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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE 2399 

APPLICABILITY OF THE HYPERSONIC SIMILARITY RULE TO PRESSURE 

DISTRIBUTIONS WHICH INCLUDE THE EFFECTS OF ROTATION 

FOR BODIES OF REVOLUTION AT ZERO ANGLE OF ATTACK 

By Vernon J. Rossow 

SUMMARY 

The analysis of Technical Note 2250, 1950 , is extended to include 
the effects of flow rotation. It is found that the theoretical pressure 
distributions over ogive cylinders can b e related by the hypersonic 
similarity rule with sufficient accuracy f or most engineering purposes. 

The error introduced into pressure distributions and drag of ogive 
cylinders by ignoring the rotation term in the characteristic equations 
is investigated . I t is found that the influence of the rotation term on 
pressure distribution and drag depends only upon the similarity para­
meter K (Mach number divided by fineness ratio) . Although the error in 
drag, due to neglect of the rotation term, is negligible at K=0.5, the 
error is about 30 percent at K=2 .0 . 

Charts are presented for the rapid determlnation of pressure 
distributions for rotational flow over ogive cylinders for all values of 
the similarity parameter between 0 . 5 and 2 .0 within given def ined limits 
of Mach number and fineness ratio . 

INTRODUCTI ON 

The hypersonic similarity rule for irrotational flow over bodies of 
revolution at zero angl e of attack was devel oped by Ts ien and reported 
in reference 1. This rule s tates that, for hypersonic flow about 
geometrically simil ar bodies of different fineness ratiO, the pressure 
distribution depends only on the similarity parameter K, which is the 
ratio of Mach number to fineness ratio . This means that , if the 
pressure distribution or drag is known for a given body , the pressure 
distribution or drag is al so known for all similarly shaped bodies 
having the same value of the similarity parameter . 

The hypersoni c similarity rule , as originally developed , was 
restricted to irrotational flow around slender bodies at Mach numbers 
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much greater than 1. The slender body and Mach number limitation were 
investigated in reference 2 by comparing theoretical pressure distri­
butions over cones and ogive cylinders. The hypersonic similarity rule 
was found to be applicable to bodies or revolution over a much greater 
range of Mach numbers and fineness ratios than would be expected from 
the limitations in the development. 

The question of hypersonic similarity in rotational flow was con­
sidered by Hayes in reference 3. He concluded that the hypersonic 
similarity rule should be applicable for rotational as well as irrota­
tional flow. However, the exactness of the similarity and the range of 
conditions over which it applies have apparently not been investigated 
for rotational flow. 

The theoretical pressure distributions of reference 2 were obtained 
by the method of characteristics. In applying the characteristic equa­
tions the shock wave was allowed to curve, but the resulting entropy 
gradient or rotation was ignored by not including the rotation term in 
the characteristic equations.1 This is a method commonly employed in 
applying the method of characteristics. 

It is the primary purpose of this report to extend the examination 
of reference 2 to determine the degree of applicability of the hyper­
sonic similarity rule When the rotation term in the characteristic 
equations is included in the computations. 

A second purpose is to investigate the error introduced into the 
pressure distributions over ogive cylinders by ignoring the rotation 
term in the computations. The influence of the rotation term in the 
characteristic equations will hereafter be referred to as rotation or 
the effect of rotation. 

SYMBOLS 

drag coefficient2 

~ specific heat of the gas at constant pressure 

1Although this type of solution is often referred to as being irrota­
tional, it is not in the strict sense. The flow field is rotational 
since the shock wave is allowed to curve, but the resulting entropy 
gradient is ignored in the integration of the flow field. 

2In this report Co refers only to that part of the drag contributed by 
the pressure acting on the body nose. The nose of the body is con­
sidered to include the section forward of the cylindrical section or 
forward of maximum djamete~. 
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Cv specific heat of the gas at constant volume 

d maximum diameter of body 

df* velocity projection along right characteristic in hodograph plane 
referred to critical veloci~y 

dg* velocity projection along left characteristic in hodograph plane 
referred to critical velocity 

H total pressure 

K similarity parameter (Me ) 
lid 

1 length of nose of body 

l i d finenes s ratio of nose of body 

M Mach number 

3 

M* ratio of local speed to critical speed of sound 
[ 

7 + 1 ~ 
(7-1) + (21M2) J 

p static pressure 

~ dynamic pressure 

R p erfect gas constant 

s entropy 

Sb maximum cross-sectional area of body 

x longitudinal coordinate of body measured from vertex 

y coordinate perpendicular to body axis of symmetry 

ex, Mach angle 

e local angle of inclination of streamline measured relative to the 
body axis 

ratio of specific heats of the gas (~ ) 

~ angle of inclination of shock wave measured relative to the 
body axis 

- --- -- -- ---~-------~-~---' 
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Subscripts 

i conditions wherein rotation term is ignored in the characteristic 
equations 

o free-stream conditions 

r conditions wherein rotation term is included in the characteristic 
equations 

SCOPE OF INVESTIGATION 

The present investigation was planned to parallel that of refer­
ence 2, in which ogive cylinderss and cone cylinders were studied. 
However, as illustrated in figure 1, the head pressure drag of cone 
cylinders is not affected by rotation. Therefore, the cone cylinders 
were not included in the present investigation. 

In order to make use of and allow comparison with the solutions of 
reference 2, ogive fineness ratios and Mach numbers were selected 
according to the following schedule: 

K 

0.5 

1.0 

1.5 

2.0 

M 

3 
6 

3 
6 
9 

6 

6 
12 

lid 

6 
12 

3 
6 
9 

4-

3 
6 

This range was originally chosen in such a way that the similarity rule 
could be checked at several values of the similarity parameter K. 

SThe ogive referred to in this report is one-half the body of revolution 
f ormed by revolving a segment of a circle about its chord line. The 
cylinder is tangent to the ogive at its maximum radius. 

~~- ---- - ----

I 
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PROCEDURE 

The applicability of the hypersonic similarity rule to rotational 
flows was investigated by comparing theoretical pressure distributions 
(method of characteristics) over ogive cylinders of different fineness 
ratios at a fixed value of the similarity parameter K. In an effort 
to avoid the imposing task of obtaining the complete characteristic 
solutions, a means was sought of correcting the existing characteristic 
solutions of reference 2 which ignored the effect of rotation. An 
approximate method of doing this was developed and is presented in the 
appendix. The method permits the effect of the rotation term in the 
characteristic equations to be computed independently and added to the 
incomplete solution for the velOCity distribution over the body. Once 
the incomplete solution is available, the time required to obtain the 
approximate correction for the effects of rotation is about 5 or 6 
hours per solution. 

Certain assumptions which conceivably could result in serious 
er ror were made in the development of the approximate method. To 
evaluate the magnitude of these errors, a complete solution to the 
characteristic equations including the rotation term was made in a case 
where the effects of rotation are pronounced and is compared with the 
corresponding approximate solution in figure 2. A curve is faired 
through the points computed by the characteristic solution. The points 
computed by the approximate method fall very close to the faired 
curve -- the scatter or deviation lying within the accuracy of a 
characteristic solution. This indicates that the assumptions made in 
developing the approximate method do not introduce large errors. A 
more detailed picture of why it is possible to make the approximations 
and still obtain satisfactory results is given in the appendix. It is 
concluded that the corrected solutions are accurate enough for the 
present investigation. 

To employ the method of characteristics, the flow conditions must 
be known along some curve in the flow field. The velocity and stream 
direction for the complete characteristic solution presented in figure 
2 were obtained by approximating the ogive nose tip with a cone tangent 
at 5 percent of the nose length. The entropy variation was taken from 
a characteristic solution started at 1-2/3 percent of the nose length. 
Along the body streamline the entropy was that resulting from a shock 
wave due to the vertex angle of the true ogive. This same shock wave 
strength was used in computing total head loss and pressure distribu­
tion. The pressure coefficient at the nose vertex of the ogive was 
obtained by graphical interpolation of Kopal's tables (reference 4) for 
a cone angle equal to the true vertex angle of the ogive. Procedure 
IlIA of reference 5, which includes the rotation effect, was used to 
evaluate conditions in the flow field once the starting conditions 
were established. 

-----~--~---~---~-
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Effect of Rotation Term on Pressure Distribution 
and Drag Parameter for Ogives 

The dotted curve shown in figure 3 was computed by Sauer's graph­
ical method of characteristics. This method is one commonly used in 
applying the method of characteristics. The shock wave is allowed to 
curve, but the resulting entropy gradient is ignored. The solid curves 
shown in figure 3 are the solutions obtained by the method of this 
report and include the effects of this entropy gradient. 4 

The difference between these two curves represents the error in 
pressure which results if the entropy term in the characteristic equa­
tions is ignored. This difference will be referred to as the effect of 
rotation. This difference is a function of both the longitudinal 
coordinate and the similarity parameter K. However, at a given 
station on the ogive cylinder the pressure rise due to including the 
rotation term is a function of K only. This fact is borne out in 
figure 6(a) where this pressure rise is plotted as a function of the 
longitudinal coordinate for various values of K. The points shown for 
each value of K fall very close to the faired curve. From this 
figure, it is apparent that the effect of rotation changes very rapidly 
with similarity parameter K. At K=0.5, the pressure increment due to 
rotation is negligible; whereas, at K=2.0, it reaches over 11 percent 
of the nose tip pressure. This rapid change in magnitude of the 
rotation effect is shown in figure 6(b) for several values of the 
longitudinal coordinate. These curves demonstrate that the error 
introduced by ignoring the entropy term in the characteristic equations 
can markedly affect pressure distributions determined by the method of 
characteristics. 

7 

Since the pressure distribution over ogives is influenced by 
rotation, the drag parameter Goqo/Po is also influenced. The pressure 
distributions shown in figure 3 were integrated for drag. These drag 
parameters are compared in figure 7 with the ogive drag parameters of 
figure 11 of reference 2. The error in drag due to neglecting rotation 
is negligible at K=0.5, but amounts to a decrease in drag at K=2.0 
of about 30 percent of the drag obtained when the effects of rotation 
are included. This clearly shows that in certain cases the effects of 
rotation can be sizable. 

4A third type of solution which has a fictitious irrotational flow field 
was studied. In this case, the flow field is made completely irrota­
tional by forcing the shock wave to remain straight. In the case 
studied (,/d=3 ogive at Mo=6), the resulting pressure distribution 
fell between the pressure distributions with rotation effects con­
sidered and ignored, being nearer the solution ignoring rotation. 

----~---~-~---~ - -~ 
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Rapid Method for Determining Pressure 
Distributions Over Ogive Cylinders 
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Since the pressure distributions over ogive cylinders have been 
shown to be a function of K only, it is possible to plot the pressure 
coefficient at a given station as a function of the similarity para­
meter K. This should then enable the interpolation for pressure 
distributions at intermediate values of K. Such a graph was included 
in reference 1 for the solutions obtained with rotation ignored. A new 
graph, the values for which include the effects of rotation, has been 
prepared and is presented in figure 8. Thus, if Me and 1. /d are 
known, K is fixed and the pressure coefficient 5 p-Po/Po for various 
stations can be read directly. Since the pressures obtained when the 
rotation term was ignored are low by an appreciable amount at the 
higher values of K, figure 8 should be used in preference to figure 6 
of reference 2. Over the range indicated in figure 5, pressure distri­
butions obtained from figure 8 are believed to be accurate within a few 
percent which should be sufficient for most uses. 

Effect of Rotation Term on Drag of 
Other Body Shapes 

Rotation has so far been considered over two body shapes, the cone 
cylinder and the ogive cylinder. By considering the ~damental nature 
of the rotation effect, certain conclusions can be reached as to i ts 
importance on other shapes. 

Rotation enters the computations when an entropy gradient exi sts 
normal to the streamlines (reference 5). The stronger the entropy 
gradient, the greater will be the rotation in the flow field. An 
entropy gradient results when a shock wave is curved in a uniform 
stream. This is shown by the basic supersonic equation for total head 
ratio across a shock wave: 

-/::"s 

e R = F(Mosin <p) 

which shows that for a given body in a uniform free stream the shock 
wave angle <p must change to produce an entropy gradient. 

5The more common pressure coefficient p-Po/ qo can be readily obtained 
by the relation: 

Po Po 

\ 

___ J 
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The cases where the effect of rotation on pressure drag can be 
neglected are divided into two groups. The first group consists of 
instances where the maximum total head loss or entropy change through 
the head shock wave is small. It is then impossible to have an entropy 
gradient of any magnitude and so rotation effects will be negligible. 
This situation arises when the free-stream Mach number is near 1 or in 
the case of a very slender body at Mach numbers greater than 1. The 
ogive solutions shown in figure 3( a) are examples of the latter. In 
figure 9, the percentage change in the drag of ogives due to ignoring 
rotation is plotted as a functi on of total head loss through the nose 
tip shock wave. This figure indicates that if the error is restricted 
to 5 percent, rotation effects can be ignored only in the case of very 
weak shock waves. 

9 

The second group consists of those body shapes for which, regard­
less of the total head loss across the head shock wave, rotation will 
not influence the pressure drag. This will be the case for bodies where 
the head shock wave does not curve until far enough out so that its 
curvature cannot influence the head drag . The cone and cone cylinder 
are examples of this (fig. l(a)). The pressure distribution on the 
cylindrical part will be influenced, but head drag will remain 
unaffected. This emphasizes the importance of distribution of body 
curvature. If the body has large curvature near the nose vertex, the 
influence of rotation on head drag will be greater than if the curvature 
is in the afterportion of the body. 

Blunt Nosed Body Shapes 

The hypersonic similarity rule would not be expected to apply 
rigorously to blunt nosed bodies. This follows from an examination of 
the assumptions made in the development of the rule. The assumptions 
of slender bodies and hypersonic flow are violated by flow over blunt 
nosed bodies. At the nose tip section the blunt nosed bodies cannot be 
considered slender because the body slope is infinite. This results in 
a detached shock wave and a region of transonic flow rather than hyper­
sonic flow. 

Furthermore, if there is to be similarity in drag, the pressure 
at any station must be a function of K alone. But the pressure at the 
nose tip of a blunt body is the stagnation pressure and so is a function 
of Mach number alone and not of K alone. Likewise, the total head 
loss and entropy of the body streamline is a function of free-stream 
Mach number alone and not K alone. For this reason, the pressure 
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increment due to rotation effects would not be expected6 to be a 
function of K alone as was the case for ogives (fig. 6). 

CONCLUDING REMARKS 

The hypersonic similarity rule for bodies of revolution is appli­
cable with the same accuracy for the solutions including rotation effects 
as it was for the solutions in which these effects were ignored. The 
range of applicability for ogives is the same· as it was for the incom­
plete solutions. Within this range the pressure distributions over 
ogive cylinders (which include effects of rotation) are presented on a 
single graph. 

The effect of omitting the rotation term in the characteristic 
equations is to decrease the pressure which in turn decreases the drag. 
The drag is decreased by varying amounts depending on the body shape and 
the similarity parameter K. Although the rotation effect is negligible 
for ogives at K=O.5, it accounts for about 30 percent of the drag at 
K=2.0. Hence care must be taken as to when the rotation term can or 
cannot be ignored. 

It is emphasized that, although rigorously speaking the hypersonic 
similarity rule would not be expected to hold for blunt nosed bodies, 
deviations from similarity would probably be a matter of degree so that 
for very slight tip-bluntness similarity might still hold except in the 
vicinity of the tip. 

Ames Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Moffett Field, Calif. 

6 In spite of the above considerations, it is felt that the hypersonic 
similarity rule would still be useful for the over-all drag of 
slightly blunt bodies. It is believed, however, that some limit of 
tip bluntness would be reached beyond which the hypersonic similarity 
rule would not applY. 

- ---- - - --~~ 
J 
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APPENDIX 

DEVELOPMENT AND PROOF OF APPROXIMATE METHOD 

The approximate method for correcting for the rotation term i n t he 
characteristic equat ions is developed from the method of characteris tics 
for aXially symmetric flow. The characteristic equations written in 
Sauer's notat i on according to reference 5 (p. 35) for rotati onal and 
irrot ational flow are: 

Left : 

Right: 

Left: 

Right: 

* dfr = 
M* sin e sin2a. dT} 

y 

M* sin e s in2 a. d~ 

y 

M * sin e sin2a. dT] 
y 

M* sin e sin2 a. d~ 
y 

M* sin2 a. s 
cos a. ~ 

r 
(Al ) 

M* sin2 a. s 
cos a. <iR 

r (A2) 

(A3) 

(A4) 

The differ ence between the rotational and irrotational flow equations 
is the additional term involving entropy in the rotational equations. 
This additi onal term represents a change in velocity increment due t o 
rotation, given by 

Left: 
M* sin% s 

1 
cos a. D,.-

R 
cos a. 1 

(A5) 

M* sin%. cos a. D,.! 
1 R .6M* == cos a. l 

Right : (A6) 

The l/cos a. is required because the complete entropy term of equat ions 
(Al) and (A2) is applied along the characteristic direction, whereas the 
velocity increment i s applied along the stream directi on. 

The physical 
of this equation. 

significance of equation (A6) is shown in another form 
From reference 6, the velocity increment .6M* becomes: 

.6M* ::: M* sin2a. D,.:?. = 2 W D.n 
I R a* 
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where 

w angular velocity of rotation of the flow field 

6n distance measured perpendicular to the streamlines from known point 
to new unknown point 

a* critical velocity of sound 

Hence, in proceeding from a known point in the flow field to a new 
unknown point, 6M* is the product of the angular velocity of rotation 
and the distance, pe~endicular to the streamlines, between the two 
points. The term ~ is the contribution to the velocity, at the new 
point, made by the entropy gradient. 

The approximate method consists of evaluating equation (A6) along 
the individual right-hand Mach lines between the shock wave and body in 
one step to obtain the increments in surface velocity due to rotation. 
These increments are added algebraically to the velocities determined by 
ignoring rotation and the resulting velocities are then used to compute 
a new pressure distribution. The terms M*, a. and 6.{ siR) are taken 
from the characteristic solutions where rotation was ignored. The term 
b{s/R} is the total entropy difference between the shock wave end and 
the body end of the right-hand characteristics. It is to be noted that 
the approximate method corrects the velocity along the surface only and 
is not applicable for the rest of the flow field. 

Several approximations are made in applying the approximate 
method. It is possible to show qualitatively how the approximations 
enter into the solutions and why they can be made. This is done in 
figure 10 by comparing in the hodograph plane a complete characteristic 
solution with a solution by the approximate method.7 The points having 
the subscript r are computed by the method of characteristicsB with 
rotation effects included (equations (Al) and (A2)). This method is the 
most refined available at present and so the points lr through 4r 
represent the desired solution. The points li on the shock wave 
through 4i on the body were computed by the method of characteristics 
ignoring the rotation term. These points differ by a sizable amount 
from those obtained by the more refined method, indicated by subscript r, 
both on the body and at the shock wave. The approximate method consists 
of subtracting the appropriate 6M* from the velocity at the body 
pOints, 2i and 4i. This step is shown in figure 10 and the body points 
so computed are 2a and 4a . It can be seen that 2a and 4a agree 
very closely with 2r and 4r. 

7The construction is schematic and therefore not drawn to scale. All 
t he computation dimensions have been exaggerated. 

Bfor details of procedure, see reference 5, procedure IlIA. 



NACA TN 2399 13 

Along the right-hand Mach line the approximate method is equiva­
lent to the complete method of characteristics. The only difference is 
that ~* is computed along the stream direction rather than along the 
characteristic direction, but this does not affect the magnitude of the 
velocity increment. The two methods are not, however, equivalent along 
the left-hand Mach line. Along this Mach line, the velocity increment 
due to rotation produces a difference in shock-wave strength between the 
solution with rotation effects included and the solution with these 
effects neglected. However, this difference does not strongly influence 
the velocity at the body. The reason for this is that the left-hand 
characteristic in the hodograph plane is nearly perpendicular to the 
shock polar which minimizes the effect of rotation introduced by equa­
tion (A5). Therefore, at the body the two solutions are nearly equiva­
lent. The departure from perpendicularity is a measure of the magnitude 
of the errcr of the approximate method and is indicated7 in figure 10(a) • 
If the shock polar had the same slape as an epfcycloid,9 the left 
characteristic line would in all cases be perpendicular to the shock 
polar. For this case, then, there would be no error in the approximate 
method. The shock polar is identical with an epicycloid near the zero 
stream deflection and deviates a little as the stream angle increases. 
Therefore, it can be concluded that the approximate method is applicable 
to most bodies of revolution and is not restricted to ogives. 

In the preceding analysis a large Mach net was considered. To 
investigate the errors introduced by using a large net, a solution with 
a large net, such as is shown in figure 10(b), was compared with a small 
net solution. The two solutions agreed identically at the shock wave 
and at the body. The large net solution was obtained using mean value 
procedure as were all other solutions, but required more reiterations 
before converging to the single point in the hodograph plane. 

An estimate of the over-all error introduced by the various 
appro~imations was obtained by comparing an approximate solution with a 
conventional characteristic solution with rotation effects included in 
a case where these effects are large. Two such solutions are compared 
in figure 2 for a fineness ratio 3.0 ogive at a free-stream Mach number 
of 6.0 -- similarity parameter K of 2.0. As was pointed out in the 
body of the report, the two solutions agreed within the accuracy of a 
characteristic solution. 

7See footnote, page 12. 
BAn epicycloid is the locus of the velocity vector for two-dimensional 

isentropic expansion. 
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Head shock wave is 
straight to this point. 

Rotation first begins to 

influence velocity on 
body at this pOint. --...../ 

Shock wave begins 
to curve immediately 
alt ot nose . 

(a) Cone. 

Rototion inlluences the vf1locity distribution 

on body immediately aft of nose tip. 

(b) Ogive. 

Figllre / .-Schematic diagram showing where rotation begins fo 
influence the velocity distribllfion on cone cylinders and 
ogille cylinders. 
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