r e  
of the amount of loss  i n  diffuser effectiveness which i s  recoverable 
(as opposed t o  that i r reversibly l o s t  due t o  total-pressure losses) .  
The curves have been fa i red  t o  zero a t  expansion angles estimated from 
figures 7 and 13 t o  correspond t o  a minimum value of 1 - 7. This 
point has been interpreted as  corresponding approximately t o  a f u l l y  
developed pipe-flow dis t r ibut ion a t  the diffuser exi t ;  such a dis t r ibu-  
t i on  i s  stable and would recover no fur ther  s t a t i c  pressure. The data 
indicate that as much as 63 percent of the loss i n  diffuser  effect ive-  
ness is  recoverable i n  the ta i lp ipe  f o r  

The left-hand p lo t  

€j*l/Rl of 0.058. 

The right-hand side of figure 14 gives the ta i lp ipe  lengths required 
to  recover the maximum amount of effectiveness. Six diameters of tai l-  
pipe a re  required fo r  6*l/Rl of 0.058 f o r  conical diffusers .  e 

The data of figure 14 have been converted in to  terms of overall  l o s s  
i n  effectiveness f o r  conical-diffuser-tailpipe combinations and a re  pre- 
sented i n  f igure 15. Since the optimum ta i lp ipe  length corresponds 
approximately t o  the point where f u l l y  developed pipe flow i s  obtained a t  
the ta i lpipe ex i t  ( r e f .  lo), the net loss  i n  effectiveness reaches a mini- 
mum a t  an expansion angle corresponding t o  the minimum loss coeff ic ient .  
This fac t  may be substantiated by comparing figures 2 and 15. The table  

diffuser-tailpipe combinations 
for  a l l  conditions, which corresponds t o  the angle range fo r  diffusers 

s ta ted  i n  other terms: fo r  opthum ta i lp ipe  lengths and a given i n l e t  
boundary-layer thickness, the overall  length of diffuser- ta i lpipe Combi- 
nations remains approximately constant over wide ranges of values of 
diffuser angle (29)d. 

included i n  figure 15 shows that the overall  expaasion angles of the 

alone f o r  l e a s t  loss i n  effectiveness ( f ig .  7 ) .  This r e su l t  can be . .  

. .  
28tp f a l l  within the range of 2' t o  4' 

Inlet Speed Effects 
L 

In le t  speed ef fec ts  w i l l  be presented i n  terms of inlet  Mach num- 
ber M1; however, the presentation should not be interpreted as implying - 
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that the indicated effects  are  ent i re ly  due t o  Mach number or  compressi- 
b i l i t y .  Increasing the i n l e t  Mach nuniber a lso increases the i n l e t  
Reynolds number, which produces certain character is t ic  effects .  
instance, increasing the Reynolds number decreases the f r i c t i o n  coeff i -  
c ient  and, therefore, the f r i c t i o n  components of total-pressure loss and 
loss  i n  effectiveness. In  addition, reference 7 indicates that the loss 
i n  kinet ic  energy per u n i t  length, normal t o  the direction of f l o w  i n  the 
boundary layer, is a function of Reynolds nuniber. 
probably explains i n  pa r t  the phenomena i n  which the separation point i n  
a diffuser  t ravels  upstream with increasing i n l e t  speed. 

For 

The l a t t e r  e f f ec t  

Compressibility e f f ec t  on ideal  pressure gradient.- Boundary-layer 
theory ( re f .  7 )  indicates that one of the prime factors which influence 
the r a t e  of boundary-layer growth (and therefore diffuser performance) 
i s  the longitudinal pressure gradient. Mach number increases r a i se  the 
longitudinal pressure gradient a s  a r e su l t  of a compressibility e f f ec t  
predictable from one-dimensional relations.  Naumann discussed this ef fec t  
i n  1942 i n  reference 19. Additional discussion of the sane subject may be 
found i n  reference 20. 
pressible dynamic pressure per unit dynamic pressure f o r  a given change i n  
area increases as the Mach number increases and approaches i n f i n i t y  as the 
Mach number approaches 1 .O as follows : 

The change in  the isentropic one-dimensional COJH- 

The preceding equation is  plotted i n  figure 16(a) f o r  several i n l e t  
Mach rimers over a range of area r a t io  from 1.0 t o  3.0. 
gradient a t  the various Mach numbers used is  referenced t o  the pressure 
gradient a t  a Mach number of 0.2. 
are  confined t o  small area ra t ios ,  indicating tha t  the diffuser flow 
should be affected principally i n  a region near the i n l e t .  
pressure-gradient change may be only one of several important c q E s s i -  
b i l i t y  e f fec ts .  
and associated influences on the rate  of boundary-layer growth may be an 
example. 
p re s s ib i l i t y  re la t ive  t o  d i f m e r  performance and design. 

The pressure 

The curves show that the large e f fec ts  

The ideal  

PhenQmena pertaining t o  the transverse pressure gradients 

More research is  needed t o  evaluate fully the Importance of com- 

The expression i l l u s t r a t e d  i n  figure 16(a) w a s  used t o  modify the 
design of an 8' conical diffuser with 3 t o  1 area r a t i o  t o  obtain a design 
for  an i n l e t  Mach number of 0.8. 
fuser operated sa t i s f ac to r i ly  a t  an i n l e t  Mach number of 0.2. 
assumed fur ther  that a modified diffuser design which produced the same 
idea l  pressure gradients a t  an i n l e t  Mach number of 0.8 as  those of the 

It w a s  assumed that the 8' conical dif- 
It was 
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-... 
coni ta l  diffuser a t  an inlet Mach number of 0.2 would operate sa t i s fac-  
t o r i l y .  The l a t t e r  assumption, as previously discussed, is  somewhat 

on configuration which are indicated by changes i n  the idea l  pressure 
gradient. 

, 
I 

- L  questionable; however, it w a s  desired t o  obtain an idea of the e f fec ts  '; 1 

The resul t ing design i s  compared w i t h  the or iginal  8 O  diffuser i n  
figure 16(b). The increase i n  pressure gradient obtained by ra i s ing  the 
i n l e t  Mach number from 0.2 t o  0.8 w a s  nu l l i f i ed  by decreasing the expan- 
sion angles by amounts ranging from about 4 . 5 O  near the i n l e t  t o  0.08' 
near the ex i t .  Thus, the diffuser length w a s  increased about 15 percent. 
The result ing diffuser shape suggests that increasing the inlet  Mach num- 
ber requlres making the w a l l  shape such that the radius of curvature of 
the w a l l  increases gradually from the inlet  t o  the e x i t  and a l so  requires 
reducing the overall  expansion angle. 

Loss coefficient - conical diffusers.-  Data on diffuser  performance 

The total-pressure-recovery measurements f o r  the coni- 
over a range of i n l e t  Mach numbers are available i n  the l i t e r a t u r e  from 
several sources. 
ca l  and annular diffusers were made i n  regions where velocity-distribu%ion 
distortions existed, which introduced some inaccuracies. I n  addition, the 
change i n  performance w i t h  increasing inlet  Mach number or the slope of 
the data curves is  the important factor ,  which requlres data of higher 
than noma1 accuracy. Because of these circumstances, the data figures t o  
be presented w i l l  be useful only i n  obtaining orders of magnitude. .- 

i Data on conical diffusers f o r  i n l e t  boundary-layer thicknesses 8*1/R1 
/I ranging between 0.003 t o  0.006 are  presented i n  figure 16(a) as the r a t i o  

of the l o s s  coefficient a t  a par t icular  Mach number t o  the loss coeff ic ient  
f o r  an inlet Mach number of 0.2. Values of choking Mach number, which a re  
indicated i n  figures 17 t o  19, are  defined as the maximum value of average 
Mach number obtained a t  the i n l e t  measuring s ta t ion .  
number i s  a value consistent w i t h  continuity and the exis t ing s t a t i c  pres- 

average ra te  of increase i n  loss  coeff ic ient  of 11 percent per unit  change 
i n  Mach number up t o  Mach numbers of 0.73. 
speed produced various high ra tes  of loss-coefficient increase which 
depended on loca l  changes i n  flow pat tern caused by loca l  shock-wave for-  
mations. The data f o r  the 23O diffuser indicate a rapid r a t e  of Increase 
i n  loss coefficient over the en t i re  range of M 1 .  

The average Mach 

1 sure and stagnation temperature. 

i 

The 10' and l 2 O  diffusers produced an 

Further increases i n  i n l e t  

Considerable asymmetri- 

. .  

. .  

c a l  f l a w ,  flow separation, and flow unsteadiness existed i n  the diffuser. 

Conical-diffuser data f o r  thicker i n l e t  boundary layers (6+1/R1 O f  

Increasing the thickness 0.017 t o  0.030) are  presented i n  figure 17(b).  
of the in l e t  boundary layer by a fac tor  of 5 or 6 produced higher ra tes  
of increase of l o s s  coefficient f o r  the loo and 120 diffusers  and lower 
choking Mach numbers. 

e. 
One of the 12O diffusers produced an average r a t e  

,- 

I 
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of increase i n  l o s s  coefficient as  high as 56 percent up t o  a Mach number 
of 0.6. 
losses although the r a t e  of increase i n  AH/q w a s  somewhat lower than 
fo r  the thinner -boundary-layer case ( f i g  . 1-7 (a) ) . 

The 23’ diffuser s t i l l  produced the most severe performance 

Loss coefficient - rectangular diffusers.- Rectangular-diffuser data 
are  presented i n  figure l 7 ( c ) .  
coefficient increase i s  indicated up to  i n l e t  Mach numbers of 0.6 f o r  the 
several diffuser expansion angles tested. The three la rges t  expansion 
angles produced various degrees of flow separation and unsteadiness. The 
average r a t e  of  increase i n  the loss  coefficient was about 26 percent per 
u n i t  Mach number up t o  i n l e t  Mach nunibers of 0.6. 
the rectangular-diffuser loss coefficient presented i n  reference 18 i s  
not exactly comparable with other data presented herein because it 
includes a penalty due t o  the flow distortion a t  the e x i t .  

Very l i t t l e  variation i n  the rate of loss -  

As noted previously, 

Loss coefficient - annular diffusers.-  The data of f igure l7(d) 
emphasize the e f fec t  of Reynolds number on the f r i c t i o n  component of the 
l o s s  coefficient.  For the two low-angle diffusers,  the loss  coeff ic ient  
e i ther  remained constant or decreased very s l igh t ly  with increasing inlet  
Mach number. This r e su l t  could only be produced by a decreasing f r i c t i o n  
coefficient.  The curve w i t h  the highest posit ive slope Indicates an aver- 
age r a t e  of increase i n  l o s s  coefficient of 48 percent per un i t  Mach number 
up t o  a Mach number of 0.8 even though t h i s  diffuser  had a r a t i o  of f r i c -  
t i on  loss t o  t o t a l  loss of about 70 percent. The r a t e  of increase, how- 
ever, could be drast ical ly  reduced by refair ing the curve within the data 
sca t t e r .  

Effectiveness loss - conical diffusers.- Data f o r  conical diffusers  
with very th in  i n l e t  boundary layers (€5*”1IRl  
given i n  figure 18(a) .  The diffusers with an area r a t i o  of 2.0 produced 
a wide dispersion i n  the resu l t s ,  the two diffusers i n  which separation 
w a s  prevalent corresponding t o  very high ra tes  of increase i n  the effec- 
tiveness lo s s .  The two diffusers with no separation produced decreases 
i n  the l o s s  i n  effectiveness over most  of the Mach number range. The 
diffusers with an area r a t i o  of 4.0, a l l  O f  which had low expansion angles, 
produced a uniform grouping of data corresponding t o  an average rate of 
increase i n  1 - q of 20 percent per uni t  Mach number. 

from 0.003 t o  0.006) are 

Figure 18(b) presents similar data f o r  much thicker i n l e t  boundary 
layers,  €5*l/R1 of 0.017 t o  0.030. An average rate of increase of about 
55 percent up t o  a Mach number of 0.7 w a s  obtained. The data represent 
a wide variety of conditions relative t o  flow separation. 

Figure 1 8 ( ~ )  presents data f rom reference 20 comparing the charac- 
t e r i s t i c s  of a straight-wall  conical diffuser with those of a curved-wall 
diffuser .  The expansion angle of the curved-wall diffuser increased 
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gradually from the i n l e t  toward the middle and then decreased t o  a lower 
value toward the ex i t ,  resul t ing i n  an average expansion angle of l O . 5 O .  
The maximum local  expansion angle w a s  1 3 . 5 O .  The straight-wall diffuser  
had an expansion angle of 8' over the en t i r e  length except f o r  a f a i r ed  
region near the i n l e t ,  which resulted i n  an average angle of 7.25O. The 
data show that the curved-wall diffuser exhibited a def ini te  superiority 
f o r  allboundary-layer conditions. However, f o r  the two thickest  
boundary layers,  the advantage of the lower r a t e  of Increase of 
of the curved-wall diffuser i s  eliminated by the higher value of 
a t  a Mach number of 0.2 (see f i g .  7 ) .  
the ra te  of increase i n  1 - 7 becomes higher with increasing thickness 
of i n l e t  boundary layer.  

1 - 7 
1 - 7 

In general, the data show that 

--.. 

- .  

Effectiveness loss- rectangular diffusers.-  The rectangular-diffuser 
data of figure 18(d) group closely f o r  a wide range of expansion angles 
and indicate an average r a t e  of increase i n  
uni t  Mach number up t o  a Mach number of 0.6. 

1 - 7 of 27 percent per 

Effectiveness loss  - annular diffusers.-  The data of figure 18(e)  
show a favorable Reynolds nuniber e f fec t  due t o  a decreasing f r i c t i o n  
loss f o r  three of the diffusers,  as  i n  the case of the loss-coefficient 
data. 
which indicated the high r a t e  of increase I n  l o s s  coefficient I s  not the 
same as the one with the high ra te  of increase i n  effectiveness l o s s .  
However, as i n  figure l 7 ( d ) ,  the high ra tes  of loss i n  performance could 
be reduced dras t ica l ly  by re fs i r ing  the curve within the data sca t t e r .  

A camparison of the data with f igure l7 (d )  shows that the diffuser  

Choking Mach number.- Typical values of choking Mach number f o r  
diffuser  flow are  given i n  figure 19 as  a function of the inlet boundary- 
layer displacement thickness. 
may be estimated. 
measured a t  a reference s ta t ion  a short  distance upstream of the diffuser  
i n l e t  (0.4 t o  1.0 diameters) where there was no transverse static-pressure 
gradient. 
dif fuser  by L i t t l e  and Wilbur (unpublished) showed t h a t  when the diffuser 
reached the choking condition, the point of choke occurred near the end of 
the i n l e t  ducting or near the start of the geometric expansion. The Mach 
number outside the boundary layer w a s  s l i gh t ly  supersonic. These results 
indicate that the actual  mean choking Mach number probably depends very 
l i t t l e  on the diffuser geometry but i s  primarily a function of i n l e t  
boundary-layer thickness. The exception t o  this statement i s  the case 
where the diffuser  configuration includes a flow obstruction (such as a 
blunt inner body) which se t s  up a transverse static-pressure gradient a t  
the i n l e t .  

From such d a t a  maximum mass-flow capacit ies 
The mean choking Mach number plot ted w a s  i n  a l l  cases 

Extensive pressure surveys near the i n l e t  of a 12' conical 

By using the concept of choking Mach number described i n  the last 

The equation w a s  derived on the 
paragraph, an equation (noted i n  f i g .  19) was derived expressing choking 
Mach number as a function of 6*1/R1.  

U r n -  

.- 
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assmption that the Mach number outside the boundary layer  i s  unity f o r  
the choking condition. 
boundary-layer cases because the stream Mach nmber would become appre- 
ciably supersonic f o r  thick cases. The p lo t  of this equation indicates  
that a l l  the data correspond t o  somewhat lower Mach numbers, with one 
exception. 6*l /R1 of 0.006 may be i n  e r ro r  since no 
measurements of 6*l/Rl were provided i n  reference 19 and therefore the 
value had t o  be estimated. The actual data should f a l l  below the calcu- 
la ted  curve by about the amount shown by the fa i red  curve since the 
measuring s ta t ions were upstream from the actual  point of choke. 

Such an assmption would apply only t o  thin- 

The exception a t  

Exit Flow Distributions 

Currently, one of the most c r i t i c a l  items with regard t o  d i f fuser  
performance i s  the e x i t  velocity distribution delivered by the diffuser .  
This item has become c r i t i c a l  because power-plant components, such as 
compressors and combustion chambers, cannot function properly without a 
re la t ive ly  high degree of uniformity of flow distribution. 

Acceptable limits on the velocity-distribution d is tor t ion  are 
d i f f i c u l t  t o  f i x  r ig id ly  and vary with the application. 
engines, the dis tor t ion a t  the compressor i n l e t  i s  generally expressed 
i n  terms of t o t a l  pressure, and limits have been quoted ranging anywhere 
from 2 t o  20 percent variation i n  t o t a l  pressure. In order t o  convert 
dis tor t ion limits i n  terms of t o t a l  pressure in to  limits on the varia- 
t ion  of velocity, the mean Mach rider m u s t  be specified as indicated 
by f igure 20. 

For turbojet  

. The curves of figure 20 were calculated by assuming that the d is tor -  
t ion  w a s  equally distributed above and below the mean t o t a l  pressure and 
tha t  the s t a t i c  pressure was uniform. Since the Mach number a t  the com- 
pressor i n l e t  of turbojet  engines i s  about 0.6, the m a x i m u m  var ia t ion  of 
the velocity would be about 5 percent f o r  a 2-percent d i s tor t ion  i n  t o t a l  
pressure and about 13 percent f o r  a 5-percent dis tor t ion.  
Mach number of 1.0 a t  the subsonic-diffuser i n l e t ,  the theore t ica l  area 
r a t i o  fo r  t h i s  condition i s  about 1.2. The same dis tor t ion  l imi t s  f o r  a 
Mach number of about 0.3 (ram-jet operation) would be 16 percent and 
37 percent variation i n  
about 2.0. 
statement can be made as t o  w h a t  constitutes a sa t i s fac tory  velocity 
distribution, and no attempt t o  do so  w i l l  be made herein. 

A s s u m i n g  a 

u/U, with a maximum theoret ical  area r a t i o  of 
From the preceding discussion, it i s  obvious that no general 

Conical diffusers.-  The effects of diffuser expansion angle, i n l e t  
boundary-layer thickness, and area r a t i o  on e x i t  velocity d is t r ibu t ion  
a re  i l l u s t r a t e d  i n  figure 21(a) for t h i n  inlet  boundary-layers corre- 

I 

-9 sponding t o  values of S.l/Rl of 0.003 t o  0.026 and f o r  Ml values i n  
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the range from 0.2 t o  0.45. 
duced increased dis tor t ions within the ranges covered by the d a t a .  The 
curve f o r  the 12O diffuser a t  
other data because the i n l e t  boundary layer w a s  somewhat dis tor ted i n  
shape, which resulted i n  a lower than normal performance. 
with an area r a t i o  of 2.0, expansion angles i n  excess of U0 probably 
would produce separated flow. 
boundary-layer thickness, and area r a t i o  on the velocity dis t r ibut ion a re  
shown more d i rec t ly  by the p lo ts  of 
mean velocity r a t i o  w a s  obtained by integrating the velocity diagrams 
i n  the lower half of the figure.  
velocity dis t r ibut ions r e su l t  i n  lower values of 

Increasing values of a l l  three variables pro- 

of 0.006 does not f i t  well with the s",lR1 

For diffusers 

The net e f fec ts  of expansion angle, i n l e t  

u/v a t  the top of figure 21(a) .  The 

Effects which produce - more dis tor ted 
u/U. 

A similar type of data presentation f o r  a thick i n l e t  boundary layer 
(6*l/Rl of 0.45. 
The data were obtained by surveys a t  various positions i n  diffusers with 
an area r a t i o  of 16; however, the r e su l t s  should be indicative of indi-  
vidual diffuser performances. 

of 0.082) i s  given i n  figure 21(b) fo r  a value of M1 

The data correspond t o  the condition where the boundary layer f i l l s  
the duct a t  the i n l e t .  For this case, increasing the area r a t i o  produced 
progressively be t t e r  velocity distributions within the range of the data, 
an e f fec t  which i s  d i rec t ly  opposite t o  that f o r  t h in  i n l e t  boundary 
layers.  For values of expansion angle of bo, 5O, and 6' essent ia l ly  
pipe-flow dis t r ibut ions were obtained a t  the higher values of area r a t io .  
This resu l t  i s  indicated a t  the top of the figure by the curves which 
approach a mean velocity r a t i o  value of 0.82, which corresponds t o  a pipe- 
flow dis t r ibut ion fo r  a l/'('-power prof i le .  

Rectangular diffusers . -  Data f o r  rectangular diffusers with a t h i n  
i n l e t  boundary layer ( t j* l /R1 of 0.02) are  given i n  figure 21(c) )  i n  terms 
of velocity distributions along the horizontal center l i ne  (b)  and along a 
ve r t i ca l  l i ne  (a) through the peak velocity point.  
that a high degree of flow asymmetry and in s t ab i l i t y  existed fo r  the three 
higher expansion angles, while the two lowest ones produced s table  f l a w .  
The dis t r ibut ion for 28 
separation may have existed intermit tent ly  a t  some location within the 
diffuser .  I n  addition, the separation indicated f o r  28 of 1 0 . 6 ~  m u s t  
have been minor i n  nature. 
and observations of reference 18 show that expansion angles i n  excess of 
10' may produce flow separation and in s t ab i l i t y .  

Reference 18 s t a t e s  

of 15.8O does not show separated flow; however, 

For the type of diffuser  i l l u s t r a t ed ,  the data 

.... 

*. 
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Annular diffusers.-  Data on annular diffusers with a cyl indrical  
outer w a l l  a re  given i n  figure 21(d) f o r  a thick i n l e t  boundary layer 
(S*l/R1 of 0.078). The velocity distributions a t  the diffuser  ex i t s  
( s t a t ion  2) show separated flow fo r  a l l  but the 16.70 diffuser,  which had 
highly dis tor ted flow and also may have had loca l  regions of separation. 
The measurements a t  the ta i lp ipe  s ta t ion ( s ta t ion  3 ) ,  which w a s  located 
1.07 outer diameters from the diffuser i n l e t ,  show great ly  improved dis- 
t r ibut ions obtained from natural  mixing i n  the ta i lpipe,  the 3 4 O  diffuser  
corresponding t o  the most uniform profile.  The roughly e l l i p t i c a l  shape 
of the inner bodies f o r  the 2 6 O  and 34' diffusers may have influenced the 
performance beneficially.  The data results furnish an example of the sub- 
s t a n t i a l  advantage of a short  length of constant-area duct a t  the diffuser  
e x i t .  

I n l e t  speed effects . -  A s  previously discussed, the e f fec t  on diffuser  
performance of increasing the i n l e t  speed is  adverse i n  a l l  respects 
except f o r  the cases where the expansion angle is  so low that w a l l  f r i c -  
t i on  produces a substant ia l  par t  of the t o t a l  pressure l o s s .  These 
general statements a l so  apply t o  ex i t  velocity dis t r ibut ions.  

- .  

. _  

, 
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Data f o r  conical diffusers with an area r a t i o  of 2.0 and thin i n l e t  
boundary layers a re  given i n  figures 22(a) and 22(b). Adverse e f fec ts  of 
increasing the inlet  Mach nuiber are shown t o  various degrees. In  cases 
where the flow is  separated the data may be expected t o  be optimistic and 
less accurate. 

D a t a  on rectangular diffusers with a th in  i n l e t  boundary layer  are 
given i n  figures 2 2 ( c )  and (d ) .  
e f f ec t  due t o  i n l e t  speed; however, reference 18 makes it clear  that the 
e f f e c t  is adverse. 

The curves do not show a def in i t ive  

Exit  displacement area.- The character of the diffuser e x i t  velocity 

Parameters which define a velocity dis- 
dis t r ibut ion i s  not completely defined by limits on e i the r  the t o t a l  pres- 
sure or  the velocity dis tor t ion.  
t r ibu t ion  more accurately are displacement area and the boundary-layer 
shape parameter ( the r a t i o  of displacement area t o  momentum area). Both 
parameters are required t o  estimate the character of the d is t r ibu t ion  i n  
the absence of actual  data points. Since both quantit ies represent values 
integrated across the s ta t ion,  rather than point values i n  the flow, more 
uniform variation with changes i n  independent variables is  t o  be expected. 
The following discussion w i l l  indicate that the behavior of these quanti- 
t ies can be mapped successfully for conical diffusers.  Sufficient data do 
not e x i s t  f o r  a map of other types of diffusers.  

- _  
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*-.- 
The three-dimensional e x i t  displacement area A*2/+ i s  presented 

i n  figure 23 as a function of expansion angle. 
made a t  the diffuser e x i t  except those corresponding t o  an area r a t i o  - 
of 4.0 and 6* R1 of 0.006, which were taken 1 diameter downstream i n  
the ta i lpipe.  The e x i t  displacement area f o r  this case would be higher 
than those shown. 
and thick boundary layers produce two unrelated families of curves; how- 
ever, close inspection indicates that extrapolation through use of cross 
plots  of both se t s  of data t o  obtain curves f o r  an area r a t i o  of 2.0 and 
6*l/R1 of 0.082 might produce a curve common t o  both families. 
Increasing area r a t i o  i s  noted again t o  produce opposite e f fec ts  f o r  t h in  
and thick boundary layers.  The e x i t  displacement area i s  useful i n  esti-  
mating the area r a t i o  required f o r  a given diffuser application, since it 
can be added t o  a value determined from one-dimensional relations t o  
determine the actual  geometric e x i t  area required t o  produce a given 
maximum velocity. 

A l l  measurements were -- . 

J 
Figure 23 gives the immediate impression that t h i n  

The same A* 2/& data are  given i n  figure 24 as a function of the 
r a t i o  of diffuser length t o  i n l e t  diameter. Figure 25 shows t h a t  a 
single value of t h i s  independent parameter i s  determined by any combina- 
t i on  of 29 and AR. The purpose of using the parameter w a s  t o  deter-  
mine whether AR could be eliminated as a variable. The curves of f i g -  
ure 24 f o r  the thick i n l e t  boundary layer (A*1/A1 
there i s  a lack of dependence of A*2/A2 
L/D1 i n  excess of about 17. Values of L/D1 below 17 produce individual 
curves for each value of AR which, a t  L/D1 of zero, approach a value 
corresponding t o  a simple function of AR and A*l AI. This function w a s  
derived on the assumption that f o r  a diffuser  of zero length the displace- 
ment area a t  s t a t ion  2 i s  equal t o  that a t  s t a t ion  1 plus the geometric 
area difference between s ta t ions 1 and 2. The values of A* 2/4 f o r  the 
thick-boundary-layer case become approximately constant f o r  values of L/D1 
i n  excess of 28. 
developed pipe-flow dis t r ibut ion.  I f  sufffcient  data were available, it 
would probably show tha t  a curve fo r  any area r a t i o  and inlet  boundary- 
layer thickness would approach the same constant value of A*2/A2 as L/Dl 
increases, and the e x i t  velocity dis t r ibut ion would approach that f o r  pipe 
flow. 

of 0.136) show t h a t  
on area r a t i o  f o r  values of 

c 

I 

The constant value corresponds approximately t o  a f u l l y  

Exit mean dynamic pressure.- Since the loss fac tor  K minus a term 
can be expressed as a func- containing the l o s s  i n  effectiveness 

t ion  of the ex i t  mean dynamic pressure (see eq. ( 2 ) ) ,  it is  of i n t e re s t  t o  
examine the behavior of the same conical-diffuser data i n  terms Of t h i s  
parameter. 

1 - q 

Figures 26(a) and 26(b) present the data as a function of 29 
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and L/%, respectively, i n  a fashion similar t o  tha t  f o r  the displace- 
ment area. 
equation (2) ,  are  included for  a th i ck  and th in  i n l e t  boundary layer. 
Figures 26(a) and 26(b) show that the e x i t  mean dynamic pressure behaves 
i n  much the same manner as the displacement area, and the same general 
comments may be applied t o  both. 

Peters ' data ( re f .  10) , which were calculated by using 

Exi t  three-dimensional shape factor.- The conical-diffuser data are  
presented i n  terms of e x i t  three-dimensional shape factor  (A*/93), i n  

figure 26(c). The trends of the curves are the same as those f o r  the 
e x i t  displacement area and mean dynamic pressure. The table  a t  the top 
of the figure notes two- and three-dimensional values of shape fac tor  
generally regarded as indicating limits on important ranges of values 
( ref .  5) .  The range of S*/0 between 1.286 and 1.80 i s  ident i f ied  with 
attached f l o w ,  between 1.80 and 2.60 with e i ther  attached or separated 
flow, and beyond 2.60 with separated f low.  The actual  data points agree 
with t h i s  concept with two possible exceptions, the 100 diffusers f o r  
area r a t io s  of 5.8 and 7.8. 
f i l e s  t o  be attached, the shape factors are i n  the range which should 
correspond t o  separated f l o w .  
s t a t e s  t ha t  small regions of separated flow may have existed near the 
upstream end of the 100 diffuser.  
separated-flow prof i le  produced a value f o r  (A*/e3), of less than 

2.5( S*2/€12 = 2.1).  The p lo t  at  the top of the figure w a s  constructed 
from the flow-steadiness observations of reference 21 f o r  a very t h i n  
boundary layer and a low inlet Mach number. Assuming that unsteady flow 
corresponds t o  separated f l o w ,  the plot is  not i n  disagreement with the 
comparable data fo r  conical diffusers. "he relationship between maximum 
expansion angle f o r  s table  f l o w  and area r a t i o  probably would be a l te red  
by changes i n  i n l e t  boundary-layer thickness or Mach number. 

Although figure 21(b) shows these two pro- 

It may be s ignif icant  that reference 15 

O f  the data given i n  figure 26(c) no 

Boundary-Layer Control . -  
The principal d i f f i cu l ty  i n  almost a i l  diffuser design requirements 

is t h a t  of obtaining the performance of a long, low-expansion-angle 
diffuser  by using a short, high-angle diffuser since there i s  rarely 
suf f ic ien t  space available f o r  the optimum design. 
devices are  used frequently t o  improve the performance of short  diffusers  
as well  as t o  improve the performance of designs which do not operate 
s a t i s f ac to r i ly  fo r  some reason not anticipated i n  the design stage. 
Because of the many additional variables introduced by boundary-layer 
control, f e w  investigations are  comprehensive enough t o  furnish design 
and Performance data; therefore, the presentation w i l l  be i n  the nature 
of i l l u s t r a t ions  of improvements obtainable by use of boundary-layer 
controls. 

Boundary-layer-control 

1 
* mmm 
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The comon forms of boundary-layer control may be grouped in to  

three categories, as follows: - 

(a )  Removal of low-energy air by suction, diver ters ,  and so fo r th  

(b)  Reenergization of the boundary-layer air  by in jec t ion  of high- 
energy a i r ,  o r  by turbulence promoters or mixers such as vortex generators 

( c )  Reduction i n  energy dissipated i n  the boundary layer by a l te ra -  
t i on  of the basic diffuser  f l a w  pat tern through use of s p l i t t e r  o r  turning 
vanes, screens, and s o  fo r th  

Each device has i ts  own par t icular  merits, and the proper choice i s  con- 
t ingent on the individual requirements of each par t icular  design. 

Conical diffusers.-  Examples of reductions i n  the loss  i n  effec- 
tiveness obtainable w i t h  vortex generators and w i t h  suction are  given 
i n  figure 27 f o r  conical diffusers.  
of loo, 20°, and 30°, an area r a t i o  of 5.2 and 
w i t h  and without vortex-generator ins ta l la t ions  a re  given from refer-  
ence 22. The generators were tapered a i r f o i l s  designed t o  approximate 
constant c i rculat ion spanwise i n  the boundary layer and were NACA 
641-812 a i r f o i l  sections. 

For diffusers  w i t h  expansion angles 
of 0.007, curves /R 

The table  on the left-hand side of the figure 
furnishes information on the generator ins ta l la t ions .  Considerable 
improvemnt i n  the static-pressure rise w a s  obtained f o r  a l l  three of the 
expansion angles tested,  loo, 20°, and 30°; however, i n  no case w a s  
separation eliminated. 
moved downstream from the 8-percent length s t a t ion  t o  the 90-percent 
s t a t ion  by the use of the generators i n  the 10' diffuser.  
t ions were considered t o  be optimum. A se r ies  of points a t  28 of 23' 
is given (ref.  23)  f o r  several  inlet  boundary-layer thicknesses, with 
and without vortex-generator ins ta l la t ions .  
diffuser was 2.0 and the generators (see table  on r igh t  side of f igure)  
were rectangular NACA 0012 a i r f o i l s .  
obtained fo r  allboundary-layer conditions. 
control exhibited separated and highly unsteady f l a w .  The separation 
and unsteadiness were eliminated by the vortex-generator ins ta l la t ions ,  
which were considered t o  be approximately optimum. 

,- 

The separation point (as indicated by tufts) w a s  

The in s t a l l a -  

m 
The area r a t i o  of the 

Very large improvements were 
The diffuser  flow w i t h  no - 8  

. .  

Data curves w i t h  and without suction control f o r  diffusers  with AR 
of 4.0 and 
28 of 30' f o r  several  values of 8*1/R1.  Suction s l o t s  were cut i n  the 
diffuser wall a t  optimum locations. 

8*JR1 of 0.006 ( r e f .  24) are  given, as w e l l  as points a t  

The w a l l  consisted of a cardboard cone 
supported by wire screen. 
using w a l l  s t a t i c  or i f ices  
the diffuser.  The optimum 
data point) was determined 

Values of static-pressure r i s e  were obtained by 
i n  a fixed s t r u t  extending along the axis of 

by using an a rb i t ra ry  evaluation of the suction 
suction-flow quantity (noted adjacent t o  each e. 

c 
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power which w a s  not re la ted t o  diffuser i n l e t  conditions. The optimum 
quant i t ies  are,  therefore, subject t o  question. It w a s  noted during 
the tests that optimum conditions reduced flow fluctuations sa t i s f ac to r i ly .  
The data show very large improvements a t  high expansion angles and indi-  
cate that no improvement would have been obtained a t  an expansion angle of 
about l3O. 
6)C1/R1 of 0.006 t o  16 percent f o r  8*l/R1 of 0.031. 

The optimum suction quantit ies V&IY from 3 t o  6 percent f o r  

Annular diffusers.- Data for  annular diffusers w i t h  several  types of 
boundary-layer control are  given i n  figure 28. 
w i t h  vortex generators corresponds t o  one of the b e t t e r  i n s t a l l a t ions  w i t h  
vortex generators mounted on the inner w a l l  only. 
expansion angles of 26O and 34' with vortex generators correspond t o  two 
rows of generators i n  tandem mounted on the inner w a l l .  
which were mounted on the inner w a l l  only allowed the boundary layer  on 

The curve showing 1 - 7 

The isolated points at  

Vortex generators 

the outer w a l l  t o  become thicker as a result of the additional pressure 
r i s e  produced by the vortex generators. The isolated point at  28 of 
16.7' corresponds t o  vortex generators mounted on both the inner and 
outer w a l l s  and indicates a considerable improvement due t o  the outer-wall 
ins ta l la t ion .  
diffuser  only. 

Separation on the inner body w a s  eliminated fo r  the 16.7O 

The boundary-layer-control data corresponding t o  suction, suction 
w i t h  a vane ins ta l la t ion ,  and injection indicate higher gains i n  perform- 
ance than w i t h  vortex generators. This r e su l t  is  t o  be expected since 
the vortex-generator action i s  limited t o  mixing the energy available i n  
the diffuser f l o w ,  whereas control using auxiliary flow is  limited only 
by the auxiliary-flow-system design. Suction quantit ies on the order of 
2 percent produced large improvements i n  contrast  t o  the 16 percent used 
f o r  the conical-diffuser investigation, which had l e s s  than one-half of 
the i n l e t  boundary-layer thickness. The 2-percent quantity is  close t o  
an optimum quantity as determined from effectiveness values corrected 
f o r  a suction power calculated by using the diffuser inlet  conditions as 
a reference. The data fo r  diffusers with an area r a t i o  of 3.19 show 
essent ia l ly  no gains produced by use of s p l i t t e r  vanes; however, the 
spli t ter-vane design was not made optimum. The use of the controls 
s tab i l ized  the flow fo r  the diffusers which were unstable (28 > 8 . 5 O ) .  

Exit velocity distributions.-  A number of examples showing the 
improvements i n  e x i t  velocity dis t r ibut ion obtainable w i t h  several  
diffusers  with cylindrical  outer bodies and an area r a t i o  of 1.91. 
Where vortex generators, suction, o r  inject ion were used, the improve- 
ments would be expected t o  be confined t o  the center of the duct since 
a l l  controls were located on the inner w a l l .  This s i tua t ion  necessarily 
caused the outer-wall dis t r ibut ion t o  depreciate w i t h  control. I n  most 

5 . -  
3 
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cases, the dis t r ibut ions are  presented f o r  two s ta t ions,  one a t  o r  near 
the end of the inner body, and one a t  a common ta i lp ipe  s t a t ion  ( s t a t ion  3) 
which was 

- 

- *  1 located 1.07 outer duct diameters from the diffuser  i n l e t .  

Figures 29(a) and (b)  give r e su l t s  with vortex-generator control. For 
a l l  diffusers a t  both s ta t ions the flow w a s  sh i f ted  toward the center of 
the duct. A l l  but the 1 6 . 7 O  diffuser produced separated flow off the inner 
body, with or  without generators. A t  the ta i lp ipe  s ta t ion,  the vortex gen- 
e ra tors  i n  the 34' diffuser  produced the most uniform dis t r ibut ion near the 
center line. 

Figures 3O(a) t o  (d)  indicate the e f fec ts  of suction, injection, and 
vanes. The curves a t  the top of figure 3O(a) show that suction through 
discrete holes dis t r ibuted over an appreciable area of the surface of the 
inner body fo r  a 34' diffuser eliminated separation on the inner body and 
more than doubled the velocity on the center l i n e  a t  the ta i lp ipe  s ta t ion.  
This r e su l t  w a s  obtained with 3.5-percent-suction f l o w .  Adequate control 
on the outer w a l l  might have provided almost constant velocity across the 
duct. The curves a t  the bottom of figure 3O(a) show that suction through 
a backward-facing s l o t  w a s  superior t o  inject ion because of f l o w  separa- 
t i o n  off the cowl with injection. 

The use of suction and inject ion i n  conjunction with a turning vane 
i s  i l l u s t r a t e d  a t  the top of figure 3O(b). The vane increased the effec- 
tiveness of both suction and injection, resul t ing i n  be t te r  dis t r ibut ions 
a t  lower auxi l iary flows. The single vane in s t a l l a t ion  i l l u s t r a t ed  a t  
the bottom of the figure resulted i n  no appreciable improvement because 
the design placed the vane wake near the center l i n e  of the inner body 
instead of i n  the center of the annular e x i t  area. 

c 

Suction and inject ion control i n  conjunction with a vane i n  an 
abrupt-dump diffuser ( f ig .  3O(c)) required high auxiliary f l o w  quantit ies 
t o  obtain s ignif icant  improvements with the short  vane. 
produced f a i r l y  uniform flow; however, the loss coeff ic ient  w a s  high 
because of the abrupt dump. 
dump ( f ig .  3O(d)) again required high auxiliary flows. 

The longer vane 

Suction and in jec t ion  alone with an abrupt 

Exit displacement area.- The data of figures 21(d), 29, and 30 
were converted into terms of e x i t  displacement area 
t o  obtain a be t t e r  comparison of the ef fec ts  of various controls on the 
uniformity of the e x i t  velocity dis t r ibut ion.  The r e su l t s  are given i n  
figure 31. The data f o r  the diffusers w i t h  & of 1.91 show that the 
1- and 2-percent-suction cases produced the biggest Improvements at the 
s t a t ion  located a t  the end of the inner body. A t  the ta i lp ipe  s ta t ion  
( ident i f ied by the sketch showing a ta i lp ipe  length), the l-percent- 
suction case has l e s s  displacement area than the 2-percent-suction case 
because of the adverse e f fec t  of the increased pressure r i s e  on the 

A*2/A2 i n  order 
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dis t r ibu t ion  on the outer w a l l .  
e ra tors  produced the smallest values of displacement area. 

dis t r ibut ion.  

A t  the ta i lp ipe  s t a t ion  the vortex gen- 
Values of 

below about 0.18 have l e s s  displacement area than a pipe-flow 

Design of boundary-layer-control systems.- When reduced t o  a common 
basis,  the data of references 23 and 25 on investigations of the perform- 
ance of vortex generators ins ta l led  i n  diffusers agree reasonably w e l l  
with respect t o  optimum values of geometric variables. The generators 
used were of rectangular plan form with NACA 0012 sections. 
ment obtained between the two investigations would indicate that the 
resul t ing design numbers may be quite general since the d i f fuser  configu- 
ra t ions and i n l e t  conditions.differed widely. 
spacing, and location have been expressed I n  terms of the two-dimensional 
displacement thickness at  the reference i n l e t  s t a t ion  ( f ig .  32), which 
corresponded approximately t o  the vortex-generator location. For both 
sets of data an angle of attack of ti?' (counterrotating) w a s  found t o  be 
optimum. 
very close t o  optimum f o r  all curves: 

The agree- 

Values of span, chord, 

In  addition, f igure 32 indicates the following values t o  be 

5 
Chord, c SI* . . . . . . . . . . . . . . . . . . . . . . . . .  20.8 
Spacing, s/61* . . . . . . . . . . . . . . . . . . . . . . . .  15.4 

-50 

Span, b/61*. . . . . . . . . . . . . . . . . . . . . . . . . .  

Location, L/"* . . . . . . . . . . . . . . . . . . . . . . . .  
I 

The curves show that increasing the inlet  speed makes the p e r f o m c e  
more sensi t ive t o  the degree t o  which the in s t a l l a t ion  d i f f e r s  from the 
optimum. 
range of the data, which i s  contrary t o  the conical-diffuser data. The 
optimum chord and span values chosen correspond t o  an aspect r a t i o  of 
0.24. 
were available t o  locate generators far upstream of the inlet ,  the 
diffuser could, i n  many cases, be lengthened, thus eliminating the need 
for vortex generators. 

The annular-diffuser data indicate no optimum chord within the 

The value of optimum location is  mostly academic because i f  space 

The table  of reference values given i n  figure 32 corresponds t o  the 
basic in s t a l l a t ion  used when each variable w a s  changed. It is evident 
that the reference conditions were not optimum; therefore, it follows 
that the indicated optimums may not be exactly accurate. The biggest 
discrepancy between the indicated optimums f o r  the three data curves and 
the reference values occurs fo r  the chord r a t i o  The value of c/6*1. 
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20.8 i s  about times tha t  used f o r  a reference and might correspond, 
2 

f o r  instance, t o  a larger  optbum spacing than that indicated. Refer- 
ence 26 presents data i l l u s t r a t i n g  clear ly  the e f fec ts  of vortex genera- 
t o r s  on turbulent boundary-layer flow. 
discussed which is  referred t o  as the "solidity" and i s  defined as 

I n  the reference a parameter i s  

sin a. A maximum value of 0.35 i s  recommended f o r  the parameter. 
S 

Since it is  considered t o  be proportional t o  the vortex strength, the 
maximum value i s  assumed t o  be optimum, and thus the value of 20.8 w a s  
selected f o r  the r a t i o  of chord t o  displacement thickness. 
values of span and angle of attack recommended i n  the reference are  
approximately equal t o  those chosen herein. 

Corresponding 

In  any diffuser  w i t h  boundary-layer control, the principal object i s  
t o  obtain a sat isfactory performance from the standpoint of total-pressure 
l o s s  o r  velocity dis t r ibut ion,  or both. 
secondary f l o w  (suction or  inject ion)  the auxiliary-flow power and quan- 
t i t i e s  must be considered i n  evaluating the performance, the secondary 
objective i s  t o  minimize these quantit ies.  
t ha t  the most sat isfactory suction power coefficient i s  as follows: 

Since i n  systems which involve 

References 14 and 27 indicate 

where, as sham i n  figure 33, is the pressure r i s e  across the 
auxiliary-flow pump. If the auxiliary-flow ducting losses are  s ign i f i -  
cant, they should a l so  be included i n  the pump pressure r i s e .  
desired, the coeff ic ient  may be divided by the pump efficiency. 
actual  design, it is  quite probable that the suction air  would not be 
discharged in to  the diffuser i n l e t ,  and i n  addition it i s  possible that 
a pump would not be required i f  a sui table  low-pressure region i s  avai l -  
able f o r  discharge of the suction air. 
well  as t o  evaluate the performance, it i s  necessary t o  reference the 
pump pressure rise t o  i n l e t  t o t a l  pressure t o  avoid the use of variables 
extraneous t o  the flow i n  the diffuser .  
an  actual i n s t a l l a t ion  the p u p  pressure rise as indicated i s  equivalent 
t o  the pressure drop chargeable t o  the auxiliary-flow system, since the 
system can only be responsible f o r  pressure deficiencies below the t o t a l  
pressure a t  the diffuser i n l e t .  

H1 - Hs 
If 

I n  an 

However, fo r  research purposes as 

I n  addition, it is  c lear  that i n  

The diffuser  performance may be corrected 

. ,  

_ .  

c 
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The preceding discussion and a study of the investigations available 
i n  the l i t e r a t u r e  and of unpublished data lead t o  the following general 
guiding principles applying t o  the design of suction boundary-layer- 
control systems : 

(a) The basic diffuser design should be as aerodynamically e f f i c i en t  
as the space and other res t r ic t ions  w i l l  allow i n  order t o  reduce t o  a 
m i n i m u m  the suction-flow quantit ies and pressure drops required. 

(b) The f i n a l  design, when used with control, should be free from 
f l o w  separation i n  the diffuser because this dras t ica l ly  increases the 
suction-flow quantit ies and pressure drops required. 

( c )  The area of the diffuser  w a l l  covered by suction-flow openings 
(holes, s lo t s ,  porous media, e tc . )  should extend t o  a posit ion s l igh t ly  
upstream from the location of natural f l o w  separation without control. 
This procedure locates the suction openings as near t o  the high-pressure 
end of the diffuser as possible, thus reducing the PUMP pressure rise. 
The use of suction control appreciably upstream frm the natural separa- 
t i on  point i s  not j u s t i f i ed  since there appears t o  be no par t icular  
merit t o  maintaining low boundary-layer shape factors  except a t  the 
diffuser e x i t  where uniform velocity dis t r ibut ions are desired. 

(d)  The diffuser w a l l  area covered by suction-flow openings should 
extend a suf f ic ien t  distance damstream t o  produce the quali ty of e x i t  
velocity dis t r ibut ion desired. 

( e )  The suction openings should be the maximum s i ze  consistent with 
s t ruc tura l  in tegr i ty  and the maintenance of an aerodynamically sa t i s fac tory  
surface. The s ize  and distribution of the suction openings should a l so  be 
such that H, ( f ig .  33) does not exceed Px a t  the upstream openings, a 
s i tua t ion  which would allow recirculation of the suction f l o w  through the 
diffuser w a l l .  
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While the preceding principles w i l l  serve as a guide i n  laying out 
a design, they furnish no quantitative values. Quantitative values, i n  
general, are not available i n  the literature. For instance, such basic 
quantities as the amount of suction flow required f o r  a given design and 
s e t  of conditions still  have t o  be determined experimentally. The opt i -  
mum quantity fo r  a given configuration would be expected t o  be determined 
by the condition of the i n l e t  boundary layer.  The data of reference 24 
fo r  a conical diffuser with AR of 4.0 and 28 of 30' indicate that a 
suction quantity of 4 t o  6 percent of  the i n l e t  t o t a l  flow per increment 
of 0.01 i n  €j*l/R1 i s  required. However, t h i s  result should be con- 
sidered with reservations because of the method used i n  reference 24 f o r  
evaluating suction power, which w a s  the prime factor i n  determining 
optimum performance. 
34' annular diffuser with a cylindrical  outer body and 
tha t  f o r  t h i s  case, f o r  
quantity varies between 0.13 percent and 0.32 percent per increment of 
0.01 i n  6*dRl 
holes. An upper l i m i t  f o r  the optimum value of 0.36 percent w a s  indi-  
cated and w a s  fixed by the deterioration of the boundary layer on the 
uncontrolled flow near the outer w a l l .  The deterioration w a s  caused 
by the increased pressure gradient produced by the suction control on 
the inner w a l l .  I n  the case of a single-wall diffuser,  such as a conical 
diffuser, a l imitation of this type would not be imposed unless struts 
o r  a similar drag-producing object were ins ta l led  i n  the diffuser.  
Another significant resu l t  derived from Wilbur and Higginbotham's investi-  
gation is  that the principal advantage of suction from an appreciable area 
of the diffuser w a l l s ,  as opposed t o  suction from a res t r ic ted  sector such 
as a s l o t ,  appears t o  be that area suction produces be t t e r  e x i t  velocity 
distributions.  Static-pressure rise and total-pressure l o s s  were 
unaffected by varying the extent of area covered by the suction openings. 
These results necessarily are limited t o  the par t icular  configuration 
tested since similar data f o r  other types are not available. 

- -  I 

Unpublished data by Wilbur ana Higginbotham on a 
AR 

of 0.078, the optimum value of suction 
of 1.91 show 

€j*l/R1 

according t o  the value of t o t a l  open area of the suction 

c 

Effects of Distorted Inlet Velocity Distribution 

All data presented and discussed pr ior  t o  this section of the paper 
have corresponded t o  favorably shaped i n l e t  boundary-layer distributions 
such as wouldbe obtained i n  f l o w  along a surface i n  pract ical ly  a zero 
pressure gradient, 
pract ical  diffuser ins ta l la t ion  the diffuser  i s  preceded by some other 
duct element, such as a bend, a i r  i n l e t ,  o r  turbine, which i n  many cases 
does not discharge a uniform o r  favorable velocity distribution. 
such instances, the diffuser performance i s  generally adversely affected 
and i s  substantially below that predicted by most research data. 
tor ted velocity distributions may occur a t  the diffuser  i n l e t  i n  e i ther  

A f e w  minor exceptions have been noted. In  any 

I n  

D i s -  
_ .  

. .  
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subsonic o r  supersonic f l o w  systems; however, the most serious cases occur 
i n  the subsonic diffuser  preceded by a supersonic compression i n l e t  which 
has subjected the boundary layer t o  intense pressure gradients produced by 
compression shock waves. 

Conical diffusers.-  Reference 20 presents data on the e f f ec t  of vari-  
ous degrees of i n l e t  velocity dis tor t ion on the performance of curved-wall 
diffusers  with d i f fe ren t  lengths of low-expansion-angle (20 
ducting on the upstream end of the diffuser.  These data are summarized i n  
figure 34(a) i n  terms of l o s s  i n  effectiveness1 as a function of inlet  
boundary-layer thickness f o r  an in l e t  Mach number of 0.2. 
p rof i les  and boundary-layer shape factors are  given a t  the top of the 
figure.  
t o  separated f l o w  at the i n l e t .  
bution w a s  obtained by mounting spoilers on the w a l l  of the i n l e t  b e l l  
upstream of the diffuser.  
straight-wall, loo diffuser  and f o r  a low i n l e t  boundary-layer shape fac- 
t o r  is  given fo r  comparison purposes. 

of 2') 

Inlet velocity 

It w i l l  be noted tha t  the two thickest  boundary layers correspond 
The variation i n  inlet  velocity distri- 

One curve of Peters '  data (ref. 10) fo r  a 

For the two thinnest boundary layers, the longer diffusers suffered 
performance losses due t o  excessive f r i c t i o n  losses. For the two thickest  
boundary layers with separated flow, the longer diffusers  produced higher 
performance because the upstream low-expansion-angle ducting allowed the 
flow t o  become attached and more uniform before the high expansion r a t e  
s tar ted.  A t  a boundary-layer thickness 8*1/R1 of 0.06 the data of ref- 
erence 20 are optimistic compared with Peters ' ,  especially since Peters '  
data correspond t o  the more favorable i n l e t  conditions. The results show 
c lear ly  that some length of low-expansion-angle ducting is  advantageous 
f o r  cases where the inlet  flow dis t r ibut ion is  distorted.  

The e f fec t  of changes i n  i n l e t  Mach number on the loss i n  effective- 
ness of the diffusers  of reference 20 is  illustrated i n  figure 34(b) f o r  
three cases of dis tor ted i n l e t  velocity distributions.  The superiority 
of lengths of low-expansion-angle ducting upstream of the main diffuser  
i s  again apparent f o r  cases where the i n l e t  f l o w  is  distorted.  

lFor the data of reference 20 i n  figures 34(a) and $(b), the pre- 
viously discussed def ini t ion of effectiveness r\ does not apply. The 
assumption of quasi-one-dimensional flow inherent i n  the def ini t ion of 
idea l  static-pressure rise used heretofore was violated by the existence 
of separated flow a t  the i n l e t  t o  the point where it appeared advisable t o  
modify the definit ion.  
i dea l  static-pressure r i s e  w a s  defined as the sum of two quantit ies.  
of the quantit ies w a s  defined as the static-pressure rise obtainable 
idea l ly  by mixing the i n l e t  velocity dis t r ibut ion unt i l  it is  uniform i n  a 
constant-area duct with no total-pressure loss .  
isentropic, one-dimensional, static-pressure rise associated with the 
diffuser  area ra t io ,  Ml', and 9 ~ ~ ' .  

I n  these instances ( f igs .  34(a) and 34(b)),  the 
One 

The other quantity w a s  the 
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Annular diffusers.-  Reference 28 presents data on the e f f ec t  on 
Of various degrees of i n l e t  velocity dis tor t ion,  which were 1 - 7 

obtained by mounting spoiler screens i n  the ducting upstream of the 
diffusers.  Figure 34(c) s imar i zes  these data f o r  two cases, with and 
without a splitter-vane ins ta l la t ion .  Since the several dis t r ibut ions 
tes ted represent no regular progression of a single variable defining the 
amount of distortion, the data have been presented as a principal function 
of expansion angle, and the values of i n l e t  boundary-layer thickness and 
shape factor have been ident i f ied.  

-. 

For suff ic ient  dis tor t ion of the i n l e t  flow f o r  the lowest expansion 
angle, w i t h  or  without s p l i t t e r  vanes, the loss i n  7 approached the 
theoretical  value f o r  a sudden expansion, which is  0.48. The curve f o r  
the highest degree of dis tor t ion suggests that an expansion angle of 
about 4' would be required t o  obtain a performance approaching that f o r  
the undistorted flow a t  the optimum angle of about 7 O .  

could also have been obtained through use of boundary-layer controls or  
by smoothing out the dis t r ibut ion upstream of the diffuser through use 
of a constant-area s t ra ight  section or some other device. Suff ic ient  
data do not ex i s t  t o  determine the most e f f i c i en t  procedure. 
a s p l i t t e r  vane produced s table  flow; however, high performance w a s  not 
obtained i n  any case, apparently because of the f r i c t i o n  losses associated 
w i t h  the splitter-vane surface. No attempt w a s  made t o  obtain the optimum 
splitter-vane ins ta l la t ion .  

High performance 

The use of 

Analysis of shock-boundary-layer interact ion effects . -  The flow 
delivered by supersonic i n l e t s  t o  the subsonic diffuser  has generally 
been subjected t o  a normal shock and i n  some cases also oblique shocks. 
The incidence of these shocks on the boundary layer upstream of the 
subsonic diffuser may produce seriously dis tor ted boundary-layer velocity 
distributions a t  the subsonic diffuser  inlet .  The boundary layer i n  such 
a condition cannot negotiate high pressure gradients; therefore, unless 
boundary-layer control o r  i t s  equivalent i s  used i n  the throat  of the 
i n l e t ,  the ra te  of area expansion of the subsonic diffuser  must be low, 
especially near the throat .  A n  approximate analysis has been made by 
using typical supersonic-inlet recovery data i n  order t o  determine the 
magnitude of the losses chargeable t o  shock-boundary-layer interaction; 
where shock-boundary-layer interact ion l o s s  is  defined as the l o s s  
experienced i n  the subsonic diffuser i n  excess of that which would have 
been obtained with a favorable i n l e t  boundary-layer dis t r ibut ion.  

c 

. .  

The analysis w a s  based on data from investigations of the general 
configuration shown i n  figure 35. Since the majority of the data i n  the 
l i t e ra ture  i s  on conical spike i n l e t s  with no contraction and since this 
type of i n l e t  appeared t o  have the broadest application, it w a s  selected 
as the basis for  the analysis. 
included for  the designs w i t h  in te rna l  contraction. 

used i n  order t o  make possible the calculation of shock losses.  

However, a limited amount of data i s  also 
I*. 

Only t e s t  data corre- 
sponding to  supersonic supercr i t ical  operation a t  Oo angle of attack were - I  



Ub*- 

’. 

. _  

NACA RM L56F05 39 

Comparisons of theoret ical  shock pressure recoveries with measured 
overall  recoveries are  giden i n  figures 36 and 37. 
are ident i f ied with regard t o  the reference source and configurations i n  
tables  I1 and 111. Figure 36 contains data on inlets with no in t e rna l  
contraction and figure 37 on inlets with contraction. For simplici ty  of 
presentation, the curves of figures 36 and 37 were calculated by using 
cone surface values f o r  the flow parameters required t o  calculate normal- 
shock losses. In  addition, the curves of figure 37 are  based on the 
maximum area contraction f o r  s ta r t ing  the inlet. The difference between 
the recovery values f o r  each symbol and the appropriate calculated shock 
recovery curve represents losses occurring i n  the subsonic diffuser .  
This difference varies between 4 and 20 percent of free-stream t o t a l  
pressure 
cent. 
configurations included. 
highest expansion angles and area rat ios ,  a loss of 
sonic diffuser i s  f a r  i n  excess of w h a t  would be predicted from data such 
as those given i n  figures 3 and 6. 
may be obtained i n  the subsonic diffuser as a result of shock-boundary- 
layer interaction e f fec ts .  

The symbols used 

€TO with the majority of the data corresponding t o  about 8 per- 
The data sca t t e r  i s  not surprising i n  view of the wide var ie ty  of 

For a l l  cases given i n  table  I1 except the 
i n  the sub- 0.08% 

The conclusion i s  tha t  large losses 

The data of figures 36 and 37 were used t o  estimate the subsonic- 
diffuser  l o s s  chargeable t o  shock-boundary-layer interact ion.  The cal-  
culation consisted of subtracting from the overal l  measured loss the sum 
of the calculated shock losses and the estimated subsonic-diffuser loss 
for  favorable i n l e t  boundary-layer conditions (based on f ig s .  3 and 6). 
Since only supersonic supercr i t ica l  operation with the normal shock a t  
approximately the minimum-area section w a s  considered, the shock losses  
and conditions upstream of the normal shock a t  the subsonic-diffuser i n l e t  
could be accurately computed. Flow conditions a t  and upstream of the cowl 
i n l e t  were determined from conical-flow theory. 
Mach number i n  the plane of the i n l e t  were determined by averaging the 
values a t  the cone surface and cowl l i p .  This procedure w a s  not used i n  
calculating the curves of figures 36 and 37 because it would have in t ro-  
duced another variable, the r a t i o  of cowl diameter t o  cone diameter. The 
s m a l l  increase i n  accuracy did not j u s t i fy  the added complication i n  pres- 
entation. The t o t a l  pressure and Mach number based on average values are 
used as independent variables i n  presenting shock-boundary-layer induced 
losses fo r  cases with no in te rna l  contraction or s t r a igh t  section. 
quant i t ies  d i f f e r  from weighted averages by l e s s  than 1 percent. With 
in te rna l  contraction and/or a s t ra ight  section, average values i n  the  
plane of the i n l e t  were used i n  calculating supersonic flaws damstream of 
the i n l e t  by one-dimensional relations and a l so  i n  calculating t o t a l -  
pressure losses and Mach number changes due t o  f r i c t i o n  e f f ec t s  i n  ducting 
between the i n l e t  and the minimum-area section. Passage areas involved i n  
the calculations corresponded t o  planes through the average normal t o  the . -  annular surfaces. The basic subsonic-diffuser loss  corresponding t o  a 
favorable i n l e t  velocity distribution w a s  estimated by using f igures  3 

The t o t a l  pressure and 

The 

* 
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and 6. 
that f o r  conical ones, w a s  accounted for .  Since the expansion angles Of 
a l l  the diffusers  were low, no correction f o r  increased l o s s  coefficient 
due t o  high i n l e t  Mach numbers w a s  used. 

The extra  f r i c t i o n  loss  of annular diffusers, as compared with 

- *  1 

The shock-boundary-layer interact ion losses calculated according t o  
the preceding procedure are  given i n  figure 38 fo r  configurations with no 
in te rna l  contraction and i n  figure 39 f o r  the cases with in te rna l  con- 
t ract ion.  
upstream of the normal shock since the Mach number determines the normal- 
shock strength, which should govern the interact ion losses.  
pressure loss w a s  referenced t o  the t o t a l  pressure upstream of the normal 
shock for the same reasons. 
independent variable accounted f o r  i n  figures 38 and 39, differences i n  
loss  values at any given Mach number 

The data are presented as a function of the Mach number Jus t  

The total- 

Since the normal-shock strength i s  the Only 

Mla are  probably due t o  differences 
i n  geometry and/or differences i n  the condition of the boundary layer  
pr ior  t o  the normal shock. 

The data of figure 38 form two d i s t inc t  groups. One group produces 
an approximately constant loss  coefficient (AH/H of 0.028) with changes 
i n  Mach number and includes the majority of the data. The other group, 
which originated from a single source, produces a loss-coefficient varia- 
t i o n  which increases rapidly with Mach number. The s imilar i ty  of the 
models and t e s t  conditions (see table I1 f o r  ident i f icat ion of symbols) 
indicates that differences i n  the condition of the boundary layer pr ior  t o  z 

the n o m 1  shock probably were not s ignif icant .  
f o r  separation of the data in to  two groups i s  the differences i n  subsonic- 
diffuser  expansion angles. 
angle of 9.4' whereas the expansion angles f o r  the data averaging a loss  
coeff ic ient  of 0.028 range from about 3' t o  5'. The data sca t te r  about 
the lower curve probably resu l t s  from the secondary e f fec ts  of the many 
differences i n  model configuration, such as cowl shape, inner-body angle 
and shape, length of constant-area passage, and s o  for th .  

The most probable reason 

The high curve corresponds t o  an expansion 

The data with in te rna l  contraction given i n  figure 39 cover the same 
expansion-angle range as the lower curve i n  figure 38; however, much 
higher losses are indicated. 
low correlation accuracy. 
be due t o  thickening and d is tor t ion  of the boundary layer i n  the con- 
t rac t ing  section. 

The data sca t t e r  is  large,  which produces 
The higher losses indicated presumably could 

. *  

. .  

From the standpoint of estimating performance, it is  of i n t e re s t  t o  
determine the re la t ion  of shock-boundary-layer interact ion losses t o  the 
basic  diffuser loss predictable from data f o r  favorable i n l e t  boundary- 
layer distribution. 
t rac t ion  in  the form of the r a t i o  of interact ion loss  t o  basic diffuser 
loss as a function of Mach number. 
( 3 O  t o  5') showed an average interaction loss equal t o  75 percent of the 

Figure 40 presents the data for  no in te rna l  con- 

The data for  low expansion angles - .  
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basic diffuser  loss .  
9.4' increased rapidly with Mach number, reaching a value of about 
16 times the basic diffuser  loss a t  a Mach nuniber of 1.87. 

The interaction loss for  the expansion angle of 

The ef fec t  of thicker boundary layers on interact ion losses may be 
obtained from the data of figure 41, which presents tes t  results on 
half-conical inlets mounted e i ther  on a f la t  plate  or  a fuselage shape. 
Such configurations would produce an in i t ia l  boundary-layer thickness at  
the cone apex. The subsonic-diffuser expansion angles w e r e  3' and 5'. 
The presence of the thicker boundary layer increased the loss  substan- 
t i a l l y  i n  each case. 
losses substantially.  

The use of boundary-layer control reduced the 

Shock-boundary-layer measurements i n  a 50 diffuser.-  Data were 
obtained on a 5 O  converging-diverging conical diffuser  run at a Mach 
number of 1.4 t o  provide additional information on shock-boundary- 
layer interaction e f fec ts  on diffuser performance. 
tests, and measurements are described i n  the appendix. Total- and 
static-pressure surveys were made at several s ta t ions i n  the diffuser 
f o r  a ser ies  of normal-shock locations. This procedure resulted i n  
Mach numbers before the normal shock ranging from about 1.27 t o  1.57. 
Thus, the test  conditions differ from those pertaining t o  the p r io r  
analysis of the spike-type i n l e t s  where the performance applies only 
t o  the case with the shock near the minimum section. 

The configuration, 

The values of shock-boundary-layer interact ion loss coeff ic ient  
obtained i n  the investigation are given i n  figure 42 as a function of 
the Mach nmber before the normal shock. 
referenced t o  the compressible dynamic pressure after the normal shock. 
The los s  coefficient increased rapidly with increasing Mach number even 
though the expansion angle w a s  small and no separation w a s  measured i n  
the diffuser.  
contraction w a s  converted in to  terms of AH/q and is  a l so  presented i n  
figure 42. 
the conical diffuser producing appreciably higher losses at the higher 
Mach numbers. 
supersonic flow between the throat and the downstream shock posit ions.  
This segment of the flow w a s  subjected t o  alternate compression and 
expansion waves which may have impaired the boundary-layer shape. 

The total-pressure loss i s  

The loss  curve of figure 39 fo r  spike-type inlets with 

There is  a marked similari ty between the two curves, with 

This result i s  probably due t o  the appreciable run of 

The growth of the boundary-layer parameters A*c, 8 and A*c-.OcJ 
along the length of the diffuser f o r  several  different shock posit ions is  
shown i n  figures 43, 44, and 45, respectively. The boundary-layer param- 
e t e r s  correspond t o  three-dimensional, compressible values. The r a t i o  
of the area a t  a loca l  s ta t ion t o  the area a t  the shock posit ion is  the 
independent variable. 

h systematic fashion with diffuser length for  the two weaker shocks. The 

c3' 

. 

The displacement and momentum areas increased i n  a 

, .  

.' 



42 NACA FN ~ 5 6 ~ 0 5  

two stronger shocks produced abrupt increases a t  f i r s t ,  followed by 
lesser ra tes  of increase. In  general, the overall  rate of increase 
became higher as the normal-shock strength increased. 

resul t ing from the 
C I %  

The behavior of the shape fac tor  A* 
changes i n  A*c and €Ic ( f ig .  45) indicates that after the i n i t i a l  

increase i n  shape factor  caused by the shock, the 5' expansion angle 
produced a general reduction i n  the value of A* eC as the flow 

proceeded along the length. This i s  an important result since it indi-  
cates that  an expansion angle of 5' is  l o w  enough t o  produce an improve- 
ment i n  the boundary-layer dis t r ibut ion under adverse i n l e t  conditions. 
The range of two-dimensional, incompressible 6*/0 generally associated 
with flow separation is  1.8 t o  2.6. Since some of the higher values 
indicated i n  figure 45 f a l l  within this range when converted t o  two- 
dimensional quantit ies,  separated f l o w  could be expected. The measure- 
ments indicated no separation; however, some f l o w  asymmetry could have 
existed with s m a l l  loca l  regions of separation. 

3 

. / 3  

The change i n  Mach nmber dis t r ibut ion a t  the several survey sta- 
t ions with changes i n  shock posit ion is  i l l u s t r a t e d  i n  figure 46. 
the shock w a s  moved downstream, the subsonic dis t r ibut ions became more 
dis tor ted and exhibited higher peak Mach numbers. 
peak Mach numbers a t  s t a t ion  5 were 0.52, 0.58, 0.71, and 0.93 fo r  shock 
positions 1, 2, 3, and 4, respectively, which i l l u s t r a t e s  the magnitude 
of the adverse e f fec ts  of shock-boundary-layer interact ion obtainable 
even though flow separation w a s  not present t o  any measureable extent. 

A s  

For instance, the 

The velocity dis t r ibut ions a t  the e x i t  of the subsonic diffuser 
are given i n  figure 47 f o r  several MacK numbers'before the normal shock. 
Although the curves do not show an exactly progressive change with 
increasing Mach number, a def ini te  trend towards l e s s  uniform velocity 
dis t r ibut ions with increasing normal-shock strength (increasing Mach num- 
ber before shock) i s  apparent i n  general. In each case the depression i n  
velocity near the center l i n e  of the duct w a s  caused by the total-pressure 
loss  due t o  the combination of the normal shocks on the throat  center l i ne  
and i n  the diffuser proper. 
the total-pressure losses a t  the walls due t o  shock-boundary-layer in te r -  
action increased a t  a higher rate, which produced a trend towards  smaller 
de f i c i t s  i n  
normal-shock strength increased. 
boundary-layer velocity dis t r ibut ions a t  the e x i t  than those a t  the inlet  
and thus produced low values of boundary-layer shape factor  a t  the ex i t ,  
f igure 47 clear ly  shows t h a t  the resultant e x i t  velocity dis t r ibut ions 
f o r  the higher shock strengths w e r e  quite nonuniform when considered on an 
area basis .  
required t o  obtain more uniform dis t r ibut ions.  

As the diffuser normal-shock losses ingreased, 

u/U on the center l i n e  and a thicker boundary layer as the 
While the 5 O  diffuser  produced be t t e r  

Smaller expansion angles or boundary-layer controls would be 

f 

-. 
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CONCLUDING REMARKS 

The subsonic-diffuser data available i n  the l i t e r a tu re  have been 
reviewed, reduced t o  cer ta in  appropriate performance coefficients based 
on the total-pressure loss, static-pressure rise, and e x i t  velocity dis- 
t r ibut ion,  and presented as functions of the s ignif icant  geometric and 
flow variables. 
parts:  performance a t  low speeds ( in l e t  Mach numbers of approximately 
0.20), ef fec ts  of increasing the i n l e t  speed up t o  choking Mach numbers, 
i l l u s t r a t ions  of the effectiveness of boundary-layer controls, and 
i l l u s t r a t ions  of the e f f ec t s  of dis tor ted i n l e t  velocity dis t r ibut ions 
as obtained a t  subsonic speeds with spoilers upstream of the i n l e t  and 
as obtained from compression shocks i n  supersonic in l e t s .  

The presentation has been divided in to  the following 

A t  low i n l e t  speeds the construction of several  f a i r l y  extensive 
performance maps f o r  conical, rectangular, square, and annular diffusers  
w a s  accomplished from the large amount of data available i n  the l i t e r a -  
tu re .  Orders of magnitude were determined f o r  the ef fec t  on performance 
parameters of increasing the i n l e t  speed. The compressibility e f fec t  on 
optimum diffuser design w a s  found t o  be largely unknown. I l lus t ra t ions  
of the effectiveness of boundary-layer controls, i n  par t icular  vortex 
generators and suction, were drawn from the available data, and some 
engineering approximations f o r  optimum configurations of vortex-generator 
ins ta l la t ions  were made. 

e f fec t s  on total-pressure losses were made f o r  a variety of shock condi- 
t ions and diffuser configurations. Original data presented herein 
illustrate the e f fec ts  of shock-boundary-layer interact ion on the flow 
development i n  a 5' conical diffuser. 

From an approximate analysis of typical  
z supersonic-inlet data, estimates of shock-boundary-layer interact ion 

Certain aspects of diffuser design and performance were found t o  be 
i n  par t icu lar  need of more research e f for t ,  including the ef fec t  of com- 
p res s ib i l i t y  on optimum diffuser design, design information on boundary- 
layer-control systems fo r  short  diffusers with favorable i n l e t  conditions, 
and optimum diffuser  and boundary-layer-control designs w i t h  unfavorable 
i n l e t  conditions ( for  example, with shock-boundary-layer interact ion) .  

E .  

. _  
Langley Aeronautical Laboratory, 

National Advisory Committee for Aeronautics, 
Langley Field, Va., May 18, 1956. 
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APPENDIX 

DETAILS OF AN INVESTIGATION OF A 5’ CONVERGING-DIVERGING 

DIFFUSER AT A MACH NUMBER OF 1.41 

Additional information re la t ive  t o  the data presented i n  figures 42 
t o  47 is given i n  the following paragraphs. 

Apparatus and Instrumentation 

The setup, which i s  diagramed i n  figure 48, consisted of an i n l e t  
b e l l  of 20:l contraction r a t io ,  a supersonic nozzle with an 8- by 91  - inch 

t e s t  section, and the converging-diverging diffuser  mounted i n  the super- 
sonic nozzle. 
variation i n  Mach number of 0.006 i n  the v ic in i ty  of the diffuser i n l e t .  
The cross-sectional area of the nozzle test  section w a s  increased somewhat 
near the diffuser inlet  i n  order t o  prevent the duct from choking i n  this 
section. 
changed intersected the model downstream of the diffuser  i n l e t  and did 
not affect  the entering flow. 
s ta r ted  by momentarily increasing the tes t -sect ion Mach number through 
use of a re t ractable  conical body inserted i n  the throat  of the i n l e t  
b e l l .  

8 

The nozzle produced a Mach number of 1.41 w i t h  a maximum 

The disturbances originating from the point where the contour 

The converging-diverging diffuser  w a s  
c 

The l ine  drawing of the diffuser ( f ig .  49) includes the apparent 
shock locations and the survey s ta t ions.  
i n l e t  diameter of 4.491 inches, a contraction r a t i o  of 1.066, an included 
w a l l  angle of 5’, and an external l i p  angle of 8’. The diverging section 
had a r a t io  of e x i t  area t o  throat  area of 2.0. The break i n  contour a t  
the junction of the converging and diverging sections w a s  rounded s l igh t ly .  
A s t ra ight  section 1.13 diameters i n  length w a s  located downstream of the 
diffuser  e x i t ,  
were used t o  vary the diffuser back pressure and thus the shock location. 
The duct surface w a s  chromium plated on machined steel. 

The convergent section had an 

Butterfly-type doors a t  the end of the straight section 

Wall s t a t i c  or i f ices  were ins ta l led  along two generatrices 90’ apart  

- 8  

. .  

i n  a region extending from the inlet  l i p  t o  11 inches downstream Of the 

throat .  
d i f fuser .  
diffuser ex i t .  
used t o  make surveys a t  the several s ta t ions  indicated i n  figure 49. 

2 
One of these rows w a s  extended along the f u l l  length of the 

Eight or i f ices  were equally spaced circumferentially a t  the 
Sting-supported to t a l -  and static-pressure tubes were 

A 
shielded total-pressure tube located upstream of the i n l e t  b e l l  w a s  used . .  
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t o  obtain reference total-pressure readings. 
s t a t i c  pressure immediately damstream of the normal shock t o  the refer-  
ence t o t a l  pressure w a s  used as a correlating parameter i n  reset t ing a 
given shock condition. 

The r a t i o  of the absolute 

Flow Distribution i n  the Throat 

The pressure and Mach number distributions entering the diverging 
pa r t  of the diffuser  were obtained by surveying the throat  a t  s t a t ion  1. 
The re su l t s  of these surveys are presented i n  figure 50 f o r  the case with 
the oblique shock attached. The total-pressure dis t r ibut ion indicates a 
boundary-layer growth on the w a l l  and a high loss on the center l i ne  
extending over a very small region. 
center l i n e  i s  approximately equal t o  that f o r  a normal shock a t  a Mach 
number of 1.41. 
theoret ical ly  should have occurred s l igh t ly  downstream of the throat f o r  
the 5' convergence angle; however, because of the boundary-layer growth 
the effect ive convergence angle w a s  apparently somewhat higher. 
result placed the normal shock s l igh t ly  upstream of the throat.  

The maximum value of the loss  on the 

The normal shock a t  the apex of the conical shock 

This 

The static-pressure dis t r ibut ion shows a peak s t a t i c  pressure i n  the 
center region due t o  the normal shock. The s t a t i c  pressure i n  the throat  
did not reach a value corresponding t o  the pressure rise through a normal 
shock a t  a Mach number of 1.41. Since the normal shock occurred upstream 
of the throat,  the s t a t i c  pressure on the center l i n e  i n  the throat w a s  
determined p a r t i a l l y  by the ambient s t a t i c  pressure of the surrounding 
supersonic stream. The Mach number dis t r ibut ion resul t ing from the t o t a l -  
and static-pressure variations was nonuniform and varied from a value of 
1.23 near the w a l l  t o  about 0.93 on the center l ine .  
distance downstream of the diffuser throat  indicated tha t  the Mach number 
on the center l i n e  became supersonic again as a result of the lower s t a t i c  
pressures produced by the increasing Mach number of the surrounding 
supersonic stream. 

Surveys a short  

.. 
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Figure 7.- Effectiveness loss. Conical diffusers; Mi = 0.2. 
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Figure 10.- Effectiveness loss. Rectangular diffusers; M1 = 0.1 to 0.3 .  
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Figure 11.- Effectiveness loss .  Rectangular diffusers; Mi = 0.1 to 0.3. 
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Figure 12.- Effectiveness loss. Rectangular diffusers; M1 = 0.1 t o  0.3. 
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Figure 15.- Effectiveness loss. Conical-diffuser-tailpipe combinations; 
AR = 2.34; MI = 0.13; reference 10. 
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Figure 16.- Compressibility effect on the ideal pressure gradient. 
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(a)  Conical diffusers; €1*l/R1 = 0.003 t o  0.006. 

Figure 17.- I n l e t  speed ef fec ts  on loss  coefficient.  
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See table I 

I n l e t  Mach number, MI 

(b) Conical diffusers; 63C1/R1 = 0.017 t o  0.030. 

Figure 17. - Continued. 
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( c )  Conical diffusers; 6*l/R1 = 0.002 t o  0.024; AR = 1.96; reference 20. 

Figure 18.- Continued. 
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Figure 20.- Calculated velocity distortions for given values of total- 

pressure distortion. 
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/. 0 

(a)  Conical diffusers; th in  boundary layer; 6*l/R1 = 0.003 t o  0.007; 

AR = 2.00. 

Figure 22.- Effect of i n l e t  speed on e x i t  flow distributions.  
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(b)  Conical diffusers; thin boundary layer; 6*L/R1 = 0.015 t o  0.030; 

AR = 2.0. 

Figure 22.- Continued. 
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( c )  Rectangular diffusers; t h in  in l e t  boundary layer; 6*L/R1 0.02; 
-%R = 4.0; reference 18. 

Figure 22.- Continued. 
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(d)  Rectangular diffusers;  t h in  boundary layer; 6*L/R1 0.02; AR = 4.0; 
reference 18. 

Figure 22.- Concluded. 
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Figure 24.- Exit displacement area; conical diffusers; M1 = 0.2 to 0.45; 
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Figure 25.- Variation of length-diameter ratio with area r a t i o  and - 
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2 tan 8 
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(a) Mean dynamic pressure as a f'unction of 2 0 .  

Figure 26.- Exit flow-distribution factors. Conical diffusers; 
Mi = 0.20 to 0.45. 
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Figure 26.- Continued. 

.. 

. a  



98 U m -  NACA RM L S F O 5  

6 * A*/@, 
- 6 / R  Definition e 1.0 0.5 
1.29 1.35 1.32 FSpe flow 
1.80 2.03 1.88 Louer llrnlf 

for  separation. 
2.60 3.29 2.84 Upper hm/t for 

no sepam tion. 

.. , 

6.019 
@A75 

I 
I 
I 

I 

(c) Three-dimensional shape factor. 
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Figure 27.- Reductions i n  1 - 71 obtained with boundmy-layer control. 
Conical diffusers; MI = 0.18 t o  0.50. 
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Figure 28.- Reductions i n  1 - q obtained with boundary-layer con t ro l .  
Annular diffusers; MI = 0.25 t o  0.30. 
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Figure 29.- Effect of boundary-layer control with vortex generators on 
Annular diffusers; 6*1/R1 = 0.078; the exit velocity distribution. 

AR = 1.91; M1 = 0.26; reference 12. 
- 



102 NACA RM ~ 5 6 ~ 0 3  

/ z 3 
I I ----?-J ; 1 

I I 
I I 

/ 2 3 

/ 

I 

/ z 3 
I I ----?-J ; 1 

I I 
I I 

/ 2 3 

/ 

I 

1.0 

0 

/ 
1 -  

. 

~a t i0 o f  /oca[ to tofu area, (VR) * 

(b) 28,  = 34' and 90'. 

Figure 29.- Concluded. 
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Figure 30.- Continued. 
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I n l e t  profiles , ref 20 
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(a) Conical diffusers; M1 = 0.2. 

Figure 34.- Effect of inlet velocity distribution on 1 - 7. 
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Figure 34.- Continued. 
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Figure 40.- Variation of the r a t i o  of the shock-induced l o s s  t o  the 
basic subsonic-diffuser l o s s  with Mach number for  supersonic spike 
in l e t s  having no contraction. 
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