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SUMMARY OF METHODS FOR CALCULATING DYNAMIC LATERAL
STABILITY AND RESPONSE AND FOR ESTIMATING
LATERAL, STABILITY DERIVATIVES

By John P. Campbell and Marion O. McKinney
SUMMARY

A summary of methods for making dynamic lateral stability and
response calculations and for estimating the aerodynamic stability
derivatives required for use in these calculations is presented. The
processes of performing calculations of the time histories of lateral
motions, of the period and damping of these motions, and of the lateral
stability boundaries are presented as a series of simple straightforward
steps. Existing methods for estimating the stability derivatives are
summarized and, in some cases, simple new empirical formulas are pre-
sented. Reference is also made to reports presenting experimental data
that should be useful in meking estimates of the derivatives. Detailed
estimation methods are presented for low-subsonic-speed conditions but
only a brief discussion and a list of references are given for transonic-
and supersonic-speed conditions.

INTRODUCTION

Dynamic lateral stability has not received widespread attention in
the past because 1t has not generally been a serious problem in the
design of airplanes. Consideration of dynamic lateral stability has
recently become more important, however, because current design trends
toward the use of low aspect ratio, sweepback, and higher wing loading
have, in many cases, led to unsatisfactory dynamic lateral .stability.
Airplane designers are therefore finding it necessary to make such calcu-
lations in connection with the design and modification of airplanes. In
many cases these calculations are difficult to perform for designers who
have had no previous experience in theoretical stability work because
most of the published theoretical analyses are not presented in a form
that is especially suited to the computation of dynamic stability. The
estimation of the stability derivatives required in dynamic stability
calculations has also been found to be difficult in many cases. Although
theoretical and experimental data on these derivatives have appeared in
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numerous publications, no single publication has presented methods for
estimating the derivatives for all types of airplanes.

One approach to a presentation of methods of calculating stability
and estimating stability derivatives in a form suitable for use by
designers was made by Zimmerman in reference 1. Although this report
has proved to be of valuable assistance to designers in making dynamic
stability calculations, recent trends in airplane design have caused its
usefulness to be seriously limited. For example, the equations of refer-
ence 1 do not include the product-of-inertia terms which have been shown
by recent studies to be very important in some cases. (See references 2
and 3.) Moreover, the calculation of the time histories of lateral
motions, one type of calculation that has been the subject of increasing
interest in the last few years (references 4 to 7), is not covered in
reference 1. The methods of estimating stability derivatives presented
in reference 1 are also limited because they apply only to airplanes
having unswept wings with an aspect ratio of 6 operating at speeds at
which compressibility effects are negligible. The purpose of the present
paper 1s to extend the methods of reference 1 to include the methods of
computation which are of current interest to designers and to include
methods of estimating derivatives for configurations and flight conditions
which ‘are now being considered.

This paper summarizes and reduces to simple straightforward steps
methods for computing the time histories of lateral motions, the period
and damping of these motions, and the lateral stability boundaries.
Existing methods of estimating stability derivatives for a variety of
airplane configurations are summarized and, in some cases, simple new
empirical formulas are presented. Reference is also made to reports
presenting experimental data that should be useful in making estimates
of these derivatives.

SYMBOLS

All forces and moments are referred to the stability system of axes
which is defined in figure 1. The following definitions apply to the
symbols except where they are otherwise defined:

m mass of airplane, slugs

S . wing area, square feet

wing mean chord, feet (b/A)

o}

b wing span, feet

ya span'bf that part of wing that has tip dihedral, feet
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tail length (distance from center of pressure of vertical
tail to center of gravity, measured parallel to longi-
tudinal stability axis; values of 1 must be calculated
for each angle of attack), feet

average fuselage height at wing root; feet

average fuselage width at wing root, feet

vertical distance of quarter chord of wing root chord from
fuselage center line, positive downward, feet

nondimensional time parameter based on span (Vt/b)

longitudinal distance rearward from airplane center of
gravity to wing aerodynamic center, feet

longitudinal distance from leading edge of vertical tail
chord to horizontal tail aerodynamic center, feet
(see fig. 6)

vertical distance from horizontal tail to base of vertical
tail, feet (see fig. 6)

height of center of pressure of vertical tail above longi-
tudinal stability axis; values of 2z must be calculated
for each angle of attack, feet

aspect ratio

sweepback of wing quarter-chord line, degrees

taper ratio (Tip chord/Root chord); also, differential
operator in Laplace transform

dihedral angle, dégrees (see sketch of fig. 9)
dihedral angle of wing tip, degrees

time, seconds

airspeed, feet per second

radius of gyration about principal longitudinal axis of
inertia, feet

radius of gyration about principal normal axis of inertia,
feet
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ky radius of gyration about X axis, feet

kX cos™n + kZ s51n-m
(\/

kg radius of gyration about Z axis, feet
(szoecosen + kXOQSinen)
' ky /b
Ky, xo/
K k, /b
Zg Zq/
| Ky ky /b
|
Xz, kz, /b
i kyg, product-of-inertia factor «kz 2 ky 2) sin 7n cos n)
| o o}
| kyy,
Kxz = 2
Kxz
Kl = —'5
Kx .
K .S v/
2 2
Xz
1 angle of attack of principal longitudinal axis of inertis,

degrees (see fig. 2)

y angle of climb, degrees (see fig. 2)
o angle of attack of longitudinal body axis, degrees
(see fig. 2)
€ angle between principal longitudinal axis of inertia and

longitudinal body axis, degrees (see fig. 2)
o) air density, slugs per cubic foot

| @ angle of bank, radians
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A,B,C,D,E

P1,Pp, ... Py

M shpshgshy
D
P
T1/2
.

o

angle of yaw, radians

angle of sideslip, radians

rolling velocity, radians per second (d¢/dt)
yawing velocity, radians per second (dv¥/dt)
initial angle of bank, radians |
initial angle of yaw, radians

initial angle of sideslip, radians
nondimensional initial rolling velocity (d@/do)
nondimensional initial yawing velocity (av/do)
Routh's discriminant or real part of complex root R + Ii
imaginary part of complex root R_+ Ii

coefficients of the characteristic biquadratic equation

factors of the B, C, and D coefficients

roots of characteristic biquadratic equation

differential operator (d/dc)
period of the lateral oscillation, seconds

time to damp to one-half amplitude, seconds

time conversion factor (m/pSV)
nondimensional time factor (t/r)
relative density factor (m/pSb)
impressed rolling moment, foot-pounds
impressed yawing moment, foot-pounds

impressed lateral force, pounds
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impressed roliing-moment coefficient

impressed yawing-moment coefficient

impressed lateral-force coefficient

1ift coefficient (Lift/qS)

drag coefficient (Drag/qS)

rolling-moment coefficient (Roiling moment/qSb)
yawing-moment coefficient (Yawing moment/qSb)
lateral-force coefficient (Lateral force/qS)

dynamic pressure, pounds per square foot <%pV2>
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_ Ly
CZI‘ = éﬁl
2V
oCn
Cnr = -ar__ﬁ
2V
oCy
SR
2V
dCzB
CZBP ar
“CZB
lg= —>5
B ogy?
“CnB
n =
CYB
yg T T2
C1
1 = —E.
Py
Cop
c
Ip T Iy
Czr
1 =
r 2
by
Cnr
ny = 5
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CYr
Yp = |
uC1,
o = 5
2Ky
ucnc
n =
c 2K22
Cy,
Ve = 5
QACn;)l increment in CnP producedéby 1ift and induced-drag
P forces
GK&HJQ increment in Cnp produced by drag not associated with
1ift :
H horizontal tail
aq section 1ift curve slope
Subscripts:
wing wing
fus fuselage
tail - used to designate vertical tail
design used to designate design under consideration
data used to designate design for which force-test data are
available :
exp experimental
V-tail V-tail
e effective

H horizontal tail
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CALCULATION OF LATERAL STABILITY

AND RESPONSE

Various types of calculations may be performed to indicate in some
way the stability of an airplane or the response to gust disturbances
and control manipulations. The calculations most commonly made are cal-
culations of time histories of disturbed motions, period and damping of
the free motions, and spiral and oscillatory stability boundaries (lines
of neutral damping of the spiral mode and of the lateral oscillations).
-Step-by-step procedures for performing these types of calculations are
explained in the text and derivations and additional pertinent material
are presented in appendixes A to D.

The period and damping calculations are the easiest of the three
types to perform. For this reason, and because the dynamic lateral
stability of airplanes is at present specified in the flying-qualities
requirements in terms of the period and damping of the lateral oscilla-
tion, period and damping calculations are probably the most commonly
performed.

Recent dynamic stabllity work has indicated, however, that the
period and damping characteristics of the free motions of an airplane
are not always a sufficient indication of whether the dynamic behavior
of an airplane following various types of disturbances will be con-
sidered satisfactory. For this reason the calculation of time histories
of the motions of airplanes is becoming more common despite the fact
that these calculations are fairly laborious. The increasing use of
automatic computing machines has also made the calculation of motions
more popular.

For many years, calculations of stability boundaries were the type
of calculation most commonly performed. In recent years, however, sta-
bility boundaries have not been considered to give an adequate indica-
tion of stability. Since boundaries are useful in some cases, however,
(for example, for quick approximation of the effects of changes in
dihedral and tail area) the methods of calculating the spiral and oscil-
latory stabllity boundaries are described herein. Lines of constant
period and damping of the lateral oscillation are related to stability
boundaries (lines of neutral stability). In some cases these lines of
constant period and damping may prove more useful than boundaries. Since
no extensive use has been made of lines of constant period and damping,
however, the methods of calculating these lines (presented in refer-
ences 8 and 9) are not given in the present paper.

The equations and methods of calculation presented in the present
paper deal specifically with the inherent motions of airplanes for the
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case of three degrees of freedom (roll, yaw, and sideslip) and linear
stability derivatives. In order to perform similar calculations for
cases involving additional degrees of freedom, nonlinear derivatives,
or autopilots with time lag, special equations are required. The
methods and equations for treating these cases are presented in refer-
ences 10 to 18. Additional degrees of freedom for the case of free
controls are treated in references 16 to 18 and for the case of fuel
sloshing are treated in reference 10. The use of nonlinear derivatives
in stability calculations is covered in reference 11. Methods of
treating the effect of autopilots, including the effect of time lag in
the autopilot are presented in references 12 to 15 and 19.

For some cases the effects of aerodynamic time lag are important.
There are two different sources of such lag: (1) the time required for
an aerodynamic impulse to travel from one component of the girplane to
another (for example, the time required for a change in sidewash at the
wing to reach the tail - a phenomenon commonly referred to as lag of
sidewash); and (2) the time required for the growth and decay of the
aerodynamic loads on the airplane components. For both of these cases
the time-lag effects usually become increasingly important as the period
of the lateral oscillation decreases. The effects cf the first type of
time lag can be accounted for in some cases by modification of the sta-
bility derivatives. For example, the effect of the lag of sidewash on
the derivative Cp, 1s discussed subsequently under the section on

"Estimation of Lateral Stability Derivatives". In many cases, how-
ever, both types of time lag will require special stability equations.
No general treatment of these cases has been published but an indi-
cation of the method of treatment may be obtained from the treatments
of autopilot lag in references 13 and 15.

CALCULATION OF PERIOD AND DAMPING

As pointed out in references 1 and 2, the period and damping of the
various modes of the lateral motion may be calculated from the roots of
the characteristic equation

mEim3 a2 im+E=0

by the equations

.
and
lOge 2 . 0.693
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where R represents a real root A or the real part of a complex root
AM=Rz* Ii and I represents the imaginary part of a complex root.
Negative values of Tl/2 represent the time required to double amplitude

for unstable modes of the motion.

The values of the coefficienmts A, B, C, D, and E may be
obtained by the method given in steps 1, 2, and 3 of the section on
"Galculation of Motions". If the period and time to damp are to be cal-
culated for a number of related cases, however, the values of the coef-
ficients A, B, C, D, and E may be more conveniently calculated by
a tabular procedure such as that shown as table I for making boundary
calculations.

Methods of determining the roots of the biquadratic characteristic
equation are presented in appendix C. ’

CALCULATION OF MOTIONS

Calculation of the lateral motions of an airplane involves the
integration of three simultaneous differential equations (see
appendix A) to obtain a general solution in terms of the mass and
aerodynamic parameters of the airplane. The general equatlons, once
obtained, can then be used to obtain numerically the motions of any
airplane in terms of the variation with time of the angles of bank, yaw,
and sideslip or some function of these angles such as rolling or yawing
velocity. Various methods, such as those given in references 20 to 22,
are of course available for integrating the differentiasl equationms.
Since the problems met in airplane dynamics are fairly complex, however,
many of these methods are not suitable because of the difficulties of
computation that arise. The method given in reference 4 (based on the
Heaviside operational calculus) is satisfactory for calculating the
forced motions following application of externmal forces or moments but,
without modification, this method cannot be used to calculate the motions
resulting from initial displacements in bank, yaw, or sideslip or from
initial values of rolling or yawing angular velocity. A solution based
on the Laplace transformation is more satisfactory than that based on the
Heaviside operational calculus because it permits direct calculation of
the free motions following any initial condition, in addition to calcu-
lation of the forced motions following application of external forces and
.moments. The application of the Laplace transformation to the calculation
of lateral motions is outlined in appendix B. The materisl presented in
this appendix is similar to the work presented in references 5 and 6
except that the mass and aerodynamic stability derivatives have been com-
bined as shown in appendix A to reduce the number of arithmetical and
algebraic processes required in numerical solutioms.
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The process of calculating the motions is presented as a series of
simple though lengthy arithmetical and algebraic steps so that an under-
standing of the calculus involved in solving the differential equations
is not required. The method as shown is suitable for calculating the
motions as variations of ¢, ¥, B, p, and r with time for the case
of the free motions following initial angular displacements (¢o, Yo,
and B,) and angular velocities (D@), and (DV¥), and for the case of
the forced motions resulting from constant impressed forces and moments
(Lo, Ng, and Y.). These are the cases for which motions are usually
calculated. It is also possible to calculate the motions resulting from
impressed forces and moments which are arbitrary functions of time by
the methods explained in references 6 and 7.

Motions Resulting from Initial Angular Displacements and Angular

Velocities and from Constant Impressed Forces and Moments

The six steps involved in obtaining a specific solution for the
lateral motions of an airplane are:

Step 1: Determine values of the following parameters:
(a) Mass characteristics:

m, kXo: kZO: n, and p

(b) Geometric characteristics:
S and b

(c) Flight conditions:
V, Cp, and 7

(d) Aerodynamic stability derivatives:

C C C C C C C C cand Cy
ZB: nB) YB) 1p) np: Yp) Zr’ nr: . Yr

The methods of determining the values of the aerodynamic stability
derivatives are given in subsequent sections of this paper.

In cases where impressed forces and moments are used as disturbances,

determine the values of the factors

CZC’ Cnc: CYC

that are approprisate to the particular problem.
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Step 2: From the known factors, evaluate the following parameters
which are the stability derivatives in the form in which they are used
in the calculation of motions:

Kxz, Kxz, m m
Ky=—% Ky == T = S8V b = <5b
Ky K, p P
B ) 1
1. = £=C n, = +—=2¢C ya = = C
B~ oxy? lB B~ ok, Mg B~ 2"
1 1 1
lp = C1 = ——= Cn yp = Cy
P b2 P p k2 P P = Ly “Ip
1 1 1
1. = ——C =——2C =—C
T qug e n, hKZQ n.. Ir ha Y.

Also, when impressed forces and moments are used, evaluate

p N 1
ln. = ——=C n, =——GC Yo =5 C
c QKXQ le c 2K22 N¢ ? 2 "Yc
The values of KXQ, KZE, and Ky can be determined from the following
expressions '
Kx2 = Kxogcosen + KZOESin2n
2 2.nel 2ainl
= K
Ky KZO cos“n + X, sin®n
2 2
Kxz = (KZO - KXO )sin 1 cos 1
where kx
0
%0 =%
kz,
= =2
KZo b

Step 3: Solve for the values of the appropriate ones of the
following coefficients from equations (1) to (4):
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In all cases solve for the values of A, B, C, D, and E:

A=1-KKp : ™

B

P - AYB

C = -PlyB + Po + P5yp + Pgy, - Pg

r (1)
CL CL
D = P5 5t Pg Y tan y + P7

=
il

. C1, CL '
P3?+P)+-§-t8.n7 J

where
P, = -Zp -n. + Klnp + Kol
Py = lpn. - lpny,
P3 = IBnr - ZrnB
Ph = anﬁ - ZBnp

Ps = Kjng - 1g

g
(o)
Il

Kalp - 1
P7 = _PEyB + P3yp + Pll»yr - Pu

The quantities P to P7 are factors of the coefficients B, C, D,

and E which are combinations of terms that occur frequently in calcu-
lations of motions resulting from initial angular displacements and
velocities and which are consequently grouped together for convenience.
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Calculate the values of a,, &y, . . . &5 when solving for the
angle of bank ¢ or the rolling velocity p:

j

8 = $oh
a1 = P8 + (DF) A
ap = PoC =~BoP5 + (D¢)o(-}\yB + Kol - nr) -

(D\I')o(Kln'r - lr) + 1o - ncKy

CL CL
a3 = ¢°(P6 > tan 7 + P7) - 11!0P5 > tan y - B,P3 + (D¢)0(P6yr -
(2)

Pg - KeryB + n'ry[g) + (W)o(-Pﬁyr + P5 + Kl'n'ryB - ZI;yB) - >

Y.C(nT + yB) + ng (Klyﬁ + lr) - yCP5

C
2y, = (o) - ¥oP3 + (D)oP6 - (V) Py 3 ten 7 +
Zc(nB - Ngyr + nryg) + ng (ZByr - 7.B - ZryB) - ycP3

C

% = ('chﬁ * ncZB)?L tan y
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Calculate the values of by, by, . - o b5 when solving for

a.ngle of yaw V¥ or the yawing velocity r:

by = Voh . - N

¥gB + (D¥).A

o
=
|

o
1

5 =YL - B - (D¢)0(K21p - np) + (D\y)o<_AyB + Ky - 7'p) o

ZCK2 + nc

cr 1o ‘ ,
b3 = $aP6 7+ Yo(B 3+ Br) - 00Ry + () Rery + Katpy, -

D¢ (1P * yB) - YcFe
. | Cy
by = l:—¢oph * ¥oP3 - (DB)oPg + (D¥)oP5 7t (nByp -

n‘PyB) +n, (ZpyB - lﬁyg - ¥YoPy

CL
b5 = (chB - nClB)—Q—

(3)
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17

Calculate the values of «¢gp, 'Cl, Lo, c)," when solving for the
angle of sideslip B: S . S e

°0 =-Boh | | B

.0y cL
cy = BA ? + VoA 5 tany + B Pl + (D¢)0Ayp - (DV) Ay, - 1) + yeA
Cr cL, L
<o = ¢oPl,2_ + V,Pp 5 tan v + B P, + (pg) [ 5 - Kzlpyr + K21P +

C
npy - n + (Kglr - nr)yg‘l + (D\Lf)o[A §L— tan y + Klnpyr -

Kinp - 1y, + 1 - (KlnT - zr)yg] + 1 (-szr + K, + yp) +

nc(yr -1 - KlyI) + ycPl_

c3 = ¢OP2 = + ¥ Po 5 tan 7y + (D¢)o(-K22p 5 tan y + n, 5 tan y +

CL, CL, CL° CL
Kply 5 - Op 5 | + (D¥)o K1np ? tan y - 1y 5 tan 7y -

L
Klnre* r2)+Z<Pyr np - npYp + ?'K2?tan9

v L CL
n. -Zpyr+lp+lryp-Kl—2—+—2—tan7 +yc1_32

}(1&)

(np—-tany nr2>+n<_2£_-_Lta.n/> )

Step 4: Solve for the roots iy, Ao, A3, and A of the
biquadratic equation

MY B3 2 +sDA+E=0

(5)
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where the values of the coefficients A, B, . . ., etc. were given by
the solution of equations (1). Methods of determining the roots of the
biquadratic equation are given in appendix C.

Step 5: Use the coefficients obtained from equafions (1) to (&)
and the roots of equation (5) to solve for the following coefficients:

Calculate the values of the factors A;, A, . . ., Ag when
solving for the angle of bank @ or the rolling velocity p:

A

Al _ 8.0).15 + alklh + a2X13 + &3X12 + ahkl + 8.5\
6MM,” + 5By ' + BCA S + 3002 + 2EA,
A = 80X25 + 8.1).21" + 82X23 + 8.3).22 + 8.)_'}2 + 8.5
S bmy) + 5B, + honyd 2.
o Ao~ + 3DAT 4+ ame
5 L 3, 2
A3 ) aox3 + alx3 + a2X3 + a3x3 + ahx3 + a5
6M5+5Bxl‘+l+cx3+3nx2+2Ex
3 | 3 T A3 3 3 | > (6)
Au ) aoxh5 + alxhh + aexu3-+ a3x42 + ahxh + a5
6mn,” + 5B + heny3 + 3002 + oAy
]
A5 T E
1
Ag = E(ah - 85 E)
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Calculate the values of the factors By, By, . . ., Bg when
solving for the angle of yaw V or the yawing velocity. r:

L 2 )
bory” + byhpt + bodg3 + b3 + by + b

6aA7 + 5BA % + boag3 + 3002 + 2EAy

boro? + biho* + bohod + b3ro? 4 byhy + b

6107 + 5BAy" + UChp3 + 3DAS + 2B,

bohg” + byhgt + bprad + ikg® + byhg + bs

B3 =
&g’ + 5Bx3“ + hcx33 + 3DX32 + PEA; > (1)
. bory” + brayt + bohy3 + ban® + by + by
h:
6AA£5 + 5BM;)‘L + hcxu3 + 3Dku2 + 2EA)
b
5
Bs = %

1 D
By = ={b), - b= =
6 E(h 5E)
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Calculate the values of the factors. Cy,  Co, . ..

solving for the angle of sideslip..B: i

C_ cokl5 + cl)\.lh' + C2Xl3 + C3X12 + Chxl
1~ ’ .
640, + 5BA* + Mony3 4 3052 + 2B,
. N SN SN
. _‘colzs + clke che + C3X2v + chxg
e R n 3 2
o - ~Cok35 + Cl)»3)+ + C2X33 +C3X32 + C)_‘_X3
37 6ArgD + 5BAg* + MOA33 + 3DA;2 + 2EA,
ey =;cokh5 + clxhh + cth3 4 c3ku2 + cth
L6+ sBry + bon S+ 3002+ 2By,
c
L
05 = ":ET‘

NACA TN 2409

~

“ey C5 when

h

> (®)

j.

If equation (5) has conjugate complex roots,- the valués of the
coefficients (equations (6) to (8)) corresponding to these roots will
be conjugate complex. In order to facilitate treatment of this case 1t
‘This special notation

is convenient to establish some special notatlon
is explained in appendix D.
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' Step 6: ' The equations’ of motion are written in different form
depending upon the roots of equation (5).:- If the characteristic equa-
tion has four real roots Xl, A2, A3, and AL, the general form of

the equations of motion is used, as follows:

A o oA or : h
¢=Aleol+A2e2+A3e 3._+Abfe )++A5O'+A6'
oh . oA oA G2
W=B1e1+132e 2+B3e 3+Bue l*+B5c+B6
* OA oA oA oA
B = Cqe l+02e 2+C3e 3+Cb,e IL+C5 > (9)

1 oM L O o3 ' oMy
P = A M e "+ Aphoe + A3X3e + Aphpe + A5

oA o\ oA ar) -
r = %Qslxle 1 + ngge' 2 + B3x3e 34 thue 4 + B;)
W,

If, as is generally the-case, equation (5) has two complex roots and two
real roots (R + Ii, R - Ii, x3, and Xu), the equations of motion may be
expressed as A

oR ' oA ohy, )

§ = Kpe  cos(oI + wy) + Age 3+ Aye + As0 + Ag
:ﬂx = KBeCIR cos (oI + dg) + B3ec)“3 + Bhec)‘h‘+. Bso + Bg
B = eoR cos (oI +u>C) +C3e 3+Cue 1*+C5
p = E{AVR £ I° cosGI + Wy + tan™t %>+ > (10)

Asrge™3 4 A e 4 A5]
r = %E{B‘&e + © e} cos @I + wg + tan™t %) +

UX3 UXh
B3k3e + Byiye + B5 )
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where

2
}

alI
- ofr,2 + 1,2 @y = tan™t A
. A -
2 2 -1 18 |
Kg = 2fRg + Ip wp = tan Ry (10a)

w, = tan —

C R p

and Ry and I, are defined in appendix D.

&
W
el

Q
+

OH

If there are four complex roots (R+Ii, R-1Ii, R' + I'i, and
R' - I'i), the equations are

oR ,.OR! . .
@ K,e cos(oI + wA) +K,'e cos (oI' + wp') + Aj} + Aa

—_ OR 1 GR' t 1
¥ = Kge~ cos(oI + wg) + Kg'e cos (oI' + wp') + B5o + Bg

B = KCeUR cos (oI + ayp) +'KC'eUR' cos('oI" +ap') + Cs

_ 1 2 2 oR -ll
p—TE{A + I e cos(cI+a>A+ta.n R)+_A'5+ (11)

' -
Kp' 12 + I'? e(IR cosGI' +wy' + tan 1 I]’E'_:)]
1 " 2 2 oR -1 I)
r-T[KBR + I e cosQfI+wB+tan ﬁ,,+B5+,
. ' 1T
KB'VQ'Q + 112 R COs(JI' + wg' + tan 1 f%ﬂ -
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where
K,' = 2fR,"% + 1,'° wy' = tan" ;2_:\
Kp' = 2VRg'® + Ip'° wg' = tan™ % > (11a)
Ko =2V}§C'2+Ic'_2.v @ =tan-l~1§_z:—
y,

The coefficients K,, Kg, Ko, wp, wp, and ®y are defined in equa-
tions (10a) and Ry, I, Rp', and I,' are defined in appendix D.

Solve the appropriate ones of these equations of motion (equa-
tions (9), (10), or (11)) by substituting values of the nondimensional
time factor o in the equations and solving for ¢, ¥, B, p, or r.

Motions‘Resulting from Arbitrary Disturbances

The motions resulting from arbitrary forcing functions can be
obtained from the motions resulting from constant impressed forces and
moments. by the methods explained in references 6 and 7.

A very useful method of obtaining the motion resulting from various
abrupt gust and control disturbances is given by Jones in reference 7.
In this paper it is pointed out that, although the component motions of
an airplane must be calculated simultaneously (that is, by simultaneous
differential equations), the effects of component disturbances may by
the principle of superposition be calculated separately and later added
in any desired proportion. Thus, if a given rolling moment causes a
20° bank in 1 second and if a given yawing moment causes a 5° bank in
1 second, the combined effect of both acting simultaneously will be a
25° bank in 1 second. Jones also points out a somewhat similar fact
with regard to the effects of disturbances that are not applied simul-
taneously. This fact is that, if a given disturbance which arises at
the time t = O 1is later augmented, the effect of the increment of
disturbance will run its course independently of the effect of the
original disturbance. For example, in a problem involving the correc-
tion for a gust disturbance by a manipulation of the control, the motion
produced by the gust disturbance can be calculated independently and the
motlion caused by the assumed corrective control manipulation can be
added to it at any desired point. This example is illustrated graphi-
cally in figure 3.
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The principle of superposition may be applied analytically as well
as graphically. The analytical application which makes use of Carson's
integral or Duhamel's integral is described in references T and 23.
This method is useful for calculating the motions resulting from
impressed forces and moments which are arbitrary functions of time. By
application of these methods, the solutions for constant impressed
forces and moments can be used to obtaln new solutions for any arbitrary
variation of impressed forces and moments with time which can be
expressed by a mathematical formula. Some simple variations of
impressed forces and moments with time and their Laplace transforms are
given in reference 6. The transforms for any other function for which
transforms have been worked out may be found in tables of Laplace
transforms.

CALCULATION OF STABILITY BOUNDARIES

Oscillatory Stability Boundaries

As pointed out in the preceding section of thi§,report, the degree
of stability of the uncontrolled motions of an airplane is indicated by
roots of the characteristic equation

A B3+ 2+ DA+ E=0

For stability the real roots or the real part of the complex roots of
the characteristic equation must be negative. A useful discriminant
for determining some of the characteristics of the roots in stability
work is Routh's discriminant R (R = BCD - AD® - B2E). The use of this
discriminant in dynamic stability analyses has been pointed ocut in many
reports, for example, references 1, 2, 3, 5, 21, and 24k. Routh has
shown (reference 20) that,if R and the coefficient E are finite,
the necessary and sufficient conditions that the real roots and the
real parts of the complex roots should be negative are that every coef-
ficient of the biquadratic and also R should have the same sign.
Routh also showed that when R =0 and B and D have the same sign
there are a pair of complex roots with the real parts zero. Since the
value of the real part of a complex root indicates the stability of an
oscillatory mode of the motion of an airplane, the lateral oscillation
is' neutrally stable when R = 0 and the coefficients B and D have
the same sign. Oscillatory stability boundaries can be determined,
therefore, by solving the equation R = 0 and checking to determine
whether the signs of B and D are the same.

Since two of the most important stability derivatives affecting
lateral stability are the directional stability derivative CnB and
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the effective dihedral derivative ‘CzB, boundaries for neutral oscil-

latory stability are usually calculated as a function of these two
derivatives as illustrated in figure 4. These calculations are gener-
ally carried out by the method shown in table I. This table contains a
numerical example and step-by-step instructions for using the table,
The results of this numerical example are plotted in figure 4. The
procedure illustrated in table I is first to assume values of the inde-
pendent variable . CnB to cover the range for which the boundary is
required. The values of all the other mass and aerodynamic stability
derivatives except CzB are then estimated. The value of CnB is
generally assumed to have been varied by varying the size of the verti-
cal tail and consequently the tail contribution to each of the other
stability derivatives wvaries as CnB .is varied. The values of the
coefficients A, B, C, D, and E and then R are calculated as
functions of Ig?

The values of 1lg corresponding to the assumed values of CnB for the

condition of neutral oscillatory stability are next obtained by solving
the expression R = 0 which is a quadratic in ZB that is of the form

2
ullB + VlZB + Wl =0

Finally, the values of CZB corfesponding to the assumed values of CnB

are obtained from the values of ZB.

The values of 1 which satisfy the expression R = 0 must be
checked to determine whether they satisfy the other condition for
neutral oscillatory stability - that the sign of the coefficients B
and D must be the same. This check can be performed readily by sub-
stituting the values of 1p which satisfy R = O into the expression
for D which is a linear equation of the form

Thus, the sign of D 1is determined. The sign of B is a constant for
any given value of Cnﬁ and is almost invariably positive since the

three predominant terms of B contain the derivatives Clp’ Cnr’

and Cyp which in all practical cases contribute a positive increment
to the value of B.



o6 ' NACA TN 2k09

Since tvo values of CZB satisfy the condition R = 0 for each
value of CnB’ the R = 0 curve has two branches. As pointed out in

reference 24, one of the branches of the R = O curve generally repre-
sents an oscillatory stability boundary and the other branch represents
a line of numerically equal real roots with opposite signs. (See

fig. 4.) If neither of the values of Cig which satisfy the expres-

sion R = 0 for a particular value of CnB is found to represent a

point of neutral oscillatory stability, the lateral motion has no oscil-
latory mode for that value of CnB. If both of the values of ClB

which satisfy the expression R = O are found to represent points of
neutral oscillatory stability, the lateral motion has two oscillatory
modes. In this case, since the boundary D = O represents the line of
infinite period, the branch of the R = O boundary which lies close to
the D = 0 boundary is usually the boundary for neutral stability of
the longer period of the two oscillatory modes. A detailed discussion
of the significance of the stability boundaries and the regions formed
by these boundaries is given in reference 2k.

In calculating stability boundaries for a specific airplane a com-
plete solution such as that explained in the preceding paragraphs should
be made. For general studies of stability, however, approximate oscil-
latory stability boundaries may be calculated much more simply by the
methods shown in reference' 2k,

As pointed out previously, methods of calculating lines of constant
period and damping of the lateral oscillation are presented in refer-
ences 8 and 9.

Spiral Stability Boundaries

Spiral stability boundaries,'like oscillatory stability boundaries,
are usually determined as a function of the directional stability deriva-
tive CnB and the effective dihedral derivative CzB as illustrated in

figure 4. As pointed out in reference 1, neutral spiral stability
occurs when the E coefficient of the characteristic equation is zero
(E = 0). A spiral stability boundary can be easily obtained from this
relation. If expressions for E (in terms of ZB) corresponding to

.several values of CnB have already been obtained in the process of

calculating an oscillatory stability boundary, the equations formed by
setting these expressions for E equal to zero can be solved for the
values of 1p (and hence CZB corresponding to the assumed values

of CnB" If the values of E have not already been obtained, in the

process of calculating an oscillatory stability boundary, a spiral
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stability boundary for the level-flight condition (y = 0) can be cal-
culated simply from the equation

. cr .
Cip = Cop Chng : (12)

Values of Cné are assumed within the rgngé for whiqh the boundary is
required. The values of "Cj, apd Cnr corresponding to each value of
CnB are then determined. The tail contributions to these derivatives’
generally vary with CnB since CnB is usually assumed to be varied

by changing the size of the vertical tail.

ESTIMATION OF LATERAL STABILITY

DERIVATIVES
GENERAL REMARKS

Methods of estimating the lateral stabllity derivatives have been
presented in numerous publications but no single report has contained
information for estimating the contribution of all principal airplane
components to all the derivatives for airplanes having any sweep angle
or aspect ratio. In the present paper, an approach to such a presenta-
tion is made by the coordination of and reference to existing estima-
tion methods, by reference to publicatlons containing data which should
be useful in making estimates, and by the suggestion in some cases of
simple new empirical formulas. Detailed estimation methods are pre-
sented for low-subsonic-speed conditions but only a brief discussion and
a list of references are given for transonic- and supersonic-speed con-
ditions. In general, the estimation methods presented should be expected
to yield only fairly accurate values suitable for making first approxi-
mations of dynamic stability. This limitation applies especially to
the cases in which the derivatives are based completely on theory.

For convenience, the references that should be useful in estimating
the stability derivatives are presented in table II. The references
are grouped according to the speed range covered (subsonic or super-
sonic) and according to the derivatives presented . in each report. The
references for the subsonic case (references 1 and 25 to 94) are further
divided into two groups - one including reports which contaln estimation
methods and the other including reports which contain experimental data
that should be useful in making estimates of derivatives. The
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references for the supersonic case (references 95 to 115) are sub-
divided according to wing plan form.

The following sections covering the estimation of the nine sta-
bility derivatives are divided into three groups according to the type
of derivative - sideslip derivatives (CYB’ CnB’ CzB), rolling deriva-

tives (Cnp: Clp: CYP)’ and yawing derivatives (Cnr: Clps CYr) The
derivatives Cyp and CYr have usually been neglected in making

dynamic lateral stability calculations because theory indicated that for
unswept wings Cyp and Cy,. were zero. Recent experimental data,

however, have indicated that both swept and unswept wings produce meas-
urable values of these derivatives (references 25, 59, and 86). Since
the vertical tail contributes to CYP and Cy,, it appears desirable

to estimate these derivatives and to use them in the calculations of
stability unless it is established that for 'the case in question the
effects of CYp and Cy, on stability are negligible. For these two

derivatives, only the effect of the wing and vertical tail need to be
considered.

The methods of estimating the rolling and yawing derivatives pre-
sented herein were obtained from theoretical treatments based on the
assumption of steady rolling and yawing and from experimental data
obtained principally from tests made under conditions of steady rolling
and yawing. The only information that applies directly to the oscil-
latory case is a limited amount of data on Cp,. obtained by oscillation

techniques. When calculations are made in which the oscillatory mode

is the subject of interest, some consideration should be given to cor-
recting the derivatives based on steady rolling or yawing to account

for differences in the derivatives that are likely to exist as a result
of differences between the oscillatory motion and the steady rolling

and yawing motion. For example, the data of reference 82 have indi-
cated that, for flap-extended or power-on conditions, fairly large dif-
ferences might exist between the values of the tail contribution to Cnp
for the steady yawing and yawing oscillation cases. At present little
information is available for correcting the values of Cn for the

steady yaw1ng case to apply to the oscillatory case and, unfortunately,
little or no 1nformat10n is available for correcting the other stability
derivatives.

Since most wind-tunnel force-test data that are likely to be used
in making estimates of the stability derivatives are probably for much
lower Reynolds numbers than those for the full-scale airplane, some
adjustments to the data are usually required to account for the dif-
ferences in Reynolds number. The effects of Reynolds number should be
considered in the cases of all the derivatives, especially those which
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are estimated by methods that involve the use of force-test data.
Methods of correcting for Reynolds number effects for some of the
derivatives are discussed in the following sections which cover the
estimation procedures., In the cases where the Reynolds number effects
are not discussed, it can be assumed that any abrupt variation in the
derivatives near the stall for low-scale data will also be present for
the full-scale airplane but will probably occur at & higher 1lift coef-
ficient because of the higher maximum 1ift coefficient of the airplane.
An indication of the lift-coefficient range over which the theory may
not be expected to give reliable values of stability derivatives for the
full-scale airplane can be obtained from large-scale drag data. The
analysis of reference 86 indicates that the variation of the derivatives
with 1lift coefficient is different from the theoretical variation at
1lift coefficients above that at which the drag due to lift increases
abruptly from the ideal value CL%/nA. '

The effects of Mach number and power are not treated in the sections
on the individual derivatives but are discussed briefly in separate
sections. A detailed treatment of these effects, including design
formulas and charts, was considered beyond the scope of this paper.

THE SIDESLIP DERIVATIVES CYys Cngs Cig

ANo satisfactory purely theoretical methods have yet been developed
for obtaining accurate estimates of the sideslip derivatives CYB’ CnB’

and CZB for a complete airplane, primarily because of large inter-

ference effects between the various airplane components and because of
large, and often unpredictable, variations of the derivatives with angle
of attack. Fortunately, these derivatives can be obtained from conven-
tional wind-tunnel force-test data. GSuch experimental data are essential
to the accurate determination of sideslip derivatives. It is, of course,
highly desirable to have force-test data for the exact airplane design
under consideration, but reasonably accurate estimates can usually be
made by correcting the force-test data for a generally similar design.
The methods of correcting the force-test data on a similar design for
use in the case under consideration are covered in the following sec-
tions. In the formulas presented, the subscript word "design" is used
to designate the design under consideration and the subscript word "data"
is used to designate the similar design for which force-test data are
available.

- Force-test data should be used to determine the effect on the side-
slip derivatives of such airplane components as leading-edge high-lift
devices, stall-control devices, trailing-edge flaps, nacelles, external
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stores, canopies, and dorsal and ventral fins. The effect of leading-
edge high-1ift devices is usually merely to extend to a higher 1lift
coefficient the same variation of the derivative with 1lift coefficient
as for the plain wing. Trailing-edge flaps often have large effects on
the contributions of both the wing and the vertical tail to the sideslip
derivatives (references 39 and 69); and since these effects are not
easily estimated, it appears that in these cases use of force-test data
is essential. The addition of nacelles and external stores generally
has been found to decrease the directional. stability factor CnB

slightly. The results of a limited amount of research to determine the
effect on the sideslip derivatives of the size and shape of canopies

has been reported in references 48 and 73 but these results are inade-
quate for making accurate predictions of the effects of canopies. The
effects on the sideslip derivatives of dorsal and ventral fins are
usually small at the small and moderate angles of yaw that are generally
considered in stability calculations. (See references 47 and T1.)

CYB

In estimates of the lateral force dug to sideslip derivative CYB,

force-test data for the design under conslderation should be used when-
ever possible. If such data are not avallable, data for a similar
design can be used and corrected as follows:

Wing-fuselage.- Since the wing—fuseiage contribution to CYB' is

usually relatively small compared with that of the vertical tail, great
accuracy is not required in estimating this factor. This contribution
may be estimated as follows:

(1) Wing: If the wings of the two designs are generally similar
the difference in CYB . can be considered negligible and no correc-
wing

tion' is necessary. The theory of reference 25 does not appear to be

- suitable for use in estimating CYBwing'

(2) Fuselage: 1If the two fuselages are similar in shape, the
difference in CYBqu can probably be estimated satisfactorily by cor-

recting for the difference in the relative size of the fuselage and
wing for the two airplanes. It appears, however, from table X of refer-
ence 69 unlikely that a reliable prediction of CYBfus can be made

directly from the geometry of the fuselage. Some additional data on
CYBf are presented in reference 77. Experimental data from other
us : .

investigations have shown that differences in fuselage cross-section
can cause very large differences in the variation of CYBfus with

angle of attack. For example, in the case of a flat fuselage with the

major cross-sectional axis horizontal, the sign of CYB - has been’
fus
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found to reverse at moderate and high angles of attack., Force-test
data are essential for making estimates in such cases.

(3) Wing-fuselage interference: For low-wing or high-wing con-
figurations, wing-fuselage interference causes the value of CYB to be

greater than that obtained by adding the contributions of the wing and
fuselage. (See reference 39.) If the vertical location of the wing on
the fuselage is generally similar for the two designs, however, any
correction for a difference in this interference factor can be neglected.

Vertical tail.- Accurate estimates of CYBtail are neceésary

because this factor is used to estimate the tail contribution to several
other derivatives. This factor is especially important at low angles

of attack because in this case the tail contribution is often much
greater than the wing-fuselage contribution to all derivatives except
Clp. For this reason it is highly desirable to have tail-off and tail-
on force-test data for the design under consideration or for a very
similar design. Corrections to the data for a similar design can be
made as follows:

(1) Correction for differences in wing area, tail area, and tail
lift-curve slope can be made by the following formula:

C Stai >

L ., 2tail
(CY > ) (CY ) ( “tail design Sdata
Btail design - Btail jaatq (CL“tailStail)data Sgesign

(13)

The value of CL@tail can be obtained from figures 5 and 6 which are

based on the theory of reference 34 and on the theory and data of refer-
ences 28 and 35. The chart of figure 6 can be used to estimate the
change in the effective aspect ratio of the vertical tail caused by the
end-plate effect of the horizontal tail. It should be emphasized that
for the best accuvracy the charts in figures 5 and 6 should be used in
conjunction with formula (13) for correcting existing force-test data
and not for making a direct estimate of CYBtail' ’

(2) In the case of V-tails, the correction for CYBt ‘1 can be
ai :

made as follows:

(KCLQNSV_taillsingf)

'<KCLQNSV-ta11 sin?

design S data

n - =
“Yp . ) = CYB . )
V-tail/design ( V-tail/gata Sdesi
Fdata esign

(1h)
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where the terms CL“N’ I'y and K are the same as given in reference 30

and are defined as follows:

CLa slope of.the tail 1lift curve in pitch measured in the plane
N normal to the chord plane of each tail panel

r dihedral angle of tail surface measured from XY-plane of the
tail to each tail panel, degrees

K ratio of sum of lifts obtained by equal and opposite changes
in angle of attack of two semispans of tail to lifts obtained
by an equal change in angle of attack for the complete tail

Values of the term K, which are usually about 0.7, can be obtained from
reference 30.

(3) Since large differences in sidewash and dynamic pressure at
the tail can be caused by differences in wing plan form and wing loca-
tion, use of experimental data for the specific design or at least for
a design which has a closely similar wing-fuselage combination and
vertical tail location is extremely desirable. No methods are available
which permit accurate predictions of sidewash at the tail, but the
experimental data of references 39, 49, and 69 cen be used to obtain
some indication of the variation in sidewash with verticael location of
an unswept wing on a fuselage and the experimental data of references 36
and T7 provide additional information on sidewash at the tail. Other
experimental data indicate that the sidewash fields produced by highly-
swept, low-aspect-ratio wings or by fuselages of flat cross section can
sometimes be strong enough at high angles of attack to reverse the
effectiveness of a conventionally-located vertical tail surface. Until
a reliable method is developed for predicting these large sidewash
effects, force-test data appear to be the only means by which satisfac-
tory estimates of CYBtail can be obtained.

c’nB

Although attempts have been made to develop methods for estimating
the yawing moment due to sideslip (static directional stability) deriva-
tive Cng (for example, references 68 and 69) no reliable method has

yet been obtained. The use of force-test data therefore seems imperatiVé.

Force-test data for the design under consideration should be used
if available. If such data are not available; use data for a similar
design and correct as explained in the sections to follow.
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Wing-fuselage.- The corrections for the wing-fuselage contributions

are:

(1) Correction f%5 wing - From figure 7 (taken from reference 25)

the values of (FnB/CL wing for the design under consideration and for

the design for which test data are available can be determined. The
effect of differences in taper ratio can be neglected. (See refer-
ences 60 and 66.) The difference between these values of CnB/CL2

should then be added (with proper regard for sign) to the experimental
data for the complete model.

(2) Correction for fuselage - The formuls

_ _1.3<Fuselage volume)(&) (15)

C
D8rys Sb w

can be used to calculate the CnB of the fuselage (per radian) for the

design under consideration and for the similar design for which force-
test data are available. The differences between these two values can
then be added (with proper regard for sign) to the force-test data for
the complete model. Formula (15) does not include the effect of fine-
ness ratio and should not be used for fineness ratios less than 4. This
formula is an approximate empirical expression which should not be used
to estimate the value of Canus directly but should only be used as

indicated to determine a correction for force-test data. This correc-
tion method should not be used in the cases of high angles of attack
when there are large differences in fuselage configuration. Force-test
data are essential in such cases.

(3) Correction for vertical location of the wing - If the designs
are generally similar, the correction for the vertical location of the
wing on the fuselage can be neglected. (See reference 39.)

(4) Correction for center-of-gravity position - If the center-of-
gravity position for the design under consideration is appreciably dif-
ferent from that for the design for which force-test data are available,
the value of CnB for the wing-fuselage combination can be corrected

by multiplying the value of CYB for the wing-fuselagelCOmbination by

the distance between center-of-gravity positions (expressed in wing
spans).
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Verticai tail.- Corrections to CnBtail for differences in

CYBtail and tail length 1/b can be made by the following formula:
1
C —
) ' : < YBtail b )design ( 6)
C '+ = (Cp ) 1
<nBtail design ( Btail data 13
Btail /g 0

The contribution of wing-tip fins to CnB is treated in refer-
ences 7O and 84.

CzB

In estimates of the rolling moment due to sideslip (effective
dihedral) CZB, force-test data for the design under consideration should
be used. If such data are not avallable, data for a similar design can
be used and corrected by the methods that follow. .

Wing-fuselage.- The corrections for wing-fuselage contributions are:

(1) Correction for wing - From figure 8 (based on reference 25)
the theoretical values of CZB/CL for the design under consideration

and for the design for which data are available can be determined. The
difference between these two theoretical values can then be added (with
proper regard for sign) to the experimental data. Consideration should .
be given to scale effect, airfoill section, and surface roughness on the
value of CZB for highly swept wings. The 1lift coefficient at which
the experimental variation of CZB with 1ift coefficient departs from

theory is greatest at high Reynolds numbers and for smooth wings with
round leading edges. For wings with rough surfaces or sharp leading
edges the effects of Reynolds number on CZB are usually small and low-

scale wind tunnel data can be used. For airplanes having very smooth
sweptback wings with rounded leading edges, however, some correction
should be made for scale effect when estimations are made from low-
scale wind-tunnel data. Since no rational method has been developed
for making such corrections it is suggested that, for 1ift coefficients
higher than that at which the experimental data departs from the theory,
an average of the theoretical and low-scale experimental values be used.
Conservative dynamic stability results will usually be obtained if the
uncorrected theoretical values of CZB are used because these values

are ordinarily greater (more negative) than measured values and because
the larger negative values of CZB usually tend to decrease the dynamic
Jateral stability.



NACA TN 2409 35

(2) Correction for wing dihedral - The effect of dihedral on Cig
is treated in references 29, 39, 51, 58, 66, and 79. Correction for
the difference in dihedral between the two designs can be made by
multiplying the incremental geometric dihedral angle (in degrees) by
the factor CZBF obtained from figure 9. A plot of CIBP against

aspect ratio for taper ratios of 1.0, 0.5 and 0.25 (obtained from refer-
ences 58 and 66) and a formula from reference 50 for correcting for
sweep are presented in the upper portion of figure 9. The lower chart
and formula in figure 9 (developed from reference 66) should be used in
addition to the upper chart and formula of figure 9 to estimate the
values of CZﬁF for the casé of a wing with partial-span dihedral.

Although this chart and formula apply directly only to wings with one
dihedral break they can be used to estimate the CzB for wings with
r

two or more dihedral breaks by the method described in reference 66.
The effect of drooped wing tips and of wing-tip end-plates on CzB .
wing

should be determined by experimental data since no reliable estimation
procedure for these effects is available.

(3) Correction for wing-fuselage interference - Although the con-
tribution of the fuselage alone to CzB is usually negligible, the

interference between the wing and fuselage can greatly alter the value
of CZB of the wing. This interference is such that a high location

of the wing on the fuselage gives more positive effective dihedral
(higher -Cig) and a low wing location gives less positive dihedral
than a midwing position. This effect is treated thecretically in
reference 67 and has been studied experimentally in references 38 to 42.
The following simplified expression for estimating the increment in CZB

caused by wing-fuselage interference has been developed from the rela-
tionships presented in reference 67 and in other sources:

Ay = 12VE 3 i h X (17)

This expression has been found to give reasonably good agreement with
experimental data for a variety of configurations. It is suggested
that values of AClB be calculated from this equation for both the

design under consideration and for the design for which force-test data
are available. The difference between these values can then be added
(with the proper regard for sign) to the force-test data.

Vertical tail.- The value of CZBt i1 determined from force-test

data on a simllar design can be corrected as follows to obtain CZBtall

WV
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for the design under ccnsideration:

Cy 5)
( Btail b/gesign (18)

03] ) = 6& )
( Ptail/gesign Ptail) gata (CY z
Btail D Jaate

The results of reference 35 indicate that CZBt " can also be affected
: ail

by the location of the horizontal tail with respect to the vertical
tail., If the two designs have approximately the same horizontal tail
size and location, however, this effect can be neglected.

The value of CZBtail for a V-tail can be estimated from the

following empirical formula:

¢ h

Cy
By-tail 4 1
T sin T \PV-tail* *Zv_tgil sin design

b
C
( ZBV-tall> data YBV tall
+
b sin ' bV tail ¥ bzy_tail sin I'> data
o

N

25y _ta11)
(lBV-tail design

(19)

where by.tgil 1is the developed (not projected) span of the V-tail,
Zy-tail 1s the vertical distance from the center of gravity to the
chord of the V-tail (positive up, and I' is the dihedral angle of

the V-tail. More information on V-tails can be found in references 30,
61, and 62. :

In the case of a vertical tail located on the wing, there is, in
addition to the incremental CzB produced by the tail lateral force,

an incremental CZB produced by the interference effect of the vertical

tail on the wing. Since this interference effect varies greatly with
spanwise and vertical position of the tail, it should be determined
from force tests. Usually the ircerference is such that a vertical tail
above the wing gives a negative _ncrement of CZB (positive effective

dihedral) and one below the wing gives a positive increment of CZB.

In general, the largest interference effects are obtained with vertical
tails at or near the wing tips.
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THE ROLLING DERIVATIVES Cn, ij, Cy,

Cnp

The wing and veftical tail are the only airplane components that
contribute appreciably to the yawing moment due to rolling derivative
Cnp- The contributions of the fuselage and horizontal tail can usually

be neglected.

Wing.- The contribution of the wing to Cnp can be estimated from

the formula and charts of figure 10 which were taken from reference 86.
Although these charts apply strictly only to wings having a taper ratio
of 1.0, experimental data have indicated that they will also provide
fairly good estimates for taper ratios of 0.50, 0.25 and 0. In the

estimation formula
gacn ) ( ACh )
P/l P/2
Cn = CL + @Do)a, (20)
o)a

P CL (CD )

the value of CDo)a should be determined, if possible, from force-test

data obtained at high Reynolds number on the wing under consideration,
since low Reynolds number data might indicate values of (CDo)a that are

too large. For the case of smooth wings with a large leading edge
radius and low or moderate sweep, it is suggested that (Cp,), for the

airplane be assumed to be zero at all 1ift coefficients up to the stall.

This assuuaption will result in larger negative values of Cnp than

would be estimated from low Reynolds number data on Gh%) and con-

. a
sequently should lead to conservative dynamic stability results since
an increase in Cnp in the negatlve direction has been found to cause

a reduction in dynamic stability. The value of CDO)OL for highly swept

wings is often very large at high 1ift coefficients, especially for
wings with rough . surfaces, sharp leading edges, or triasngular plan form.
For these cases, values of (CDO)OL determined even from low Reynolds

number data might lead to reasonably good estimates of Cnp- In all

these cases, however, high-scale drag data should be used whenever it
.is available. :

Effect of high-1lift devices.- The principal effect of leading-edge
high-1ift devices is to extend to a higher 1lift coefficient the linear
variation of Cnp with lift coefficient. The formula and charts of

. figure 10 are directly applicable to this case. The effect of
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trailing-edge high-1ift devices is not so straightforward, but experi-
mental data have indicated that the formula and charts of figure 10
also give reasonably good estimates in this case.

Vertical tail.- The contribution of an isolated vertical tail
surface to Cnp can be estimated by the following approximate formula

which has also been commonly used to estimate CnPtail of a complete

airplane:

2 £ F (21)

C = C
UPrail b b YBtall
The values of CYBt 11 should be determined from force-test data as
a

previously discussed. Instead of the geometric tail length 1/b, it
will usually be better to use the effective tail length -Cp Cy '
‘ Btail/ “Ptatl

as determined by force-test data. Formula (21) then becomes

Z
C = 2(= Cn - (218')
nptail (b) Btail

In the case of the conventionally located vertical tail surface, how-
ever, the rolling wing produces a sidewash at the tail which greatly
alters the tail contribution to Cnp- This sidewash causes the values

of CnPt i1 to be much more negative than is indicated by formula (21).
a

This effect is discussed more fully in reference 36 in which is also
presented a method for estimating the sidewash. Some preliminary theo-
retical studies have indicated that the effect of the sidewash on

Cnpt 0 varies considerably with tail size and tail location and to
f a - Lt

some extent with wing plan form. A comprehensive experimental verifi-
cation of this theory is planned but as yet only a few scattered checks
have been obtained. For the case of the conventionally located vertical
tail surface, the following formula has been found to give estimates
of CnPt 0 that are in fairly good agreement with experimental data:

a .

1|z z
c -2 == -z C 22
"Ptail b E’ <b>a,=3 184011 (22)

or

S
O‘lN

C = ' "~ (228
"Piail @';l Btail . , (22a)



NACA TN 2409 39

This formula is based on the assumption that Cnptail is zero at 0° angle

of attack and varies with angle of attack in the same manner as indicated

by formula (21). Formula (22) or the method of reference 36 can be used

satisfactorily for first approximations of Cnpt i1 for most configura-
al

tions with conventionally located vertical tails. For more accurate
estimates, especially for configurations having an unusual tdil size or
tail location, experimental data should be used.

For wings of triangular plan form with vertical tails either
directly above or above and slightly behind the wing, experimental data
have indicated that neither formula (21) nor formula (22) gives an
accurate estimate of Cnptail but that an average of the values obtained

by the two formulas provides a fairly good estimate.

It is obvious that these methods of estimating Cnp are only

approximate and are open to question in many cases. Experimental and
theoretical studies are currently being made to provide better methods
of estimating CnPtail and, wvhen these methods become available, the

approximate methods presented herein should be discarded. At the present'
time, however, formula (22) and reference 36 will usually provide much
more accurate estimates of Cnpt 1 than formula (21) which has been

a . -

in common use up until this time.
C
p

Wing-fuselage.- Most of the rolling moment due to rolling (damping-
in-roll derivative) Czp of an airplane is produced by the wing. The

effect of the fuselage can be neglected unless the ratio of the diameter
of the fuselage to the wing span is relatively large (greater than
about 0.3). For large values of this ratio, the value of Czp will be

smaller than that for the wing alone by an amount that can be estimated
from a consideration of the area and lateral center of pressure of the
wing area included within the fuselage. (See references 103, 108,

and 112.)

Wing.- The damping in roll of wings has been the subject of many
experimental and theoretical investigations. (See references on C1
in table II.) As a result, some methods of estimating Czp have been

developed which have been found to give reasonably good agreement with
experimental results. The method presented in reference 79 appears to
give sufficiently accurate estimates of Czp for zero lift.. This
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method is extended in reference 89 to permit the estimation of Czp

over the normal fllght range of lift coefficient. Estimation charts
and formulas from reference 89 are presented in figure 11.

High-1lift devices.- Experimental data have indicated that the
damping in roll of wings at low and moderate 1ift coefficients is not
greatly affected by the addition of high-1ift devices -such as trailing-
edge flaps, leading-edge flaps, slats, and slots. The principal effect
of such devices is to increase the 1ift coefficient at which the sharp
decrease in Czp occurs. The charts and formulas of figure 11 can be

used to estimate the Czp of wings with either full-span or partial-

‘span high- 1lift devices with fair accuracy despite the fact that the

method is not strictly appllcable to partial-span high-lift devices.
(see reference 89.)

Wing-tip fuel tanks.- The use of wing-tip fuel tanks usually
increases the damping in roll of the wing. The experimental data of
reference 91 for unswept wings indicate that the magnitude of the
increase varies with angle of attack and depends upon the wing taper
ratio and on the size and location of the tanks. Unpublished experi-
mental data indicate similar effects of wing-tip tanks on sweptback
wings. The following approximate formula for estimating the lncrement
in Czp produced by wing-tip tanks at low 1lift coefficients is based

on the limited amount of available experimental data and should not be
expected to yield very close quantitative estimates:

Maximum tank diameter
AC = (C3 ) ( - )(KT) (23)
( P)ta.n.ks ( P/tanks off Wing span

where, for symmetrically mounted tip tanks,
Kp = 6

for tanks mounted below the wing tip or forward on the wing tip,
Kp = 3

and for pylon-mounted tip tanks,

Kp

EXperimental data for both unswept and swept wings indicate that
(ACZP)tanks usually becomes smaller with increasing angle of attack

1

and, in some cases, actually reverses sign at high angles of attack so
that the tanks are decreasing rather than increasing the damping in roll.
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The data of reference 91 can be used to obtain an approximate estimate
of the effect of angle of attack for unswept wings.

Tail surfaces.- The contribution vto Czp of conventional type

horizontal and vertical tail surfaces is usually very small and, in
most cases, negligible. When an airplane rolls, the wing produces a
rotation of flow at the tail surfaces which reduces the already small
damping moments of the isolated surfaces, except in the case of the
vertical tail at high angles of attack where the tail center of pressure
is below the center of gravity.

The contribution of an extremely large horizontal tail to Czp .

might not be negligible and can be estimated by multiplying the value
of CZ for the particular tail plan forg ogtained from the charts and
formulas of figure 11 by the factor 0.5 ;: S; in which the fac-

tor 0.5 is included to account for the rotation of flow produced by the
wing.

f

The contribution of an isolated vertical tail surface to CZP is

given by the following approximate formula:

2
z

C =2 —) C oY

a1l <b YBeail (24%)

As in the case of Cnpt i1 this formula can be modified to provide an

approximate correction for the effect of the wing on the- damplng in
.rcll of conventionally located vertical tail surfaces:

“Iptasy 2(%) [% i (TZ:')@:JCYBtan (25)

An analysis of this expression indicates that the value of Czpt 1 is
ai

negligible at low and moderate angles of attack where z/b is positive
but that it might be fairly important at very high angles of attack
where z/b is a large negative value. As in the case of Cnp, experi-

mental data indicate that, for a vertical tail located either directly
above or slightly behind a wing of triangular plan form, the value of

Czpt i can be.estimated with better accuracy by an average of
a - .

formulas (24) and (25) than by formula (25) alone. For conventional
tail arrangements, however, formula 25 gives better correlation with
experimental data.
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' CYP

Wing.- The following formula for the derivative CYp (lateral

force due to rolling) from reference 86 is based on experimental data
and is the same as that presented in reference 25 except for an addi-
tional correction to account for tip suction:

Cy ) '
p _ A+ cos A v L
C,; A+ bcosA tan A+ 3 (26)

The data of reference 86 show that this formula applies only for lift

v C
coefficients below that at which the drag factor Cp - ;%— begins to

increase. At higher 1ift coefficients the experimental data indicate
smaller values of Cy, than given by formula (26). For these cases an

approximation of the value of CYP can be obtained from the experi-
mental data of reference 86. As in the case of Cnp, the break in the
variation of Cyp with 1ift coefficient should be expécted to occur

at lower 1lift coefficients for wings having sharp leading edges or
rough surfaces and for wings tested at low Reynolds numbers.

Vertical tail.- The discussion concerning Cnpt 1 and Czpt 1
: ai a

is aléo applicable to C . The value of C for an isolated
PP Tpiail Ypiail |

tail surface is given by the formuia:

. .
c - 2(— Cya 2
TPiain b) TBiatl | (27)

This formula can be modified as follows to account approximately for the
effects of wing sidewash in the case of a conventionally located vertical
tail: i

Cy ey -‘<5 ]CY (28)
Piail [b b)ou=0 Biail

An average of formulas (27) and (28) can be used for tails located
either directly above or above and slightly behind the wing.
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THE YAWING DERIVATIVES Cpnp., Ci., AND Cy,

Cny

Wing-fuselage.- In the past, the contribution of the wing-fuselage
combination to yawing moment due to yawing (demping in yaw) derivative
Cn, has usually been found to be small compared to the contribution of

the vertical tail. The fuselage contribution to the damping in yaw
depends, of course, on the relative size of the fuselage and wing. 1In
the past, the relative size of these components has generally been such
that the fuselage contribution could be neglected. (See references 82
and 83.) For some recent designs which have a large Juselage relative
to the wing, however, the fuselage contribution to Cp, 1s important.

In the case of fuselages having flat sides or having a flattened cross
section with the major axis vertical the fuselage contribution may also
be important and some fuselage contribution to Cp, should be assumed,
especially at high angles of attack. On the other hand, experimental
data have shown that a flattened cross-section fuselage with the major
axis horizontal can have negative damping in yaw at moderate and high
angles of attack.

The contribution of the wing to Cnr can be estimated from the
formula and charts of figure 12 which were taken from reference 25.
Values of Cp, for the wing should be estimated from force-test data.

For values of X/C greatly different from zero, the charts of refer-
ence 25 can be used. The formula and charts of figure 12 are not con-
sidered reliable at high angles of attack, especially for swept wings.
The use of experimental data from the references on Cn, listed in

table II is recommended in this case.

The effect of partial-span inboard flaps on Cn, can usually be

neglected. (See reference 82.) The effect of full-span trailing-edge
or leading-edge high-lift devices can be estimated satisfactorily from
the formula and charts of figure 12. Values of Cp, in this case are,

of course, for the wing with the high-1ift device installed.

Vertical tail.- The contribution of a conventional-type vertical’
tail to Cnr can be estimated from the formuls

Cn - 2(3)2 c (29)
Ttail b/ “YBgin
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Yg substituted for
tail

2 )
Cn . :
J@L | (298)

Cnr =
. - C
_tall YBtail

or, with the effective tail length -CnBt .l/C
al
the geometric tail length 1/b,

The experimental values for Cnr£ 1 presented in reference 82 for
al )

power-on or flap-down configurations are 30 to 40 percent greater than
values predicted by formulas (29) or (29a). These differences are
attributed to lag of sidewash effects in the free-oscillation tests

used in measuring Cp,.. In estimations of Cp - for stabllity cal-
T Ttail

culations, similar lag of sidewash effects should be assumed if the
oscillatory mode is of primary importance but no lag of sidewash should
be assumed if the aperiodic mode is most important. :

Methods for estimating the Cp for wing-tip vertical tails
rtail P

are presented in references 70 and 82.

Clr

The wing and vertical tail are the only airplane components that
contribute appreciably to rolling-moment-due-to-yawing derivative Ci,.

of an airplane. The contributions of the fuselage and horizontal tail
can usually be neglected. A semiempirical method for estimating Ci,

is presented in reference 85. This method involves the use of experi- -

‘mental data on the parameter CZB to correct the theoretical values of

Czrwing g}ven in reference 25 an@ to estimate the}value of Cering'

Wing.- The formula of reference 85 and the charts of C3 /CL from.
reference 25 for estlmatlng Cip. 1ﬁg are given in figure 13. The
values of CZB/CL to be used in the charts can be obtained from fig-
ure 8. For taper ratios less than 0.25, values of C; /bL and C3 /bL
for a taper ratio of 0.25 can be used. The value of CZB used in
the formula should be the same as the value of CZBwing estlmated from

experimental data by the method 1nd1cated in the section on CZB In
the case of Cj,, however, (unlike the case of CZB) conservative

‘
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dynamic stability results will usually be obtained if the smaller values
‘of the derivative (based on low-scale experimental data) are used
instead of the larger (theoretical) values. This difference is a result
of the fact that either an increase in the normally negative value of
CZB or a decrease in the normally positive value of Cj,. can cause

reduction in dynamic stability. As pointed out in reference 85 the
estimation procedure shown in figure 13 appears to account satisfactorily
for the effects of high-lift devices, wing, dihedral, and airfoil section.

Vertical tail.- The contribution of the vertical tail to Cj,. 1is

usually estimated by the formula

1\ 2z
Clriginl = ‘2<B><E)CYBtail . - (30)

where CYBtail is preferably obtained from force-test data. When
experimental data on ‘CZBtail are available, the following formula from

reference 85 can be used and will probably be more reliable than equa-
tion (30) because it takes into account any interference effects that
might cause the effective vertical location of the center of pressure of
the tail to be different from the location determined by geometrical
procedures:

AV
Clrgany = —ECS)CZBtail (31)

or with the effective tail length -Cnﬁtail/bYﬁfail substituted for the
geometric tail length 1/b,

n . .
Btail
c1,, =2(5Y———CzB (31e)
tail Btail tail - . .

CYr

Wing.- The theory of reference 25 gives values of the derivative
Cy, (Tateral force due to yawing) for the wing for a taper ratio of 1.0.

The experimental data of references 25 and 59 indicate that this theory
is inadequate for making rellable estimates of Cy,. .. It 1s recom-
wing

mended therefore that the experlmental data given in references 25, 58,
59, and 60.be used in making estimates of CYTWlng
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Vertical tail.- The value of 'CYrt i1 can be estimated by the
- a

formula

)
c - olc 2
Triail b “TBail (32)

or by the formula in which the effective tail length -CnB CYB
tail tail
is substituted for the geometric tail length Z/b:

c =20 2
Yriail D811l (322)

The discussion of lag-of-sidewash effects for Cnrt o apply also to
- ai

CYrigiae
EFFECTS OF MACH NUMBER

The effects of Mach number on the lateral stability derivatives
have been treated theoretically in many investigations (see table II)
but very little experimental dats have been obtained to verify this
theoretical work. Moreover, only a small part of this experimental
work has been covered in published reports (reference 111) because most
of it is classified at the present time. It appears, therefore, that
estimates of the lateral-stability derivatives for the time being will
have to be based largely on theoretical work.

. The effects of Mach number on the stability derivatives can be
usually considered negligible for all airplane components except the
wing and vertical tail. For the low-lift-coefficient condition in the
case of many high-speed airplanes, the vertical tail contributes more
. than the wing to all the stability derivatives except Czp. For this

reason, in calculations for transonic or supersonic speed conditions it
is especially important to know the effects of Mach number on the
vertical-tail lift-curve slope or CYBtail'

Wing.- The effects of compressibility on the subsonic stability
derivatives of the wing can be estimated by the formulas of reference 26.
The values of the supersonic stability derivatives for some wing plan .
forms can be estimated by the references tabulated in table II. 1In this
table the derivatives are grouped according to the type of wing plan
form and to the particular derivatives covered. A helpful summary and
discussion of the effects of Mach number on the derivatives for several
different wing plan forms is presented in reference 103. A summary of
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the theoretical lift-curve slope, damping in roll, and center-of-
pressure characteristics of various wing plan forms is presented in
reference 107. In the cases in which the theory shows large or abrupt
changes in a stability derivative with changes in Mach number (for
example, fig. 10 of reference 103) special care should be taken in
estimating the derivative in that particular Mach number range. The
abrupt changes should be smoothed or faired out in a manner similar to
that suggested in the following section for estimating CYBtail'

In some cases, experimental data for supersonic speeds will be
available on the sideslip derivatives and on the damping-in-roll deriva-
tive Czp. In such cases the experimental data should be used in pref-
erence to the theory. Some experimental results have indicated that the
effect of the vertical location of the wing on the fuselage on the
derivative CZB might be greatly different at supersonic speeds from

that at subsonic speeds. Since no methods are presently available for
estimating this effect for the supersonic case, it appears that, at
least in the case of high-wing and low-wing designs, force-test data
are necessary for obtaining an accurate estimate of CzB.

Vertical tall.- The sideslip derivatives produced by the vertical
tail at transonic and supersonic speeds can be estimated theoretically
but should be obtained from force-test data whenever possible. These
sideslip derivatives can be used to estimate the tail contributions to
the other derivatives as pointed out previously. In estimates of the
value of CYBtail for transonic and supersonic speeds, corrections must

be made for the effect of Mach number on the lift-curve slope of the
tail, and these corrections should account for any differences in the
end-plate effect of the horizontal tail on the vertical tail.

For Mach numbers below about 0.8 or 0.9 and above about 1.6 or 1.8
the effect of Mach number on the lift-curve slope of the vertical tail
can be estimated satisfactorily from the theoretical values of refer-
ences 26, 34, and 107. Since experimental data indicate that theoreti-
cal values of lift-curve slope are usually too high for Mach numbers
from about 0.8 or 0.9 to about 1.6 or 1.8, the empirically determined
fairings shown in figure 1k are recommended for use as a guide in the
use of the theory to obtain approximate estimates in this Mach number
range when force-test data are not avilable.

Experimental data have indicated that for vertical-tail configura-
tions which have a tail length (distance from the center of gravity to
the tail center of pressure) that is relatively short in terms of tail
chords, the rearward shift of the tail center of pressure at supersonic
speeds can cause an appreciable increase in the tail length and
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consequently an appreciable increase in the magnitude of some of the
tail derivatives. Theoretical center-of-pressure positions for various
plan forms. at supersonic speeds are given in reference 107.

EFFECTS OF POWER

On the basis of existing information, the effects of power on the
lateral stability derivatives appear to be negligible in the case of
jet-propelled airplanes but these effects are often very large in the
case of single-engine propeller-driven airplanes. Methods are available
for estimating some of these power effects but in most cases experimental
data are necessary for making a satisfactory estimate. The effects of
power can be broken down into two general classes:

(1) The effects of the lateral force produced by the propeller
itself

(2) The effects of the propeller slipstream on the w1ng, fuselage,
and vertical tail of the airplane

Effects of propeller lateral force.- A method of estimating the
propeller-lateral-force derivative CYB is presented in reference 31

which is based on the work of references 32 and 33. The contribution

of the propeller lateral force to the other stability derivatives can

be estimated from this derivative by assuming that the propeller is

effectively a vertical tail surface and by using the expressions for

the tail contribution to the various derivatives presented in the

preceding sections. Some experimental data on the effect of windmilling

propeller on all of the derivatives are presented 1n reference 65. .
Effects of propeller slipstream.- The effects of propeller slip-

stream on the lateral-stability derivatives are usually much greater

than the effects of propeller lateral force in the case of single-engine

tractor airplanes. The slipstream effects on the wing, the fuselage,

and the vertical tail can be considered as three independent effects.

The slipstream effects on the wing can usually be neglected except
for the derivatives CZB and Cj,.. Experimental data showing the

decrease in effective dihedral -CZB with power for single-engine air-
planes are -presented in references 54, 55, 56, T4, and 80. It appears
highly desirable to determine this effect of power experimentally

hecause interference effects make accurate estimations of the effect
very difficult. The effect of the slipstream on the value of Clrw1ng

cannot be estimated from the data on CZBw1ng as described in the
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section on Cj,.. 1In fact, this procedure would probably give the wrong
sign for the increment of Cering contributed by the slipstream. An

approximation of this increment might be obtained by estimating the slip-
stream velocity and the lateral displacement of the slipstream caused

by yawing. Usually the power effects on CZBW' and Cy. ;ng will be
ing wing

greatest for the flap-extended configuration.

In the case of the single-engine airplane the effect of the slip-
stream on the fuselage is usually to increase negatively the values
of Cng and Cyg. (see references 54, 55, 56, T1, Tk, and 76.) Since

no accurate methods of estimating these slipstream effects on CnB
and CYB are available, it is necessary to determine them from force-
test data. '

The effects of the slipstream on the vertical tail are often very
important and should also be determined from experimental data, if
possible., The increase in dynamic pressure at the tail caused by the
slipstream is treated theoretically in reference 116 and is illustrated .
by the experimental data of references 50, 54, 55, 56, 71, T4, and T6.
The experimental data of reference 76 also show that the propeller slip-
stream can cause a destabilizing sidewash at the tail which will tend
to reduce the stabilizing effect of the increased dynamic pressure at
the tail. Since these data indicate that slipstream effects on the
vertical tail vary greatly with airplane configuration and propeller
arrangement (single or dual rotation), use of experimental data appears
to be the only satisfactory estimation procedure at present.

Suggested estimation procedure for power effects.- The following
procedure is suggested for estimating power effects. Obtain force-
test data for tail off and tail on. Use tall-on data directly for CYB’

CnB’ and CzB. Estimate rolling and yawing derivatives as follows:

(1) Estimate from reference 31 and use this deriva-

CYBpropeller
tive and proper linear dimensions to estimate other propeller deriva-
tives (rolling and yawing derivatives) in the same manner as tail
derivatives. '

(2) subtract tail-on data from tail-off data to get values of
CYBtail’ CnBtail’ and CZBtail for the power-on condition and use
these values to estimate the tail contribution to the other derivatives.

(3) For tail-off values of rolling and yawing derivatives, use
same values as for power-off for all derivatives except Cip. Estimate

Ci1, as suggested in preceding section.
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(4) Add the values obtained in steps 1, 2, -and 3 to get the
rolling and yawing derivatives for the complete airplane.

INADEQUACIES IN PRESENT INFORMATION AND METHODS

In the course of summarizing the estimation methods for the various
stability derivatives, the need for much additional information on all
the derivatives became apparent. In particular, information is needed
to aid in the estimation of the derivatives in the transonic and super-
sonic speed ranges. Additional work also needs to be done in correlating
and analyzing existing subsonic data and in obtaining new experimental
data for the development of semiempirical methods of estimating the sub-
sonic derivatives without resort to force-test data. Another important
need is’for_full-scale'experimental results at all speeds for checking
both low-scale data and the existing methods of estimating derivatives.
Details of the need for additional work along these lines are discussed
in the following sections. Studies should alsoc be made to determine
the conditions for which the use of steady-state stability derivatives
in conventional stability equations is inadequate and to determine
satisfactory methods of treating such conditions.

| Transonic and Supersonic Speeds

Additional theoretical work is needed on the estimation of sta-
bility derivatives in the transonic and supersonic speed ranges to
cover the range of wing plan forms for all the derivatives. In particu-
lar, more work is needed on plan forms currently under consideration,
such as wings having moderate sweepback and taper. This need is illus-
trated by table II which indicates that very little material is available
on the stability derivatives for such plan forms except, perhaps, for
the derivative Czp. It appears from the table that this derivative

and the triangular plan form have, in the past, received a dispropor-
tionate share of attention, probably because of the greater ease with
which they could be treated theoretically.

The greatest need for work on stability derivatives at the present
time is probably in the measurement of the derivatives at transonic and
supersonic speeds. Experimental data on wings are urgently needed for
checking the theoretical work and for use in the development of empirical
" corrections to the theory wherever necessary. Such corrections are
particularly needed for fairing out abrupt variations of the derivatives
with Mach number and for fairing through the Mach number range for which
theory predicts infinite values., Examples of such discontinuities as
indicated by theory are shown in figures 8 to 13 of reference 103.
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Since experimental data obtained at supersonic speeds on wing-fuselage
combinations and on complete models have revealed interference effects
that are different from those obtained at subsonic speeds, it appears
highly desirable to obtain at least a limited amount of experimental
data at transonic and supersonic speeds to evaluate these interference
effects. For example, investigations should be undertaken to determine
the effect of wing-fuselage interference on the derivative CzB and

the end-plate effect of the horizontal tail on the lift-curve slope of
the vertical tail.

Most of the experimental data on stability derivatives at transonic
and supersonic speeds will of necessity be obtained at Reynolds numbers
considerably less than full-scale values and under test conditions which
might render the results open to question in some cases. Full-scale
checks in flight of the low-scale data and of the estimation methods
therefore appear to be desirable. Consequently the methods of measuring
stability derivatives in flight now being developed by the Cornell '
Aeronautical Laboratory, the Massachusetts Institute of Technology, and
the NACA should be extended to transonic and supersonic speeds when the
methods appear to be developed to a satisfactory degree of reliability
for the subsonic case. Some preliminary considerations involved in the
use of these flight techniques are discussed in references 117 to 120.

Subsonic Speeds

The methods presented in this paper for estimating the stability
derivatives at subsonic speeds depend either directly or indirectly on
the use of force-test data. These methods are probably more reliable
than methods which do not involve the use of force-test data on the.
particular design under consideration or on a similar design. Methods
which do not rely on such data are desirable in some cases, however,
because the necessary data will not always be available.

In the case of sideslip derivatives, empirical methods can probably
be developed largely from existing information. In some cases it will
be necessary to augment the existing information with new results since
much of the available force-test data were not obtained in a manner that
would make the data readily usable for developing general estimation
procedures.

In the case of rolling and yawing derivatives, considerably less
information is available than in the case of the sideslip derivatives.
Most of the information now available was obtained in the Langley
stability tunnel, principally on wing configurations and to a limited
extent on complete airplane models and airplane components other than
the wing. Considerably more work is required, especially for components
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in combination, before satisfactory methods can be developed for
estimating rolling and yawing derivatives without the use of force-test
data on the.particular design under consideration or on a similar design.

In discussing the work necessary for developing new procedures for
estimating the stability derivatives without the use of force-test data
on the design under consideration or on a similar design, it is useful
to break the problem down into two parts: (1) effect of individual
components and (2) the effect of interference of the components on each
other,

The principal components to be considered are the fuselage, wing,
vertical tail, and propeller. For the isolated fuselage, the main
problem is the development of methods for the estimation of CnB and

then, perhaps, of Cpn, and CYB' For the isolated wing, the main

problem is to estimate the derivatives at lift coefficients above that

at which separation begins. Such estimations can be made with reasonable
accuracy for some of the derivatives. by existing methods which make use
of force-test data, but the development of methods which do not involve
the use of force-test data will probably be very difficult. For the
isolated vertical tail, the problem is to establish the effective tail
area and aspect ratio from the geometry of the tail so that the lift-
curve slope @r CYB) of the tail can be calculated. Solutions to this

seemingly simple problem have in the past become involved with interfer-
ence effects so that, as yet, no reliable methods have been published
for estimating CYB of the vertical tail from its geometry. For the

isolated propellers, the work that is needed at present is a systematic
check of existing methods of estimating the lateral force on the
propeller to determine the accuracy of these methods.

The principal interference effects to be considered are mutual
interference of the wing and fuselage; wing-fuselage interference on
the vertical tail; horizontal-tail interference on the vertical tail;
propeller-slipstream interference on the wing, fuselage, and vertical
tail. The mutual-interference effects of the wing and fuselage are
probably important only for the derivatives CZB, CnB’ and Czr. A

large amount of experimental data is available for the sideslip deriva-
tives but no procedures for estimating the interference effects on these
derivatives have been reported. Wing-fuselage interference has very

important effects on CYB of the vertical tail, and consequently on all

of the stability derivatives for some flight conditions. These effects
result from the sidewash and change in dynamic pressure at the tail
which may result from sideslipping, rolling, or yawing. Although con-
siderable data which show these interference effects are available,
particularly for the case of sideslipping, no reliable methods exist



NACA TN 2L09 53

o

for estimating the interference effects. Horizontal-tail interference
also has an important effect on CYB of the vertical tail for some

horizontal-tail positions. Some work on a limited number of configura-
tions has been done toward developing methods of estimating this effect
but data are required on more configurations before the generally appli-
cable methods can be evolved. The propeller slipstream can cause impor-
tant effects on CZB and Cj3, of the wing, on CnB and CYB of the

fuselage, and on Cygz of the tail (and consequently on the tail contri-
bution to all the derivatives). Some data are available for the effect
of the slipstream on the sideslip derivatives but, because of the com-
plexity of this problem, considerable additional data may be required
before a satisfactory method of estimating the slipstream effects can
be developed. ’ ’

As mentioned in the preceding section, full-scale checks of low-
scale data and of the estimation methods are desirable. For the sub-
sonic case some of the checks can be obtained from large-scale wind-
tunnel tests but some checks in full-scale flight tests should also be
obt~ined when the various methods of measuring stability derivatives in

f1i, ,at have been developed to a satisfactory degree of accuracy.

.Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va., December 13, 1950
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EQUATIONS OF MOTION
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The dimensional equations for the lateral motions of an airplane

a.x_'e
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(A2)
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(A3)

If equations (Al) and (A2) are divided by XoV2Sb and equation (A3) is

divided by 2pVQS the equations of motion may be expressed in the con-

ventional nondimensional form in which they have generally been presented

in NACA reports (for example, see reference 2):
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In order to convert these equations into a form which will reduce the
number of arithmetical and algebraic steps in performing stability cal-
culations, equations (A4) are multiplied by m/pSb and written in the
following form:

<D2 - zpD>¢ + (K1D2 - ZrD>‘Jr - 16 - I B

I
o

|
(@]
a4
~~
=
)]
g

(I(2D2 - n.pD)¢ + (D2 - nrD)\lf - ngB - n, =

('yPD '%)Qs +(D" yrD 'C?Ltan 7>w+ (D i yB)B TYe =0

where
- o - o -t -4
M= 55 T = 58V 0 =7 D=3
K K
Kl=—)£Z§ K2=—X-Zé‘
Kx Ky
p 3! 1
il = C ng = —5¢0C6 ==C
1 n y Y
BT k2 W B 2 mp B~ 2 Y
X yA
1 1
l, = ——~C = C = C
1 Y Y
P2 lp P72 o P Iy Y,
X 7
1 1
lr =—5C; ny = Cn yr = Cy
hKXQ r the r Iy YIr
' 1
le = u2 CZc nC_—JL_2Cnc yc‘§CYC
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' APPENDIX B
APPLICATION OF THE LAPLACE TRANSFORMATION TO CALCULATING MOTIONS

The application of the Laplace transformation to the calculation
of the lateral motions of airplanes is presented in order to illustrate
the development of the equations of motion in the form in which they
are presented in the present paper. This work is similar to that pre-
sented in references 5 and 6. In fact, it follows the presentation in
reference 5 very closely. Reference 6 presents a brief explanation of
the Laplace transformation and its application to solution of the equa-
tions of motion of an airplane. This paper also makes reference to
detailed explanations of the Laplace transformation. 1In cases where
modification of the equations presented in the present paper are neces-
sary, reference should be made to these texts for an understanding of
the mathematics involved. Applying the Laplace transforms

L(1) % L(Dg) = Ay - 9o

L(g) = ¢, L(PP) =23, - agy - (DF),

and multiplying each of the equations by \ transforms equations (A5)
from appendix A to

<x3 - szg);éx + (le?’ - zrx?) ¥ - 1gMBy = 11 R

(K2x3 - npxg) gy + (x3 - nrlg)\h - OBy = T2 - -7 (B1)

CL : C
<-yp>“2 - = )")¢)\, + l:)‘? _ erQ ._ _E:E‘,(tan 7)§W)" + ()\,2 - yB)\) By = I':?)

where

rp = (V8 - 1,080 + (K922 - 1o + MDP)g + KpM(D¥ ) + 1¢

il

rp = (K22 - npA)go + (A® - nrA)¥o + Kon(Dg)o + M(D¥)g + ne

1'3 = —yp)\.¢o + ()\. - yr)\:)ﬂ/o + )\.BO - yC ~
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Solving equations (Bl) by determinants gives

-1gh r1 KiA3 - 1pA°
-nBX To x3 - nrxg
G A A2 22 - Ltan o)
y L T3 - ypr - itany
X= 2 2
-1g Ao KA3 - 1
-n_\ K.A3 - n A2 A3 - naA°
B 2 e T
- C C
2 2 L 2 2 _ L
AS - ygh YA - 5 M AT - ypAS - 2(tan AL

which may be expressed as

a®x5'+ alkh + a2x3 + a3x2 + ah + ag
¢k =

N 2 (£2)

A (Ax + B3+ A2+ Dr+E)

Similarly, the expressions for wk and BX are
L 2
boA” + DI + bodd 4 aAZ 4 Dy + s

\VX = 2 I 3 ) (B3)

A <Ak + BA” + CA7 + DA + E)

coku + clx3 + chg + c3k'+ cy
B)" = (B4)

x(Ax“ + B3+ A2 £ DA+ E)

where the expressions for the coefficients in equations (BQ) to (BY4) are
given in terms of the mass and aerodynasmic stability derivatives by
equations (1) to (4) in the main body of this paper.

In order to obtain the actual variables from the transformed
variables, an inverse Laplace transformation must be applied. The
expressions for ¢X’ V), and B, are of the form uk/vx where uy
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and v, are polynomials, the degree of v, Dbeing higher than that
of wu,. The inverse transform of a function of this type is

“1fuy) L u(ng) oOn
L (K) _ g:l LA (85)

In this equation all of the roots A of v, =0 are assumed to be
distinct. This assumption is valid for B,; but for ¢X and ¥,

vy = O has two zero roots. (See equations (B2), (B3), and (B4).) The
terms in the equations for @ and V¥ resulting from the two zero roots
are

an
ag(o) + 0(0)o (B6)
where
u
Q=22
a

The inverse transforms of ¢X) WX’ and B4 are from equations (B5)
and (B6)

¢ ='Alecxl + Aeec)”2 + A3e0x3 + AheOMJr + Aso + Ag (B7)
¥ o= Blec)“l + Beecxe + B3ecx3 + Bhecxh + Bso + Bg (B8)
B = Cledkl + Céeak2 + C3e0X3 + Cuecxu + C5 (B9)

The equations for the rolling velocity p and the yawing velocity r
can be obtained from equations (B7) and (B8) by differentiation

p .= %(Alxle‘”“l + aphpe™2 4 asrse™3 4 AT 4 A5) (B10)
oA oA | oA oA
r = JT:(lele L4 Bohge 2 4 Bjhge 3+ Byhye ot o+ B5> (B11)

where the expressions for the coefficients of equations (B7) to (Bll)
are given by equations (6) to (8) in the section "Calculation of Motions."
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APPENDIX C
SOLUTION OF BIQUADRATIC EQUATION

Many methods are available, of course, for solving for the roots
of a biquadratic equation. PFor example, there are Horner's, Ferrari's,
Bernoulli's, Descartes', and Hitchcock's methods; various methods of
solution by trial; and also various graphical methods such as that
given in reference 1. Solution by trial in which synthetic division is
used, however, is recommended as being the simplest method for most
lateral stability work. The characteristic equation for the lateral
motions of an airplane

D B3+ DL+ E =0

generally has two real roots and a pair of conjugate complex roots. For
these cases the two real roots can be factored out easily and the
remaining quadratic solved for the conjugate complex roots. In the few
cases for which all four of the roots of the characteristic equation

are complex, Descartes' method can be used to factor the biquadratic
equation into two quadratics. When there are real roots, solution by
Descartes' method requires more time than factoring out the real roots
singly and consequently is not recommended for general use. These
methods of solution are explained in the following sections.

Solution by Trial by Means of Synthetic Division

~ Solution for real roots by trial by means of synthetic division
consists of successive approximations of a root and checking by synthetic
division until the root is determined to the desired degree of accuracy.
This check by synthetic division is based on the fact that if a is a
root of a polynomial f(x) then x - a is a factor of f(x) and con-
sequently no remainder is left when f(x) .is divided by x - a.

The method of solving the stability biquadratic equation by trial
with synthetic division is explained in three steps in the following
sections. First, the rule for synthetic division and a numerical
example are given. Second, the specific use of synthetic division for
factoring a biquadratic is illustrated by a simplified example for
which the roots are known. This example shows how the cubic and then
the quadratic factors of the biquadratic are obtained. Third, the use
of synthetic division in extracting the roots of a representative
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characteristic stability biquadratic is illustrated with special refer-
ence to methods of making the first approximations of the real roots.

Explanation of synthetic division.- Synthetic division is explained
in almost all algebra text books but is presented herein for the con-
venience of the reader. The rule for synthetic division may be given
as follows:

Assume that a polynomial in x (f(x)) is to be divided by x - a;
write the coefficients of the polynomial in order, supplying O when
a coefficient is lacking.

Multiply a by the first.coefficient, and add (algebralcally) the
product to the next coefficient.

Multiply this sum by a, add to the next coefficient, and proceed
until all the coefficients are used. The last sum is the remainder and
also the value of the polynomial when a 1is substituted for the
variable x.

3

For example, divide xu + 3x° + 3x2 -x -6 by x - 3.

1+3+ 3-1-_ 6

+3 + 18 + 63 + 186 |3
1 +6+21 + 62 + 180

Use of synthetic division in factoring out roots.- The use of

synthetic division to factor out two known rational roots of a biquadratic:

equation is illustrated by the following simple example. These two
rational roots represent the two real roots of the characteristic sta-
bility equation which, of course, are not normally known but can be
approximated by the method given in the next section of this paper.

One factor of the biquadratic is x - 1 so there is no remainder
when the biquadratic is divided by the root 1

1+3+3-1-6

Since the remainder is 0, x - 1 1is one factor of the biqﬁadratic

equation and x3 + bx? 4 Tx + 6 is another factor. Inasmuch as a
cubic equation must have at least one real root, a second real root of
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the biquaératic equation can be factored out of the cubic. For
example x + 2 1is a factor so divide the cubic by the root -2.

1 +4+74+6

-2-4 -6 |-2
1 +2+3 0]

The factors of the biquadratic then are x - l, x + 2, and x2 + 2x + 3.
The quadratic factor can be solved for its roots by the quadratic

formula. For example
-2 % Jh - 12
—— = -1+ i VE

X = 5

Example of application to characteristic equation.- Reasonably
accurate first approximations to the real roots of the characteristic
equation can be obtained from simple formulas. Successively closer
approximations can then be obtained by interpolating from the remsinders.
The following example illustrates the application of this method to
obtaining the roots of the stability biquadratic. The biquadratic

A+ 10,4323 + 16.3202 + 68.61 - 9.10 = 0

is of the form

b + Bx3 + ng + DL+ E =0

y | AX
Since the coefficient E 'is generally much smaller than coefficient D
in lateral stability work, one of the real roots (usually the smaller
of the two) is approximately equal to -E/D or it may be more closely
approximated by the equation

or for the particular case

-9.10

A= -
(16.32)(-9.10)
68.6 - =z

= 0.129
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Approximating the root by synthetic division

1+ 10.43 + 16.32 + 68.6 - 9.10 Approximation
+ A3+ 1.36 + 2.3 + 9.10 .1284 2
+ A3+ 1.36 + 2.3 + 9.14 .129 1

1 + 10.56 + 17.68 + 70.9 + .0k 1

1 + 10.56 + 17.68 + 70.9 + 0O 2

For this root, the second approximation was determined by dividing the
coefficient E Dby the fourth sum from the quotient

_ -9.10
70.9

This procedure generally provides a good second approximation for the
small real root.

The cubic equation obtained by setting
3 2
A + 10.560° + 17.68\ + 70.9
equal to zero is of the form
arx3 + bAS + A +d =0

In most lateral-stability work, a real root of this equation will be
approximately equal to -b or it may be more closely approximated by
the equation

or for the particular case

3
x = - (10.56)2 + 70.9 _ ~9.65
(10.56)° + 17.68
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Approximating the root by synthetic division

1+ 10.56 + 17.68 + 70.9 Approximation
- 9.48 - 10.20 - 70.9 | -9.485 é
- 9.49 - 10.16 - 71.4 | -9.k49 5
- 9.48 - 10.25 - 70.4 | -9.48 L
- 9.45 - 10.50 - 67.9 | -9.45 3
- 9.55 - 9.6k - 76.8 | -9.55 2
e I
1+ 1.01 + 8.0k - 5.9 | . A 2

1+ 1.11 + 7.18 + 3.0 3
1+ 1.08 + 7.&3 + 0.5  L
1+ 1.07+ 7.52 - 0.5 5
1+1.015+ 7.8 o0 | 6

For this large real root there is no simple method of determining the
second approximation as there was in the case of the smaller real root.
The magnitude of the estimated root in this case is arbitrarily
increased or decreased slightly from the first approximation. From the
remainders determined from the first two approximations,'a fairly close
third approximation can then be made.

Factoring the quadratic equation obtained by setting
A% + 1.075% + 7.48

equal to zero by use of the quadratic formula gives the final two roots
of the biquadratic equation. :

. 1.075 i\/1.16 - 29.92
M= - 2

-0.538 £ 1 §§ﬁ1§

-0.538 £ 2,681
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The roots of the biquadratic equation may be checked by multiplying
the four factors to determine whether their product equals.the orlglnal
biquadratic

(A - 0.1284)(n + 9. h85)(x +0.538. + 2. 681)(x + 0. 538 - 2 681) (x + 9 457x -

u

1.220)(x + 1.07A + T.47) =27 + 10. h3x3 + 16. 32x o+ 68 6x -9, 10

Solution by Descartes' Method

Descartes' method of solving a biquadratic equation is particularly
useful for solving equations which do not have any real roots. This
method is explained in most text books on advanced algebra and theory of
equations. In general, the method consists of reducing the biquadratic
equation to a cubic equation which can be solved easily. -One root of
the cubic equation is used to form two quadratic equations the roots of
which are used to obtain the roots of the biquadratic equation.

Method.- Reduce the general biquadratic equation

¥ B3 s 2D+ E=o0

)\

tc the form

. ku + bk3 + ckg +dh + e =0
by dividing by A.

Obtain the values of q; r, and s from the‘following equations:

C e .32
q=c¢c-=2b
8
_4._be 1.3
r =d - 5 + ) b
bd . bec 4
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and form the equation.

6 L 2

1 1 _];)2 1 o

XU+ 5 9x 4—€E; q L s)X Zp T = 0

and 301§e thié cubic equation'in x2 for one of its roots x2 £ 0.
Solution by trial by means of synthetic division 1s recommended.

' Determine the values of 1 and m from the equation

| 2 _r
lEgt A - o
1. .5,2, T
m=5 2T 4y

Substitute the values of 1 and m and the value of'fx uséd in
obtaining 1 and m in the equations -

I
o

y2 + 2xy + 1

y2 -2xy +m=20
and solve-these quadratic equations for their roots: y fromfwhiéh the
roots of the biquadratic equation may be obtained from the following
relation: '

b
)\.=y-z



APPENDIX D

SPECIAL NOTATION USED IN CALCULATING MOTIONS WHEN
THE CHARACTERISTIC EQUATION HAS COMPLEX ROOTS
When two of the roots 'A; and Ap are conjugate'complex, the coefficients A} and Ap,

By and Bp, C1 and Cp will be conjugate complex. If R + Ii 1is one of the roots A1 and
if the powers of A] are expressed as ‘

k
Xl = Rk + Iki

then

. Xl = Rl + Ili

kle = Re + Iei
3. -

Xl = R3 + I3l.

At =By + I
> _

le = R5 + Isi

Substitution of the root R + Ii in the expression for A; gives

A = (aoR5 + alRu + &2R3 + a3R2 + auRl + a5) + (&OIS + alIu + 8213 + a3I2 + &uIl)i
1~ K6AR5 + jBRu + hCR3 + 3DR2 + EERl) +‘Z6AI5 + 5BI& + hCI3 + 3DI2 + EEIl)i

The division of these complex numbers is indicated by the equation

29
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xp +y11 XX +YVYp  Xp¥p - Xp¥p
Xo * Yol | 22 4 g2 2 2t
2 Y2 Xp~ * Y2

I£ is evident from these relations that Aj] is a complex number. In this case new symbols are

used to represent the real and imaginary parts of A; as follows:
A) = Rp + Ipd

Ay 1is the conjugate of A; and will be referred to as
Ap = Ry - Il

By procedures gimilar to those for the A coefficients, ' -

(boRs + byR), + boR3 + baRp + bRy + bs) + (boIs + byIy + bpls + bl + byT) 1

By = (6 :
AR5 + 5BR), + UCR3 + 3DRp + 2ERl) + (6AI5 + 5BIy + WCI3 + 3DIp + 2EI;) 1

which may be referred to as

B) = Rp + Ipi

and
Also,

o - (cOR5 + cqRy + c2R3 + c3R2 + cth) + (COI5 + eIy + c213 + c3ly + chIl)i
1 7 (6aRs + 5BR) + LCRg + 3DRp + 2ERy) + (6AIs + 5BI), + 4CI3 + 3DI, + 2EL))1

which may be referred to as

60%c NI VOVN
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_RC + Icl

and

Similar analysis shows that, if the roots X3 and ) . are also conjugate complex'quantities
<k3 =R' + I'i and A =R' - I'i), then ' L '

Ay =Ry + I'pi

and
Ah =‘R‘A - IfAi
where
A ¥ ‘= (aOR'5 +. alR']_l_ + agR'3 + 8.3R'2 +}a.1+R'l + 8,5) + (301'5 + alI'u_ + 8.2]:'3 + a3I,2+ a)_‘_I'l)i
3 (6AR'5 + 5BR'y + 4CR'3 + 3DR', + 2ER'p) + (6AI'5 + 5BI'y + WCI'3 + 3DI'p +'2Elfl)i
Also, | |
B3 = R‘B + I'Bi
and
Bh = R‘B - I‘Bi

89
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where

(PoR's + DyR"y + BpR'3 + b3R'p + bYR'y + bs) + (bgI's + byI'y + Bol's + b3I'p + byI'y 1

P3 = (6AR'5 + 5BR'j, + UCR'3 + 3DR'p + 2ER'1> + (6AI's + 5BI') + 4CI'3 + 3DI'p + 2EI'l)i
Similarly,
C3 = R'C + I'Cl

and
Ch = R'C - I'ci;
where

: &FOR'5 + cqR'y + CER'3 + c3R'2 + ChR'l> + (coI‘5 +cIfy +‘c21'3 + c3I'2 + cuI'l>i
T Cy= : .
3. (6aR's + 5BR') + MCR'3 + 3DR'p + 2ER'1) + (6AL'5 + SBI') + UCI'3 + 3DI'p + GEL') )i
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@ala + 1 - (20 296 *-King .
s
25} Kp(Cy /20 ton ¢t = {23){IS) oon
(26)Ke (G /R tn ¥ - G/2 = @51 - (6) - 2989 g8 [-09-o53n 401y Benara- 7y
@n[2K,0u = 2503120 0045 (36} [08158) | (K56 2ONEB2) BOR(37) (B4(33)) BB | BHHED (S |+57)- 65 BEHET) SIS | (54%58) S53ST) 574 | 32467) owisn | 83m36) | 108 | 23087 py-trauTHTR
IMBee2) 287 HB0-€1 -6 o=n | e bT-Tenaoa0
-00™
Y 0208 1 -3693 s
om0 -] ong  |.0540 o 36057 | 0001 4] ] 1002 |-.1658 |-3.6020| 0133 +.2793 -0001 | 0002 o ] -.0004 | .0006 | O o o +.0010
-o70
it 0208 1p -3539
7 Tol off vakes 230 05 | 0033 |-0s65 !-00c2 |a7ess| o 0016 |-0005 | 5706 |-1353 |-a7420 | 1669 T2395  |-0003 | -0001 |-8.378a] 0089 [-0284 | 0060 | o077 |-0784 |-0708 | “remeh
150
T oz5 Yy %6 |
] Q Jd0 0046 |-0612 [-.0003 | 39782 |-000 0136 { -.0007 |1.0478 |-0719 |-38929| .3332 44,3999 -.0004 | -000) Q0487 -0499 (-0897 | 0062 | 003 |-.1508 |- 407 +10.8743
-0332
b 031 028 2881 Y\
] 5 ~0024 [-0684 [-0008 (4.228! |-0002 | .0364 | -0002 | 15599 | .04ta [-4.4022 ] Si185 +6.4422 -~0001 | 0001 (66933 (-.1369 {-.1I972 | 0033 | 0027 |-2263 |-210 +16.7303
. 0256 1 -.1853 |y
25 | -0227 |-0888 |-0006 |4.8596 [-.0004 | .140 | .0039 27615 | 8i80 [-4.652% 9691 asar4 | o021 | 0021 [3a2671]- 4661|5782 | -to76 |-0888 |-37T1 |-38i7 1303320
Computation Procedure
1. P11l in values for the known geametric and mass
characteristics apd flight conditlons -
{constanta (1) to (11)). E R .
2. Determine values of the tail-cff stabllity 15 82 @3 B4 | @) 86) 87} (88} {29 (904 30 92) (93) {94)
derivatives {constants (28) to (35)) by methods c—
d in the text. v 3 at
presented 1n ex oy | Fv (Gt y fg..l,n,%m b 8go AD e*E R 1" s Gy G
3. Select and enter in column (36) values of the 10y g -
independent varisble Cng to Gover the range
for vhich the boundary is required. .
4. Work out columns (37)-and (38) to obtain values B6) (61139) | 23038)) ©1(56))(23(2) (82-(8301, [ AN @ex@naen (63x83)4(86) @®7)-(a8) - (89} . Somtien of @nsB) | @Mhea
of Oy . @7} @4 035) quodratic, (504 + O
Brail
5. From these values o: qb{;{ﬁ; d:ce:nix: the tall . ons . R one 1, ozrs “; 1360 1 3 %08 1 e bt
contribution to the stal y derivatives - +0 -3720 +0010 | -, +0 0 -2208 0010 -1 -
o A by aethons o = 0033 0007 E Yy . 0043 13549 00002 008t
the text. -0497 s |-.0279 1,2 J2a8 gt -n25 ) -1527 )t
. .08 | -.047t| 0028 | 1.0968 | .2555 -.8413 ~27264 13 4480008 | -38009 1y 420.9506| -12,0610 +.7870 I‘ +300012 21,2779 -9.5753 0980 - =043
6. Perform the operations indicated for (12) ,
to (27) and columms (45) to (90) to obtain the -087t 4 -.0219 ¢ 1089 14? 4.3788 ) -1338 Wt
values of Routh's discriminant R. .10 -0838| 003 (23747 5133 -1.8594 “4TTT9 |p 4903403 | -T0646 g <n7.7892 294270 +36652 +101.9781 445149 -1r1216 .2003 -0770
7. Solve for values of 1Ig the quadratics formed by -1238 |y -0271 gt o810 gt -22131 Y 1081 Y,
setting the values in column {90) equal to zero A8 |-12es5 |-0007 1a0gi2 | 7929 -31883 | 61740 \g +455.7044 [ 95024 ¢ +278.8113 56.9966 | 155415 423308971  TB.7408 -27.4780 3543 -A237
(eolumn (91) end (92)). * ¢
-1963 Y 02086 ' 0272 -46362 0478 1t .
8. Solution of colums (93) and (94) gives the values 23 |-.2026] 0063 |83910 | 14377 71333 -48672 | 415408691 | -9.9807 4 4916.442) -168.9443 [429577 Y +001.3713| 27033s9 -62.0158 12183 -2
of Cy, required for meutral oscillatory sta-
bility for the values of Cng in column (36).
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" TABLE IT.- REFERENCES CONTAINING USEFUL INFORMATION FOR ESTIMATING LATERAL STABILITY DERIVATIVES

Subsonic Supersonic
Derivative (A1l are theoretical estimation methods. )
Estimation methods Related data o YANVAN I é&
1,25,26,27,28,29,30,31, 32, 33, } 37,38, 39,L0,41, 42,43, b4, L5, L6 95 96,97 101
¢, 3,35,3 7T 7,18,19,50,51,52,53,50,55,56 o
57,58,59,60,61,62,63,6L,65 | 200
37,38, 39340.41, 42, 13,1, 15,46 o5 102 26,97
1,25,26,27,28,29,30,31,35 2T Yo ey ey cg’ co K 102, 198,99 99, | 100 |102
ng +66,67,68,69, 57,58,59, 60,61, 62,63, 6l,65,71 102 | 109
72,73,74,75,76,77,78 103
' _ 96,97| 99
30,35, 37, 38, 39, 10,41, 12, 13, ilos, 103 103,198,99| 103 - 1o
Crg 1,25,26,29,36,58,66,67,79  [15,16,51,52,53, 5L, 55, 56,57, 59 Lok 10’ |105, | 190 l‘
’ 60:61:62:63:6)4,65’7!3.,75:77:8(: - 104
Cy,. 25 58,59,60,65 95 33,97 99
— 5,97
Cnr 1,25’66:70181182)83:8’4 ©8,59,60,65 95,10# 103 | 99, 99,103
103
6,97
c, 1,25,26,66,85 58,59,60,65 95,103 103 99, [99,103
r . 5
2 . . 103
oy 25,26,36,86,87 65 95 96,97(99 | 105,
P 99 106
: 96,971 99 | 103,
Cn, ' 1,25,26,36,66,79,86 & S, 103 103 199, 03| 106
57
EETE TRk - R R
c 5,86,91,92,93
I 1,25,26,36,66,79,87,88,89,90 | 57,65,86,91,92,93, ot . igé’-i‘l’anz nfus
1

<8

602 NI YOVN



NACA TN 2409 83

WIND DIRECTION Y

AZIMUTH REFERENCE

Figure 1.~ The stability system of axes. Arrows indicate positive direc-
tions of moments, forces, and angles. This system of axes is defined
as an orthogonal system having the origin at the center of gravity and
in which the Z-axis is in the plane of symmetry and perpendicular to
the relative wind, the X-axis is in the plane of symmetry and perpendi-
cular to the Z-axls, and the Y-axis is perpendicular to the plane of
symmetry. At a constant angle of attack, these axes are fixed in the
airplane. ' ’
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Figure 2.-‘ System of axes and angular relationship in flight. Arrows
indicate positive direction of angles. 1 =a - e.
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# f
(o) "Gust dsturbance

F ‘ ' . . 7
(b) . Control marpulation

lc - p

(c) Gust dsturbance - and corrective - control  manputation

Figure 3.- Illustration of superposition of motions to determine effect
of arbitrary disturbances.
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the dependent varisble.

004 005

Figure L4.- Lateral-stability boundaries calculated in table I. CZB was
C was the independent variable. C wa.s
ng P ng

actually véried by changing C . Varying C in this manner
: TBeail "8
a

caused changes in the tail contribution to all the other derivatives.
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Figure 5.- Variation of lift-curve slope with aspect ratio, taper ratio,

and sweepback for the case of subsonic incompressible flow.

Values from reference 3k.

89

= 0.11.
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Aerodynarmic  cenrer
of horizontal tai

16
a/c oy
14 p 8 A
TN & b Theory ——/
N/ & | (reference 28) 7

'Aefa//(Hon} /o \\ /‘.5 //
Aefa//(H Of f) <] > —

; —

0 2 4 6 8 10
Vertical location of horizontal tail zH/b tal

Figure 6.- Effect of horizontal-tail location on the effective aspect
ratio of the vertical tail éAetail) for the case of subsonic incom-

pressible flow. a = 0°, Taken from reference 35.
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Figure 7.- Variation of CDB/bL with aspect ratio and sweep for the

case of subsonlc incompressible flow A= 1.0; = 0. Taken from

e2713!

reference 25.
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Figure 8.~ Variation of CZB/CL with aspect ratio, taper fatio, and

sweep for the case of subsonic incompressible flow. Based on method
of reference 25. .
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Figure 9.- Effect of dihedral angle on C;  for the case of subsonic

incompressible flow. Taken from reference 58 and 66.
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) full span I

Cy r - T

= C
B lpp

where

o _ (A + Wcos A
IBp A+ 4 cosA < ZBp)
A=0
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Figure 10.~ Variation of [AC C;, and (AC <CD with aspect
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ratio for the case of subsonic incompressible flow., A = 1.0. Taken
from reference 96.
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Figure 1l1.- Charts and formulas for estlmating CZP for the case of

subsonic incompressible flow. Taken from reference 89.

, (CLG) 2
C C .

Ci1, = (CZ ) L. % L (l + 2 sinQAﬁ——-————+ i cos A) -1

p ) P/Cr=0 (Cloch___o T cosCA N + 4 cos A . 8

where
A+ 4 cos A

.(CZR>CL=0 i (FZFDCL=o,aO=2n <§£>A + 4 cos A

6

2
CL

D--——

A
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Figure 12.-~ Charts and formula for estimating Cnr for the case of

subsonic incompressible flow. Taken from reference 25.
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D

Cnr = CL
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Figure 13.- Charts and formula for estimating C; for the case of
- r

subsonic incompressible flow. Taken from reference 85.

lr = C1<: T) + CI<: :>
wing ‘L theory ‘L theory
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Theory (references 26, 34, and 107)

- Fairing based on
experimental data

08 ‘
N A =2
.06 A A4 =0
//// \\\\_\\\ A =/0
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0
) 4 8 12 16 20
M

Figure l_h.— Examples of suggested fairing of theoretical values of lift=
curve slope for use in estimating values for the vertical tail in the

transonic range.
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