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BEAM AND TOR SION TESTS OF ALUMINUM-ALLOY 6l S- T TUBINJ 

By R. L. Moo re an d Ma rsh a ll Hol t 

SUMMAR Y 

Tests were made to de ter mine the effect of len g th and 
the effect of ratios of d i am eter to wall thickness upon 
the flexura l a nd torsional modu li of failu r e of 6lS - T 
aluminum- a lloy tubi ng . 

The modul i of failu r e i n bending , as determined by 
tests in wh ic h the tub i ng was loaded on the neutral axis 
at the one -t h ir d po i nts of th e span , were found to be ar 
an approximately l i nea r re l at io nship with diameter -t hick
ness ratio and were p r a ctic ally i n d ependent of span within 
tho limits investi ga t ed . Empiric ~ l equations are g i ven 
describing the r e l a tions obt~ in od . 

The nodul i of fa i lure i n tor s io n were found to be de
pendent upon length as well as u p on d i a~eter - thickness 

ratios . Emp irical equations EL re given for pred ictin ~ 

stren~ths within the r ange of plasti c buckling . Within 
the elast i c r ange , a vailable torsion theories were fo~nd 
to be satisfactor y . 

I NTRODUCT ION 

The tests described in this r epo rt were undertaken a t 
th e request of an ai rcr aft manufactur er for data on the 
moduli of failu r e of alum inum - alloy 6IS-T tubing i n band 
in g and torsion . In vi ew of tho increRsi n~ use of this 
alloy in airc r aft construction there is a need for more 
information relative t o its st r uctura l strength . An at 
tempt has been made i n this r epo rt to present da ta for 
6IS-T tubin g·pa r allel i ng t hat c iven i n fi gures 5- 6 a nd 
5 -7 of refer ence 1, for the other al u~i ~ m alloys c ommor.ly 
used in a ircraft . 

The obje ct o f this i nves ti gat i on was to dete rmi ne thL 
effect of len ~ t h and the effect of r atio' of d i ame t er to 
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wall thickn ess up~n the fle~ural and torsion a l modul i o f 
failure of 61S-T tubin g . 

MATE R IAL 

Two series of te s t s of 61 S- T tubin g were made : on e 
of tubin g havi ng a n om inal orit side d i ame t e r of 2 . 00 inc hes 
and the ot he r of tUbing hav i ng a n outside diameter of 1 . 32 
inc hes . Each series consist ed of tubes having ratios of 
out s ide d i am~ter to t h ickness n/t of app ro x i ma tely 10 , 
20, 40, 60, and 80 . 

The mechanical p ro p e r ti es of each item of t ubing 
wer e determined by tensile, co mp r ess i ve , and shea r t e sts 
of specimens of full cross section. Thes~ proper ties a re 
summarized in t a bl e I and indicate that the ma terial used 
was r ep r esentative of normal commercial production . (S ee 
table 23 of r e fer en c e 2 .) 

SPEC IMENS AND ME THODS OF TE ST 

' Tho ' loadin g f i xture uS~d 'in t ho ~Qam t ests , whi~h was 
desi gned and b uilt at Aluminum.' Rese a rc h , La1)or'a t or i es in 
1937" is sho wn in fi gure 1 . The spec iDeh ~ ' consisted of 
pieces of tubin g of fu ll cr~ss section , 4 i nches lon g er 
than the span . They were suppo r ted at ' t he ends of the 
span an d at t he i ntermediate load po ints by snug - fi t tin g 
yokes with knife - edee supports in th e p l ane of the neu tral 
axis . The end yokes weie mou~ied on r ollers in o rd er to 
minimize r e straint to movement of the ends a ccompan y ing 
t h e ver tic al deflections. Load was applied equally to t~e 

one - third po i nts ' of t he span throu {'; h ' l~n if e ':" ed'ge bearin g s 
i n t he p l ane of the neutral ax is . 

The beam t ests were made i n an Amsle r universal test 
i ng machine of 40 , 000 - pound c apac ity. I ntermediat e lo a d 
t anges of 1000, 20 00, 4000 , and 10,000 pounds were used i n 
order to obt a i n the g r eatest precision and accuracy for 
t he diffe r en t sizes of tubin g investi gated . 

The beam spe cimens a r e d es cribed i n table II. A span 
equal t o 20 ti mes the di ame t er wa s used for a ll sizes of 
tubi ng , and spans of 10 and 6 times t he dii '.m eter were also 
used for the 2-inch-diameter tubes having n/t ratios of 
20 , 4 0, and 60 . 

. .. ' 
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The torsion tests wer e made in a n Ams ler torsion 
ma c h ine of 1 200-foot ~po~nd c apa cit y. I ntermediate lo e d 
ra~ges of 240 , 4 00 , and 800 fo o t - pounds , as well as the 
maximu~ load r ange, were used. The speci mens c onsisted 
of full cross sect ions of tU b i ng g ripped over a 4-inc h 
p l ugged len g th a t each e nd. Ta ble III g i ves the dimen
sions of the speci mens and th e r a tios of di am eter to 
thickness nit an d length to d i a meter Lin. 

RESULTS AND DI S CUSSI ON 

Beam T ests 

Table II g ives the maximum londs support ed by the 
tub i ng in t h e beam t e sts a nd th e corre s ponding modul i of 
failu re co mput ed by the ordi nar y b e am for mula 

3 

Mc = (1) 
I 

whe re 

Fb modulus of f ~ ilure , po unds pe r squ a re in c h 

M max i mum bendi ng momen t unde r ulti ~a te lo a d, 
inch-pounds 

c d i stance fro ~ neutr a l ax ig ~ o extre me f i be r, inc te s 

4 
I moment of ine r t ia of cr o ss sect ion , i nch 

It will be seen f r om these d n t a ~nd f r o m th ose sh ow n in 
figure 2 th a t the mo duli of f a ilure in b e nding var i ed 
considerably with t he r Rtios of diamete r to thi c kness bu t 
that they we re not sensitive to diff ere nces be t ween spans 
of 6 , 1 0 , and 20 diameters . I n the c a se of the thinnest 
wall tubes , failure s oc c urred suddenly by buckl i n g of the 
tub e walls; whereas, in the c ase of the t hickest - wall tubes , 
failu r es oc c u rr ed by p l asti c y i eld i nG a cc o~pan i ed by l e rge 
def lecti ons . In no case was there ev id e nce of i mpend i ng 
failure resulti ng f r om excessive tensile stresses, 

Fi g ure 2 also shows the re lalions found between ten
sile and co mp r essive st ren ~ths anf the nit r a t ios of the 
tubes. The tensile st r engt h s we re p r a ctic ally c ons t an t 
for the tubin g s of differen t diamete r s and were independent 
of D/t; wher eas t h e c omp r essive stren g ths, of c ours e, 
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dec~eased 'sa D/t ing~eas ed . Co nputed eo n pre g sive 
' st~Bngths within lQ p~rce n t df thes~ t e st r e sult·s arc ' 
obtaine d for values of nit fron 20 to 80 by 'usin g the 
r.J.et h od ·g ive n · in ·refe-rence. 3, and t he. strai ght- line col unn 
c UT v e. for -t his 1] ate ria lob t a i ned b y th -e net hod' 0 u t lin eu. 

. in r e£eren ee 4 . ~he cooputed values are on the cons e r va 
t i ve s·l ·d e . 

It is se en in fi gure 2 t h at the modu li of failur e in 
bending were equal to or groater than th e comp ressive 
str e n g ths of t h e tubin g {or corres p ond in g v a lues of D/t. 
The maximum ratio of these stresse s was 1 . 26, found for a 
nit ratio of 40 . In tests of some d u r a l uffi i n c y li n ders 
with D/t ratios g re a ter than ab out 300 (~ e f e r e nce 5), 
it was foun d t h at t he r a tio of t h e modulus o f f a ilure in 
b e nd in ~ to t h e comp r ess i ve str e n g t h o f th d 'c y lind er s 
varie d fro m 1 . 30 to 1 . 80 . The duralumin cylind ers failed 
at stresses in th e elastic r a n ge ; wher e as the 6lS-T tub e s 
test ed in this inv e sti gation fail e d a t str a ss e s abo vG t~e 

elastic r a n go . 

Fi gur Q 3 s h ow s u nondi men s i ona l p lot o f t he da t a in 
whic h t h e coordina t es a r e 

1 :ill t = 
Os Fey D 

(2) 

and 

(Jr s = Fb (3) 

where Fey 

E modulus of olasticit y , pound s p e r squa r e inch 

Fcy co mpressi ve y i e l d str e n g t h , p ou nd s p e r squa r e inch 

Th is met h o d of p lotti ng was pro p os od in c on n e ction with 
the a n a ly s is of r e sult s of simil ~ r t e st s on 17S- T ro~nd 
tUbing (reference 6). Th e ad~antag e of . this n ondi men 
sional plot i s that it is p ossible to includ e , on .a 
rational basis , factors which are k nown to affect . the 
modulus of failure in bendi ng , such as th e yi e l d stre~ gth , 
the modulus of e lastici ty , and the p r op ortion s of the 
tubin g . The data in fi gure . 3 can be r ep r e s e nte d v ery well 
by the equation 
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eY rs 
= 1.57 _ 1 . 7 

J.:. 
Os 

(4) 

An e xpress ion for the modulus of failure of 6I S-T 
tubing in terms of the compre ssive yield streng th, the 
modulus of elasticity of the material , and D/t is ob
tained by substituting equations (2) and (3) in equation 
(4). The resulting expression is 

F 1 57 "" _ 1 . 7 ( F c.y) 
b = ' . ~ cy 

E 

2 
D 

t 

For the properties of the 61S - T tubin g tested, 
equation (5) reduces to 

= 65 , 300 - 292 , J2 
t 

(5) 

(6) 

which is represented by the straight lin e shown with the 
data in figure 2 . An equation for 6IS-T tubing having 
any other va lue of comp r essive yield str eng th FCY c an 
be obtained by substitutl~g this value in equation (5), 
provided , of course, t hat the ma terial con side r Gd has 
about th0 same ratio of yi 0 ld strength to ultimate 
stren g th as the tubing tested . If it is assumed that the 
minimum compresiive yield s tr e n gth is equal to the mini
mum spoc ified tensile yiold strength , which might be rea
sonaole for this alloy on the basis of the val ues g i ven 
in table I, the equation for 61S- T tubing that just meets 
the requirements for a minimum specified tensile y iel d 
strength of 35,000 pounds per square inch , accordin g to 
Federal Specification WW- T- 789 , is 

Fb = 55 , 000 - 208 ¥ (7 ) 

The ,line represented by this equation corresponds to the 
,design ' data given in fi g~re 5~ 6 of' reference 1 , for 17S-T 
~n~ 24S-T tubinG. ?i gure 4 s hows t he eff~ct of D/t 
upon the moduli of failure in bendi ng ftir ,these three 
aluminum alloys, whi6h have guaranteed ~inimum properties. 

It should be borne in mirid that the modul i of fail
ure in bending here considered were obtained from tests 

• 
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i n wh i ch equa l l oads we re applied at the one -t h ir d points 
of the spans . Under o t her te s t conditions , such as center 
poin t loading , s li ght l y different values of modulus of 
failure wou l d p ro bably have been ob t ained . 

To rs i on Tes t s 

Table III g i ves the max i mum torques and the cor r e 
sponding moduli of failure , o r average shear stresses , fo r 
t he tubes subje c ted to t orsion t e s t s . These values were 
c·omputed by th e fo rmu l a 

;.[he r e 

F = st 
T 

2 
2TT r t 

( 8 ) 

Fs t modulus o f f a i lu r e in tors i on , pounds per square inch 

T torque producing failure , inch- pounds 

r mean radiUS , i nches 

Two t ypes of action were ob t ained : one invol v ing plastic 
buckli ng in which the moduli of failure we re dependent 
mainly upon D/t ; the other involvin g elastic buckling 
in whi c h LID as well as Dft was a s i gn ificant factor . 
jn the cas es of plastic buciling , the moduli of failure 
developed ~ere above the s hear yield str eng ths of the ma 
terial g iv e n in ~abl e I ;. in th e c ases of elastic buckli ng , 
the compu t ed stresses were below th ese yield- strength 
values . 

Figure 5 shows the results ribtai n ed by ·plott i ng tiD 
aga i nst ratios of moduli of failure in tor s ion to tensile 
streng ths . This method of analyzing torsion test data for 
aluminum- alloy tubing was first used ai the National Bureau 
of St a ndards (r eference 7) and is helpful in illustrating 
the types of ac t ion involved. In view of th e fact that 
only one test result for 6l S- T tubin g was obtained in the 

·v i cinityof the so - called T an ge of plastic shear, the lim
its shown fo r this ran ge are based largely upo~ ~h e r esult s 
of other tors i on t es ts of aiuminum- s lloy ·tubing (reference 8 ). 
I t has be en found that the shear strength of the heat-
treated alloys ~n tors i on, which constitut es an upp e r limit 
for ~oduli of failure , may b e taken cons e rv a tiv e ly at bout 
65 percent of the tensile strength~ Although t~e transit i on 
between the r anges of p la s tic s hea r and plastic buckling 
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has been se l e ct ed a r b i t r a r i l y at a v alue of t iD of 0.1 
and there are some data wh i~ h i ndi c a t e t his cho i ce to be 
reasonable , there i s , of cour se , n o def i ni t e po i nt mark 
ing the limits of t he t wo t ypes of action . 

7 

In th e ran ge o f plasti c buck li ng shown i n fi gure 5 
the relation be t we e n to r s i ona l mo d ulus of failure, tensile 
strength , and t i D may b e e xp r ess e d approximately by the 
r81ation 

== 3 . 7 t + 0 . 93 
D 

(9) 

where F tu is t he t ensile st r ength i n pounds per square 
inch . This emp i rica l express i on for 61 S- T tubin g differs 
from those developed fo r l 7 S- T , 24 S- T , and 24S - RT tubing 
at the National Bu r eau of Standa r ds ( reference 7 ) and at 
Wri gh t Field ( refer e nc e 9 ) in that the slope of the cor 
r esp onding st r ai gh t line i s less and the i ntercept on the 
theoretical cu r ves fo r e l astic buckl i ng is higher than 
that found for these othe r aluminum alloys . The explana
tion for this d i ffe r ence may p r esumably be attribut ed to 
fundamental d i fferences in the stress - strain character
istics of the materials . The r atio of the tensile y i eld 
strength to tensile st r ength for the 61S - T tub i ng used 
averag e d 0 . 89 , \;rhi c h i~ ap p r ec i ably h i ghe r ' than the cor 
rosponding ratios fo r the other af~ r e - me~tioned aluminum 
alloys. For ma t e ri a l hav i n~ a yield strength equal t o 
the tens.ile strength , i t seems r easonable to beli e v~ that 
th e straight line fo r the r ange of plast i c bucklin g would 
become almost ho r izon t al ; t hat is , thera would be no inter
mediate rang e between p l astic shear , where the ultimate 
strength is the control l in g factor , and th e range of elas
tic buckling. 

The tran s i tion between -the range of plast i c and elas
tic buckling ~ith respoct to tiD depends upon the len g th 
of tubing considered . The theoreti c al buc kling curves 
shown in fi g ure 5 we r e c omputed fo r an assumed condition 
of simply suppo r ted ed ge s according to a sol u tion developed 
by R. G. Sturm * and summari zed in ref o r e nc e 10 . Values of 
modulus of failure averagin o about 7 p~rcent higher would 
have been obtained ~ad the torsion t heory propo s ed by L. H. 
Donnell in reference 11 been used . Althoug~ the agree me nt 
between the ore tical and observed moduli of failure in th e 
elastic ran ge is not especi aL'_ ~ ~':0od in SO:11", ca l:es , CL.3 

----------
*Thesis sub~itted to Univer s~~y of Nebras~u ~~ pLrt\~~ ful
fillment of the requirement s ior the professional degree 
in Civil Engineering , June 1 9 38 . 
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re sults appear . suff ici ently clo so to warrant considerat i on 
of t he length effect. I n the reports by the Bur eau of 
St nndard s and by Wright Field (references 7 and 9 ). 
Sch~ e rinls t h eoreti c al solution for lon g tubes was u se d , 
which does not includ~ len g th as a s i gnificant factor in 
t he ran ge of ela s t ic bucklin g . 

Figure 6 sho ~ s mora clearly than fi gure 5 the r e la
tion found between moduli of failure in torsi on and LID. 
For tub es having values of n i t of 19 . 8 and 39 . 4 , t he 
len b th of s pe cim en test ed' had 'no significant bearing upon 
ultimate strengths . For tube s having a value of nit of 
58.8 t he effect of length was slightly noticeable , and 
for a v a lue of D/t of 80.6 the length factor was quite 
s i gn ific ant . The test values for tubing with a value of 
n i t of 80 .6 averag ed about 12 perc e nt be low the theoret 
ic a l curve for elastic a ctio n . 

Fi gure 7 show s the r e l at ion found be tween moduli of 
failur e in torsion and nit for t wo se ries o f tests i n 
volving d if f erent values of LID . In the ran g e of plas tic 
bucklin g the emp irical curve shown corres p o nd s to the ob 
lique straight line g iven in fi g ur e 5. The t heo r etical 
curves for e las t ic buckling we r e c omputed in the manner 
p r ev io us ly d iscus sed . The f ai r a g r eemen t b e tween computed 
and ob s erve d ' moduli of failur e for the p ro por tions of 
specimens used ' is believed to warrant th e c onclus ion that 
the torsional strength of any siz e of 6 lS-T t u be may be 
predicted wit h r easonable accuracy , p ro v i ded that t h e ratio 
of t ens ile yield to ultima t e strength is comparable to t ha t 
for the material t ested . I n the: r ange of plast ic shear in
volving values of D/ t l ess t han about 10 , the ultimate 
shear streng th of the ma teria l in torsion may b e assumed 
equal to 65 percent of the tensile strength . · In t h e - ran ge 
of plastic buckling the emp iric a l equati on g i ven in figure 
7 requir eB only the sub stitution of a value for tensil e 
strength Ftu to make it a ppl i cable to othe r 61S- T tubing 

or to . other aluminum allDYs hav in g t he same ratio of ten
sile yield to ultimate strength. Elastic bucklin g becomes 
critical wheriever t h e str esses : computed by t he torsion 
the ory, involving both D/t , and Lin , ' are l ess t han t hose 
d e termined ' by th e equat ion proposed for plastic buckling . 

~i gure 8 shows th e ' r e lation b e t ween nit and moduli 
of failure ' in torsion for 24S~RT. 24 S~T, and l7S-T tubi ng 
as indicated in fi gure 5-7 of refer e nc e .1 and . c9rr e spond

,. ing data for 61S- T iubi ng havin g gua r antee d min i mu m·p rop
erties according to F ede r a l Spe cificat ion WW-T-789 . I nas 
much as the r a tio of tens il e ~ i eld . t6 ultimate strength 
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fo r 6 IS-T meet i ng specification re q uire ments i s abou t 
0 . 83 , i nstead of 0 . 89 a s found for the tubin g te s ted , 
e ~u~t i on (9) is no t strictly app lic ab le. On t h e bas ' s 

9 

of r esult s obt a ined fro m o ther torsio n tests of a l um inum
alloy t u bin g , how ever, i n wh ich it has be e n possible to 
investiga t e more t ho rou g hly the effect upon torsio na l 
streng t h of t he ra tio of te nsi le yi eld s tr en g th to ulti
mate s tr en g th , t h e fol l owing e ~ua tion for 6IS -T tubi ng 
meeting spe c i fic a tion re Qu ire me n ts has be e n obtained 

F 
F t = -!~ (5 . 9 ! + 0 .71) 

s 2 D 
(10 ) 

The c u rve f r 61 S-T t ub i ng s h own i n fi g ure 8 was d e ter
mined fro m e qu a tion (1 0) . 

It should b e p ointed ou t i n c onne cti on with fi gu re 8 
t h~ t the mo duli o f f a il u re g iven in r ef e r en ce 1 a r e appa r 
en tl y ex tre me fib e r s~ res ses c o~pu t ed by t he ordi na r y 
to r s i on for mu l a for c i rc u l a r se c ti ons ; ,hereas fo r th e 
5 1S - T tubin g t hey a r B v al u es c cc p uted on t tF a ssump ti on 
of a unifor m dis tri bu ti o n o f sh e , r st r e£ s a t f a ilure . 
Th e la t te r p r o ced u re wa s adopte d be c ause it w_ s be lieved 
to apnro s ch more n e a rl y t he act ua l stre ss c ond itio n dev el
oped in a ducti l e x a teri a l str essed above t h e elas tic 
range . The rliffe r ence betw e en the two meth od s of co mpu t
ing moduli of failure does not bec o me si gn ific a nt ~ n t il 
relativel y t hick-w a ll t ube s a re co ns idered. Fo r a v 8lue 
of Df t of 20 , for examp le , t h e d iffe r ence i n stre sse s 
is only 5 percent ; for a v a lue of Df t of 10 , t he differ
ence is 1 0 percent . I n t he c as e of a solid r ound bar , 
h a vi ng a v a lue of Dft of 2, t he modu lus of failure de
fined as extr e me fiber stre ss i s 33 p erce n t h i gher than 
th e v a lue obtained by a s sum in g a un i for m dist ri bution of 
shear stre s s . It app e a rs f r om fi g ure 8 t h~ t the v a lues 
of modulus of failure shown by t he ANC-5 Cllrv es for v !', l
ues of n ft fro m 2 to 10 a re no t e x tre me fiber stresses 
but corre sp0nd r a t he r to t ~e assumption of uniform stress 
distribu t ion ma de for t he 6 IS-T tubi ng 
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CONCLUSIOlT S 

The follo win g conclusi ons have been drawn fto m t he 
data nn~ dis c u ssion presented in this r epo rt on beam and 
t o r s ion te s ts of 6lS-T aluminum - alloy t ub i ng : - .... 

1. The ma te 'r ial used in thfs i 'nV"est i ga tion was re p 
re sen ta~iv e' o f nor ma l co mme rcial production. The t ensi le 
and co mpressi ve yield strengths we r e appr oxi ma tely equa l 
and averaged about 90 percent of the t ens il e s tr e n g t hs . 

2 . The mo duli of failure in bending , as dete r mi ned 
b y tests in whi c h the tub in g was loaded on the n e utral 
axis at the one -t h ird po ints of the span , were found to 
bear an approximately linear relationsh ip with diamete r
thicknes s r at ios . and were p r ac tic a l ly independent of span 
wi thin . the l i mit s i nvest i gated . 

3 . For diamete r-t h ickness ratios between 10 and 8 0 
the moduli of fai l ur e in be nd in g e x c eeded , in every case , 
the cOmpressive strength of t he tub in g obt a j n ed for spec
imens of s l ende r ness ratio of lAo For diaD0 t e r-thickness 
ratios less than 70 the moduli of failure al s o exceeded ' 
the t ensile str ength of the material . 

4. Fo~ the tubin g test e d, which had a co mp r e ssiv e 
y i eld str eng th equal to about 41 , 500 pounds per squaro inch, 
th e modul i of failur e i n b endi ng are appr ox imat ed by the 
e qua tion 

Fb = 65 ,300 - 292 ~ (6) 

!tlhere 

Fb modulus of failur e i n be nd i ng , pounds per squa r e inch 

D outside d i ame t e r, inch e s 

t wall thic knes s, inch e s 

For material t hat has a value of compress i ve yield strength 
equa l to th e minimum t en si le y i e ld strength of 61 S-T, 
a cc ording to Federal Specification WW-T - 789, values of 
moduli of failure in bending may bo a pproximated b y means 
of the equation 

= 55 ,000 - 208 D 
t 

(7 ) 
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5 . The moduli of fail~re i n torsion for the tubes 
which failed b y p la s tic buckling for diameter-thickness 
ratios of 10, 20 , and 4 0 at stresses above the shear 
yield strength of the mate ri al , were found to follow the 
empirical r e lation 

Ftu 

2 

where 

t 
(3 . 7 + 0.93) 

D 
{9) 

modulus of fa i lu r e in torsi on , assuming unifor~ shear 
stress, pounds pe r square inch 

F tu te ns ile strength , pounds per square i nch 

Equation ( 9 ) appears appl ic a bl e to other 6 lS- T tUJing, 
provided that a r atio of tensile yield to ultimate strength 
of about 0. 89 , corresponding to that of the ma t e rial 
tested, is obta i ned . 

6. For 61S - T tubin g th a t has properties just meeting 
specification r equi r ements , fo r which the ratio of ten
sile yield to u l timate strength is equal to about 0.83, 
moduli of failure in t o r s i on in the range of p l ast ic buck
ling may be est i m~ t od from the r e l at i on 

t 
(5 . 9 + 0 . 71) (10) 

2 D 

7. The modul i o f failure in torsion for the tubes 
that failed by e l ast ic buck ling , i n which both d iameter
thickness and len g th - diametor r at i os were significant 
factors, we r e computed quito satisfact orily by available 
torsion theories. The limits o f appl ic ab ili ty of the 
bucklinr, theories and the emp irical equat io ns for plasti c 
buckling depend upon the len g th - d iameter r atios of the 
tubing. 

Aluminum Research Lab oratorie s , 
Aluminum Company of Am~ rica , 

Now Kensington , Pa ., May 22, 1942. 
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TABI,E I 

NECliANICAL PROPER'1:I:bS OF I'iATERIAL USED FeR 3E.t"N AIID TORSImT TESTS OF 61S-T RomID TUBING 

[Specimens of full cross section used ; average nodulus of elasticitJr i n t ension as 
determined with Martens mirror-tJ~e extensometer on 4-in. gage l ength , 10,000,000 
Ib/so.. in . ; average modulus of elasticit;y in shear as determined by Amsler troptom
eters on l6-in. gage length, 3 , 870 , 000 lo/s~ in . Values f r om Federal Specification 
\vVI'-T-789 : tensile strength , 42 ,000 Ib/ sq i n . ; tensile yield strength , 35 ,000 
Ib/sq i n . ; elongat ion in 2 in . for \'mll thicl::nesses bet\leen 0 .025 and 0.049 in ., 8 
percent ; elongation in 2 in . for \Vall thicknesses between 0 . 050 and 0 . 259 i n ., 
10 percent] 

I 

I Nominal size Yi el d strength Ultimate strength Elongation 
(offset , 0 . 2 percent) 

(in . ) 11' I • ) \ 0/ sq In . (n/ sq in . ) (percent) 

Outside i1all Tension :::: ompress i on Shear TenSionl compreSSiona . ? In _ In . in 8 in . 
di aHetcr t1::i ckness 

" 

I 
( 0 . 016 40 , 500 (b) (b) 45 ,000 40 , 800 
I . 023 38 , 000 (b) (b) 43 , ')00 39 , 000 

-< . 033 38 , 500 41 ,000 22 , 000 43 ,800 41 ,900 
1. 32 l . 066 39 , 800 l.J.2 , 300 22 , 800 46 ,200 46 , 300 

. 132 39,700 41 ,000 22 , 500 45 ,200 52 ,700 

I' 

40,700 Cb) (b ) 44,900 38 ,600 I . 025 
. 033 40 , 000 40,700 (b) 1.;.4,500 L;·O ,800 

2.00 <\ .050 41 , 500 42 , 600 23 , 300 45 ,700 43,600 
1 . 100 38,600 37 , 600 21,500 L!·2 ,700 43 , 600 I 
\.. . 200 41 ,000 ~a , 400 (c ) 45 ,400 53 ,300 

I 

~etc:-rr'in ec, fro,n s~~ocir'-:m:s haviq:; a slenderness ratio 0f 10 , 
Tube failee:. 8.t a strain less thar, t~at defini:1a: the yie1ct strellGti1. 

cTorsion npchine cD.pacity not ~'J.fficient to clcv~lop shear yield stro2':stl" •. 

10 .0 8 . 3 
17. 0 11 . 4 
19 .0 11.9 
18 · 5 12 . 0 
22 .0 12 . 3 

17. 0 11 . 4 
lEL5 12 · 5 
21.5 12 . 6 
26 · 5 13 · 9 
26 .0 13 ·0 
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T.A:i3LE I I 

DESCRIPTIm:r OF SP3CIl::;:DS KiD BSSLTLTS OF BEAH TESTS OF 61S-T TUBING 

[Spocimens t ested a s sinply s1.lp:9ort cd b enms ; load or.. neutral 
axis at one- t hird ~oints of t~o spans] 

Outside ,\1 \iall II lJior:lent of I Span I Haximun I ~lodulus of 
di a~eter , D thic~ess, t nit inertia load f a ilurea 

Cin . ) ( in . ) ( 1.n . 4 ) (diam) (in . ) (lb) Clb /sq in .) 

1 . 322 0 . 016 82 .7 0 . 0140 20 26 . 0 197 40 ,310 
1 . 322 . 022 60.2 .01g0 20 26 . 0 I 304 45 ,850 
1 · 321 . 033 40 . 0 . 0277 20 I 26 .0 I 512 52 ,915 
1.329 . 066 20 .1 .0523 20 26 .0. 1067 58 ,730 
1 . 319 . 132 10 .0 . 0877 20 26 . 0 i 1893 I 61 ,660 

2 . 002 . 025 80 .1 .0757 20 40 .0 498 43 , 890 
2. 002 . 033 60 .7 . 0990 I 20 40 . 0 720 43 ,530 
1.998 . 049 I' 40 ·7 .1426 20 40 .0 1172 I 54 ,740 
1.998 .100 20 .0 . 2693 20 40 . 0 2215 54 ,720 
2. 001 . 202 ! 9 ·9 I . 4669 20 40 .0 4400 I 62 , 860 

2. 002 . 033 I 60 .7 . 0990 10 20 .0 14G7 I lJ'9 , 440 
1 . 998 I .049 i 40 ·7 .1426 10 I 20 . 0 2356 55 ,010 
1 . 998 .100 i 20 .0 I .26j3 10 I 20 .0 4400 54 ,410 

2. 002 . 033 60 .7 . 0990 6 I 12 . 0 I 2449 49 ,490 
1·998 . 049 40.7 .1426 6 12 . 0 I 3975 55 ,680 
1.998 I .100 20 .0 I . 2693_ ~ _____ ~ I 12 . 0 74

l
!·5 55 ._,_2_5_0 __ 

---_. 

a COrn1} .... 1.ted bending stres s in extreL:O fiber s correspondi ng t o :Jl::u::i.ffi'lUn bending monent . 
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TABLE III . ... DESCRIPTION OF f.iPECIHELTS AlID RESU~TS OF 

TORSION TESTS OF 61S- T TUBlxG 

Length 
r Outside Wall between 

D/t I 
Haximum Ivlodu1us of 

diameter , D thickness , t grips , 1 L!D torque .t:'., R 
.L~/_ure 

(in. ) (in . ) (in . ) ( ft":lb ) (lb Gq in.) 

1.322 0.0164 7.5 sO . 6 5· 7 I 70 19,100 
')1') r 80 .6 117 .0 3S 10,400 '-"- . J 
36.5 80 . 6 27·6 34 9 ,300 

1.325 .0225 7 ·5 58 . 8 5.7 I 93 I S/bOO 
22 . 5 513 . 8 17 .0 87 17,400 
36.5 5S .S 27. 6 76 15 ,200 

1.321 .0335 7·5 39 .4 1 5· 7 165 I 22 ,700 
22 · 5 39 . 4 17. 0 162 22 ,300 
36.5 39 . 4 , 27 · 6 160 22 ,000 

! 
1·318 ,0665 7 · 5 19 . s I 5·7 346 25 ,400 

22 ·5 19·3 17.1 343 25 ,100 
36 . 5 19. 15 27·7 354 25 ,900 

1·319 .1320 22 .5 10 .0 17 .1 697 28 ,600 

2.000 .0248 23 .0 80 . 6 11.5 195 15 ,400 

2.001 .0330 23 .0 I 60 . 6 11.5 339 20 ,200 

1.998 . 0495 23.0 1 40 .4 11.5 589 23,900 

1.996 .0995 23 ·0 20 .1 11.5 1147 24,500 

a Oomputed shear stres s in mean fibe~ s corresponding to 
maximum torque . 
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Figure 4.- Modulus of failure i n bending of a l Ur.li nurn- a lloy round tub
ing . Beams l oaded a t one- thi r d points of span; tubes sup

ported against loca l fai l ure a t loadi ng points. (Data for l7S-T and 
24S- T tubing are t~~en from fig . 5-6 of r ef erence 1.) 
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(Curves for 24S- RT , 24S-T , and 17S-T tubings are tru~en from fig. 5- 7 of ref. 1')00 


