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Page 2: Insert the following symbol and definition between the 
symbols Y and N: 
Z normal force (-L) 

Figure 1 should be replaced with the new figure 1, a copy of which 
is attached. 
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Figure 1.- The stability system of axes and sign convention for the 
standard NACA coefficients. All forces , force coefficients, moment 
coefficients , angles s and control-surface deflections are shown as 
positive. 
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FULL-SCALE INVESTIGATION OF fu"1 EQUILATERAL TRIANGULAR WING 

HAVING 10-PERCENT -THI CK BICOl~X AIRFOIL SECTIONS 

By Edward F. Whittle, Jr . , and J. Calvin Lovell 

SUMMARY 

An investigation has been made in the Langley full-scale tunnel 
0 · ' the l ow-speed characteristics of a wing having triangular plan 
i Orffi, 600 of sweepback at the leading edge, and 10-percent-thick 
biconvex airfoil sections. The investigation consisted of the determi
nation of the effects of semispan and full - span leading-edge and 
trailing-edge flaps on the l ongitudinal aerodynamic characteristics of 
the wing and the effects of a vertical fin on the lateral s'tabili ty 
characteristics. 

The maximum lift coefficient of the basic triangular wing was 1.08 
at a lift-drag ratio of 1.6, and both leading-edge and trailing-edge 
flaps were relatively ineffective in increasing the maximum lift coeffi
cient or the lift - drag ratio . The optimum flap configuration tested 
had a maximum lift coefficient of 1 .20 at a lift-drag ratio of 2.2. 
These low values of lift -drag ratio at the relatively low values of 
maximum lift coefficient indicate that high power-off sinking speeds 
will prohibit safe power -off landing of wings of this type. 

The effective dihedral of the triangular wing was low, and a 
sizeable vertical fin did not appreciably change the effective dihedral 
of the wing . The basic triangular wing had a small degree of directional 
stability at low lift coefficients and became directionally unstable at 
'ft cgefficients above 0 .90 . The vertical fin contributed a ~table 

Jrement of approximately -0 .0012 to the directional stability through
the lift - coefficient range . 

INTRODUCTION 

A wing having triangular plan form, 600 of sweepback at the leading 
edge, and 10-percent - thick biconvex airfoil sections has been tested in 
the Langley full - scale tunnel as part of a general investigation of the 
low-speed characteristics of probable high-speed-airpl~e configurations. 
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The investigation included tests to determine the effects of 
semispan and full-span leading-edge and trailing-edge flaps on the 
longitudinal aerodynamic characteristics of the triangular wing. Tests 
were made of several leading-edge and trailing-edge flap combinetions 
to determine the optimum low- speed flap configuration. The lateral 
characteristics of the unflapped triangular wing, with and without a 
vertical fin installed, were also determined. 

SYMOOLS 

The data were referred to the stability axes, which are defined in 
figure 1 . The origin of the system of axes is located at the ~uarter 
chord of the mean aerodynamic chord. 

lift coefficient (L/~S) 

Clwax maximum lift coefficient 

longitudinal-force coefficient (X/~S) 

drag coefficient ( D/~S) 

Cm pitching-moment coefficient (M/~Sc') 

Cy lateral- force coefficient ( Y/~S) 

Cn yawing-moment coefficient ( N/~Sb) 

CI rolling-moment coefficient (L'/~Sb) 

L lift 

X longitudinal force 

D drag ( -X at zero yaw) 

M pitching moment about Y-axis 

y lateral force 

N yawing moment about Z-axis 

L' rolling moment about X-axis 
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p mass density of free-stream air 

v free-stream velocity 

q free -stream dynamic pressure ~~2) 

, S wing area 

c' 

b span of wing 

ex. angle of attack, degrees (measured in the plane of symmetrJ ) 

LID 

R 

slope of lift curve, per degree 

angle of yaw, degrees (positive when right wing is back) 

rate of change of lateral-force coefficient with angle of 
yaw, per degree 

rate of change of yawing-moment coefficient with angle of 
yaw, per degree 

rate of change of rolling-moment coefficient with angle of 
yaw, per degree 

flap deflection, degrees (positive down) 

lift-drag rati o 

Reynolds number 

gliding speed, miles per hour 

sinking speed, feet per second 

MODEL 

The triangular wing tested had a span of 23 .1 feet, equilateral 
plan form, which corresponds to 60 0 of sweepback at the leading edge , 
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and -an aspect ratio of 2.31. The airfoil sections parallel to the plane 
of symmetry were NACA 28-(50)(05 )-(50)(05) which are symmetrical 
biconvex circular-arc sections having a maximum thickness of 10 percent 
of the chord at the 5O-percent-chord location. The wing had no geometric 
t wist or dihedral and was made entirely of metal . 

General dimensions of the triangular wing are presented in 
figure 2(a). The wing was provided with 12.5-percent root-chord 
trailing-edge plain flaps, which had the hinge line parallel to the 
t railing edge, and with 20 -percent local-chord drooped leading-edge 
f laps. Sectional views of these flaps are shown in figure 2(b). The 
gap in the upper surface of the wing resulting from deflection of the 
leading-edge flaps was faired oyer as shown in figure 2(b). The flaps 
could be deflected downward as semispan inboard, semispan outboard, or 
full - span leading-edge or trailing-edge flaps from 00 to 60 0 in incre
ments of 100 • Upward deflection of t he flaps was not poss ible . 

The vertical fin, which was installed for yaw tests , was constructed 

of t-inch plywood and strengthened by t- inch steel plates attached to the 

surface of the fin. 
ratio of 1.43. The 
tunnel had a 5-inch 
the wing Just ahead 
5 .5 feet behind the 

It had an area of 29.5 square feet and an aspect 
tail boom necessary for mounting the wing in the 
diameter and was attached to the upper surface of 
of the trailing-edge fla_p. It extended approximately 
trailing edge of the wing. 

Two test configurations of the triangular wing mounted in the 
Langley full-scale tunnel are shown in figure 3· 

RESUDTS AND DISCUSSION 

To facilitate discussion of the results, the presentation of data 
is outl i ned below. The effect of sca l e is shown in figure 4 and the 
stalli:og characteristics of the triangular wing in figure 5. The effect 
of the various flap configurations on the longitudinal characteristics 
of the wing is compared with the l ongitudinal characteristics of the 
basic wing in figures 6 to 11 at a Reynolds number of approximately 
6 .0 x 106 . For convenience, a sUlIl.Ill.3.ry of the maximum lift coefficients 
against flap deflections is presenGed in figure 12. I n fi gure 13, the 
polar curves of three flap configurations have been superimposed on a 
gltding- speed and sinking-speed grid which was based on a wing loading 
of 40 pounds per square foot. The lateral characteristics of the yawed 
wing without and with a vertical fin installed are given in figures 14 
and 15, respectively, and a summary of the lateral stability param.eGers 
is presented in figure 16 . 

No tare corrections were applied t o the data, since the tares of 
t he support- strut configuration were found to be negligible. 
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Jet -boundary corrections were made by an unpublished method Which takes 
into a ccount both the chordwise and spartwise load distribution and 
determines the boundary- induced downwash over the entire wing area· 
The conventional corrections for stream angle, buoyancy, and blocking 
were applied . 

Longitudinal Characteristics 

Bas ic wing .- The maximum lift coefficient of the basic triangular 
wing was 1 .08 at an angle of attack of 32 .50 ~d, as shown tn figure 4, 
a variation in Reynolds number from 2 .91 X lOb to 9 .61 x 106 had no 
appreciabl e effect on CLmax · The lift- drag ratio for the basic wing 

reached a maximum va l ue of 10 at CL = 0 .19 and then decreased with 

increasi ng CL to 1 .6 at CLmax· 

Tuft studies for the basic triangular wing are given in figure 5(a) . 
At zero lift the flow over the wing was smooth and directed rearward. 
As the lift coefficient increased, the vortex- type flow described in 
reference 1 developed over the upper surface of the wing directing the 
tufts toward the wing tips . This vortex action is favorable in main
taining orderly flow over the wing at the high angles of attack for 
maximum lift . In the region affected by the vortex action, the tufts 
on the left wing panel exhibited a tendency to rotate in a clockwise 
direction and those on the right wing panel exhibited a tendency to 
rotate in a counterclockwise direction . This phenomenon was previously 
noted for the flow over the 420 sweptback wing of reference 2. At a 
lift coefficient of approximately 0 .50 , unsteady flow developed at the 
wing tips , and the slope of the lift curve decreased. This region of 
unsteady flow, followed by an area of complete stall, moved progres
sively inboard with increasing lift coefficient . At the maximum lift 
coefficient the 0utboard third of the semispan appeared to be completely 
stalled. 

The slope of the pitching-moment curve was negative and constant 
up to the CL . (approximately 0 ·50) of initial unsteady flow at the 

wing tips . At this CL, the slope of the pitching-moment curve 

decreased some~hat b ut then began t o increase as CL increased . The 

shape of the pitching-moment curve through the stall is considered 
stable . 

Trailing- edge flaps .- Figure 6 gives the effects of semispan 
inboard trailing-edge flaps on the longitudinal aerodynamic charac
teristics of the wing . At low lift coefficients the usual effects of 
trailing-edge flaps were shown, and the slope of the lift curves 
remained constant up to the angl e of attack at which the initial 
unsteady flow developed at the wing tips . The pi telling moment became 
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progressively more negative with increasing semispan flap deflection, 
and the breaks in the pitching-moment curves remained stable, except 
at a flap deflection of 600 . As shown in figure 12, the best CLmax 

of 1 .15 obtained by semispan inboard trailing-edge flaps was at a 
flap deflection of 20° . 

Except for,flap deflections greater than 300, the longitudinal 
data for full-span trailing-edge flaps are presented in figure 7 · Sharp 
discontinuities in the lift and ~itching-moment curves appeared between 
angles of attack of 12° and 140 ~ at a flap deflection of 20°, CL 
decreased from 0 ·93 to 0 .88 and Cm increased positively from -0.23 

to -0.18) after which ,the curves proceeded at decreased slope. 
Discontinuities of this type were also noted in reference 3 for a 
triangular wing having double-wedge airfoil sections and split trailing
edge flaps . Tuft studies at a full-span trailing- edge-flap deflection 
of 200 (see fig. 5(b)) indicate a rapid progression of unsteady flow and 
stall over the wing tips between angles of attack of 12° and 14°. The 
largest CT __ of 1.19 for full-span trailing-edge flaps (fig. 12) 

"-'.Ill.ax 
ws obtained at a: flap deflection of 20°. The small gains in CImax 

and the unstable pitching-moment breaks together with the need for 
outboard control surfaces r ender full - span trailing-edge flaps 
impractical for use on wings of this type. 

Leading-edge flaps. - Except for flap deflections greater than 300 , 

figure 8 shows t he effect of full-span leading-edge flaps on the l ongi 
tudinal characteristics of the wing. Tuft studies of the flow over the 
wing with full - span leading-edge flaps deflected 20° are' given in 
figure 5(c) . The progression of spanwise flow and stall follow the 
same pattern as for the basic wing, although the development of the 
vortex-type flow was delayed somewhat by deflection of the leading-edge 
f laps . This delay in the vortex action is believed to be due to the 
decreased pressure differential between the upper and lower surfaces 
of the deflected flap in the immediate vicinity of the flap leading 
edge. The general shape of the pitching-moment curves was unaffected 
by leading-edge ~flap defle ction . However, a progressive l y negative 
shift of the curves appeared with increasing leading-edge-flap 
deflection, due to the all eviation of pressures and loading at the 
leading edge . It is shown in figure 12 that a full-span leading-edge
flap deflection of 30° produced the largest CLmax of 1.22. 

The effect of deflecting the leading-edge flaps separately as 
semispan inb03rd and outboard l eading- edge flaps is shown in figures 9 
and 10 and their separate effect on C

Lmax 
is shown in figure 12. 

Deflection of the oatboard l eading- edge flaps improved the flow at the 
wing tips, thereby providing more linear pitching-moment curves as 
compared to the pitching-moment curves for the basic wing. However, 
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the maximum lift coefficient was increased only to 1.16 at the 
excessively large f l ap angl e of 500

• Separate deflection of the 
semispan inboard l eading- edge f l aps had an adverse effect on CLmax ' 
The gene~al shape of the pitching-moment curves was unaffected by 
flap defl ection, but they were shifted progressively in the negative 
direction due to loss in l ift at the wing apex . 

7 

Fla p combinations .- The effect of three leading-edge and trailing
edge flap combinations on the longitudinal characteristics of the wing 
is given in figure 11 . Flap deflections of 20 0 were used thro~lout . 
The deflection of full -span leading- edge flaps and semispan inboard 
trailing-edge flaps had no appreciabl e effect on C

Lmax 
or Lin 

at CLmax' but the pitching-moment curve was shifted in a negative 

direction. The addition to this flap combination of outboard trailing
edge flaps shifted the lift curve upward to a C

Lmax 
of 1 .20 , at which 

LID was 1 .5, and the pitching-moment curve was shifted still more in a 
negative direction. 

The deflection of semispan outboard leading-edge flaps in conjunc 
tion with semispan inboard trailing- edge flaps extended the linearity of 
the lift curve, thereby resulting in the maximLUll lift coefficient at an 
angle of attack of 25 .50 as compared with 32 .50 for the basic wing. The 
value of CLmax was increased to 1 .20, and the lift-drag ratio at CLmax 

was increased to 2.2 . This combination produced the most linear 
pitching-moment characteristics with a less negative shift of the curve 
though the break at the stall was marginal. The combination of outboard 
leading- edge flaps and inboard trailing- edge flaps is considered the 
optimum landing configuration tested . 

Figure 13 gives the polar curves for several flap configurations 
superimposed on a gliding-speed and Sinking- speed grid based on an 
assumed wing loading of 40 pounds per s'luare foot . The curve for the 
optimum flap combination tested shows that the power-off Sinking speed 
at the estimated lift coefficient (0 ·77) for the landing approach is 
49 feet per second at a flight speed of 143 miles per hour. It is 
believed that this high power -off sinking speed will prohibit safe 
power -off landings . 

and 

Lateral Characteristics 
J 

The variations of the lateral stability parameters CI'It"' Cn~ 

and Cy with 

in figure 16 were obtained from the variati~ns of CI , 

'It" (figs . 14 and 15) at small angles of yaw ('It" = ±20 ). 

Since the stability boundaries for a triangular wing have not been 
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established, there is some ~uestion as 
magnitude of the stability parameters. 
believed that positive values of C1V 

to the significance of the 
In general, however, it is 

and negative values of CnV 
necessary for satisfactory flying ~ualities. 

are 

The value of for the basic triangular wing increased from 

zero at zero lift to a maximum value of 0.0012 at CL = o.40j and 

as CL increased above 0 . 40, C2~ decreased, reaching zero at 

CL = 0 .64 and -0.004 at a CL of 1 .00. The vertical fin had no 

appreciable effect on the effective dihedral. It is believed that 
deflection of the outboard leading-edge flaps would extend the lift
coeffi cient r ange for positive effective dihedral, since these flaps 
improve the f l ow at the wing tips. 

The basic triangul~r wing had a small degree of directional sta
bilityat lift coefficients between 0.20 and 0·90. The minimum value 
of C

nv 
f or the basic wing was -0.0007 at a CL of 0.80, and at lift 

coefficients above this value increased with to positive 

val ues at lif t coefficients above 0 ·92 . The vertical fin contributed 
a stabl e increment of approximately -0 .0012 to Cn* throughout the 

lift - coefficient range but did not prevent Cn from becoming positive 
V 

above These values of Cn* for the fin-on configuration 

are believed to be ade~uate for satisfactory flying ~ualities. 

The basic triangular wing had a small degree of lateral-force 
effect at l ow lift coefficients, due to asymmetry of the model and/or 
air stream . At lift coefficients above 0.60, Cy* increased with CL 

to 0 .004 at a CL of 1 .00 . The vertical fin contributed an increment 

of approximately 0.005 to Cyv throughout the CL range. 

CONCLUSIONS 

The results of tests at a high Reynolds number of a triangular wing 
having 10-percent - thick biconvex airfoil s ections indicate the f ollowing 
conclusions: 

1. Since the opt imum flap configuration t es t ed ( inboard semispan 
trailing-edge and outboard semispan leading- edge flaps def l e cted 200 ) 

only increased C
Lmax 

t o 1 .20, it is be l ieved that t he maximum lift 

coeff i cient of an e~ui la tera l triangular wing havi ng plain trail ing- edge 
f l aps and drooped l eadi ng- edge flaps will be rel ativel y l ow. 
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2. Low values of 11ft-drag ratio, at the relatively low values 
of maximum lift coefficient, indicate that high power-off sinking 
speeds will prohibit safe power-off landing of wings of this type. 

3· Semispan outboard leading-edge flaps in combination with the 
semispan inboard trailing-edge flap gave the most linear pitching
moment variation of those combinations tested. Although the marginal 
break at the stall is not a desirable one, it is believed that no 
serious stalling characteristics due to this condition will be 
encountered in flight. The linearity of the pitching-moment curves 

9 

and generally stable tendencies through the stall indicate that 
triangular wings of the type tested can be designed to have satisfactory 
low-speed longitudinal stability characteristics. 

4. The effective dihedral of the triangular wing was l ow at low 
lift coefficients (maXimum CI~ was 0.0012 at a CL of 0.40) and 

became negative at lift coefficients above 0 . 63. A vertical fin having 
13 percent of the wing area and an aspect ratio of 1.43 did not appreci 
ably change the effective dihedral of the wing. It is believed that 
deflection of the outboard leading-edge flaps would extend the lift
coefficient range for positive effective dihedral. 

5· The basic triangular wing had a small degree of directional 
stability at l ow lift coefficients and became directionally unstable 
at lift coefficients above 0.90. The vertical fin contributed a stable 
increment of approximately -0.0012 to Cn1jr throughout the lift-

coefficient range. 

Langley Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Field, Va . 
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Figure 1. - The stability system of axes and sign convention for the standard 
NACA coefficients. All force coefficients, moment coefficients, angles, and 
cont rol -surface deflections are s hown as positive. 
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NACA RM No . LBG05 13 

Trailing edge 

----

Leading edge 

Fairing 

Hinge 
Section B-B 
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(a) Basic wing. 

Figure 3. - The low -aspect -ratio triangular wing mounted in the Langley full-scale tunnel. 
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