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SUYMARY

The problem of flow of 2 compressible fluid past a body
with subsonic flow at infinity is formulated by the hodograph
method. The solution in the hodegraph plane is first con-
structed about the origin by superposition of the partlcular
integrals of the transformed equations of moticn with a set
.0f constants which would determine, in the limiting case, a

» known lncompressible flow. This solution is then extended
outside the circle of cenvergence by analytic continuation.

. : The previous difficulty sf the Chaplygin method »f slow
convergence of the series has been overcome by using the as-
ymptotic properties of the hypergeometric functions se that
numerical solutions can be obtained without difficulty. It
is emphasized that, for a solution covering the whole domain
nf the field of flow, both fundamental solutions of the hyper-
geometrical differential ecuation are reguired.

Explicit formulas for numerical calculations are gilven
for the flow about a body,-such as an elliptic cylinder, and
for the periocdic flow such as would exist over a wavy surface.

Numerical examples based on the incempressible flow so-
lution of an elliptic cylinder of thickness ratio of 0.6 are
computed for free-stream Mach numbers of 0.6 and 0.7.

The results of this investigation indicate an appreciabdle
distortlon in the shaps of the bodies in compressible flow
from that of incompressidle flow, which nescessitates a series
of computbtatione with various values of the geometric parameter
in order that the desired body shapes can be selected for a
given Mach number. It also is shown that the breakdown of ir-
[~ rotational flow depends solely upon the occurrence of limiting
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lines, which, in turn, are dependent on the boundary condi-
tions,

The numerical caleculations show that at a free-stream
Mach number of 0.6, irrotational supersonic flow exists up to
a ldcal Mach number of 1.25; whereas breakdown occurs at 1.22
for a Mach number of 0,7.

INTRODUCTION

When & flow of nonviscous incompressible fluid is irrota-
tional, it 18 well known that the problem can be reduced to
elther the problem of Dirichlet or that of Neumann, and that
there exists a unique solution for any given boundary condi-
tions. When the fluid ie nonviscous but compressible, the va-
riation of density makes the mathematical problem very diffi.
cult and complex, In this case, & pure pbtential flow through-
out the reglon is not always pogsidble for a given body; this ’
depends very much upon the condition at infinity. If a certain
epeed of the flow at infinity is reached, regions within the
field of flow will be created in which thLe irrotational flow
does not exist owlng to the appearancs of "limiting lines.!
Such regions were picturesesquely designated as "forbidden re-
glons" by Th., von Kédrmédn (reference 1), and they appear when
the local speed of the flow considerably exceeds the local
speed of sound. It has been shown that the occurrence of lim.
i1ting liner is directly connected with the breakdown of irro-
tational flow and with the resultant increase in drag of the
body due to shock waves. In other words, if there is a limit-
ing line in the field of flow, the isentropic irrotational
flow must break down., However, the irrotational flow may break
down before the appearance of limiting line due to the insta-
bility of the veloeity field. On the other hand, shock waves
can oceur only in supersonie flow., Therefore, there is no
danger. of breaskdown of 1sentropic flow if the whole field of
flow ié subsonic, Congegquently, the Much number correspond.-
1ng toithe first appearancve of local spoed equal to that of
sound cdan be designated as the "lower critical Mach number';
and theg Mach number corresponding to the first appearance of
limiting lines can be designated as the "upper critical Mach
number.r The actual critical Mach number for a given body
will bel influenced by the boundary layer and hence the Reynolds
number.‘ However, it must lie between these two limiting crit-
ical values. (See reference 2.) Thus, knowledge of these
critical speedg of the flow are essential for the design of
efficient agerodynamic bodies,
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To determine the critical Mach numbers, the general prob-
lem of flow of a compressible fluid about a given body must
be solved. The oftsn-used methods treating such a problem
are Janzen-Rayleigh's method of successive approximations and
Glauvert-Frandtl's method of small perturbation, The latter
method has been extended recently by both Hantzsche and Wendt
(reference 3) and O, Kaplan (reference 4). Indeed, both meth-
ods yileld valuvuable information regarding the effects of com-
pressibllity and are useful for many practical design problems,
particularly the determination of the lower critical Mach num-
ber of & glven body. 3But, so far as the general problem of
limiting line and upper critical number is concerned, none
seems to be adequate, owing to the doubtful convergence of
such successive approximations at the required high Mach num-
bers.

An entirely different approach first was made by Molenbroek
(reference 5) and Chaplygin ?referencé 6) by introducing the
velocity componente instead of the usual space coordinates as
independent variables. The advantage of the method is that,
instead of a nonlinear differential equation as is the case in
the physical plane, it leads to & linear one in the velocity or
hodograph plane. The particular solutions of this linear equa-
tion are found %0 be products of trigonometric functions of the
angle of ineclination of velocity vector and hypergeometric
functions of the magnltude of the velocity vector. It is then
possible to construct a gensral solution from the particular
gsolutions of the differential eaquation. The difficulty, how-
ever, is that the character of the field in the physical plane
to whleh the solution in the hodograph plane corresponds cannot
be determined beforehand. This difficulty prevents the exact
formulation of the boundary valus problem in the hodograph
plane. Chaplygin has overcome this handicap by first choosing
a "'suitable solution" in the hodograph plane and then procesding
to find the corresponding flow in the physical plane. The
gsuitable solution is one which, in the limiting case of zero
Mach number at infinity, becomes identical with the incompress-
ible flow over a body similar to¢ the body concerned. This will
ensure the satisfaction of the proper boundary conditions in
the physical plane. Furthermore, such & solution would be ex-
act both for the subsonic and for the supersonic regions, as
no approximation is introduced. Therefore, it is particularly
suitable for the problem of determining the upper eritical Mach
nunber for a given body, as limiting lines occur only in mixed
subsonie and supersonic flows. This method 1s followed in the
present report, except for the introduction of the transformed

potential funetion ,, for easy calculation of the space
coordinates.
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For the flow around a body, Chaplygin's procedure will
lead to a solution in the form of an infinite series, each
term of which is a product of a trigonometric function and a
hypergeometric function. To put the method on A firm founda-
tlion, it 1s necessary to estadlish the convergence of the in-
finite serles. Chaplygin himself has done this for the sub- -
sonic region. Thus, only the extension to include the super-
sonic region remains to be completed. 1In part I of this re-
port, the general properties of hypergeometric functions of
large order are investigated in preparation for the proof of
the convergence given in part II. The egesential point in
these parts is to establish the upper and lower bounds for
the hypergeometric functions so that the sum of the infinite
series can be discussed. It is appropriate to mention hers
that for the proper representation of the general solution
~in the hodograph plane, both fundamental solutions of the hy-
- Ppergeometric differential equation are required. This fact
has not been consideresd by many of the previous investligators
in this fleld. 1In other cases (reference 7) the investigator
has chosen to work with only the first solution.

The general solution constructed by the Chaplygin method
ig really an existence theorem, The extremely slow. conver-—
gence of the series makes numerical calculation very difficult,
if not impossible. This, in fact, constitutes the main diffi-
culty of the method. In part III of the present report, this
difficulty 1s svercome by using the asymptotic properties of
the hypergeometric functions. The result is the separation of
the solution in the hodograph plsane into two parts. One part
is of closed form and 1s the product of a universal funcfion
of the velocity and the same solution as for inconmpressible
flow but vith a velocity distortion, or velocity correction.
For instance, the first part .of the stream function for the
compressible flow 1s equal to the product of the universal
function of velocity and the strear function for the incom-
pressible flow with the magnitude of velocity modified by a
given rule. The other part is an infirite series which con-
verges rapldly everyvhere except in a small region on both
sides of a critical circle with a radius equal 40 ¢q = ¢ 4in
the hodograph plane. In practice, by using only a few terms
of the infinite series, this zone of slow é&onvergence can be
limlted to such a small interval that it is of no comnsequence.
Thus the Chaplygin procedure 1s improved to a point where ac-
tual numerical cnlculations can be made without difficulty.

As a result of this part of the study it becomes clear
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that by the mere substitution of a different speed scalsg, or
velocity distortion, in the solution for an incompressibdle
fluid, an accurate enough solution for the compressible flow
cannot be obtained. For if this were the case, then not only
the second part of the solution (the rapidly convergent se-
rles given by the present method) would be negligible, but
also the value of the multiplying universal function of veloc-
ity 1n the first part of the solution would be unity. How-
ever, the value of the second part of the solution is not
snall compared with that of the first part for & speed near
that of sound, and the value of the multiplying function of
veloclity is.far from unity. In other words, the unsual so-
called hodograph method (reference 8) cannot, in general,
yield satisfactory results, for mixed subsonic and supersonic
flow. On the other hand, the present method does show that
the second part of the solution 1s gero and the multiplylng
funection in the first part takes the constant value of unity,
if the isentropic exponent is equal to ~1. This means that
for thie particular case, a8 simple spesd distortion is suffl-
clent. This is, of courseg, in accordance with the previous
investigation of ¥on Karmén (reference 1) and Tsien (reference
9) and L. Bere (refersence 10J},

Furthermore, the present method also shows that the rules
of speed distortion for the first part of the solutlon can be
used only for subsonic flow and that there is a singularity at
the local sonic speed. For regions of supersonic flow, the
first part of the solution involves both the incompressidle
stream function and the incompressible potential function,
Thus even without considering the second part of the solution,
there 18 no possibility of making the compressible stream
lines coinecide with those for incompressible flow in the hodo-
graph plane by a simple stretchinz of the speed scale. The
mathematical basis of this fact 1is the change in character of
the differential equation from elliptic to hyperbolic in the
transitlon from subsonic to supersonic fiow. For the super-
sonic reglons, it is not possible 0 use a real transformation
of the veloeity variable to convert the differential equatian
of flow to the Laplace equation, and thus make & simple con-
nection between the compressible and the incompressible flows.
This.is one of the difficulties of the previously proposed
hodograph method, In fact, writers using this method must
generally limit their calculation to subsonic speeds, (See
references 9, 10.) Now this 1imit is removed, and the whole
field of mixed subsonie and supersonic flows can be treated at
once with ease.

For the purely subsoniec flow, the second part of the
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solution is small compared with the first part and may be
neglected. Furthermore, 1f only the zero stresamline repre-
senting the body is considered, the universal multiplying
function of wveloclty is of no importance,. In other words,

fer this case, a simple speed dlstortion from the solutlion of
incompressible flew is .sufficlent to give accurate enough re-
sults. However, the subject of the "best" velocity distor-
tion rule in subsonic regions has been the subject of many
discussions., (See references 1 and &.) The present annlysis
id considered te settle this aquestion. This is due to the
fact that the present velocity distortion rule 1s obtained
from the asymptotic properties of the hypergeemetric functions,
and that such properties are definite and uniquse. ©DTherefore,
the resultant velocity distertion rule 1s not the result of
uncertalin speeulation. PFurthermore, it is also the best rule,
becaunse the analysis implies that this rule will make the
second part of the sclution, or the correction terms, the
smallest. This distertion rule 1s found to coincide with that
of Temple and Yarwood. (See reference 11.)

~ For the purely supersonic flow, the second part -saf-~the -
golution is again small compared’with the first part and may
be néglected., In fact, the solution then can be reduced to
that of the simple wave equation with the inclination of the
veloclty vector and the distorted velocity as independent va-
rlables, This is, 3f course, the counterpart of the fact that
by a simple distortion in velocity, the differential equation
for subsonic flows can be reduced to the Laplace equation.
The usefulness of thie new result for purely supersonic flow
has yet te be exploited.

Once 'the general problem of mixed subsonic and supersonic
flow around a body is solved, the determination of the upper
ecritical Mach number or the Mach number for the first appenr-
ance of the limiting lines is a simple matter. This problem
s discussed in part IV of the report. 4 simple methed is de-
veloped, based on the properties of the limiting line as given
by von Kidrmédn (reference 1), Ringlebd {reference 12), Tollmien
(reference 13), and Tsiexn (reference 2)/S

To test the practicability of the mathod developed, twe
numerical exanples are worked out in detail, However, in
order tq reduce the amount of computational work and in view
3f the limited time availlable, a slightly different procedure
actually is ussd. This procedure is only approximate but is
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believed to be sufficiently accurate in the supersonic reglon
to give a satisfactory description of the most interesting
features of such flows. The examples chosen ars derived from
the incompressible solution of an elliptic cylinder of thick-
ness ratio 0.6. The free-stream Mach numbers of the compress-
ible flow are 0.6 and 0.7 for these two examples., The first
case gives a smooth flow over an "elliptic" cylinder of thick-
ness ratio 0.42. The maximum local Mach number ig approxi-
mately 1.25. Thus a considerable supersonic region exists.
The second case gives & flow with limiting line,

Finally, it must be said that owing to the limitation of
time, only the case of flow without eirculatiorn is investi-
gated in detail. The explicit formulas for numerical calcu-
lation are given for two cases: (a) TFlow around a body such
as an ellipse, (b) periodie-flow. -patitern_such ¢ as that over a
wavy surface. However, it is believed that more genersal _cases
can be studied by a slight extension of the present results
and use of the same method of approach.

This investigation, conducted 2t the Guggenheinm
Aeronautics Laboratory, Californis Institute of Technology,

was sponsored by and conducted with the financlal assistance
of the National Advisory Committee for Aeronsasuties.

NOTATIONS

The symbols used in this report are classified according
to the folloawing groups:

A, Physical Quantities

x,y Cartesian coordinates
u,v the velocity components

q the absolute value of the velocity vector

(]

the inclination of the velocity veector with x-axis

density of the fluid

T

density of the fluid at q = O
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P pressure within the fluld corresponding to p

Po pressure at q = 0

Y ratio of the specific heats

c the local speed of sound

C, the speed of egound at g = O

U the value of q &t infinity, assuming parallel %o the
z;ax:s. With subseript, however, 1t_may be a function

B, Hydrodynamic Functione in the Physical Plane
z = X + 1y

Wolz) = ©o5(x,y) + 1¥,(x,y) complex potential for incompress-
1iple flow In ¢

Dy veloclty potential for 4incompressible flow
Vo stream function for incompressible flow
® veloecity potential for compressible flow

W' stream function for compressible flow

C. Hydrodynamic Functions in the Hodograph Plane

w = u - 1iv

Wolw) = po(u,v) + t¥glu,v) complex potential for incompress-
ible flow in w

wolu,v) - velocity potential for incompressible flow
Wo(u,v) stream function for incompressible flow

Ao(w) = gZW - Wo(w) = xo(u.v) - iob(u.v) transformed complex

: . potential function
Xo(u,v) = ux + vy - wol{x,y); =x = i}°'
u
¥y = 3% transformed potential

ov function
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W(W;T) the complex potential function for compressibdle flow
Yylu,v) = Im-{W(w;T)} stream function for compressible flow

A(w;T) transformed complex potential function for compress-
ible flow

x(u,v) = ux + vy - o(x,y) = Rl {A(W;T)} transformed potential
function for com-
pressible flow

X
Bplu,v) = ?ﬁf

aO'o

Qo(unv> = =3

Ylgsd) = wl(q.é) + Wa(z)(q.ﬁ); wl(q,é) represents the con-
' tribution by the
velocity distorsion;

¢a(z)(q.6) stands
for the transformed
infinite series,
where the super-
gscript 1 may ei-
ther mean 1 the
inner, or o the
outer solution. In
‘the case of coordi-
nates, the notation
is exactly the same.

e¢.(ad(ry = 7. (1)aB () Bp AF,(T)
% T =v a +f?;:75%?;:)
By aF ()

a”(m)(T) = Fp(myady () FE(T,TO(T,)

Jad(r)y s v =175 ,1(T)A§£(a) + BpbE, (T

E v
v + 1 f(Tl)TU(Tl)

v
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D, Parameters and Variables
v positive rational numbers

m,n pogitive integers

a denotes 1 or 2 when used as superscript with a dbracket
or [> A l-i..!‘,
VA A |
[ denotes the dependence on £ when used as subscript
or B: 1
] Y -1
a3
A= 2(28) % _E__ L the ratio of the distorted spesd
(L + o)™ a7, 2(7,) to that at infinity
'z
SR T
28 ¢,

faBr - 1
B o= cog™* .C.(.'...L:_].'.
28T
£, With superscript or subscript they denote some functions
of T or stand for.the two families of the charscter-
istic parameters 9 + w(T), ¢ - w(T) of the partial
differential equations for Y(q,d) or x(q,9).

¢ complex variable or {{(T) a function of T

M, = I the Mach number at infinity

Ca
Ty % _]-_‘_H_a_a_!
2B Co
€ geometrical parameter of the body
A Laplacian or difference between exact and epproximate

values of & function or a constant
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B, Hypergeometric Functions

a,b,¢c parameters of the hypergeometric functione. In par-
ticular, a,, b,, ¢, are defined by (29).

EM(T) = F(ay, by; ey;T) first integral of the hypergeometric
equation assoclated with the
stream function

E;U(T) = F(l + @y - ¢,y 1 + by = €p; 2 = ey; T)

v .
' -V .
: T : (a,)T (v,,)
() = 5 ] ——= ™ E (1)
(28Bcy®) Tle,~1)T(ey,) LT(14ay-cy,)T(L+by-cy) v
T(cy) 1 ' '
-—Y  F U(T)J gecond integral of the same eguation
T(2-cy,)

EU(T) = qav FU(T)
T)

P, 1(T) = F(l+a,, 1+b,; l+c

“~p,1

PNy = B (/R (7))

v? pl

_:E_'_v’l(r)(T) = _F_v,]_('r)/:_F_v(T:L)

() = B (1) + 17
R,(T) = E*U(T)‘
¢, (1) = arg I* (1)

If any function or a constant 1s associated with x{q,?),
it will be marked on top by a symbol ~, such as F,{T).
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" PART 1

DIFFERENTIAL EQUATIONS OF COMPRESSIBLE FLOW AND
FROPERTIES OF THEIR PARTICULAR SOLUTIONS

1. Equations of Motion

It is proposed to study the irrotationsl steady motion of
an inviscid nonconduoting compressible fluid in an infinitely
extended domeln containing & cylindrical body with ite axls
perpendicular to the constant.velocity at infinity. The flow
is then two-dimensional. Let x and y be the Cartesian co-
ordinates and uw and v the velocity components parallel to
the x- sand tho y~axis., The dynamical equations governing such
a motion, in the absence of body force, are

au ou _ op ’
pu é»-x— e Pv 5-5‘_- = e ﬁ- (1 )
ov ov _ _ op : 2
pu £= + pv Feii (2)

Here p 18 the pressure and p the density of the fluid,
both belng continuous functions of x and y. In addition,
the following equation of continuity must be satisfied:

é% (pu) + é% (pv) = © (3)

Purthermore, since the velocity 1e constant at infinity, the
flow is irrotatlional there. Then, according to Thomson's
theorem, if the pressure is a function of the density alone,
the flow will remain lrrotational; that is,

- == 0 (4)

QJIOI
N id

In the case of flow of an inviscid nonconducting gas, the
thermodynamic change of state of the gas is adiabatic, If
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the flow 1s assumed to be continuous, excluding shock waves,
then the relation between p and p must be that of an
isentropic process:

p = constant p7 (5)

where ¢« 18 the ratio of the specific heats.

As in the case of incompressible flow, there are more
equations than the number of the variables. However, by vir-
tue of equations (4) and {5), the dynamical equations (1) and
(2) reduce to a single differential equation and can be inte-
grated easily to give a relation between the pressure and the
maegnitude gq of the velocity: namely,

Y
. - 3 ye—1
P =P, {: - :L_—E L VY1 yith g = uB + v8 (8)

Here Po and cé ere respectively +the pressure and the

speed of sound at the stagnation point q = 0 and ¢ =,/ %%;
It is possible to obtain a similar relation between p and
q by means of equation (5):

i
m-_—n-—-«-.:—- fY - l 31"7:-1—
TR (PP

where p, denotes the value of p at g = O.
After integrating the dynamical equations, the velocities

w and v can be determinsd from the kinematic conditions
specified(b§ equations (3) and (4). By eliminating p from
3),

equation the result is
2 3
(r-2)&_Zv e, b X% .o (8)
c® 7/ 3x c® 3y c®/ 3y
where ¢® = yp/p and thus can be calculated in terms of the

speed by equations (6) and (7?), It is of interest to note
that the equation of continuity (8) now, unlike the case of
lncompressible flow, becomes dependent on the dynamlical equa-
tions and, consequently, is nonlinear. This change in the
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character of the fundamental equation makes the direct solu-
tion of the problem in space coordinates very difficult.

2., Transformation of the Differential Equations

The assumption of jrrotationality implles the existence
of a2 velocity-voterntial for such a flow, If this function is
introduced to eliminate wu and v, equatlons (4) and (8)
would ‘give rise to a nonlinear partial difrlerential equation
of the second order. The problen is further complicated dy

' . the possible appearance of supersonic regions, or ragions

where the speed of flow is larger than ths local scnic speed,
This means that for some part of the domain, the equation is
of the elliptic type; wbhile in the other part, it ia of the
hyperbolis type, Thue the equation not only is nonlinecar but also
1s of mixed type, 2nd there 1s as yet no snccessful method to
deal with 1t directly in the physical plane. Molenbroek (ref-
erence 5) and Chapivgln (roference 6) male sorie progress in
solving the provlem by transforming the equations from the
physical to the hoc¢ograph plane in which u &nd v are taken
as the injependsnt variables., If this is done, the differen-
‘tial eguations becoms linear and thus casn be solved by well-
known methods. .

Let the transformation be deflned by

w = ulz,y) . (9)

v = vix,y) ' " (10)

If u and v are continuous functions of x and y with
continuous partial derivetives, and if the Jacobian ° ’

is finite and nonvanishing, a unique inverse trans-

(a(u v)
formatlon exists. Under these conditions,equations (8) and
(4) are easlly transformed into

a3 2 .
<1_L>§l+?_‘.1l§_’i+<1_ﬁ_>.§£=o (11)
=] cB aV 3 - .

tos
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Corresmonding to m(x.y) in the physieal plane,there is in-
troduced here a function X(u,v) defined by

O - S 13)
X=xu;+§rvlllqa,_1.t.au, ¥ v (

While equation (12) s satisfled identically, equation (11)
becomes

(l - __) 33% , Bvu 3°% <1 _ _i_ 3%% . o (14)
dvRe c® avcu ou?

As ¢ 1is a funetion of q alons, the equation fer X(u,v)
is then. linear. PFrom equation (13) it is recogniged.that if
X(u,v) 1s known, & ocne-~to-one correspondencs between the
space coordinates and the velocity components can be easily
established.

However, it is also clear that this function is incon-
venlent for obtaining the streamlines and the flow in the
physical plane. To solve this part of the problem, a plan
may be adopted similar to Ghaplygin 8 by introducing both the
potentlal function m(x ¥) and the stream funection VY(x, y)
defined by:

w88 220 | (15)
x Sy
vV oV
u = —— = -
P Py 5y PT Po 31 (18)

From these definitions are obtained immediately the following
equivalesnt relations:

ap

PoV

uwdx + vdy - (17)

~pvdx + pudy (18)

For the subsequent calculations, it was found convenlent %o
introduce the polar eoordinates in the hodograph plane de-
fined bdy:
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w s q cos 0, v = q sin 6 (19)

where 6 18 the inclinatlon of the velocity vector to the x-
axis. Functions dx and 4y can be solved for from equa-~-
tions (17) and (18). As dx. and dy are exact differentials,
the condittons of integradility then give:

P Q%N 1 3av .
3agq ( . 3> q 98 : (20)
Llap_ po RV _— A
- = - . . : 1
< 35 o aq o (21)

By eliminating @ between equations (20) and (21) an eéua,
tion for VY 4is obtained:

Baw <l+-—-->q_ (1---— .ae\'ll“_  (22)

Equat*on (14) can also be transformed in polar coordi-
nates. The procedure is straightforward and yields

a
q® X, I ) (1 - a ——5 = 0 (23)
3q? c?/ 3%

There i1s an additibnal relation between X and o de-
rived from equation (13):

P = aXg - X (24)

Since ® 1is connected with W. this relatlon ensures that

Y &ad X are properly connected ani represent the same flow
pattern in the physcical plane. It can be thus conslidered as
the equation of compatidbility. Hguations (22), (23), and (24)
are the three fundamental equations 1in .the present probdlem
dealing with the two-dimensional flow of a compressible fluid.
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3. The Particular Solutions of the Differential Equations

As the differential equations for V(q,8) and X(g,8)
ere llnear, a general solution can certainly be built dy
superimposing the particular integrals of the equations. Teo
obtain the particular integrals, let W(q,0) and X(q,9)
be of the following forms:

Yia,8) =.qv ¥y, (a) olvO

X(q,8) = qv,xv(q).eive

where v 1s any real number., By substituting in equations
(22) and (28), the equations satisfied by V,(q) and ¥%,(a)
are: ’ '

2 2 “any 2
a av
W L (ay 1+ ) o (v s 1) L v, = 0 (25)
aq /"4 Ter 7Y
q c e ¢
2 2 2
2 4%y ( . aq > aXyp q
U g (2p + 1w 2 —_— + ly - 1 Xy = 0
a dq® c?® a dq ( ) e® Y ' (26)

Now each of these equations can be furthsr reducéd by changing
the independent variable. The appropriate transformation is
found to be

1 g° 1
_— . with =
25 Coa ﬁ i - 1

T =

By expanding the gas to zero pressure, or vacuum, the maximum
velocity is obtained. Equation (6) shows that the meximunm

- /2 :
speed 1s q . = ¥ o1 ¢,. Therefore, the maximum value of
T is unity, Similarly, it is found that for the speed of
the flow equal to the local sonic speed, T = ——JL——, equa-

20 + 1
tions (25) and (26) then become

T(1 -~ TP, (1) + [cv - (ay + by, + I)TJWU'(T) - apbu¥,(T) = 0
(27)
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T = TRT) [°V-' (ay + B + by + B + I)T}xultr)

o= ey + BBy, + BIX(T) =0 (28)

where

a, + b, = v -8, a,b, =~ % Bu(v + 1), and oy, = v+ 1 (29)

These are the hypergeometric-  equations, of which equa-
tion (27) was first obtained by Chaplygin in 1904, (See ref-
erence 6,) The differential equation of this type has three
regular singularities at O, )1, and 4+, If the differences of
the two exponents at the respective singularitles; namely,
¢ -1, a-"5b a4+ b~ c, are not integers or zero, the two
fundamental independent solutions are F(a,b; ¢; T) and
T™"¢ P(1 + a~¢, L +b=-c; 2«c; T). They are single-val-
ned and regular in the whole plane with & cut from +1 %o +wm.
The function: P(a,b; c¢; T) known as the hypergeometric fune-
tion of general parameters a, b, and ¢, is defined by the
hypergeometric series which ig absolutely and uniformly con-
vergent when |7l < 1, provided Ri{(c - B - b) > 0. For
17| > 1,  analytiec continuation has to be used. Furthermore,
1t-4s normaliged so that at T = 0 '

Fa,byc; 0) =1 (z0)

-

Hence, the particular solutions of equation (27) are

Flay, byicp;T), T'7% 31 + Bap=Cy, 1 + By = Cp; 2 = CuiT)
(81)

The particular solutions of eauations (28) are

Fla, + B; by + B; cu; T)y T VP F(1 +a, ¥B - cy, 1+ by

T .+ B~ cp; 2 - Cyt .T) (32)

%er§ 8y bv' and c, are parameters defined by equation
29},
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When v 1s a positive lnteger while a,, and b, re-
mein as they are, the second integral will reduce to a con-
stant multiple of the first one. This case was first studied
by Gauss (references 14}, who found a second integral involv-
ing a logarithmic term by considering the limiting value of
the integrals given as 1 tends to an integral value. The
method has been further developed by Tannery (reference 15)
and Goursat (reference 16). However, the form regarded as
conventional nowadays was that obtained by Frobenius' general
method, According to this method, the pair- -of. . fundamental
solutions of a hypergeometric equation are

F(a,b; n + 1; T), K, T-e_{Tn F(g,b; n+ 1l; Tllog T

2 Qn(l)(a.b; T) + P (1)(T)W (33)

n-1 J
when ep = n + 1, n Ybeing a positive integer; and
Q (1)(a,b;-r)= Muo +1) DNa + w)(b + m) ‘I’(a’b; .m) Tni

I"(a.)T(,b) = Mm +1)0Mn + 1+ m)

P, 1(1)(1.) (- 1)1‘-"'1 Mn + 1) z (- 1)1111"(9. -n+ n)l'(b~n+ n)n~-mn) T (34)
L(a)T(b) ' Pm + 1)
Mm-1 T m
Vopsm) = 3, L 1.y &
r;o a+1r b+ r n+le+ r T

Here a,b may be elther an, b, or ap + B, by, + B de-
fined in equation (29) according to whether the system (33)

is referred to as solutions of eguation (27) or (28). And
KEn can be determined 80 that the product of the second inte-
gral and ¢° satisfies the condition (30).

In view of the fact that the second integral in (33)
does not constitute a family of solutions with the second in-
tegral given in (31) or (32), it.is very desirable to define
a new functlion as second integral which will be continuous in
v as well as in T. Let gv(T) denote the first integral
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Fla,b; e,; T). As a second integral, take the linear combi-
natlon of the solutions:

Fu(T) = K, <T(1 = ep)0{a)T(0)E(T) + IM(1 = ep)T(1 + a

1w
C e T b - et D E (M) (35)

J

where

E_U(T) = {1 + & = € 1 +Db=-cp 2= cy T)

This is evidently a solution and valid for all values. of wv.
The constant KU is determined sublect to the followling con-
dition:

a®?V F(T) =1 for T=o0 . (36)
The value of Kv then is found to be

K™ = (28e) Dley, - 1)0(1 .+ a « o )[(1 + b = o)

Using the relation

Plep)l(1 = ep) = m csc ey

equation (35), when multiplied by qav. will define a new

fanction Gu,(7): a, b £ - n

m D(a)l'(®) T° F, (1)
EU(T) =
sin cym F(ep)liey -~ 1(1 + a = ¢ JI(1 + b =~ cy)
- 2.,(T) ] (37)
P(CU - 1)P(2 hd CU)

When v %akes integral values, the expression in the
bracket vanishes; however, the limit of the ratio exists:

§,(7) = lim G (T)  (38)
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. The usual definition of the limit ofla quotient gives

6, () = (- 1\““[3 D(a)(0) TP Fuo(T) _ 3 F_,(T) ]

L% B(v + 1IP(w)T(a - 0IT(D - ©)  OP D(wI(1 - v __

By considering separately the first n terms in ,E‘DPT). as

'(l -« v) has poles at Vv = n, a streightforward reduction
yields:

G (1) = ¢, ™ log T B ATY T Q(a) (r) + Pndia)(;) (89)

where
[+ -]

n+l
Qn(a)(T) = (-1) S—' [\y(a + m) + \l.{(b + m)

T'(a)l{en + a)}l(-n + b)) -
n=o

- Y(e, + m) - ¥(n + 1)] Me + m)I(b + m) -2
I'(e, + a)l'(m + 1)

(3)(1) _ 1 %i} (-1)® P(awn+m)E (b=n+m)(n-m)

B © I(o)P(a-n)P(b-n) &, T(m + 1)

n+i
0 = («1) T(e)'(v)
B DMa)'(n + 1) (a - n)(b - n)

» :
and Y(f{) denotes the derivative of logI'(t), It ecan dbe

seen that the difference between (33) and (38) 1lies ouly in a
consta? nultitle of the first integral which has been absorbed

(1),

In the followlng discussions, the two fundsmental solu-
tions of the hypergeometrlc differential equation will be
taken as E (TX and q-3V GU(T) The normalization condi-
tions given by (30) and (36) are chosen for the continunous
passage of a compressible to an incompressible flow. Ultimate-

. ly, these functions are again defined in terms of power weries
which are absolutely and uniformly convergent within the do-
mgin iIT{ < 1, However, since the maximum value of T at-

. talnable by the fluid is unity, the continuation of the solu-~

tions beyond the unit cirecle will not be discussed here,
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Thus E,(T) and ¢ 2V¢,(T) denote the two independent

integrals of equation (27) where v 18 any positive number.
The particular solutions of equation (22) are then:

qvivtr) [Av(z) cos V¥ + Av(a% 51? vﬁ] . q‘vgv(T) [Bv(l)cos vé

+ Bv(") gin ms:‘ (40)

where Av(l), Au(3>, Bv(l). and BD(a) are constants, Sim-
ilarly, those of equation (23) are

q?ﬁ;(T) [35(1) cos VLI + Ev(g) gin vﬁ} . g VG [gu(l)cos vd

~

4+ 55 et vﬁ] (41)

where EU(T) and 4‘3u5 (T) are the two independent inte-
grals of equation (28) ané xv(l). Av(ﬂ), Bu(l), and Bv(a)

-

are constants.

In addition to thege solutions, there are two other inte-
grals each of which is function of one variadble only.
Assuming V = V¥(q) or WV(¥), then equations (22) and (23)
yield respectively:

e, ¥ and e, /(1 - 7k ar (42)
g, % and ¢ /(1 - nPar (43)
: T

whieh correspond to the fundamental solution of the Laplace
equation. :

As ¢, approaches infinity, all thése particular solu-
tions reduce to the famillar harmonic functions: namely,

QU[AU(I)OOS vd + Au(a)sin Uﬁ]. q-v[éu(l)cos vé 4+ Bv(a)sin vé} (44)
2 _
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and

c1d, s log q (45)

This property which is the consequence of (30) and (36) is
essential in the method presented in this report for connect-
ing a compressible flow with the incompressible flow of simi-

lar configuration.

In the subsequent calculations, another integral will be
encountered for the functlon x(q,ﬂ) which corresponds %o
the imgginary part of w log w el™ or g log q sin 9
-qf{m = 8) cos 8 of the incompressible-flow. - Suppose the so-

lution possesses the form:
%(q,8) = X;{q) ein 3 = Xg(g)(m - &) cos &  (46)

By substituting the expressior in euﬁation (23), X, and %

.. are found to satisfy simultaneously the following differen-
tial equations: _

a2%,"(q) + (1 - %.Z) (qxl' - %) = 2 (1 -'%9—)(3 (47)
a®%y" + (1 - %;-) (aXs' - %g) =0 | (48)

!Bquation (48) can be easily integrated by putting Xz = qk5(q).

The condition that Xp—>q as ¢, —> ® requires kp(q) to

be a constant. The second integral of equation (48) is Just
‘the second of (43) which, 4in the 1imit, tends to 1log a. Thus

Xz = qa &is the appropriate solution. With this solution, 1t
is possible to proceed to solve equation (47) by ecsaming

X; = qky{a). The equation for kilg) 1is again integratle by
quadrature, and the result is . ’
T

k1(g) = 2 [(23 +1) log'T - 4 Ky f(l - nP -d—'r] + Kz (49)
2(p + 1) T 7@

V.,

there K; and. Kz ".are the coﬁstéﬁfs'of integration, Hence,
the desired particular integral 1is ’ :
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X(q,?) = qk;(T) sin 8 - q(m - 3) cos & (50)

The correspondence between soluticns for compressible flow
and for incompressible flow is summarized in tabdle 1,

‘4. The Properties of the Hypergeometric Functions
of Large Order

The behavior of F(a,,b,; ¢, T7) for large positive

values of p has been discussed by Chaplygin in connection

with the question of convergence of his series solution for

the flow of a gas jet. Howevér, his discussions-are limited
to the subsonic flow and, for this reason, the value of T

18 restricted to the interval O < T < _El;_I, In the more
. - T 2B + e

general problem where both subsonic and supersonic flow may
exist, the whole interval 0 < T < 1 has to be considered.
FTurthermore, both integrals of the hypergeometric equation
are involved, as will be shown in part II. 4s a preparation
for the proof of the convergence of the solutions, the prop-
erties of the hypergeometric functions of large order in the
extended interval will be discussed presently.

Chaplygin (reference 6) introduced a new function

v
g% £,(T) defined as the logarithmic derivative of TE'Ev(T):
ngmely, l

v
v (1) = zq-£% log 12 I (1), v # 0 (51)

where X . (T) denotes the Ffirst integral of the lypergeomet-
ric equation (27) or (28) and v can be either an integer or
not en integer. Then in the place of equation (27) or (28),
the corresponding differential equation for Ev is a2 Riccati

equatlon:

= t x B v é_lv(2a+l)=
X(tp) = byt % Bty v 2 [gv {26 2 ] o (52)

where the lower sign corresponds to equation (38). As shown
by Chaplygin, EU(T), although apn oscillatory function, - -
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‘can have no root in O < T< Egl;—i and, consequently, EU(T)
+

is finite and continuous in the same interval, Morsover, it

can be deduced also that ¢£,(0) = 1 and Ev'(O) = -B. Since

1(T) does not change sign in 0 < 7 < —L1 __; (r) 1is
ty & . - T 2 +1 Ly

monotonic decreasing and eventually vanishes at Ty < 7%, T*
being the first root of the hypergeometric function for

v > 0. Since T* 1ig a decreasing function of v, when Vv
becomes large, T* and consequently T, will d4iffer from

BB]I—I by a small quantity,

Chaplygin's theorem,~ In 0 < T < - 1 , 1f a monotonle

continuous function ﬂU(T) satisfies (1) M,(0) =1 and
(11) %x(My) 2 0, then

ny(T) Z (1), v >1 (53)

The proof is given in Chaplygin's naper (reference 6,) In
the case of the second integral »{T), the theoren is still
true with the signs of inequal*ties reversed becauss 1t can
be verified that X(f.,) = 0, where E_,(7) corresponds %to
the case of F,(T) instead of F,(T) 'in (5l§7 and E_,(0)=-1;

therefore £_,{(7T) 1is negative in 0<T<

— 2B + 1’
Gorollasry (51).- In 0 < ngggjt_i. the functions

ED(T) and &,(T) fall respectively between the limits:

(13 T, %(1) < B (T) <1 (%) (54)

-V

(11) T, U(T) > By(T) > T, (1), v > 1 (55)

wvhere

. - 1 -7 T

f
J
[}
/ _1 - (1 - T)a] 4T (57)

T(T)se

*\ r“‘w

To(T) = exp

2T
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‘This cap be verlfied easily by choosing T to be

f;/l" (28 + V)T ‘4o (1 - F . Ae, ovidently, in 0< T < %
CleT ' ' - - 2B+1
when
— .
v > 1, M/ L= ;za : 1) < t, < (1 - 'r)5 (58)
and ' .
f _
..<1+o(%)>/ 1 izﬁ : Lt Ey > - (1 - mF (59)

and furthermors, X(7M,) £ 0 arc satisfled, consequently, 1%
follows the results,.

Gorollary (52).- In 0 < T < - 1 __, the absolute valwe
28 + 1

of the logarithmic derivative of F(av,bvg cp:.T) divided by

v, 1is bdupded both above and bslow - that 1s,

F(av,hv; Cys T)

where M,(T) and Mp(T) are independent of v. This really
1s a consequence of (58) and (59).

It shall Be noted that the results esbablished in the
foregoing are apniicable to X, (7) = Fla, + B, by + By ey T,
provided v is large, because then the two seguations (27 and
(28) tend to be the same.

Obviously, Chaplygin;s theoren ceases to be true when
L . For in the interval 1 << 1, the solu=-

286 + 1 28 + 1
tions of the hypergeometric egquation are osclllatory and,

T >

hence, within any closed intervsel in Egj;.z < T<1 the num-
+

ber of roots of F,(T) will be proportional to v. (See ref-

erence 17.) When 1 1s large, there will be a large number
of roots in the interval, As a conseguence, the functien
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tE,(T) will have there an ever increasing number of simple

poles, and a finite interval in which EU(T) remaing finite
for all v does not exist.

1

To carry the investigation over into T < T<1,
the method 1s modified. Let Z (T) and Fv(T) be two inde-

pendent solutions of equation (37) or (28); and let the lin-
ear combination be denoted by

FA(T) = B,(T) + 1 P (1) (61)

The complex function is, of course, a solutlon of the same
differentlial equation., In terms of its modulus RD(T) and

argument ¢U(T), the function may alsoc be expressed as

' P A(T) = R,(T) ei¢5(1) (62)

where both R,(T) and ¢,{7T) are continuous functions with
continuous derivatives. By comparing with (61), it is neces-
sary to havs

b
Pan Y
-
o
]

RD(T) cos ¢ (1) (63)

o]
<
~~
-1
N
1

Ryu(T) sin &,(T) (64)

According to the Sturm separsetion theorem, Ev(T) and FU(T)
never vanish sinmultaneously 1n any closed interval and RU(T)

never vanighes in 251 T < T<1 and remains positive in
+

the whole interval. Then corresponding to (51), a complex
function EU*(T) can be defined as follows:

v
vy (T) 2'r§% log T2 F,%(7) (65)

wvhich gatisfies the same equation (52). On separauing into
reel and imaginary parts, the Riccat! equation for ﬁ *(T)
becomes '
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2 (6,008, = 00w B g (), 2 a6 ga(a)

1

L (28 + 1)7 - 1} =0 (88)
1 -7

x(gv( 2) ¢ (1)>—g (a) _,__{_____;g (=) NN ()¢ (2) = o (s7)

where gv(l) and ﬁu(z) are real continuous functions of T
defined as

E,:(‘r) = Ev(l)('r) + 16,020 (1) (68)

Their connection with RU(T) and ¢U(T) separately are giv-
en by means of (65): namely, :

v&u(l)('r) = 37% log 'r'g’ R (1) (69)
PRSI P APES (70)

Now equation (67) can be integrated in terms of ﬁu(l)(T)
and whence ﬁv(a)(T) can be eliminated from equation (66).
Then the equations for . §,'*? and §, 2/ are

xl(ﬁu(l)) = gb(z) + B

-

£,3) + 2 [ga(l)

. 1l - T
T, (1) a7t
EU(Q)CT) = -E,o(l - T)a B-UTfo gu T ’ go = 2

(To& R-l,('l'o)>a
(72)



NACA TN No. 995 ' 29

Equation (71) together with the comdition £,(2)(0) = -1 de-
termines uniquely the solution £y 1)(1). The actual value
of ﬁv(l)(T) can be expressed, of course, in terme of the

known hypergeometric functions. Byt the problem on hand is
to determine the properties of §y 1)(T1) for large V which

are given by the following theorsm.

Theorem (52).~ If nvﬂl)(T) 1s continuous and monobtoniec
in T < T <1l and satisfies Xl(nv(l)) :'O) then for all
v >N ' )

n, () 2 £y (2 () o (73)

The proof is given in appsndix A.

Ceoroliary (£3).- In T, < T < 1, the following inequal-
ity holds for the modulus of Eﬁ(T):

R
Ry () /By (1) < (52) , v > ¥ (74)
where '

(28 + 1)Tg = 1>0

Tor in T, < T <1, éu(l>.< 0; and hence ﬂv(l)(T) = 0
satiefies the condition 0 > ﬁv(l)(T), which gives (74) by
integration.

Now, since Eu(l)(T) ‘18 bounded by zero for all © # O
in To < T<1l, it is implied also that

R,(T) < T,V(T) (75)

%
wvhere T ,(T) =‘Ff%9' Hers the constant %, can be determined

by Jjoining T, a% T = To with T; or Tz defined by

egielions (56) and (57). Thea from equations (63) and (64)
it follows that for v > N .

|2,00] < V(7 (76)

lgv(T)l <21, T,<T<1 | (77)
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PART II

CONSTRUGT ICN OF THE SOLUTIONS FOR
COMPRESSIBLE FLOW AROUND A BODY

6. Chaplygin'se Procedure

In the previous sections, the particular solutions of
the differential equations in the hodograph plans are ob-—
tained, Since the differential equations in the hodograph
plane are linsar, superposition of solutions is allowed.

In other words, if these particular solutions are multiplied
by different constants and then added together, the sum is
again a solution of the differential egquations. By this
procedure, general solutions can be constructed from the
particular solutions.

However, there is a difficulty in such a method of
constructing the general zolution — the difficulty of making
a proper cholice of the multiplying constants for the partic—
ular solutions so that the resultant solution will give a
flow satisfying the boundary conditions gpecified in the
phyeical plane. This can be seen from the fact that the
space coordinstes =x and y are obtained from X which is
not explicitly connected with V¥, the stream funection, In
fact, to obtain the coordinate x ard y directly from ¥
would involve an integration in the hodograph plane, Thus
the linesarization of differential equations in the hodograph
plane 13 obtained at the expense of the simplicity in boundary
value problem. To guarantee that V¥V and X do actually be—
long to the same flow in the physigal plane, an additional
condition besides the differential equations for ¥ and X
has to be satisfied, This conditlon will be discussed in sec—
tlon 11.

Chaplysgin {reference 6) suggested an ingenlilous method
of solving this difficulty dy using the well—known solutions
of the incompressible flow, The first step in this method is
to find the incompressible flow around a body "similar" to
the body concerned., (The meaning of the word "similar" will
be made clear in the following paragraph.)

The stream function wo, for instance, is then expressed
in termg of the epeed q =and the inmclination 6. The function
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Vo (qa,8) can be expanded into an infinite series each term

of which ig of the form q® cos nd or qn sin nd, TFor the
flow around a body with constant velocity U at infinity,
the function VY, (q,4) has a singularity at the point q = U,
@ = 0 in the hodograph plane, since there asll the stream-—
lines, or lines of constant V, originate, Thus, there.are
two forms of the series expansion of ﬂ%: One 1s convergent
within the circle q = U; while the other is convergent out—
side of the circle gq = U, The first, or "inside," series
must be regular at the origin of the hodograph plane, There-
. fore, only positive values of the integers n can occur,

The second, or '"outside, ! gseries can have both positive and
negatlive v, Chaplygints method is to use the inside seriesg
for VY, as the starting point for obtaining the desired
"solution VW for the compressible fluid, He suggested
choosing the multiplying coefficient of the particular sol-
utions for the compressible flow by the condition that for
the 1limiting case of infinite sonlc speed, or incompressible
fluid, the series will degenerate to the inside series of

the incompressible flow already obtained, The series for

the compressible stream function V¥ so constructed can be
called as the inside series of VY, The outside series for

VY then can be obtained by the method of analytical continu—
atlon with the ald of the "outside serieg" of the incompress—
ibvie flow,

These -solutiors so constructed for the compressible flow
contain’ the Mach number of the undisturbed flow as a parameter,
They constitute a family of singly infinite solutions. In-
cluded in this family of solutions is the limiting case of
zero Mach number of the free stream, This limiting case will
glive the incompressible flow around a body used as the starting
point of thls method, For other values of the free-stream Mach
number, the body contour is generally different from that corre—
sponding to zero Mach numher, Thus, if the compressible flow
around a glven 'body is desired, the body shape for the initial
incompressible flow must be slightly different from the given
body shape, EHowever, 1f a geometric parameter is included in
the solution, such an adjustment is not difficult to make,

It may be stated here that owing to the regularity of the
solution at the origin of the hodograph plane, only the first
solution of the hypergeometric differential equation appears
in the inside series, For the outside series, both the first
and the second solution of the hypergeometric differential
equation are necessary, This is in direct analogy with the
appearance of both positive and negative exponents of q in
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the incompressible outslde serles, This fact is particularly
important, since previous investigetors seem to be vnaware of
it, . Chaplygin himse¢lf did not use tte sesond solution of the
hypergeometric differantial equaticn. but that is simply be—

cause, for his probium, tnere is no singu‘arivy in the hodo—

graph plane and hence only the inside serles ig needed,

6, The Functions for Incompressible Flow

Following the procedure outlined in the previous section,
the analysis starts with the functions requirel in defining an

irrotational incompressibls flow, For tlhig case, the sonic
speed o, tends to infinity, and the equations for the veloc—~
ity potential o (x,y) and the. stream frnction (x y) all
became harmonic:
b, = 0 (78)
av, = 0 (79)

where A stands for the Laplacian operator, If Wo(z) ig
the complex potential, it can be shown that '

Wolz) = @, + i wb ' (80)

where
z = x + 1y

If w. denotes the complex velocity vu-i v, 1t is connected
with Wo (z) by

W =H'9'E w(z) ’ (81)
dz
If wi(z)E0, it always 1s possible to solve for 2z in terms

of w3 napely,

z = 2z (w) (82)



NACA TN No,., 985 ' 33

In general, this solutior is not single—valued and will be
discussed later, 3y intrcducing this relation into equation
(80), the compiex potential function in the hodograph plane
can be obtained

W (w) =¢ (u,v) + 1 ¥ (u,v) (82)
o] ° [}
In case eaquation (82) is many-valued, ihis would correspond

to one braach of the function,

It is clear that in this case X, (u,v) is also &
harmonic funection, Let co(u,v) be ghe conjugate function
defined by

ou ov
ov cu
Hence
A(w) = X, = 1 o (88)
where
ws=1u-1iwv

Thus Ao(w) is an analytic funetion of w, From equation

(13) the derivative of Ay (w) with respect to w must be
z, That is,

ahg
T Sotv)

But z,(w) already has been found from equetion (82).
Therefore,

Ag(w) = Jf z,(w)dw + constant (87)



34 HACA TN No. 995

The veal part of Ao(w) gives ¥ {u,v) as required, accord-
ing to (86).

7. Conformal Mapping of Incompressible Flow
on the Hodograph Plane

Before the construction of solutions for the compressi-—
ble flow, the general charscter of the solutions in the
hodograph plene should be examined, Thia can be done easily
by investigating the hehavior of the transition function
z (w) for an incompressible fluid. To start with the
sgmplest case first, consider a steady irrotationsl flow in
an infinite, simply connected domain D ©bounded by a curve
C 1in the z—plane, with & parallel flow at infinity (fig., 1),
At every point =z of I there is one, and only one, velocity
vector q,» If the curve G is mapped into ¢ and infinity
corresponds to a point P on the axis of reals of w within
C, then the domain D is mapped inte D by = wapping func~
tion

we= wiz)

defined in (81), where w{z) is an anslytic function of =z,
The inverse function

g = g (w)

willl set up a continuous one—to-one correspondence between
w— and g—plane, provided the mapping is conformal., This
requires that w(z) 4is analytic, simple within D, and

vi(z) &= 0,

However, for most problems these conditions cannot be
satisfied throughout the field of flow. In the first place,
the function w(e) is generally nonsimple, for example, in
the case of 2 uniform flow, w(z) = constant, thus w!(z) = 0
and the whole z—plane corresponds only to & point in the
w—plane. Furthermore, the complex velocity for a two—
dimensional boundary—value problem generally can be put in
the following form:

w o= owy, + w¥(z)
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where Wwe 318 a constant. The boundary condition requires
that w*(z) = 0 and, as a conseguence, w'*(z) = 0 as =z
becomes infinite., Therefore, in all cases, the point P

in the w—plane, is & singular point. It is a dranch point
at wg if 3z (w) is many—valued; or a pole, if otherwise,

In practice, ghere are two kinds of singularities {that play
a dominent yole in the problem of two-—-dimensional flow.
These singularities will be investigated presently.

Bronch point of orde;_lJl— It may be recalled that,
wvhen a closed body is present in a uniform flow, there
always exist two stagnation points both of which correspond
to the origin of the w—plane, If a streamline PS5 is fol-—
lowed, for instance,(see fig. 2) from +» to S, the por—
tion SMS' and then to =%, a curve PS in w-plane would
be described twice. This indicates that the function z,(w)
possesses two branches of Riemann surfaces Joining together
about the branch point P, In order toc make the domain D
single—valued, a cut is put along the axis of reals from
the branch point %o .+%®. Then one portion of the z—plane
ig mapped into a definite dbranch of the Riemann surfaces
in the w—plane, and this will be defined as the domain D,
If the body is symmetrical with respect to the coordinate
axes with parsallel flow aft infinity, then the domain
DiRlz < 0 will be mepped conformally into D on one branch
of the Riemann surfaceg and D!:Rlgz > 0 on the other, whers
the region within ¢ 1s excluded.

Logarithmic singularity.~ The flow over & wavy surface,
for instante, placed parallel to a uniform stream has a
periocdic nature. TFor such flows there are infinitely many
points in the physical plane that have the same velocity,
Hence, there are an infinite number of branches in the w-
plane, each of which corresponds to a definite portion of
the z—plane., The function zo(w) must have a term log

<. —;%) and the point E now is a logarithmic singularity.

If, however, a cut is introduced from the branch polnt to
+® and - 7 < arg < - %) < 1w, then the domain D is again

made single—valued,

1The function zo(w) is eaid to have g branch point of
order k at W = weo 4f its inverse w(z) contains the
part w® which has & zero of order k + 1 at 1z = o,
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B, Construction of a Solution about the Origin

Stresm funcitilon.~ From the considerations of the last
-section, the domain within & circle with radius iwt = PS =T,
where U is the absoluyte value of w at infinity in z—plane,
is in all ocases single—valued, If a funetion Wy(w) is as—
sociated with a definite flow in z—plane, from sectlion € 1%
is an analytic function of w and regular within the circle
lwt = U, Consequently, the following Taylor expansion exists:

Wo{w) = Z A, v, lwi<® | (88)
n=o0

wvhere Als are, in gensrﬁl.’complex. Since w = qe’ié

and by (80) the imaginary part of W, (w) is equal to in—
compressible stream funetion V,, it can be written as

V(q,9)=In {Wc(w)} = Z qn {Ail)ces np +A1(13) gin na}( 89)

n=o

According to Chaplygints procedure, the coriesponding
compressible solution can be obtained by simply replacing
the fq%ction q® in equation (89) by the corresponding

n

a E
cluded by the regularity requirement at ¢ = 0, Hewever,
in order to preserve the proper singularity at the point

(U,0) in the hodograph plane, the compressidble sireanm
function ¢ is written as

r
(1) as shown by (40), The gecond integral is ex—

= (=)
tl/(q.ﬁ).-_-‘ Z q? Eir.)(-r) {Ail)cos nd+ An sin ne} (90)
nso

where

2Py« Bl Femtaienit) oy (g
: E (7)) F(a b 30,373)
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2
U
and T, = L —z the value of T, corresponding to the
28 ¢ ; ] .
: )
free—stream velocity U. It is seen that if c, - %, then

(r)

T =T, >0, and En (T) 1 .due to the normalizing con—

dition (30). Tuus the solution is reduced to the incompress—
ible form. Furthermore, if g U +ilde charectsar of.the solw
ution is exactliy like that of the incompressitble. sotiution,
Hence, all the specified condiilons are sebisfied, OFf course,
for the mixed subsonic and supersonic flow, the free-stroan
Mach number is always less than unity. Thus T, < 1/28+1.

For later analysis as given in part TII( it 1i1s convenient
r)

to write WV in '8 dif*crent form. Since P (T) 1is a purely

»

real quantity, a: comflex funct*on H(w;T) can. be constructed
a8 oL o ’ ' B

.

-
\
.0
»

W(wiT) = } A _fj’m W, lwl<T (92)
r=0 '

:

Then, similar to the rel@tion between eguetions (88) and
(89), WV(a,8) cen be tzken as the imaginary part of the
new Function N(w T) Thgs,

iy
W(g,d) = Im-{W(w;Ti} . (93)

Mroneformed potontial fuwechtion.- Similariy, it is
possiple to coanstruct another funq:iop Mw:T) defined by

(o]
AlwsT) =, ;ﬂ'In';( )(T) Wt v a<U (94)
7 ] . ' n=0 : .

~

In this expression, thse coefficients A are obtained from
the expansion of Ao(w) for the incompreesible flow (57):

Aw) = 2; E ',  |wy<U (95)

n=0
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and

(r) Folr) (96)
J

B (7)) =
" 7,07,)

Bquation (96) is the result of equation (91) and the equation
of compatibility given by equation (24), Then the function
x({q,8) for the compressible flow is given by

ﬂq¢)=Rl{Mwn%- (97)

The functions W(w;T) and A(w;T) are actually regular
et the origin and satiefy the imposed conditions. However,
the following question may be raised: Do the series (92)
and (94) converge and represént the functions WV(g,8) and
X{q,8) 1in the domain of validity? To settle this question,
it is necessary to prove the folleowing theorem:

Theorem (88), If the constants A, and En are ziven in

equations (88) and (95), while Eir)(T) and fir)(v) are

defined respectively by equatiocns (91) end (96), the series

(92) and (94) are uniformly and absolutely convergent in the
same domain as those of (88) and (96)., The proof is given 1in
appendix B,

9, Analytic Continuation of the Solution

Branch Point of Order 1

Stream functiog,— Ag proved in the appeﬂdix B, the series

(92) is absolutely and uniformly convergent and does represent
a regular function W(w;T) for every T 4n 0 =T 2T, and

on the circle of convergence it agrees with wo(Ui-ie), of

which the Fourier expansion existses
o

Wo(Ue™i%) = zz, A, UT eTiRE (98)
n=o
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In the present section, it is proposed to continue
the solution (92) analytically outside:the domain }(w i< U
with the initial value given by equation (98), The domain
. outside w2 U 1is generally many—valued. To fix ideas,
discuss first the case of =z branch point of order 1, Gen—
erally, the function W (w) has other singularities besides
the one at w =1, However, such singularities lie outside
the region of interest and thus need not be investigated.
Let the nearest singunlarity be given by |wi| =V > U, Then,
the domain to be considered outside |w) = U is an annulus
with a cut Joining the two singularities, The proper repre—
sentation of © Wy(w) 4in such a region which has a branch
point of order 1 at w =T, is

Wo(w)i= T Wo*(w) (99)

i

wvhere W *(w) 1is single—vglﬁed and regular within the open
annulus U <| w| < V. Hence, in any closed domain

U+ 8 <|lwj<sV—25,.8

being a small number, there exiéts a uniformly and absolutely
convergent seriles:

[=~]

W *(w) = Z-[Bn w +_c!'1 w_n] (100)

n=o

which, on substituting in (99), will give the continuation
of the Taylor series (88).

i1For instance, in the problem of the flow around an
elliptic cylinder treated in part V, there are two singulari-
tles of the W, function given by equation (280): namely,
w=1 and w = 1/ea The first singularity corresponds to
the flow at infinity end is the singularity under discussion, '
The second singularity corresponds to a point inside the circle
of thse ﬁ—plane. the plane of the circular section. Since only
the fiow outside the circle of the §—plane is of interest
.here, the singularity w= l/ca' need not be investigated. In
other words, it is necessary only to expand the Wy, function

in the annular region 1 <« ‘% \< %%.-
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The solution for a compressible fluid, which has the

same character of singularities as WO(W) and is valld

in the annulue U < |w| < ¥, can be ohtained from (100)
.by introducing the proper hypergeometric functions corre—
,8ponding to each expcnent of w. That is:

(= +]
W(°)(w-7)= i ;7 B_* F (T)wV+ C_* G (T)w ~ (101)
’ - fied n ""V n —v
n=o .
. . (1), - 1
which is the continuation of W (w3T), Here vV=nt+3,
n being a positive integer; ED(T) and ¢ 2% gv(T) are

the firet and second integrals of the hypergeometric squa—
tion; and Bn* and Gn* are constants. It should be

noticed that the coefficients By* and Cp* in the outside
series for the compressible flow are not equal to B, and
Cp, in equation {(100) for the outside series of the incom—
pressible flow., The outside series of the inco?psessible
flow is used only to give the proper form of (wyT)

for the desired branch poan characteristica} while the

exact determination of {w3T) has to be made by the
conditions of continuity, which will be discussed presently.

Since the partisl differential equation considered here
is of the second order, to ensure that W °/{w;T) 1s the

analytic continvation of W 3 (w;T). two conditions have
to be imposed at the boundary of the respective reglons of
convergencey that is, the cirecle ¢ = U, These two condi—
tions are the following:

W) (gem® 1y 2wl (et ) (102)

[—- wl 1) (wy T)] = [31 w(°)<w;73 (103)
dq rr 0

q =
. T=T,

On account of equations (102) and (103), there are two
relations which have the imaginary parts:



NACA TN No., 995 41

o

E: [B; Ey(my) v

n=o0
(o]
* —v | B
+ c¥ g,(T,) U cosVYy =~ Al U sin n3d
' n=~0 ’
0 £ 3% <2n

Y [ w7 0x,(0remag,t (D)

+ OX U*U(_UEU(TI)+ 2T, _c_i-_v‘,('rl))] cos u P

o ' ' .
n ' .Fa.n'(Tl) .
R, A U n+ 27 N SR sin n ¢
n 1
Z Pl
=0

Here the prime denotes differentiation with respect to T.
Evidently, the coefficients on .the left—hand side can be
solved for in terms of the known constants &,. They are!

. LA -v__1 m/ 1,1\
By B (Ty) U+cp g (7)) T == by U\ =52 (104)

~1s

m=0

v ~V
* ' * - 1
BX U (v_F_v(Tl)+nggv(Tl))+ Ct U 7 (~ve (r, )+ 27 & (T ))

<o
_ 1 m 1 1
--3 zmAmUEm('rl) 1. L (105)
m=0

From these two equations, the constants BY and OCf can
be gniquely determined, provided the determinant A(Ev,Fv)

does not vanish, These results are:



42 NACA TN No, 995

v Gv(Ta) C m< _ |
Pa0 == avn(l—-n)p mZoAmU ;i'{;*;‘.l;‘Xmﬁm(Tx) vg—"( Ti)) (108)
i Ey(T3) YUY, N
B SonCary )P L e Erre) CRAREIERELY

. - g
ag the Wronskian A(F,,F,) = — % q_av (1=~1) = 0 and
t,(T) 1is defined in (51).

The solution is again formal, To prove that the
function W(w;T) is a regular function in the annulus
region, the truth of the following theorem must be first
demonstrated, (See appendix C.)

Theoren(28). 1If the constants Bj and Cf are determined
according to (102) and (103) and if the series (100) con—
verges uniformly and absolutely in a closed domain

U+ 8 <1wl<V —8, then the series (101) will converge
uniformly and absolutely in the domain T + & = w2V —- 8,
8 > 0.

Transformed potential function.,~ By a similar procedure,
_ the coptinuation of (94) is

o
A (wsmy =1 Y [B, E(mw’ e B B () W (108)
' W, - s n _..v w n ""U w
. e
where F (T) and Ev(T) are the first and sgcond integrals
of equation (28) and the constants Bf and Cf can be
similarly determined,_pamély,

ﬁ; u?
_ - Gl 11) >

(109)
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Ex(Ta) S A UY _l__._l;> £ (1. )E i)ﬁ (r)y, i
2mv(1-1_ )P ;;3 n <m+v v (% ot T )mve Cr ¥ Ty

(110)

The solution determined so far 'is understood to be the
principal branch of the function W(w;T)., It was assumed
that the flow at infinity is parallel t¢ the x—axis., If, in
addition, the body is symmetrical with respect to the co—
ordinate axes, the expression for the second branch of

W ° (w3T) will be ideﬂtical. However, in a more gensral
case where asymmetry exists, the two branches will reguire
separate consideration.

10. Continuation — Logarithmic Singularisy

Siream functiopn.— Consider now the second importantg
type of singularity: i1t is assumed here that the only
singularity possessed by the function W _ (w) in the finite
part of the w—plane 1% a2 logarithmic branch point at w = U
about which infinitely many Riemann surfaces are Joined.
By analogy with (99), Wo(w) now can be conveniently written
as :

Wolw) = WE(w) + Wolw) (111)

where Wg(w) i3 & regular function in the entire domain with
possibly an essential singularity at infinity, and hence
generelly is given by a Taylor series or a polynomisl in w,

and W (w) = ao(q.é) + 1W°(q,ﬁ) is an analytic function
which characterizes the singularity of Wo(w), Thus, aside

from a constant factor,

ﬁo(w) = % log <} - %) (112)
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If & cut is 1laid from +U to +> and the argument of

\d

W : 4 W
-—— is stricted in - < ar 1 - - then
( U> re b1 arg \ U> < T,
the function ﬁo(w) will be single--valued in the whole
cut plane,

The question of constructing a solution for the com—
pressible fluid consists, there¢fore, of iwo parts: N*( )

and W (w) However, the construction for W*(w) _s, in
principle, exactly the same as that of (VE) ani hence only
] (w) will be considered. First, let W (w) be develoﬂ§d

into power series in the respective domains of validity.
The imaginary parts are:

~ (1) e n
wo (q,48) = }: % (i> cos n 9, q< U (113)

U
n=1l
) [#a]
.. (o ) -—n
(g,9) = — log - i7a cos nd, q>TU (114)
O U n:& n\U _

The corresponding expression for ﬁ'(q.d), accordingly, will
be:

@

~ ' n
W(i)(qsﬁ) = zz Ay Fp(T) (%) cos nd, q< U (118)

.;-iI‘(o)(q,é)=-B'[T(l—‘r)a; y Cn_n('r)<3-> cosnd, q> U

LA

T, n=1 (116)

vhere IE (T) stands for ¥lea, ,bs; en3T) and En(T) is
defined by (39).

The function .Wo(w) may be regarded as the complex
potential of a complex source situated at w = U, It is
known that in this case the normel derivative of W (aq,d)
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on fw} =U 4is a constant, except at w = U, where it
becomes infinite, This boundary value can be expanded
uniquely:

[« <]
- X co8 n4d =-12'-, 8 =0 (117)

n=1

The corresponding problem in the case of compressible flow
gan be put in an analogous menper: %6 find a function

V(q,3) which is continuous togetlier with continuous partisl
derivatives and the normal derivative of which on |wi=T

is constant., Thus, the conditions (102) and (103) in con—
juction with equation (117) demand:

Fp (m) a —g (7)) ¢ =0 (118)

[n T (T,)+ 27T, En'(Tl)] A
+ [n glr)—2m, Qn'-(Tl)] 0, = 43(1—-71)B (119)

where the constant B can be determined when the normal
derivative wq(q,e) on |wl =U 1is assigned. By solving

equations (118) and (119) and using the relation of the
Wronskian of the two independent integrals of equation
(27), there is obtained

2
A= = B Qn(TI) (120)
c. =287F (T.) (121)
n n -1 1

Thus the funection V(q,8) 41s completely determined,

Transformed potentisl function.— The associated funection
¥(a,8) can be similarly constructed. 4s A (w) 1s derived
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from (87) by integration'of-the inverse mapping function,
it must involve a term ( - %) log ( - -g-) which represents

the singularity of the function A (w), As in equation (111),
A(w) is split again into two parts:

ACw) = A3(w) + K (w) (122)

where A;(w) is an entire funection and Ko(w) ise

Ko(w) = %r(l - %) log (1 ~'§> (123)

Now the solution corresponding to log (1 - %) can be

determined in exactly the same manner except that the
hypergeometric functions involved are Eﬂ(T) and gn(T)
instead of F (7) end G (7). The part that will require

speclal consideration is the term % log (l - ;> Let 1%

be denoted by ko(w) = Xo -~ 1o ¢

% (1 - -) (124)

This function 13 also multiple~valued., Let the argument of

KO(W) =

u!w

(l - %) again be restricted in ~ 1w < arg (1 - %) < 1my then

in the cut plane the result will bde

o n+1
xii) =-} Z -i-(-‘é) . Wi <U (125)

=1

iio)_r--} [—% log - e Z () ata }.4wl> U (126)

=1
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Alccording to equation (86), the function io(q.é) is
defined as the real part of Ao(w). That part represented

by equations (125) and (126) 1is then

@ n
~ (1) _ v 1 (s
Xo (g.d8) = = 2:_;:{ \U sin nd (127
N==
i(o)(q 3) = a log a gin & - 2 {m—a3) cos &
o : U U U

[+ +)
-n
+ }Z L (%) gin nd (128)
n+l \U .
n=1

The particular solution corresponding to.

L 10g 2 sin 3 - 2 (n—98) cos &

U U U
already has been given in eguation (50). Hence the solution
for the compressible flow is

[=~4

~ ~ ~ n
X(i)(q,é) = ~ Z A gn('r) <%> gin n 4 (129)

=2

§(°>(q.6) = % k(T) sin & — % (r—48) cos 9

[0« .

N & &y ’q>_n in n b (130)
+ -— sin n

n_:l n -=n QU

vHere

.
BTy — 1 [( 26+1) log — -(L i>+x (1-1)"" E](lsw
2(6+1) o T T lf{p . ™
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The conditions (102) and (103) together with an expansiop

= gin S+

>1s

(/—-'-—-+—-]=— gin n §= (nm—9) cos 9, 0<d<32q
\n+ n"“l

n=2\

regquire that:

F (T + 7 . SU R 32
~n( 1) An En( 1) cn n+l n—1 (132)
[n En(Tl) + N7y EA(TI)] Ay
~ . l
4 |=n & (T T, GH(T —_ o =
[n_( )t 2 .C:( )] n n+1+nl°n+-l (133)
and
E.(r )& =21 (134)
1 1 1 2

[-21(71) + 27, _5{(71)] Gy + 2Ty k(7)) = -;-, n=1 (135)

By solving (132) and (133) for E; and 0 , there is
n
obtained:

K;,= S%fggilf ({fpsv (Tl)- é;(Tl) (136)

] - -
& =_£E:filp (1_.n§n(71)) En(Tl), n#%1(137)

n 2
n;—l

by using the Wronskian of the 1ndependent 1ntegrals of equa~—
tion (28), With given by (134), the constant K, can
be solved for from 6130), it is .
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~ T
G, (Ty)

Ky = - (1_1'1)B [1 + BT, + (ﬁ+1)712 E;——i—] (138)
G1(Ty)

The solutions VW(q,s) and X(a,d) in the whole domain
under consideration are uniguely determined. Since the
dominant properties ef the hypergeometric functions discussed
in secticn 4 hold, in general, the equation of convergence
can be similarly settled.

1l, Trensition to Physical Plane

-In. the prewvious.sectiona, it has been proved that, for _
a given incompressible flow for which two associated functions
Vo(a,8) and X{g,8) are defined, there exist two associated
functions W(g,d) and X(q,8) for the corresponding com—
pressible flow, depending upon two parameters Y and T,,
The question is whether the associated functions V¥(q,d) and
X(q,3) Dbelong to the same flow pattern in the physical plene.
To answer this question it is necessary to fall back once more
on the equation of compatibility (24)3 since when VY{aq,s) is
given, ¢(q,d) is known by solving equations (20) and (21).
Hence, if %(q,8), satisfying equation (23) and approaching
Xo as Co —>= is to be associated with ¥(gq,8) for the
same flow, then 1t is necessary that the equation of compati-—
bility be satisfied. ZXxoept in the case of logarithmic singu—
larity in section 10 where the complete ‘b(q,%) function was
not discussed, this condition has been properly considered,

Once the relatlonship between Y (q,¢) and ¥(g,d) 1is
established, the next object is to caledlmtes tire flow pattern
Y(x,y) = constant in th'e physical plane corresponding to
Y(qg,%) and X{q,83). In the first place, the fact that the
transformation defined by equations (9) and (10) is generally
one—to—one must be recalled. Suppose that in the hodograph
plane there is a line defined by

VY(g,%) = constant = K (139)

which will correspond to a definite streamline in the physical
Plane or a definite part of it, The streamline can be obtained
by eliminating one of the two variables in =x(q,9) and y(q,8).
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To do this, first the equation (139) is solved for &;
namely, .

8 = Hq,X) (140)

provided Wa(q,ﬁ) # 0, Introducing this relation into

equation (13) which, when transformed into polar coordinates,
are

\
X = cog ¢ 3x _ sind 0% (142)

dq qg Q¢

P
v = sind OX 4 gosd 3X (142)

dq q &%

gives & parametric representation of thisg particular stream—
line corresponding to VY(g,?) = K in the hodograph plane.
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4

PART III

IMPROVEMENT OF THE CONVERGENCE OF SOLUTION
BY THE ASYMPTOTIC PROPERTIES
OF HYPERGEOMETRIC FUNCTIONS

12. General Cencepts

The significance of the general solutions constructed
in part II of the present report when viewed from the prac-
tical point, rests in the fact that they constitute an ex-
istence theorem, It shows that an irrotational isentropic
flow about =& body can be obtained from the corresponding
problem of an incompressible fluid, if the free~stream Mach
number 1s not too high. However, the sclution in the form
of a slowly convergent infinite series cannot be conveniently
used to obtain numerical values, as the labor of computation
would be prohibitive. :

By examining the infinite series obtained in part II,
the egssential difference between the compressible flow solu-
tion and the incompressible flow solution is seen to he as-
sociated with the fact that, while in incompressible flow
solution the individual terms of the series are of the forms

cos VI cos V4§
v

q
sin vd gin LY

in compressible flow solution the individual terms of the
.series are of the forms .

v cos V¥ - cos LY
sin vy sin v

If it were possible to write

0¥ 7,(n = [a@] . a® g0 = [a(a)]

there would be no difference between the incompressible flow



52 NACA TN No. 995

" golution and the compressible flow solutlon except the "die-
tortion of the speed" q by the new scale Q. In fact,
this possibility is realized under the special condition of
Y = -1 as shown by von Kérmdn (reference 1) and Tsien (ref-
erence 9),

For the case of isentropic flow with the general expo~-
nent Y +there is no such scale factor @, However, if v
e assumed to be very large, then there is such a function
Qs at least to a firet approximation, In other words, the
leading term in the esymptotic representations of F (T)
and G (7) does give the desireéd form. On the other hand,
the use of asymptotic representaﬁion.neceasarily implies an
approximation, But thig defect 1s not dAifficult to remedy
as the difference between an exact hypergeometric function
and 1ts asymptotic form can be added to. the approximate so-
lution as a torrection term. Sinoe there are an infinite
number of terms in the series form' of the solution and sach
gives a correction term, the ¢orrection terms also constitute
en infinite series., Therefore, the original infinite series
is now transformed into a closed function plus another in-
finlite series of correction terms. At first sight, such a
transformation seems unable t0 give a result that will avoid
the difficulty of prohibitive computational work, But actu-
ally, owing t0o the good approximation given by the asymptotic
representation even for moderate values of VvV, the correc-
tion series converges very rapidly. A few terms seem t0 be
all that are necessary. Thus, for all practical purposes,
the original infinite series is now converted into s closed
funotion with '"speed distortion! plus & few correction terms,
The fundamentally interesting point is that for the case of
a general exponent Y, the simple method of speed distor-
tion will not give an accurate enough solution, (Cf, ref-
erence 8,)

The change in type of the differential eguation at the
sonic speed also introduces a singularity in the speed dis-
tortion funetion Q. However, by using the correction terms,
the effect of the singularity can be limited to a very nar-
row range in the neighborhood of sonic speed, and no practi-
cal 4ifficulty 1s experienced., This will be made clear by
the numerical example given in part V of thie report,

13. Asymptotiec Selutions of the Hypergeometric Equationl

Let Uu(T) and Vu(T) be two new dependent variables
defined by
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. -t AT ____U.-l"l B ,g a.;“ . '. - P
v .-‘ . ) C B WU(T)' 'é.;.'r" ‘.2 (l -.T) Uv (1T.)"‘ gt RS .'(.1:'4'3\)
: R : L
[ : ' o .t - . ! N ) ""-1'
. . - L T e e ';v+; ’ -_g
' x (1) =1 % (1 =71) Vylr)  (144)

»

The.différeﬁfial équations (27) and (28) reduce respeciive--
ly to

Ubl-l (T) - Pva C'P(T) +pa(‘[)_] UU(T)-;. =: iQ (145)
v, (1) [v® olT)+p B(T)]'VU(T) = 0  (148)
where ** " .
- o(t) = 1= {2g + 1)1

4T2(1.~ T)

BT(ET = 3) - (% - T2.:
4T®(1 - T)® . C

.
-

A : Pie(T),?

Both equations (145) and (146) involve a constant param-
eter UV which is resl and positive but ctherwise arbitrary .
for any fixed constant " E. In the interval O < T < 1" in .
which the flow takes place, the functions m(TQ and PiBCT)
are finite and continuous except at the extremities T = 0
and T = 1, To avoid the repetition, let equations (145).
and (146) be replaced by '

Ug,v(T) -'[Ug_¢(T) + éa(T)]TJa,u(T) =0 . -(147)

where Uﬁ,v(T) = UU(T) ‘when o = Bj and U—B,U(T7 =.VU(T)
when a = «B, In the intervel 8 < T < 251 T~ 5, 8§ > 0,

m(T) is bounded from zero and is positive. ¥, Horn
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(reference 18) showed that when P 1is a large positive nunm-
ber, a2 pair of solutions of the following forms exist 4in the

interval '¢concerned: .
1) - T - 1.- ' Toapg T
UC<I. ‘D( ) N".QBK--[CP_‘L + fll.’.)( ) +.f1‘a‘)§ ) ., + f:_;i__)_ (148)

(I'D

I

(e)<T) w g~V [q;%:+ fa;(T') N _f_‘_a_a__(__'r_)__’.‘. '_ ] + &aﬂ}'(wg'y
T - . VR v8e

-
I

where . T .
r

or(T) s:fcp%.(.'l'_). at, o<T <.253_-;:1 o (150)

I

A constant in equation (150) was left out, as it can be ab-
sorbed in the constant factor- in- equations (148) anda (149).

This representation can be shown t0 be uni que as 101g ag v
remalns gte ter than a large posltlve number- N, By substi-

r -
tuting Ua U(T) and Ud U(T) in equation (147) and choovsing
the coefficlents r s(T (r = 1 and 2; and g=1, 2, 3, ...)

to make the individual terms vanish, equation (147) reduces
to o . ST -

1 ' 1t Y
-r_zgr f}‘efz FEL s4a T Po 1,6 "~ f1s (151)
e L R

1 l";' P : et ol SRS
2K f{a'u,s"'.:’-;.-'" KP, fa-. s.+1 . pa- 2, s.: ‘fz, gv 8F 0-’-1 1Zasee (_152)

. 2" . : . - . - e S
where f;. O(T) = fa O(T) = @ 4.- Thehcoefficiqpﬁg fr,s(T)
then are glven successivelv by & firet -order ordirnary dif-<. -
ferentlal equation and their deterrination does not involve
any difficulty. The problem is thus formallv polvsd,’ ‘

Obviously, the solutiqn is-of the expppqntlal type when
@(T) ig positive in the range concerned and of an -cacilla-
tory t¥peé when. @(T is negative, Now in the interval

B T<1 -8, 8> "0 where cp(T) 0 when ?T.§.-é—§:‘,;—'-i-. ‘po’oh
types of solution exist. It ig- evident that in the neighbor~

hood of T = ?Bl ; a change of character of the solutions
B+ - 2.
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mnuet take place, but the manner in which the transition oc-.
curs cannot be deduced from equations (148) and (149) be-
cause of the failure of the representation of the solutions

in the néighborhood T = 951 I° This ie closely related to

the Stokes phenomenon,

The method was extended by Jeffreys (reference 19) to
include the case where @\T haes a simple root in an inter-
val under consideration and can be applied suitably to the
first order of approximastion. The general problem has been
treated by Langer (reference 20).in a series of paspers, .cOn-
sidering both the case where V and T are real and that
where V and T are complex, Attentlon was glven especially
to the Stokes phenomenon, and a law of connection of the so-~
lution valid on each side of the critical point was explicitly
stated, In the present case, however, only the first approx-
imation is used and Jeffreys' method is adopted for conveni-
ence.

It is seen from equations (148) and (149) that the
fi SS approximation depends only on m(T), and the effect of
P AT is felt only by the ‘higher order terms. Hence, for
the first approximation only, eguation (147) can be written
es _

a2

U, (1) = v (1) UF(T) = 0 | (153)

where Up vy = U_B,U = Up. Thus, when vV > N, the dominant
terms of the asymptotic solutions are

Uél)(T) - T GVE [1 + 0 (%):] (154)
&) ) o< T2t
Uua (1) ~ o * e-DK[1'+ 0 <%>.] 2Pl (155)

Here O (%), in each case, denotes the fact that the ternm

;s uniformly of the order v-l when v 1is sufficiently

large in an interval § £ T < 51 -8, 8 >0 and is a
28+ 1

function of v'l.
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On the other hand, in the interval 231 T + 5SS TS 1 -8,
‘where 9(T) < 0 ana X 1s a pure imaginary quantity .iw
where W is real, the dominant terms of the asymptotic so-
lutions must be & linear combination of equations (148) and
(149) and must be of the forms:

-e | 1) . .
, Ué () ~ %2 cos (vw + ¢) - (158)
A v ,
Vo (a) v 1. L
‘ (7).~ 22 gin (vw + ¢,); T ST s
P
' ‘whers ¢, ¢z, and €, are constants to be determined.’

-The question of determination of these constants is ac~
tually the same as that of determining the mode of continua-
tion of the asymptotlic representation of the solutions in the

range. 551 S +§ STS1 ~§. This can be done, according
"o ﬁeff;eys, by considering the gsolutions valid in the neigh-
borhood of T = —= Let £ = T - —*——, When £ 1s suf-

2B+ 1 | 2B+ 1
ficiently small and V is large, equation (1E3) can be written
approximately as

U, (£)+ v? 1 (0) ¢ u,(t) = 0 (1858)

‘) (o) -

provided ~1l. Thig is known as Stokes equation.

~ n! o' (o)
The-independent integrals-are

% ey ) 3
2, (L), i ( (§) with (= 2 v¢'%(0)£§ (159)

K3 3 8

where H ( )(ﬁ) and Hl )(ﬁ) are the Hankel functions of
=

order %;a Consider as two independent solutions the follow-

ing linear combinastions:

Uﬁl)(Q) = §% 1)

H

l','llH -

(1) + g2l (160)
)
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a2 % a
U:é')’(_‘i) =t Hé_l)(ﬁ) -i%_Hé)(ﬁ) - - (161)

As (1)(§) and’ H(a)(C) are analyfic functions in the

. whole { —plane, thif immediately provides a means of iden-
tifying the asymptotic forms that represent the same func-
tion,
- Suppose first that for arg £ = O, the solutions are
given in equations (160). and (161), The same gsolutions for

' which arg £ = and arg { = g-ﬂ are

( )(ﬁ) = gé eTri (ﬁ esgi> s _L ( ) <§ esgi> (182)

oltdee) o e%ﬂ_fl)(g e%’i‘)-ﬁ Fn, (3 T as

Now-

3 TP S

p.

and when ! is large and -t < arg ﬁ e?r < 1w, the dominant

terns of the asymptotic expansions of H( 2 <§ '> and

ni

28 (16e®) Tare.
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By substituting in equations (162) and (163) and neglecting
the term of lower order in §, there is obtained by expand-
ing at the same time equatlons (160) and (161);

_% | % .
2t cos (§ ~-%>-é> tE e ¢ (164)
. ) .
£ sin (g.- %)-—4>'§ g e§ (165)

Here the arrow is used to indicate the transition of the as-
ymptotic representation of the same function from the left-

. -k ~E
hand %0 the right-hand member. For small &, £ % ~ o *,

and ! ~ —vw; . (158) and (157) finally become

el (r) - 2 oo (u-2) {2+ 0 @) (166)
\m< T<1

Uia)(T) ~ ~%r cos (vw + %)-{1 + 0 <~>

p=

(167)

with ey = 2, ¢ = -1, and €, = -, Under the hypothesis

4
euet made, the pair of expressions (164), (166) and (155),
167) actually represent respectively the dominant terms
of the two asymptotic expansions of the solutions 1)('l‘)

and Uéa’(T for a Vv which may be any positive but large
number. .

14, The Apymptotic Representation of F(av, byi ey T)

and F(a, + B, b, + Bi ¢y T)

t
The dominant terms of the asymptotic expansion, of

1
US )(T) and Uéa)(T) are given reaspectively by (154),

(166) and (155), (167), By evaluating the simple integrals
in (154) and (166), the explicit expressions for the first

epproximation of Uél)(T) and Uéa)(T) are
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——

. v+ .
(i)('r) (23)‘2‘(‘“—il }'_4_(31_)_ = 2 *( ) (168)
Q'r,.-' 1_"“27
o(ae1) ‘:-u+.1 o< T< 1
(2)(7) (25)— B [a1-1) T) CTE g V(1) . 2Pl (169)
e P, ’ Ll:'— a”T
y i |
U.il (r) ~ 2 {45::;)1 -r% cos <vw - —) ARSI CA L)
() . W =akht

wvhere"

4 ~

’ eV ke .
[a(l -~ T)¥ (1 - agTﬁﬂ 5
T"‘(ﬁ)_= — e g = [Y+l] (172)

Ry
(1 - 1%+ (1.- g27)F V-1

! ’ .': . PR ._—.ﬁ_'. ™ . Bt o
2' . |-.-...'_'” . . R . 2
i a?(1 - 7T) NaETRE;

The values of .the funetion - w(T) are given, in figure 3 to-
gether with the’function M(T) ‘defined- by ecos p = 1/M,

In the respective ranges "of 'validity, each pair .of expres-
siong differs from the exatt solution:only by a constant
factor which can be determined to 8atisfy. the normalization
conditione (20) and (86), By substituting ‘equation (168)
into equation (143), these were found to be

' 1.I"J 4 =1, +V
c ., = == (2p) ° —E
=V /2 (1+ a)
Thus, the expressions fo¥ the desired aaymptoﬁic forms, when

v > N; are, for the interval osT< EE%ff'



'
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g_v(v) ~ g(1) (1) (178)
gv(-r) ~ g(r) 270(r) (174)
where 8 (. R e .;
24l P % %
ce(r)= =M 2 ). 2 [m(l-ﬂ +(l"m27)=] (175)
(1= enE (1+ @) A=T)Ee (1-oPn)F
Lo . L . . . . '
. *For the interval EE%TI.< T <1, +they are
Eﬁ<f)." {1 TU(TyEéés”(vw - E—) | (1?6)
‘ _'C,‘r,u('r’) ~ -Jé—f('r) T_v("r) ':coe-; <vw + 71;,‘1) ' (177)
. Where B, N 4
(1-1)? ° (28)° 1
£(1) = 2 v 2(7) = 2 . (178)
(a21-10% ) . Vreal? J/3ET

R o
[ e . . e Iy

The vaiﬁgs‘of T(T) afe givén-(fig. 4) as a funetion of T
together with the local Mach number N,

Similarly, as from (153)_~U§(f)_~.vg(T0.' corrssponding
expressions for ”E(ab + ﬁu b+ Byl T) are:

CE () s .g(-'r)fwv(rf)'- I (179)

3

t R ~ e e . Baadl ‘254_ 1 ,:.
g A1) ~g(r) 2%y < 00 T (180)
where = T -EQIL' A
- : - L o BE e T
g(r) o 1=1) (181)
(l-‘o;z'l')%
vy 0 - N
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and
iv(f) ~ g{t) T°(7) cos <vw - %) (182)
—_—t < T <
_C;U(T) -3 g(‘r) T "(7T) cos (uw + Z) 183)
where
- §+-%

(L-1)

e 1)i (184)

g(t) = 2

Here Ev(T) denotes invariably the first integral

F(au. byi Cpi T ) while QwﬁT), when multiplied by q—av.

denotes the second integral Fv(T)' defined by eguation

(37) when v 1is not an integer or by eguation (39) when v
is an integer, since the asymptotic expansions are valid for
both integral and nonintegral values of VvV, provided v > N,

In the domains of validity, the asymptotlic expansions
may be differentiated with respect to T with the same order
of approximation, Hence, for v > N, it can be shown that

for 0 < T < 2

2B+ 1
v [
Ev,l(T) ~ n{t) T (7) 2+ 0 (%) } (185)
év,l(T) ~ n{7) Y{7) {1 + 0 <%> } (186)
vhere 2
T3 -3 3 37
n(t)=2 (1~71) * (1-a?1) © [(1-1) + (1= aZT) ] (187)

iu,x(T) ~ n(7) (%) cos (vw - u‘- %) {1 + 0 (%)} (188)
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éb,l(r) ~-% n(t) V(1) cos (Uw+-u4-§) {1+ 0 (%) } (189)

where

o
n(T)=4(1~7) ¥ (a®T = 1)—% (257)-%, n(t)= cOS'lf;;TT (190)

The values of the funotions g{(T) and h(T) are given in
figure 5. LR

It is interesting to note that when Y = -1 the con-
stant o vanishes and only She exponential type of solutions
exist. In the case of WD<T the solution is exact, namely,

for P
B 2

F (7) B (191)

—-=V

(1)

(192)

jd

-V

of which the first is in agreement with the result obtained
by Tsien (reference 9), while for Xv(T) the solutions which

are not exact reduce to

& - -0
F (1) ~ [1 +=3f—J ; .2 : {} + 0-(l> } (193)
. 1401 +
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This may be the cause that destroys the analogy between the
coordinates of the corresponding compressible flows and the
incompressible flows. .

For Y = 1,406 and VvV = n + %, n being a positivse
integer, the thres groups of funections F (T), z v(T); EV(T)'

-~

. - { 7 Y -
ELu<T)' and Ev,l‘T)' E;v,1<1)' together with their asymp

totic expressions were cgleculated for T varying from O

to 0,5 and =n from O to 10, The results are presented
in tabies 2 to 13, The behavior of the approximation is il-
lustrated in figures .6 to 11l. I% can be observed that the
degree of approximation of the functions increases, on the
one hand, with v for any fixed T. On the other hand, for
any fixed n, the approximation becomes worse as T ap-

proaches the eritical point T = EE%TI' corresponding to

the local sonic speed. On the whole, if the critical point

T = EE%TI. is not reached, the agreement can generally be

regarded as excellsnt, especially for larger values of n,

15, Pransformation of the Function W(w;T)
.Branch Point of Order 1

The function W(w;T) for a flow that possesses a branch
point of order 1 was given in sections 8 and 9, The forms of
representation, as can be sesn, are not, in general, suitable
for practical calculation., The difficulty is twofold: Pirst,
the series involves infinitely many hypergeometric functions
wiich themselves are, in turn, defined as infinite series.
The convergence of hypergeometric series generally decresses
with an increasse of the parameter v. This means that 4% is
very difficult t0 compute the value of the later terms of the
series for W(w;T). Secondly, the convergence of the power
series defining the function W(w;T) itself is, as expected,
very slow in the neighborhood of the sirgularity. To in-
crease the convergence, the following method is used:

Observe that the corresponding function for the incom-
pressible flow that has the same character of singularity is
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(1) & '
W, (w) = E: A, wP, fw| < T

n=

©

which is absolutely and uniforaly convergent 1ln any closed

MED
domain in |{w| < U, ¥ow, if in (92) En (1) 18 replaced

by . . _
g(r)(r) = % (1), 0 < T< 2t (195)
n (T, 2+ 1
where %(7) = ‘*j—%. as by hypothesis, 0 < T, << 1 4
T(T, 2B+ 1
then 1t 1e¢ clear that
)(w ) &8 £ T)y EZ A, (tw)™ [twl < U - (198)

which 1s also absoclutely and uniformly convergent in the

same domain as W, {(w) and, consequently, (196) will be de-
£(71)

£{7,)
striction that (195) holds only when .n 1is greater than a
large number N is violated. The error can be removed by
adding to and subtracting from (91) the gquantity given in
(196); then it followe immediately that

noted dy

Wo(tw). In doing thig, however, the re-

_ W(i)(W;T) = Wy (w;T) + Nai)(w.T) (197)
where (r)

Welw;T) = g%gty Wc‘tw) (198)

(i)(w T) = Ej A, Gn(T) wn’ |w| < U (199)

with B=0
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(r) (1) ,n
¢ (1) =E (1) - —ffTTI;— £ {T)

Here n 1s a positive integer. The function W{(w;T) <then
is represented by the sum of two functions W,(w;T), which

is of closed form, and Wél)(w;T), which is the differsnce
of two econvergent power series and hence is alsoc convergent
But, according to the theory of asymptotic expansion, Gn(T
tends to Zero as n approaches infinity. In faect, Gn(T)
is of order =n~%*; therefors, the convergence of W(w;7T) is

increased by the order of n~*. This actually is the gist
of the whole prohlemn.

Ag the form of the represeantction of the hypergeometric
function given in eguation (185) ig valid for all T in

c<T< EE%TI’ W,(w;T] @given by equation (198) holds auto-
matically even ouiside the circle |Iw| = U, For this reason,

Wy(w:T) should be idensical in form with that derived fronm
equatiorn (101). That this is the case can be sesen from the
following consideration. PFor, in addition to equation (195),
if 1t is assumod that

- -t
g (v) = e(r) o (1) (200)
W .
it fellows that
1 - mBT
t (t)) =« & (1,) = [ (201)
v -v 1 -7 .

then equatiows (106) and (107) yield, by equations (108) and
(109},

n_r7(7,),  or = 0 P (7,) (202)

n
HEN)

By using these sets of approximate coefficients and replucing
EU(T) and QU(T) by their respective asymptotic expression,

the §ollow1ng relation is obtained with the aid of equation
(100
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(o) (o)
W (wiT) = Wy (wiT) + W (wit) (203)

where

(o?(w.T) E;-{Gél?(f) wo Gﬁz)(T) w‘”} (204)
_ n=0 -

In this case the coefficients: B; and G;, as well as the
functions EU(T) and & (T) used in deriving( ¥1CW.T)._are
approximate. Hence, if both are corrected, (v} ana
Gga)(T)_ ghﬁul@ bp_bf the forms

Gél)(f) = &R Ev(T) + ?;f:T p=V(71y) Agb(T)

n
' (205)
Gga)(T) = AG, _U(T) + ( - 2Y(7,) 6% (1)
where
AB: =-B; - ?%%ﬁj ?-v(Tl), | aB,(7) = £ (7) - £(7) eV (r)
(208)

* * Cc v
AC, = G, = —2— 27(T,) a6 (7)
n T e (T,) e )

g (7) - 2(7) =Y (1)

» » . ,
Here the differences AB, and AC, depend upon the condl-
dition at infinity for any sets of constants B, and Cns
while those of &FD(T) ‘and Agu(T) "are functions of T
only and, for this reason, can be tabulated once for all,
It slso can be shown that the order of AB is at least of
n=! and therefore the convergence of (204) is agaln increased
by o1,

(1)

Coneequently, if ¥(q,6) = ¥;(q,8) + ¥ ~ (q,8) where
the superscript (1) ‘denotes either (i) or (o), and if
the coefficients are real, the stream function for the sub-
sonic flow is according to (93) .given by
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. _ f(T) 1
‘Ul(q'e) = f.(Tl) \Uo(tq.e), OS Tsm (207)
(1 =
Wal) (g,98) = « §: AnGn(T) q® sin n®, ¢ < U (208)
n=0o0 .

and in U< g< ¥

(o) = 7 )
wao (q,6) = _E; Leﬁl)(T) q’ + Géa)(T) q"chos vé  (209)
n=o

with 8 restricted by O < & < 2n, This result is striking
in that for T =7, ¥(U,0) =¥, (7,8) as 6&,(1,) = 0;

that is, the function VY,(g,5) represents the correct sin-
gularity of the exact funection. Tar awsy from the singular-

(1
ity the term Vg ) (g,8) (1 =1 or o©0) graduaslly comes

into prominence, especially near T = 551 1; but the con-
vergence there l1g¢ already so rapid that a suall number of
terms iIs enough to secure a high accuracy in w(q,e).

It is interesting to estimate the magnitude of the sec-
ond vpart of the stream- function. By noting the fact that
Gn(Tl = 0, 6,(7,) = 0, the expansions of the Go(T) and

Gp{T) are

Gu(T) = gyt (7y) {7 - 7,0+ ., .,

GplT) = 6,1 0Ty) {7 - 7)) « . . ., T,< T < —1

Then from corollary (52), it is shown that for d=& O

(i) Bap
\U (q,e) ~ —""2> (T - T ) + [} 3 .
® (ae‘ =t 1

In other words, the second part of the solution is of the
order of magnitude of (T - T;). However, the magnitude of
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(T - T,) depends essentially upon T, for a given incom~

pressible flow, If T, 1is not small, then when T = O,

|T ~ T, will be large, Thus for large free-stream Mach
numbers, the second part of the solution V; cannot be neg-
lected, This means that for high free-stream Mach numbers
the correct solution for compressible flow 1s considerably
more complicated than the usually assumed simple speed dis~-
tortion rule would lead ons to believe, Thus, any theory
based upon such a simple rule cannot be agcurate enough for
transonic flows,

On the other hand, if T; is sgmall, or T, << E;%*Io
then the value of |T = T,f for T = 0 4g small, Further-
more, 17 the maximum veloclty of the flow is well below the
sonic velocity, then the maximum value of T ealso is smesll,
thus |T - T4! for the whole flow is small, Tren the sec~-
ond part of the sclution VY, 1is negligible, However, even
then the solution for the coupressible flow cannot be ex-
pressed as the solution of the incompressible solution by a
simple dlstortion of the velocity scale, as is generally as-
surmed in the so-called hodograph method, s this would De
the case only if the multiplying factor [2(T,) 1is
identically equal to 1, Since the multip1v1ng facfor is 8
function ‘of the magnitude of velocity, the sireamlines of
the ¢ompressible flow and the etreamlines of the incompresa-
ibtle flow cannot be made to correspond to each other., On
the other hand, equation (207) shows that if WYy is zaero,
then V; is also zeroc, Thus there ie this one streamline,
the zero streamline, in both flows satisfying the require-
ment of direct mapping. Since the zero streamline generally
is chosen to represent the contour of the body; on the sur-
face of the body in purely subsonic flows, the velooity of
the compressible flow can be calculated Ffrom the lancompresse—
ivtle flow by a simple "ecorrection formula.® This formuls is
given by equating the velocity q of the incompressibdble
fluid to the velocity function +tq of the compressible flow.

Thus
N L [r 2{r)
(U)o VAR t s/;: p(T,)

where the subscript © denotes the quantity for incompress-
ible flow and T(T) 4ie given by eguation (175), This for-
mule is the same as that suggested by G. Temple and J, Yarwood
(reference 11), This coincidence of Temple's theory with the
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present investigation can be considered as a further substan-
tiation of the method.

For the supersonic regions, Ev(T) and gv(f) in (101)
should be replaced by

14

ED(T) £(7) 2Y(7) cos (uw - 'ZT-> ' (210)

1}

QU(T) % £(1) 277(1) cos (vw'+ E-) o “(211)

4

where f£(1), T{1) and w(7) are given in (178) and (172);
then by writing .

ST) ci(pw-T)
FU(T) s%. () {ei(vw 7. i{vw-T }

and substituting as before in equation (101), it leads again
o)

to the sum of W,(w;T} and Wy (w;T), where

= -v
Wylw;T) = ‘51127 [6'%%'1 }; {?n (twe ™) + Cp (twe ™) }

and

WalwiT) = { (3 )(T) (2)( )wﬁ;l 1 l<-'l’<l

11=O

According to equation (100), W,(w;T) also can be summed:

mi -
WalwsT) = i—féT—lL [e T W (bwe ) + e 3 Woltwe “’i)] (212)
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Furthermore, from (174) 1% can be seen that |tw [= AU, A
being a constant given by ' ’

\ o 2(28) 1

> 1 (213)
(1+ ) (267,)F T(T,)

which is a function of the Mach number and the characterlstic
constant £ of the gds but independent of the shape of the
boundary, The value of this function AN 1is given in tadle
14 and figure 12 for Y = 1,406, As a consequence, the func=-
tions constituting the stream function for the supersonle
flow are

W;(G_,‘l\))
=2° :((:1)-)— [\po(w W) + Yo (8= w) + g, (8+ w)-‘rpo(ﬁ-w)] (214)
? - w>0
Wa(qaﬁ)
Z ('r) q”+ G(a)(T) q"_"} cos VI, U < q <V, (218)

t

%ere)the funotions ¥, and &, are defined, on account of
213), .

P (8= w) =y (AU, s w), Dol W)= o (AU, s w) (216)

where o/’ and VY, are the VPlOcitV potential and the stream
function, respectively, of the correeponding incompressible

) (a)

flow., The functions ( (1) and (1) are the same as
defined in (205) except that AEv(T) nd AQU(T) now are
given by
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~
AEv(T) = Ev(T) - Eé;l Tu'cos (vw - %)
> (217)
Agb(T) = EU(T) - i%;l-T'v cos (vw + %>
.

1
Unlike the previous calculations, G§ )(T) in (211) is
not of the order of v~' due to the presence of 1/2 in front

of £(7) ¥ cos (vw - I), This, however, does not offer a
serious objection, ae'ahe series in which 1t appears already
converges with (tq)V, + ©being less than unity,

It is worth noting, moreover, that in the hyperbolic
domain the function wlﬁq,a) depends, aside from a factor
f(T). only on the two independent families of characteristics
defined by

E=13+UJ' n =4 -~ w (218)

This result is most striking, as it shows that the main part
of the solution satisfies the simple wave equation and thus
clearly demonstrates 1ts hyperbolic character., With doth
the incompressible stream function Wo and the incompress-
ivle potential funetion @y appearing in the solution, it
1g impossible to establish a simple relation between the in-
compressible streamlines and the compressible streamlines.
Since such g simple relation is the foundation of the so-
called speed correction formula for a quick estimetion of
veloclty distribution in compressible flow from that of in-
compressible flow over the same body, this idea cannot be
extended to supersonic regions, On the other hand, this
2ls0o indicates that although the differential equation for
V(q,3) is hyperbolic in the supersonic range, it cannot be
reduced to the siumple wave equation by a mere distortion of
the speed scale as given by the function w(7T), TFor if this
were the case, then V;(q,%) would constitute an exact so-

lution without the additional ¢§°)(q.a2. This fact is all
the more important as the additiomal Vz°’ (q,8) is not
small in comparison with W,(q,d) for the mixed subsonic

and eupersonic flows, especially for the transitionsl region
near sonilc velocity., However, in the case of pure supersonic

flow, W;o)(q.é) might be small; then V,(a,3) alone may
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be used as a satisfactory approximation, Of course, when

Y = =1, then, as in the corresponding case in subsonic flow,
the exact differential equation for the stream function can
be reduced to the simple wave equation, In this case, the
appropriate form for the speed function w 1s

wlq) = ~ tan™} // 1 (219)
q? ‘
R VAR
J Q1a - 01a

where the subscript 1 denotes the conditions at the point
of tangency of 'the true isentropic curve and the approximat-
ing tangent., This sgrees with the result obtained by N.
Coburn, (See reference 21.)

16, Continvation: Logarithmic Singularity

In the cose of the logarithmic singularity the function
W(w; T) was broken up into two parts of which only the one
that characterizes the singularity was given in equations
(115) and (116).,: As an example, it is proposed to show that
this problem can beg treated by the same method. If the same
aepproximation is introduced as in equations (198) and (201),
then the coefficients defined in eguations (121) and (1223)
become approximately:

- n .
. 1T (Ty) 1T (T,).
R IR 220

<
with B £ (1,) = %._I

(207) is again preserved. With thess coefficients and if
there is written for the function inside the eircle gq = U:

(1)
v

s0 chosen that the form of eguation

. . ~1)
{q,8) = ¥ (a,9) + ¥z (q,39)
Bouation (115) reduces to the sum of

£(T)
f(T;)

A
A

Valq,8) = V,(tq,8), 0

2+ 1

) (221)—...
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73
75t (q,0) = So'o‘ Lg (1) (i*-)n cos nb q< U (222)
2 * /. n n U ’ .
n=1 .
where
g (1) = 2 (1) ag (7y) + A‘Eﬁ(T) (223)
n = RN AR £{1,) T(T,) -
with
n B
AF_n('r) = En('r) - £(7) T (7)
_ > (224)
G, (Tq) -
AQD(T,_) =‘-;%—Fr-i-)- - f l('r,_) iy n('r,’) )
Similarly, in the case of equation (116) it reduces to
~(
( )(q_|’3) = \Ul(Qv 'B) +\UB )(q_,é)
- ~(0)
Here WY,(q,?) 4is again the ssme as (221); while Wy (q,d)
is
w000 = - /(1 )P ar, £(1) g, e
' 252 (-r ) T f(T,) U
-n
+ i ;11-6510) (%) cos nd (225)
n=1
where
5,S°)(T) =8 (1) aF (7,) + £73(7,) 17(T,) ag (1) (226)
n n ‘ n
with

_Bp(Ty) T(Ty) ) n
z (T‘)'fa(n)" TR 86 (T) =6 (1)~ £(1) T-"(1)  (227)
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Unlike the previous case, &(q,é) = Go(q,ﬁ) when, and only
when, ¢, tends to infinity. Because of (221), however,
the singularity of Y(q,9}) remains unchanged,

Again, if in (1186)

GrfT) = % f(T} =% (1) cos <nw + E)

is substituted for & (7), 1t can similarly be shown that

-5 N 5 N R
Vy(a,8)=2 2 ﬁ%ffj [@o(a+w)+go(é-w)-@0(6fw)+ ¢°(§-w)] §228)

v - w=>0
T
~(o B L2
Vg )(q.6)==--—5i—-‘jf)(1- T) %l+ 3 @ £(7) {(log A= w)
a2f (Tl) 'Tl f(Tl
© §lo) -
+ —Z %) cos nd  (229)
n+l

where @0(6 T w) and @, (% £ W) are defined analogoualy %o

(216}, and A&dfT) in Eio)(T) is now given by
8¢ (1) = g (7) = L £(m) 27" (1) cos <nw+ g-) (230)

This seems to indicate that the results obtained so far
for VY,(q,%) are quite general: It may differ for different
cases, at most, by a constant factor, The general property,
however, is not shared by V,(a,d), the character of which
changes radicsally with the nature of the singularity and the
shape of the boundary. Hence, its importance in the present
problem is evident.
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17, The Coordinate Functions =x(q,8) and y(q,s)

dhenever the function X(q,3) for a boundary problem
i1s determined, the coordinate functions x(q,d) and ¥(a,s8)
can be calculated according to equetions (141) and (142).
Suppose, for instance, a boundary is assigned with the prop-
erty that the function A(w;T) is truly described ty (94)
and (110), of which the real part X({q,3), defined within
the circle !wl = U, is

0
‘-—‘ ~ L
X(q,0) = ) 4y zér)(w) q® cos nd, q< U (231)
- R
n=o

where the constants Kn- in (%4) are agsin reasl and are re-

~

“{r ~
garded as known, and X ﬂT) = En(T)/En(Tl).

As the series is absolutely and uniformly convergent in
a< U, it can be differentiated pdartialiy term by term with
respect to g and ¢. When the differential coefficients
Xq(q.ﬁ) and X@(q,é) are calculated gnd are substituted in

equations (141) and (142), there results:

o
x(q,8) = Sﬂ n A :ir) %"t cos (n = 1) 9§
n=1
\’ ~ - AT n-1 ¢
~-BT Jom oAy ﬁ—:-% I, (M) a cos nd cos & (232)
n=3
qa<7U
N (r)
v(q,8) = - Sﬂ n Kﬁ Enr q®"?* sin (n - 1) 9
n=1
- + n -1 g n-1
BT ) Ap ;_I"I'En.1 (1) a cos nd sind (233)
n=1
where
F + + + + 1; + 1;
E(r) (T) = (an b l, bn g 1 Cn 1 T) (234)

n,1 ¥lay, bpi o3 Ta)
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Now, .since

(=2}
xola,0) = Ez n En q®~?* cos (n - 1) 4
n=1
[+=]
Yola,d) = - E; n &, q"" sin (a - 1) 9
n=3: - '
co
ao(q.é) = }: Kn qn gin nd

n=3

by introducing the approximation given by equations (179)

and (185), that is

ih

(r) (T) Eg-(-z:zi' tn (T)

L (Ty
0L T< —2
2B+ 1
"'(r) = h(T) n
En,1.(T> F07) £ (1)
by defining | - -
(1)
x(a,8) = x,(a,8) + xz (g, s) (2835)
(1)
y(a,8) = y1(q,8) + y2 * (a,8) (236)
same mﬁnnsr that
(237)

it can be shown by the
BT 8{1) o (tq,d) cos

— ———

g(T)
¥aladde gy BT xolban 9= 2 2l
0 < T< 1L
- 28+ 1

BT nlr) {o(tq,d) sind (28&8)

aitian et ve——

vi(a,9) = &1 40r) y,(tq, ) -
f(Tl) q f(Tl
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and
»
xéi) (q,9) = };'n Kn En(T) q* " lcos (n - 1) @
n=1
=]
- BT }: n Kn 5n,1(7) a""' coe nd cos 9§ (239)
n=1
qQ<U
<o
Ygi) (q,9) = - }: n &y Gp(T) e" " ein (o - 1) 3
&
- BT z; n Kn §n'1(7) qn“1 cos n¢ sin @ (240)
n=i
where
Go(r) = Tlan £0B By * PP oni T) (1) 4P(1) (2e1)
Flay, by Opi Ti) £(7,)
g, ,(ry=n=l FlantBtl, bn-t-ﬁ+lf optliT) _ h(T) (1) (242)
, n+ 1 Flap, byi cpi Ty) £(7;)
0,(q,8) = aa? (243)

On the other hand, the expression for X(q,8) wvalid
outside the circle of convergence is

co

X{q,d) = }; [ﬁ; B (1) o - &} E,(T) q‘v] sin vY (244)
n=o

provided the coefficients ﬁ; and 5; in (110) are real.

The functions x(q,%) and y(q,d¢) corresponding to (244)
can be found similarly, These are:
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o0
x(q,9) = Z {vﬁ'ﬁv (1) g *sin(v-1)o+vT3E (1) av'lsin(uﬂ),s}
n=¢
[==]
~ P o= 1
-~ BT VB V-1
BZ{n" 1Eu’1(7)q
n=0
+ Ucz 51 &v,z (1) q—v—f} gsin v* cos ¥ (2L5)
U< qgq=<¥V
m v
v(a,9) = Z JUE;EU(T) g% Ycog(v-1)8 ~ LERE(T) d""lcos(lﬁ+1)‘>}

L _.

(o]
- BT.K: P, vB; v~ 1 ﬁv,l (1) g~}

L v+ 1=
n=0 _
~ vV + 1~ °
* -DC; v - 1 Qp’l(T) q~V 1 }sin v sin ¥ (2L6)

~,

Here the constants ﬁ; and C; satlisfy the relations
(109) and (110) and can be reduced to

% 3
=— 17 (r,), Oh o —2e 77 (7)) (2Y47)

£(r,) f(Tl) :

o~
*
By =

provided the same approximation 1s made as in (202). Further-
more,

Eola,v) = n ¥ 1 sin (v - 1)% + w0,y o7V~ sin (v + l)t‘r}'

N
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. [o-]
vola,d) = S- {?ﬁn qa’"?! cos (v=-1) 8- van av-l cos (v+ 1)&}
L

¢

and if Ev(T) and iv’l(T), for the high-order terms are
substituted by the asymptotic forms:i: namely,

1t

F (1) 2 g(1) 27(T), iv (1) =n(r) T0(1); o< T< —L
v s 1

2R+ 1

then in like manner (245) .and (246) can be transformed and
can each be represented by the sum of two functions xl(q,ﬁ),
y:(a,%), and =x5(q,%), y2(q,8), where x; and Yy, are

the same as (287) and (238); while x5 and yz aret

(o)(q.6)= }: v-{ él)(T)qv-lsin(v-l)ﬁ+ Gg )(T)q-v-lsin(v+1)é}
n=0
ji G(l) TYq"" 2 ~(2)
v,2(T)a + Gu (T) sin vd cosd (248)
T, £ T7T< 1
25+ 1
y§°)(q;§)= }:v{ 51)(T)qv 1cos(v 1)6 = Gy )( )q-v-lcos(v+1)6}
n=90
Lt sﬂv {~£12(T)qu-1+ G(a)(T) }»sin ve sin®  (249)
nso ’
where 55@) and Eﬁfl are defined by
AN ORI W ) + s 2TV, ) aF () )
v T n 07T £(1y) - "™
N - 5. _ > (250)
Gﬁa)(T) = AG: LT+ —e (T, ) LG, :
_ £(71,
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(1) ~% - ~ §n v ~
G, (1) = 4B, ﬁ:f% Ev,l(T) + ) T U(T,) AEv’ (7) |
(251)
~(a) R v=-1 = an v
G ) = AC G (T G
U’1(1) . D op+1 Tw, f(71) ( 1) 4 s 1
with .
~ Vel ~ v B
AR (T) = F (1) - n(1) 77(7)
» 2 v+l TV,2
} (252)
Agv,l(T) = o5 Qv’l(T) - h(T) T (T)

~%F

while 4B, and 4F (7) are defined Just the sams as those given

in equation (206), .

~8imilarly, if the hypergeometric funections involved in
the high-order terms are substituted by

_ED (1) =g(7) ’l‘vcos (vw-'ﬁ'—), _f_‘_v 1(T)':'h('l') 7% 08 (uw-pn;_'.)

]

-y =1 -V ( TT) y =31 -V ( il
G (1) = T + LI T) = T W s+
(7) 2 g(T) T “ecos (vw , G ’1( ) 5 h(T) T co? LW I !

and by resolving the preoducts of the trigonometric functlons
into sums: for instance,

2 sin (v -~ 1) @ cos (vw - %): sin [(U—l)(‘a-l- w) + (w—g-)]

+ sin [(u-l)(é - W) - (w -2—'—)]

2 sin (v + 1) ¢ cos (vw+ ">= sin [(""1)(““’)'@"%):[ '

4

+ gin [(v+ 1)(3 - w) +<Lu- E-)}



NACA TN ¥o. 995 g1

o)

a brlef reductlion gives when

< T <1,

+

2B 1

£(7,)

- [Yo(é +w) = Yo(¥ - w)] sin E_— w>}>

-

BT n(T) . ﬂ
T 'fT—r‘;‘){[Qo‘* Fw) ¢ (8 - 0) ] con (v D)

- [@0(6‘ +w) - g, (% - w)} sin G} + ;.D }cos S (253)

x,(q,8) = E—F g(1) {‘VXO(& + w) + X (¥ - w)‘l cos ﬁ - w)

. t(7) el Jr /
v, (a,9) hT i(:l){tyo(& + ) + Y (v - w)] cos \E - )

+ [Xo(& +w) - X, (8 -‘u?),:l sin GIT - QD ‘L
4 CRILRIRIURE AT P )

_[:GO(§ +w) -8 (8 - m)] sin <E - >‘} sin &  (254)

w

=

by the fact that qt AU 1in the interval under consideration.

Here

X (¢ £ w) = x, (AU, & & w), Yy + 0) =y, (AU, & £ w)

0,(8 xw) =28,(AU, ¢ 2 @), Q& w) =Q,(T, & £ o)
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where o ( 3%,
olasd) = 57
and
(o)
Xz (U.u )

= zz v {~£1)(T)ou-lsin (v-1)8+ Eéa)(T)q-v-isin (v+1) {}

n=a0o 1
-8T Z v {Eﬁjimq""q» Eifzt'r)q“"l} sin v6 cos @ (265)
n=o
—t <7<
(o) 2B+ 1
¥a (q,é)
= }:1){E£1)(T)qv_1cos (vo1) =~ 652)(T)Q—D‘1008 (v+ 1)6}
n=o
- BT }il}{?iji(?)qv°1+ Eé?i(T)q-U-I} sin vd sin 9 (2586)
. n=o
~(a) ~{a)

where G, '(T) ana G, ' (T) retain the definitions given
in (250 a4 (251 F (T F T g (7
n ( } and ( ) except that A_v( ), E 1( ), A_v( )y

~ ¥
Y T
and Agv,l( ) are replaced by
AF (T) = B {T) = = o(T) T W -
E ()= E(r) - La(r) 1 cos I
l‘.i (T)=u—1_§_ __h__(I_)_TD cos (vw-p.-l’-
V,1 V1 V1 2 4
(257)
AG (T) = & (T) - g(T) 7Y sos (vw + E-)
v P 4
~ ~ -V
AG (1) = l’..‘l‘._l__q._ - h(T} ¢ cos (vw+ p,+1!’_>
v, 1 V-l "v,1 3 4 J
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respectively. It must be noted again that the orders of
&3 (1) and Ggfz(T) are the same as those of &F (T)
and AEv 1(7). respectively, bescause of the way they are de-

3
fined in (257). 7PFor the same rsason as stated in section 15,
this agsin cannot jeopardize the basic assumption of econver-
gence of the series.



84 NACA TX¥ No., 995
PART 1V

CRITERIA FOR THE UPPER CRITICAL MACH NUMBER
18. Limiting Line and the Breakdown

of Isentropilic Flow

The solutions constructed in the previous sections are
known to be regular in the hodograph plane except at a few
singular points. It is a2lso known that for the limiting
case of infinite sonic spsed, or ¢, —> ®, the solution

will give the desired flow pettern in the physical plane,.
When the sonic speed is finite or when the Mach numbar of
the free stream is different from zero, there is no guar—
antee as to the bshavior of the solution in the physical
plane except the probable continuity of the flow pattern
with respegt to the fres~atream Mach numbsr, It is found
that such continuity in the flow pattern aciually exists

up to a certain Mach number., In other words, the pattern

of the compressible flow 1s only slightly different from
that of the incompressidle flow up to a certain Mach number
at which the so-—-called limiting lines appear. At the limit—
ing line, the acceleration of the flow 1s infinite and the
flow is reversed, It wase shown by Tollmsin (reference 12)
and Tsien (reference 2) that, without considering viscosity,
the flow cannot be continuzed across the limiting lines, and
a forbidden region is ereated in the space where no fluid
can enter, In other words, continuity of flow patiern ezlsts
up t0o a criticel Mach number beyond which no isentropic flow
is possible with the imposed physical boundary conditions,

The breakdown of isentropic flow, or the compressibility
burble, can be effected in two ways, First of all, the ac—
celeratlon in the neighborheod of the 1limiting line 1s very
large. Thus each one of the following fectors gives apprecil—
able alteratlions in the dynamlc relatlons:

(a) Viscous stress due to ordinary viscosity of the
fluid (reference 223)

(b) Stress due to expansion or compression of the fluid,
or viscous stress due to the second viscosity coefficlent
(reference 23, pp. 351 and 358)
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(c) Small but appreciable relaxation time required for
the vibrational modes of the molecules %o reach equilibrium
state (reference 24)

(4) Heat conduction from fluid element to fluid element

Secondly, the isentropic flow also can break down through

the appearance of shock waves. The breakdown of isentrepic
flow is associated with the introduction of vorticlty %o

the flow. Thue the flow becomes rotational with part of

the mechanical energy of the fluld converted into heat
energy. All these factors tend to increase the entropy of
the fluid and finally to increase the drag of the body.

Thug the eritical Mach number so defined is of great physical

importance to the aerodynamic characteristice of the bedy
concerned,

Of course, the isentropic flow might break dewn due te
the instability of flow fluid with the final appeerance of
shock waves, Furthermore, the action of boundary layer and
possible condensation of one component of the fluidl on the
flow might lead also tea the premature destruction of the
isentropic flow. On the other hand, shock waves can appear
only in supersonic flow; thus, if the speed of the fluild is
everywhere subsonic, there is no danger of the compressibility
burble., Hence, the free-stream Mach number for the flrst ap—
pearance of sonic speed in the field is celled the "lower
eritical Mach number"; while the free—stream Mach number for
the first appearance of limiting lines is called the "upper
eritical Mach number." (See reference 2.) The latter is
always higher than the former, due to the fact that limiting
lines appear only in supersonic flow. The actual critical
Mach number for the compressibility burble must lie between
these two limits and depends, among other parameters, upon
the Reynoids numbsr of the flow.

19, The Condition for the Limlting Line

At the limiting hodograph, or the hodograph of the
limiting line, it was shown (references 1, 2, 12, and 13)

that
a(x!y'> 1 1 -
- e - = 0 (258)
3(u,v) ( > [ <°2 F) Wﬁ ]
1The phenomenon of condensation shocks due to water

vapor in the air flow around an airfoil was first brought to

the attention of the authors by Kate Liepmann, who observed
them in wind-tunnel experiments.,

{
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2
Since the factor before the term Wé is positive for

supersonic regions only, ¢ < g, where p # O, the
limiting line can appear only when the local speed exceeds
that of sound. It should be noted that the vanishing of
the Jacobian 4is the condition for the fallure of the hodo—
graph method, as the transformation (9) and (10) would no
longer be one—to—one and continuous. Thus, the appearancs
of the limlting lines is then the physical counterpart of
the singularity of the transformation,

As Y(T,d) 1ie known, equation (258) defines two lines
in the hodograph plane:

3
—rE
o1 [ =TT ¢ -y =0 (259 )
' a7—1 T 3
L
o f__l._....“T]“ Yo+ ¥ =0, T2 (260)
La?r—1 3 2B+1

Geometrically, this expresses the fact that the streamline
V(qg,8) = constant and a chsracteristic ecurve belonging to
either family has s common tangent (reference 1). The
problem can then be formulated based on this properiyr?

the necessary and sufficient condivion for the exisbtence
of a limiving line is that there exists a solution bstween
the two simultaneous. equations

1--7T 7%
2 — e - = 0 56
T [m37-1:{ \V,r Wna (261)
¥ =0 (262)
or
1 ~-T % '
2T [a,a'r—-l:' v, + ‘.1'.43"" o} (263)
v =0 (264)

where Y(T,8) 418 a-definite branch associated with the
largest possible T for a gilven boundery and a free-siream
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Mach numnber. The zero streamline is chosen, as 1t generally
gives the highest velocity and is the place for the earliest
appearance of the rimiting lins.

Generally, these equations may not possess e solution
for a known function V(T,8) when the parameter M; is
essigned. This means that there will be 2 system of bounda—
ries corresponding to a sequence of values of M,;, for
which the limiting line does not occur., The first Mach
number for which equations (261) and (262) have a solution
will be defined as the upper critical Mach number and the
corresponding boundary as the critical boundary.

The actual solution of the equation is, in gensral,
difficult owing to the fact that Y(T,3) is, in most cases,
represented by an infinite series. However, if the stream—
lines are determined in the hodograph plare for the calcu—
lation of the shape of the body, a simple graphical test
of whether there is a point of tangency between the zero
streamline and the characteristic can be easily made. On
the other hand, if the form (214) and (215), for instance,
is used, an approximate analytic solution can be obtained

without inveolving much labor,
20, The Approximate Determlination of the
Upper Critical Mach Number

( )As can Be seen from section 15, the importance of
0

L (T.G) relative to Wl(T,G) will decrease as T
3 .

recedes from the critical circle T = 2;'1 toward the

: +
supersonic region. For the first appearance of the
limiting line, T is elmost always high, especially when
the boundary is a slender closed body. Let this be the

o)

( .
casej then VY5 (T,8) can be neglected in comparison with
V,(T,8) and a great simplification is possible, The zero
streamline then can be represented approximately by

Wr,9) SV (7,8) =0
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Furthermore, a simple reduction shows that the two pairs .of
equations, (261) (262). and (263), (264) reduce Tespec— .

tively to R Sl T
o (n) + \I{é,(n) =0 (265.)
0, (8) + ¥, m = 24(n) ;xﬁocn) T (ase)

or .
O(E) + ¥ L8 =0 | ',(-_36_?)
"D(n)-—\ll(n)-.—-éo(ﬁ)+\lfo(ﬁ). I | '(56'8\)

where £ and n are the characteristic parameters.definéd
in equation (218). This reduction is made possible .by the:

< T< 1.

fact that £(T) never vanishes in the interval :
26+1

Whenever the stream function W,  and the potential
function ¢, of the incompressible flow are given, the
funetions @0 and @, can be easily obtained by substi-
tuting AU for g according to equation (2168), Then, .
since AN decreases with an increase in the free—stream
Mach number M, as shown in table 14 and figure 12, the’
upper critical Mach number will be given by the largest
value of A that gives a solutlion elther of equations
(265) and (266) or equations (267) and (268)., 4An analytical
solution can be nade, 'as the functions @o and ¢° are ¢
quite simple. : ' : e

. There is, however, an interesting direct geometridal
interpretation of these sets of equations in the physical
plane of the incompressible flow as shown by figure 13,
According to equaticis (216), the functions Wo and ®°

are the stream function VY, and the potential function ¢,

at the constant value of the speed AU, Since A = 1, for
the body shown in figure 138, the constant speed AU curve
C, forms a loop symmetrical with respect to the y—axils.
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The variebles are really the angle of inclination of the
incompressible velocity vector. Along the constant speed
curve GC) from the point Sz to P, the angle of inclina—

tion of the veloclity vector is monotonically decreasing.
Therefore, the parameter of the angle of inclination can be
replaced by the distances along the curve CA‘ Let eguation

(267) be satisfied at the point S = Sz3 then

21(s5) = — Y (55) (269)

This means that, at the point S = Sz, the rate of change
of the potential function o along €, 1s equal to the

negetive of the rate of change of the stream function Wo'

Since potential linaes and stresamlines in incompressible

flow form an infinitesimal square mesh, this condition
requires that the angle between the tangent to the curve

C, at S = Sz %be 459, as shown in figure 13. This 1s
easily seen by remembering that from 8Sz; to P, the value
of the stream function increases whaile the value of the
potential function decreases, because of the indicated flow
direction. Thus the point S; can be easily determlined dy
this graphical condition., Bquation (268) can then be written
as . .

Cbo(S) - \I’O(S) = ‘I)o(sa) + \I/o(Sg) . (270)

If this condition is satisfied at & point S,;, then the
condition for a limiting line is completely satisfied. A
similar graphical interpretation for the equations (265)
and (266) can be worked out for the side of the constant
speed curve lying to the right of the y—axis, From thesse
considerations, it is clear that the upper critical Mach
number is the lowest free—stream Mach number which gives
a constant speed Oy containing two points, S, and S,

defined by equations (269) and (270).
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PART V
APPLICATION —~ ELLIPTIC CYLINDERS

21, Preliminary Discussions-

o ¥

This part of the report is devoted to the application
of the general method, developed in part III% to the study
of the flow of a compressible fluid around an elliptic
cylinder. According to gsections 8 and 9, if a solution
were constructed about the stagnation point, the continua—
tion of this solution would regaire that conditions (102)
and (103) and, hence, (106) and (107) be satisfied. These
equations involve two sets of hypergeometric functions with
parameters m and m + 1/2, as well as their derivatives.
To shorten the lengthy ‘calculations, in view of the limited
amount of time aveilable, the following approximate procedure
was adopted.

Given the domain D, the solution valid in the annulus
region, rather than that about the stagnation point, wasg
first constructed., The constants which determine the Laurent
expansion of the solution, B*X =and ¢*, for example, are
now assigned and, consequently, the set of hypergecometric
functlens with integral parameters is not immediately re—
quired., The difficulty, however, is the question of whether
it is possible to continue the solution within the circle.of
convergence., This continuation may not be possible owing to
the stringent continuity conditions given by equations (102)
and (1083), and to the requirement that the function must be
regular within the cirecle q = U, i

This, however, dees not offer a serious objection from
the practical point of view. In the first place, the summed
function (W.,(qg,d), for instance) actually holds even within
the circle of convergence gq <« 7, and the correction funection
Volgq,d), 1ie generally small compared with WV;(q,d) due to
the closec asyuptotic approximation of the hypergeomestric
functions in the elliptic domain, In other words, although
the solution within the circle of convergence strictly repre—
sents a different flow, numerically it approximates very
closely that defined in the annulus region, In the second
place, since this region g < U 18 relatively unimportant
in the case of mixed flow, where T; is very much less than

1

2p+1

— that is, for free—strecam Mach number considerably less

.
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than unity -~ the inaccuracy of the solution is limited to a
small region in the hodograph plane. Furthermore, the most
interesting phenomena of such a flow, such as the appsearance
of limiting lines, always take place in the annulus region,.
Therefore, this modified proncedure, although unsatisfactory
from the general view point, is an expedient capable of
yielding an interesting result and furnishing a test of the
practicability of the proposed solution.

The situatlion also may be considered from another angles,
The procedurs used in this section e¢an be derived by replac-
ing the functions §,(7) and {_,(7) with the approximate

values given in equation (201) in the expressions for the
coefficlents involved in the solution within the annulus
region, that is, (1C6) and (107). Thus the procedure may be
regarded as an appropriate method of approximation. The
error introduced is generally negligible if T; < < EEIE'
This 1s iIndicated by the fact that the correction funcition
Wz(q,T), for instance, is very small in comparison with
¥,(q,%) when q < U.

Another gimplification is made by using the elementary
integral q~ 2V I, (1) instead of q~°VY gu(f) in the con-

tinuved solution, as, in this case, E_U(T) is a vell-

defined function. In doing so, the asymptotic behavior of
the second solution remains unchanged because the first term
in QD(T) s always small in comparison with the second.

I1f, however, all the required hypergeometric functions
are computed, there is no difficulty in carrying out the exact
method developed in part III of the report for any accurate
study of two-dimensional flow, For this reason, the expres-
slons for the hydrodynamic functions derived for both the
exact and approximate procedures for the probdlem at hand are
given.

In the numerical example, detailed calculations are made
for the flow of alir about a cylindrical body derived from the
incompressible flow about an elliptic section with a ratio of
the minor and major axes edqual to 0,6. The calculations were
carried out for two different free-stream Mach numbers, 0.6
and 0.7.

22. The Functions z,(w), Wy(w) and A, (w)

The irrotational flow of An incompressible fluid about
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ern ellintic cylinder with the velocity at Infinity parallel to
the major axis 1s represented by the complex potential
) (z )

o*“o

. e 1 '

Wolz ) = € + T (271)

with
eg

ZO = g + T (272)
For econvehlence in practical calculation, all the physical
quantities Z,» 4, and p, will be normalized consistently
throughout the present part., The major and minor axes of the
section are ‘respectively 1+ ¢ ‘and 1 — 53, where

€ <13 g=1 at infinity and o =1 when a = 0. This will
automatically render tho hydrodynamic functions dimcnsionless
and the constants U and p, will be eliminated from the
fermulds in the succeeding sections.

By differc¢ntiating (271) with respect to z

or ‘the di—
mensionless complsex velocity of the flow is
a
¢ — 1
w =
2
(e~ e
Thus
1 2 1/2
-— € W 2
E = — [ ] . [1— ¢e¢w] #0 (278)
1 —w

This function is two-valued with two branch points at w=1

amd w = €2, In order to make zo(w) o single—valued

function of w, the expréssion (273) is supposed to be the
principal value so that |arg(l—w)l <m7 and 1 <|w < e~ 2,
' -2

The condition !e¢® w| <1 mpust be satisfied, for w = ¢
corresponds to § = 0, which is another singularity. With
the principal value s6 defined, if the negetive sign in (273)
is taken, then the domain D corresponds to the half plane
Rt { <0 ana | §‘ Z 1, On the other hand, since the trans—

v
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formation (272) is one—to—ene when I{i > 1, then the
domain D, which is R} Ty < O with the region inside
the section exeluded, corresponds uniquely to D.

Oonsequently. the inverse mapping function zo(w) is

g =172 a. . 1 /3
2 () =_{[.1.:££w_‘"} p [ll:gw} } (274)

which will be single—valued, provided a cut is introduced

to Join the dbranch points in such & way that the argument
(1—w) 1is restricted to —m < arg(l—w) < 7 and

lE w|l < 1. On seprrating into real and imeginary parts,

it 1s found that as 0 < 86 < 2n

- 1/2
8 == 2 [{ite, 9+ 30,9}

a 1/
+ € {Ie(q,é) + J—l(q,é)} B] (275)

' 1 . -1179
rolentr= [{-I(q.6)+ 7a,))

r - 1/2
— e I (aq,8) + 7 (q,é)} (276)

with w = g e_ia, where the functions I(q.8), Ig(q,d),

and J(qy8) stand for:

=} 8 »
1—(1+e ) os 3 + € q¢
(q,8) = 228 12 - (277)
_ l1—2q cos 8§ + ¢®
' - 2
I(q'é)__l (1+e )q_cosa+e q (278)

1 ~ 2ef g cos 4 + ¢? q
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1-2 ¢* cod & + ¢*g® 12
J(q,d) =[ - 13 < q} (279)
1 -2 q cos & +q°

On the other hand, substituting equation.(ETB) in equation
(271), the function W4(z,) 1is carried over inte D; namely,

. ’ - 1 _ 1
W (w) =.-{L}‘€2W]3 + Lfl:%_]él (280)
lew 1-¢?y J

Now Wo(w) = o¢,(q,%) + 1y,(q,¥), and similarly

It

| LI IONRE:
?,(a,9) [11(0..,19)+J(q.6‘)-' + <I_(q,9) + I (a,s) ((281)

J ¢ J

e
i}

. ',!- - -~ 1
Vo(a,8) = ‘%*?-I(q.ﬂ)-FJ(q.ﬁ)Ld- ~I_(a,d)+ J‘l(Q.GﬁLE}(282)
2% | | J € J

By integrating z,(w), according to (87), the trans-
formed potential function Ao(w), agside from a constant,
takes the ferm:

Ao(w) = 2(1-w)® (1-€w)% (2873)

The principal value of this function ig again defined
by restricting the argument of (l-w) tn -7 < arg (l-w) < m

and 1wl < €, Within this demain D, the real and imaginary

parts arei

xo(q,¥) = 28 [X(q,d + L(q,®] (284)
0 & < 2m
0c(3,8) = = 25 [=X(q,¥)+1(q,s)]% (285)

as NAg(w) = %X4(q,%) - 1oy(q,¥), where the -functions K(a,¥)
and L{(gq,d) are defined by:
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K(q,9) = 1 - (1+e®)q coa & + ¢® q® cos 2 &  (286)

L(q,¥) = [1-2 q coe & + qa]% [1-2€2 g cos ¥ +€‘q33% (287)

23. Expasnsions of Wo(w) and Ao(w)

The function Wa(w) defined in (285) 1s single-valued

and regular everyvwhere in 1twi < 1 and, hence, possesses the
fnllowing expansioen:

Wolw) = - S A; w2, qw <1 ' (288)

n=on

where the coefficiedts A, are real and given by

(1)

Ap = 25, "= (1 + €3) sfii nz1l . (289)
AO = Esgi) = 2
with n
(1), 2 1 Mavm+3)(m+%) 2nm
S = =
a €7 =& Z (n-mr ) (m¥1) ©
mn=e0

Hewever, in the gpeglen outside 1Iwi < 1 +the function

Wo(w) is doubled-valued; and when a cut is put between the

Pranch points w =1 and w = €72, the principal value is

discantlinuous aleng the positive axis of reals within the .
annulus region., To obtain the desired expansion, the function
is written in the ferllowing form

i 2 - (1+e®)w :
W (W) = e (2 O)
° w% (1-w'1_)'% (1-—€3w)% 7
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- & ’
Now (1l-w™1) 2 (1-¢®wT2 is single-valued and continuous
within the annulus region; its Laurent expansion is

(1-w=Y% (1-c?w)5

[=2]

= Sc(,o) + \ Sflo) [egﬁ wh + w"n:l, l<twi< e™? (291)

£

n=jy
where

pgl

T (ntmr 3 (n+E) o
F € : (292)

(o) 2y - 1~
Sp- () = “ (n+m+1 ) (m+1)

AN

0

-3 -
Substituting (l-w) 2 (1l-cPw) = from (291) in (290), the
expansion fer Wy(w) in the annulus region is

oo
Wolw) = iz [Bn 2 w? + ¢y w’UJ, 1 <iwt < €@ (293)
n=o .
when the constants Bp, Cpn and the exponent VUV are de-
fined by:
(o ]
By = 2 ¢ sn+i - (1+¢€®) s£°)
Cp = 2 s§°) - (1+ ) sﬁiz > (294)
v=n + %

7

Similarly, the transformed potential function A, (w)
can be expanded and is:

[e~]

Ao(w) = 2 :§, Ap wh, twl < 1 "(295)

n=o
~t
when the constants A4y =are

=2
]
i

= s{t)- (1+¢?) s{1) + e? sgfll

-

(296)

. ~ \
Kl ""'% (l+€2)| AQ =1 {

and Sgi) is given in (289),
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On the other hand, in the annulus region the expansion is

[0«]
Ao(w)="" 21 F Lﬁn €an Wn+ 6~1 W_n—l, 1 <|w] < e3(297)
n=o
with the constants ﬁn andl En defined as

= (o) 2 (0) (0) S 1

By = 8,5 — (1+e®) 5 e® S a0 B 1

~ - (o) g, (o)

B =2¢ 53 " = (1+e) 5, > (298)

= _ (o) a (o) (o)

¢y = Sa —_(1+€ ) Spea ¥ Shea

(o]
where si ) (e®) is aefined in (292).

A}

24, The Stream Function W(gq,d)

The relationship between the domain D and D 1is
thus fully established and the functions corresponding %o
such domains are also given. From the general scheme de—
veloped in sections 8 and 9 the solutions for the similar
motion of a compressible fluid can be constructed. First
ef all, the stream function Y(q,d) governing the subsonic
flow is tke sum of VY,(q,8) and Ys(q,d). Accocrding to

(207), (208), and (209), for 0 < T < 2;43

1 f('r) %
Wala,t) = = - {[—qu,a) + J(tq,«w]

-

- [ ~ I(tq,9) + J”l(tq,é)Ji} (299)
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where the functions I(tq,d), I¢(te,d), anda J(t )

a,d
are obtained from I, I., and J in (272) to (279) vy

replacing q by tq, ¢ being defined in (195). For
g <1, the function Valq,8) 1is

wﬁi)(q,a) = z; A, 6,(T) ¢" sin n 8 (300)

n=0

2]

where A is defined in (289) end Gn(T) in((199). For
g > 1 and in subsonic region the function w;o (q,98):

wgo)(q‘ﬁ) = }:[Gil)(T) Ee?qv

n=o
(2) —_—
e, (1) q cos v 4, O < @ < 2m (301)

(x) (2)
where G, (7) and G, (T) are defined by (205) with

the constants B, ard O defined in (294),

When the motion becomes supersonic, the continuation
of W¥,(q,8) defined in (299) gives

Vala,d =2 f(”){[~ I(k.i)+J<x,§>ﬂ|%—-§.—1€(x.§)+J“‘(7~',£>T"’
. 1 : —~ L

8 r£(n7

: -:<>~.n>+;<x.n>]%-[-ze,<x.n>+rlu.n)]%

<T<l

1.
- .

E or . % 2B+1
- +1(x,g)+J(x,g)] - L~I€(x,g)4-J"1(x,g)]

+ LI(A,n)+J(A.n)]%.i [ie(k,n)+-J‘1(A,nﬂ% }- (302)

according to (214)., Here & and 7 are the characteristic
parameters defined in (218). The upper sign in the last two
terms corresponds te 7N > 0 while the lower one, to n < 0.
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\u<2°)

The accompanying function (q,d) is

(o) = (1)
Wao (q,8) = ;Z [G- (t) 2® "

v
n=0
(=) —-”]
+ G T os Vv < 7T<1 303
v ( ) q co8 L 25+1 ( )
(1) . (2)
Here the functions G, (t) and Gv (1) are defined by

(205) in conjunction with (217) in such a way that (303)
will be the continustion of (301). It also should be

noticed that the variable is restricted to < 7T <1

L
28+1
< T < 715“4, as 715—4 is generally

instead
2B+1

greater than unity, whichk l1lg impossible for the actual gas.

(1), -
It should be remembered that WV, (q,8) is always

negligidle compared with ¥,(q,d) within and on the unit

1
2+1
¢(q,6) can be approximately represented dby V;(q,8) alone
throughout the interior of the unit circle. As a consequence,

the calculation can be simplified consideradbly by constructing
first a solution for the annulus reglon by using F (T) in—

stead of QD(T) and naking an approximate connectioh across

the unit circle. In that event, the stream function will be
reduced to

circle q = 1 when T, is small ir comparison with

.
*

V(g,d) = ¢1(q,a) (304)

when 0 < g < 1; here V,;(q,d) 18 again defined in (299),

0 h h he < —_—
n the other hand, when T, T < Zp+1’

(o)
G(asd) = ¥i(a,8) + Yy (q,d) (305)
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(o)

where the function V; "(q,8) which is small on g = 1
le given by

w2°)<q,a>== }: [?nGv(T) 2 vy cne_v(T){‘”] cos v 4 (B06)
n=o

Here the functions G,(T) and G__(7) can be shown to be

r) £(7)
v (T).-f(T )

1l

(r)(T)* £(T) tv’

- o —v
> ey LTI =E t =~ (307)

GU(T)=§

and the coefficients B, and C, are defined in (294),
The continuetion of Wl(q,ﬂ) is naturally the expres—

sion given in (802) while that of (306) @iffers only in the
definition of G,(T) and 6_,(7) which are

) .1 £(T) v
G, (T)=F_ ('r)--~2- TC t~ cos <vw - -E)
"éj;ﬁ <KT<1 (308)

i

(r) ()
G’-—-v("'):.E__v (r) ---:éL- 77 t" cos (vw+

25. The Coordinate Functions =x(q,d) and y(q,ﬂ)

With the functions zo(w) and Ao(w) defined in

sections 22 and 23, the corresponding functions A{w;T)

and consequently z{wj;T) for the motion of a compressible
fluid can be constructed., . The coordinate furnctions defived
from A(w;iT) =are given. respectively by the sum of two
functions =x;(q,d) and y,(q,8) which, according to equa—

tions (237) to (238),are
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e BT) (1) T 1%
xl(ch.ﬁ) = 2%_ f(‘l‘:_) {J:I(tq.é) + J(tQi-’a)J

+ ¢8 [Ig(tqnﬁ) + J~1(;q'ﬁ)]g}

T T t sin 29
E~ h(r) ks -1 + 4 ea-t q cos § — e?

+ T(tq,0) + €2 g1 (tq,é)} (309)

o

_t(T) elT) - 7
yl(q_,'a) = 2% f(Tl) {[ I(tq_.v&) + J(tq,é)J

- ¢ [- I (tq,8) + 37 (tq,ﬁ)]%}

n(T) t sin®d 8 .
— BT — 1+ 4 € t q cos & — ¢
f(Tl) co(tq,é),

+ J(tq,8) + e J—l‘(tq,ﬁ)} (310)

wvhere Go(tq,é) 1s obtained from o ,(q,d) 1in (285) by
replacing q by tq. The functions xgi (q.@) and

i ' ..
vyo {aq,8), acecording to equations {239) and (240), are

[o=]
(1) .~ 9~ —
xz (q,9) =2 Z n A 6 (T) " cos (n—1) 3
n=1
[= <]
— 2BT }: n A Gn,i(T) qn-l cos n & cos 9@ (311)
n=1

q <1
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(1)(q.é) -2 ST n Ay Gy (T) q®? gin (n=-1) 9
n=1 _
. .
- 2BT ;: n xn ﬁn'l(T) q®"® cos n ¢ sin ¢ (312)
n=1

Here the functions Gn(T) and Gp,1(T) are defined by equa-
tions (241) ard (242) and the constants XKy by (296),

The same functions valid in the annulus reglon are
again represented by the sums x;(q.ﬁ) + Xg(o)(q.ﬁ) end

y.(q,98) + y(o)(q.ﬁ), where x,(q,%) and y,(q,%) are
defined by equations {(309) and (310), respectively. When

T, & T< E—El_"'_—i-: ngo)(q;é)f and Yéo)(‘lté) are

[~

x§°)(q.6) = -« 2 2: v [ (1)(T) €2R gV=1 gin (v=-1) 9

+ aéa)(f)q‘v*lsin (u+1)ﬂ}+ BT Sﬁ v [ (T)ean P21
A
" 5(2)( ) —e=1 s .
T Uy, M sin v 9 cos 9 (313)

YQO)(QJ'&) == 2

['\/J 8

[ (1)(T)€an V=1ls0g (v-1)9
n

1]
H o

~(2)

* Gy (T) q " lcos (v+ 1) ﬁ]

+ 28T ? [ (T)ean vl e(a)(r) }ein vdain ¥ (314)

The functions G(Q)(T) G(a)(T) are defined in equations

(250) and (251) together with equations (252) with the con-
stants 5, and ) defined in equations (298),

On the other hand, when 25i—1:< T <1, the continued
expressions of x,(q,%), ¥i(q,%) across the critical circle

T = —E%TT are, according to equations (253) ana (264},
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xl(QJ‘ﬁ) =

4

t(1). () REi
T p57/8 ﬂTlf{[uki)fJ(kil]

o+

. % %
¢ fre(x.i) + J*I(A.E)] I(x n)+J(7\,n)]
%

+ € [-I'e(x',n)+J_l(k,n)] }cos (-——- )

_EéT {*—]KKE)+J(k§ﬂ%-;ea[*lgk.ﬂ

2 ( )

%
NSN]SR ICY nﬂ

=

—.

—_ BT h(T) cos 6 A sin ¢
+ J (x.n) s:.n(—-—) 2 q £(7,) {Lco()\,i)

X (—-— 1+ 4 ealx cos £ — e? + J(N,E) + e J”‘i(k,f.)>

A sin n

— 1+4 €5 A ccs n-—eg + J(A,n)
o (A,n)

m A sin

a8 -1 ‘
J + -
()\,ﬂ)>:| cos8 <u' 4/ L.\ \’\155

X (} — 4 €5 A cos tE + e+ J(N,E) + e? J—l(k,ﬁ)>

g a
<1—~4€ N cos n + e + J(A,m)

S (k,n)):}sin (u + g>}- (315)
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- :
t(T) g{T) 2
yilq,8) = 5578 i<‘;1)*{[" I(n,t) +J()"1£>]'— 5{"15(7\,2)

+J"%x,b]%+ Gﬁﬂkﬂﬂ +chm)}%— e? &-ngm)

3 . ,
o t(1) elt) [
+ J (Mﬂ)] }vcos (—Z- - uy + —57E e(75) ﬁ\"[I(Kuﬁ)

'+ J(k,t)]%— ¢® [IEM.E) + J-l(h.i)]%

% r &
+ [I(K.n) + J(k.ni} s lIE(h.n)*-J"l(K.n)] ‘}

™ BT n(7T) sind A sin £
SEICEDE Zq £(T1) {Lcéu.E)

X <} 1+ 4€¢° X cost — €0 + J(N,E) + eaJ_I(X,E)>

A sin'r}(__l + 4¢2 N cost — c? 3+ J(K.Tl)> .

o (hym)

+ €2 J_I(K,nD] cos (p. + -g) —[%—?—%—II—ELE-)- 1 — 4¢2 N cos ¢
o} ? =

<1—4€21\cosn

+ €2 & J(A,E) + €° J'l(k.§)>—-
| ¥ . (A,n)

N sin n
o!

+¢% + T(a,m) + ¢® J"I(h.n)>} sin (u + g)}' (316)
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While x,(a,d) and y,(q,%) remain to be defined by equa-

tions (313) and (314) except the functions g%“)(T) and

Ei?z(T) are replaced by those given in equations (250), (251)

together with equations (257).

By the same argument as that used for the stream function,
the practical calculation of x(g,s) and y(g,d) can be sim-

plified by neglecting xgi)(q,&) and ygi)(q,ﬁ) vhen q < 1;
namely,

x(q, %)

¥(aq,)

x,(q,¥) (317)

v, (q,®), 0= a=1 (318)

where x,(q,%) and y,(g,%) are defined in equations (309)
and (310); and in the anpulus.region

x(q, %) = x,(q,8) + x5°) (q,) (319)
T, < T <1
y(q,8) = y (q,9) + ng)(q,ﬁ) (320)

Here xl(q,&) and yl(q,&) are either given by equations
(309), (310) or (315), (316). The terms x§°)(q,&) and

y§°)(q,a), on the other hand, become
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it

2" (a,0) = -3 M ;mumc?vmmu q' 7" sin'(v - 1) ¢
n=o

+ mumnﬁhqvp:clu sin (v + Hv@@ + 2 BT mw .ﬁu v, NEO i

x ¢t o+ mbmc () plclu.._ sin V& cos & (321)
L) . -
(o0}
AoVAp §) = =2 Mm.c ﬁWuchqvmmw ¢" ! cos (v~ 1)9
. n=o -
« <o
°,
—Cp6_p( 1)t cos (v + HZ._ + 2B7 w ¢_kumc.phimuu
. - me
X q°7t 4 Gpb_y,, pucupw ein vy sin § (322) °
For T, < T < mmurlm_ the functions G (1), mq.pﬁqv are
+
defined as
G0y = B 70 - By Fray o 70 - Bl (520)
WﬂﬁHv -V Whﬂwv
§, () = 2=1F")y _nlr) v
' v+ 1 7w, £f(Ty)
(324)
o (my = Zrlgle) oy Blr) v
-V V —~ 3 =Vl £(T1)
For —t— < T < b
28 + 1
-
G,(T) = HAaVAqv ~ 1T oo Ace - uv
v 2 £(11) 4
> (325)
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CONCLUS IONS

As an example, the motion of air past a qylipdrieal body
was considered by taking € =,%. The flow patterns in the
T,6— plane for two free—stream Mach numbers M, = 0,6 and 0.7
have been calculated and were given in flgureqg 14 ana 15, It
should be noticed that there is considerable distortion in
the shape of the bodies in the compressible flow from that in
the incompressible flow, If the compressible flow around a
given body is desired, & series of computationms should be mads
with various geometric parameters €, 8o that the desired
body shape at a definite Mach number M; could Be picked out.

These computations definitely demonstrate the practica-—
bility of the proposed method. They also show that, in the
case of two—dimensional motion of a compressible fluid, the
mixed subsonic and supersonic flows exlst within the field of
an irrotational isentropic flow about a suitadle body, and the
transition from one to the other is continuous and reversible.
Furthermore, the breakdown of the irrotational isentropic flow
depends soluly upon the occurrence of limiting lines which, in
turn, is determined by the condition at infinity or the shape
of the boundary, while the magnitude of the lscal speed ai-—
teined is immatc¢rial. In the case of My, = 0,6, the lrrota—
tional supersonic flow continues to exist up to the local Mach
number M = 1.,25; whereas for M; = 0.7 it breaks down- as
soon as ¥ = 1,22 is reached. The singular behavior of the
streamnline 1s marked by the point of tangency of V¥ = 0 with
a characteristic at M = 1,22,

The calculation of the flow pattern in the physical plane
is yet to be completed. When this 1s done, the pressure dis—
tributlion can be counpared with that over the same body of the
ircounpressible fiow., '

Guggenhein Aeronauticzal Laboratory, .
California Institute of Technology,
Pasadena, Calif., April 17, 1945,
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APPENDIX A
PROOF OF THEOREM(52)

To facilitate the discussion, equation (71) is first
written in the form: _ :

%06, = 0N + 2ty t, =0

27
where
§1(T) = Ev(l)(T) + ;-(-]_-QE—'FS_ + 'Yv('r)
£ (r) = £,00(n) 4 Bl o ()
and
3
Yp(7) = {1 - (28 + )7, 8%7% 9 + 41 - ;)aﬁ}f
' - 1 - (1 - 1) TV RG(T)

when v is large, the character of he functions ¢ and {g
cen be easily studied in the' T,ﬁv 1/.plane (fig, 16} by neg-

lecting the third term under the radical sign. This can be
Justified in the following manrner: Coneider the case wksn v
1e posltive and large but not an integer. In the interval

0< T < EEQ:_I; ED(T) << F, beciuse FU(T) ; T ?EJD(T) by
equations (35) and (55), Then ¥2 Rv(T) ~ T_E'Tl—v. There-
fore, 75 Ry(T) >> 1 .when v is large. But both Pyu(T)

and F,(7) are continuous vith reespect to v; so the fore-

golng result applies equally to the case of integral v.
Hence, the third term in the radical for YU(T) can be neg-

lected for large v,
Owing to the manner in which Yv is defined, correspond-

ing to each v there is a line T = T, >-—EQL——. such that
' 2B + 1 .
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Wi(T) 2 0 when T § To.-'ksﬁg eénsequence {4 and f{; are
real or,comple% conjugate according as T § Tor In
0< T<To, Ly = and {5 = 0 , will. give two l-parameter

families radiating from (O, ~1) and (0,1), respectively, and
joining togethgr &t . a point where Y,2 = 0 If 0< T < Tos
the produét ¢{;{p may be negative or positive according to
whether the point lies to the left: or” the’ right of the curve
(1 = and {z = 0. ‘On_the other hand,.tf T > T, 03z
is alwaysfpceittve. e

5
oo
[ "

' s T L
Now £, (2 )(0) B, while the 1n1tﬁal~sloﬁe of f, = O

is ﬁ(;.;:_) “ the 1ntegra1 curve must lie above -gl = 0,

~_and.below §3 = 0 TS it,were not, the integral curve would

crogs the curve:I§1 = 0, ¢{; = 0, where E1,1)(T) = 0, and

”;gafl)(wy would be negative somewhere in 0 < T < N S

This is not possible, for: ﬁv ~ E—v by an argument simi-

. v
lar to that used for determining the.magnitude of % RD(T)

and accorcing to (55) - J/l - (2p7+ 1)7 o ¢ > -(1 - T)B in
: : -v

.. . l - 7T
0L TX<L, 1 . Hence ¢ (1) >0 in O0< T< =2 __ ang
28 + 1 = =28+ 1
g (1) continues. to 1ncrease until it 1?tersects with 1= 0
1

After 1t crosses the curve {; & 0,.Ev 1/ < 0 and never
changes sign as {,f{, > O in '+°'< t.< 1. Oonsequently,
ﬁUK%)(T) is monotonie and decreasing in the interval

To < T<1l. When v 1is eufficiently large, T will ap-

)
proach very rapidly to - and To = —t when v
becomes infinite. 28 + 1 28 + 1

Proof of theorem (52).- Form the following identity:

(2, '(ﬂzfl> _ gL(l)) . (nxfl) _ E1fl))[ 8 (7 (1)

X
1(My 1 -1 2T v
T

_ (2) , (1) ax
iv(l))] * ; ﬁ (1 - T)a6 U,J (ﬂ v ) T ginh U¥/n0n (1)
o

PR T 20  (a1)
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It can be shown €hat the differential expression possaeseex an
integration factor : o
(ﬂ (1), g (1))7Bv (1 _'i)-éﬁ 3 82 , (a2)

where ' S

= R (T )exp {'T/;(E (‘) - 1)dT}
sy = Sy(Todem { f(n ) . 1)‘”}

It will be noticed that the sign of (A2) is determined by the
firet factor ' (N, . &v(l)) only. On multiplying (A1) by -
(A2) and integrating the resulting total differential from T,.

to T, with a-suitably chosen initial value ngl)(T ) = E(l)(T )
i1t 148 found that R . . -t

.

%(nv(l) g (1))3 av(l - T)"Bﬁ Rg_sa_ + EB RB (To)éav(;ro> -.

X cosh p/('ﬂv '-'. (1))%I- l]> 0

- which i@ posiyiie:;f:énd only if nb( § (1)
where in T, < T < 1. Since both E (x) gnpa Ny (1) are con-

tinuvous and monotonic, the condition 18 both necessary and
sufficient. Furthermore, it should be noticed that the condi-

0 every-

tion nu( )(To) = £y (1)(7 ) is purely a convenience. If

ﬂv<:)(To) # &y (1)(7 ), the validity of the theorem is not in *
the least impaired. : .
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APPENDIX B
‘PROOF OF THEOREM (88)

Consider the first series: Multiplying throughout the
ineauality (58), namely,

E (1) >/-i-:‘-?£+—£)-1, 0 < 1 <
. l - 7 2p+1

by g% and inteérating both sides from <+ %o T, shows
that :
(r}

F, (1) < t7(7)

T,(7) : )
where t,(T) = T ) > 1., Then it follows that
1V’

(r) n n
Ap Epo (1) v < |Ap(t,w)

o
Naw E Ay (tlw)nl converges when |t,w| < U due to

n=o
equation (88), By Weirstrass's theorem, the series (92) is
uniformly and absolutely convergent 1if }tlwi = t,q < U,
Wow +,(71,) = 1; thus +t,q is eaual to U when q = U and

= ,. The term t;q 1is zero if a = 0 and remains positive

for 0 < q < U. By the definition of T,(T) given by eauation
(56), it can be easily shown that

d
—— >
th 0

for 0 < T < T;. Thus t,q 1increases monotenically from

zere to U in the interval O = T £ 7,. Therefere, the

series (92) is uniformly and absolutely convergent in any
closed domain in jwl < U,

Similarly, the convergence of the series (94) can be
established.
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APPENDIX ©
PROOF OF THEOREM (98)

It is observed that the following identities exist
among the constants involved in (98) and (99):

o0

B U = - -t }: AL +

. S e e— -- + -———-
m=0
O’i
—-v l
G, U —— Ay U (=3 4 2 (mv
a = Zom 2+tY v (m=v)

Now, by the inequalities (58) and (59), the functions
L}TI). E_U(Tl) can be bounded both above and below for

1l

2ll v=k0, when 0 ST S_'é-é—-i-. And if a smaller velue of
+

a(Z,,F,) 4is taken, it can be deduced that

1

F

< Mg —2—

B =

vhere M; and My are constants independent of n. On the
other hand, from the inequality (58)

1A
-
A

Ve e

g
Ev (1) < (1=-7), 0 ¥
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it follows that

E(T) v
T ta(7), T, ST L X
2,7y 2p+2

Consequently, the first part of (101) can be dominated:

* v v
3, BulT) w | < I3 (tzw) f
T(T) .
where t5(T) = —f—2—, The continuation of this inequality

for T >~—jL- can be easlly done by defining a new to(T).
28+1 .

v E 1 i
By hypothesis, Sr an (taw) ; convergaes if itpwi< V.,
n=o
Since to(T) < t(7,) for Ty £ T <1, the inequality

ftegw i< ¥V is uniformly bounded,

Similarly, it can be shown that

[ o -v i -v
1% gv(T) v ! < lcn (taw) !
oo
- . v
But 2; l ¢, (tyw) l converges if |t,w! > U, Since on
{w) =Iﬁ-°tl(T1) =1 and % log itlw’ > 0 when O0<7T <ot
dg 2E+1
or -+ ltywl = 0 when < T <11, the condition
dq 28+] .

| tywl > U holds for all T 4n T, < T <1. Hence, by

Weierstrasa's theorem the series (101) converges uniformly
and absolutely in U + 8§ Si1wi =V — &,
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TABLES OF THE HYPERGEOMETRIC FUNCTIONS

The values of the hypergeometric functions given
in tables 2 to 5 are calculated from power series for

¥ = 1,405, The function E » l(T) in table 6 is con—
V.

nected with iv(T), F L{T), end iu ((7) through the
- ]

follewing equation:

Blot) g (m & (™
2(v-1) v v,
SEm i =BTy () - e
—1 3(D+1) v,i —-v

This is simply the Wronekian of the two independent inte—
grals of the hypergeometric egquation and it holds every—
where except at the singulorities T = 0 and T = 1,
Tables 7 to 12 contain the corresponding arproximate fune-
tlons as indicated.

The numbers in these tables are exprecssed in terms of
appropriate powers of 10, However, a notation was devisad
in which only the powers are given wnile the base "10" ig
omitted, Thus, 3,14159 X 10" = 3,14159, m, BHere m nay
be elither a positive or negative integer, or zero, VYUnless
indicated by the sign T on the heading, accidental errors
were detected and eliminsated by the difference metkod.
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TABLE 1,- CORRESPONDING PARTICULAR INTIGRALS FOR THE SOLUTIOHS
OF COMPRESSIBLE FLOY AND INCOMPRESSIBLE FLOW

Compressible Incompressible
V p (7 cos V8 ) cos v§
1 Ey(T) sin v9 a gin UJ
- cos VL8 -p cos VO
9 QU(T> sin VO q sin V8
y(a, o) -
J/ (1 - T)B dr log a
T
8
v cos v v cos VO
7 B0 gin ve a sin v
- cos V6 -p cos VvE
a &, (T) gin ve q sin Vo
X.(Gie) - 8
/ (1 - 7) ig log ¢
8 e

The functions F (1), q'zugv(T) and F,(7), q'gUQU(T)

are respectively the two independent integrals of equa-~
tions (27) and (28).

TABLE 14

T A M T M T M

0 . 0 0.17 1.0057 0.28 | 1.3858
.02 2.2554 .10078 .18 | 1.0kb12 .29 1.4202
.ol 1.6376 . 20576 .19 1.0763 .30 1.4548
.06 1.3751 .31521 .20 1.1111 .32 1,52u4k4
.08 1.2267 ook .21 1.1457 .34 1.5950
.10 1.1322 HUHET0 .22 1,1802 .36 1.6667
.12 1.0697 67340 .2 1.21k5 .38 1.7398
R 1.0283 . 80391 .2 1.2498 Lo 1.81k0
.15 1.0141 ' 25 1,2830 U2 1.83910
.16 1.0041 , 94062 .26 1.3172 LUl 1.9698
.165 1.0011 .27 1.3515 LL6 2.0510




TABLX 2
F T ¥ T T T ¥ T ' T T

T "1/3( ) *3/2( ) I5/:&1( ) 57/3( ) F*ala( ) Iu/sm 513/3“’ !1513“) l:J.'I/a(") ='-':.9/3(1') ‘31/3( )

0 [ 1.00000, 0| 1.00000, © | 1.00000, O | 1.00000, O | 1,p0000, 0 1,00000, o 1,0000p, © | 1.00000, o | 1.00000, o] 100000, -0 [ l.00000, @
19 | 9.40582, ~1 B.28748, -l T«E3E608, -1 | 6.51728, =1 | 5.50840, -1 4,78888, =1 | 4.17817, -1 | 3.8351%, -1 B.16358, 1 | 2.76157, =1 | 2.596%5, -l
W12 | 9.26281, -1 | 7.9480M, -1 | 6.7BE35, =1 | E.72109, -1 | 4.85487, ~1 4,08018, =1 343976, -1 | 2.89778, --1 | 2.43980, -1 | 2.06332, ~1 | 1.TEV39, 1
4 9.16112, -1 T.63M5, -1 6.20660, =1 B.18693, -1 4.22615, -1 3.447€1, -1 R.80876, -l 2.28561, =1 1.86621, =1 1.60967, -1 1.22878, =1
15 | 9.1260%, -1 | T7.48807, =1 B6.0TETS, ~1 | A4.B0488, w1 3.94250, -1 5.18120, -1 | R.E2960, -1 | 2.02124, -1 | 1l.61%22, -1 1.28641, -1 1.02496, -1
+16 | 8.07TU43, <1 | 7.33892, 1 | 5.85410, -1} | 4.65282, -1 | 3.67498, =1 2.05%41, -1 | 2.2727T1, -1 | 1,78185, -1 | 1.39615, -1 | 1.09110, <1 | B.5R43T, -2
«185| 9.04429, ~1 | 7.26018, =1 | 5.76610, ~1 | 4.53033, -1 | B.5¢52l, -1 2. 78621, 1 | 2.5219, =1 | 1.87109, -1 | 1.29559, -1 | 1,003, -1 | 7.7669T, -2
«IT | 9,01726, ~1 7.19198, -1 5.65505, =1 | 4.41018, <1 | B3.42087, =} 2.64853, -1 | P.O36T2, ~1 | 1.B6SBL, -1 | 1.20183, -1 | 9.B0865, =2 7.04764, =2
»1TE | 8.95036, ~1 7.119%0, <1 B.BBRAS, =1 4,29038, =Y 3.20881, =1 2.52408, -l 1.92011, -1 1.485685, =1 1.13336, -1 8.44275, -2 6.39286, =2
.18 8,55866, -1 7.0479, -1 546130, =1 4217688, =1 3.18004, =1 2.41012, -l 1.82027, =1 1.37202, -1 1,02088, -1 7.72969, -2 B.T8904, 2
Jd88 1 B 0388, -1 6,97668, -1 5.36M0, =1 4.08358, =1 5,08448, «1 2.20088, -1 1.71898, =1 1.26111, =~} 9.52408, -2 T.06636 -2 b.25290, -2
17 oB.BLnY, <1 | &,9Bd81, -1 | B8.2523L, -1 | 3.88255, 1 | 2.9580H, -1 2.192%8, -1 1.62213, -1 | 1.18582, -1 | B,702BE, .2 | &.44081, -2 ) 4.9%128, -2
»19E | B.88580, -1 B.8311), -1 B.15663, =1 3.84510, -] 2.R4274, w] 2.08003, =1 1.52088, -1 1.11528, =} 8.10647, I 5.06480, . <2 425128, -2
20 | 8485743, -1 | &.T641T, -1 | B5.05952, =1 | 3.73707, .1 | Z.7364R, =1 1.90085, -1 | 1.44109,- -1 | 1,08880, -1 | T.46388, -2 ( 6.3469%, -2 | Z.819%0, -2
«£1. | a.807M1E, -1 8.82688, -1 4.07854, -1 23.53020, =@ 2.535258, 1 1.80316, -1 l.27801, =1 B.h84P4, -2 S.296805, -2 440048, -2 3.,0630T, =2
.22 8.75312, -1 8,48974, -1 4.68817, -1 353172, =1 2.54028, -1 1,82011, -1 1.1268%, -1 T.T8226, -2 b.28228, -2 3.80218, -2 245181, -2
23 8.70161, -1 B.36571, -1 460808, -1 S.1414F, -1 2,15682, -1 146880, -1 1.08552, -1 8,682895, -3 4.59613, -2 2,90p44, =% 1,90756, -2
o4 8.66084, <1 8.28379, -1 4.388m, -1 2.05001, -1 1.98792, =1 1.31883, -1 8,8F039, ~8 5.683245, -2 3.65264, -2 2.x26524, -2 1,47590, -2
«28 8.59991, -1 6.00588, -1 4.160F, =1 2.7TM58, -1 1.82708, =} 1.18146, -1 ¥.643563, - 4.7€140, -2 2.91302, -2 1.837TA0, <2 1.18807, «2
«28 8.549T8, =1 5.b8818, -1_.| 4.00425, -1 2.81721, -1 1.67681, =] 1.06480, -1 d.5303, -2 5.99519, -2 2.40768, £ 1.431%2, -E B.38040, =3
«27 8.49008, -1 6.8448, =1 B.B450T, =l 2.45T34, =l 1.55401, -1 P.56418, -2 5.63624, =2 5.32389, ~f 1.93582, -2 1.0968%, -2 8,08554, <3
«20, | 8.48088, -1 6.71882, -1 | DJ.60048, =1 | E.30ABT, =1 140084, =1 8.51600, -2 | 4.5208T, -2 2.73864, -2 | 1.51783, -2 8,20155, 3 | 4.28202, =3
«23 8.40177, -1 B.50519, -~} T BB, -1 2.15888, ~1 1.2T828, =~} 7.52811, =2 4.10444, =2 2.,23067, =2 1.17408, -2 5.96281, .3 288751, 3
=30 8,832, ~1 B.4788T, -1 EI5488, -1 2.01981, =1 115880, -1 S.44498, -2 T.4825), -2 1,122, -2 A.0TB89, -3 4.16819, -5 1.78086, =3
3R B.2BTTL, -1 6.24232, -1 3,11819, -l 1.78038, -1 049764, =2 4.,89390, -2 2.3018, -2 1.00649, -2 < 559T, -3 1.63491, =¥ 3.65065, -4
34 8.1838l, -1 B.0lAR2, -1 2,85451, =1 1.B2658, <1 .| TATTZ8, =2 S.81880, -2 l.b8892, 2 5.UT068, -3 1.76838, =3 181788, =4 | ~3.44849, -4
+36 8.0782, <1 1.78028, -1 2.80809, =1 1.3, .1 GelllBe, =2 Z.58187, -2 9.43080, -3 | Z,53832, ~3 3,66867, =8 | =6.0MOT5, ~4 |-0.15150, -4
-3 T.56111, -1 4.58885, -1 2,378, -1 1.12520, =1 4.TTBES, -2 1,76808, -2 4.6b086, -3 290812, -4 | =0.08482, -4 | ~8.86304, 4 | -H.35445, -4
+40 7.80228, =1 4.,38a70, -1 2.18418, =1 9.82880, -2 3.04002, -2 l.10841, -2 168200, ~3 | -1.003T1, -3 | -l.5191T, =3 | -B.9930T, 4 | -5.31186, -
-2 T.306)2, w1l | ‘A.19814, -1 1.008359, =1 8.00784, -2 2,70013, -2 8.06027, -3 | <E.B437E, 4 | -l.T7320, 5 | ~1.30053, -3 | -7.82801, w4 | .3.BR055, ‘=4
o 7.715e2, -1 4.00%82, -1 L.TINa, -1 S.88118, -2 1.91178, =& 2.36821, -3 | ~1.90872, -3 | +2,02354, -3 | =1.85608, B | ~0.85157, o4 | -2.24650, -4
48 | 7.63E77, -1 5.82064, -1 1.50%08, -1 b.4Ti62, -2 l.27938, =% 1.30069, -4 | -2.83849, =3 |~l."7681, ~3 |-1.02127, -3 | «~3.5825F, -4 |-1.12718, -
48 | TT.3B38R, -1 | 3.04805, -1 144304, =1 | 4.43684, -8 | 7.87i04, -8: | ~2.12848, -3 | -2,90284,' -3 D-1.Ta81R, -5 | -T.B2860, -4 L1, TESBT, 4 [ -2.4B1N1, -6
50 TaAT2ES, -1 $.48202, -1 1.2M84, -1 B.53204, =R 3.65870, =3 ~4.02562, -3 | -2.,8840d, -3 | -l.4Z091, -3 | =l.051R2, -4 | 2,823 7, 5 |42.080R1, -8
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TABLE 3
A1
1 ¥ t 1 T
7 T r T T) r T T T

L Zaptm LY SYRLLRN R A o™ | Epptn) F_15/5(T) Foasad®) | Tagsal®) | Pagratn) | Lgyp(®

@ | 1.00000, O 1.00000, @ | 1.00000, O 1.00000, o0 1,00000, ©| 1.00000, O 1.00000, ©| 1.00000, ©] 1.00000, © | 1.00000, & [ 1,00000, ©
J0| l.06a39, O | 1.%85, 0| 1l.4ltn, o 1.72508, O 2.,06119, ©| 240570, O 2,79%48, o| 2.25017T, ©| 5.72388, O | 428471, O] 492403, O
O | l.06828, o0 lLasiz, o | 149211, 0| 1l.e0884, o 2.5659, o 2.98%, 0] 3.c80a2, o| 4.3340, o b.22992, O | 6.28099, O 7T.s2381, ©
4 | 1.0m93, 0| 1l.3814, O | 1.58%68, O] =2.07788, 0| 2.,v2458, 0| B.585658, 0| 451882, 0| b.To48, ©| T.R899Y, O .97, o L.aseas, 1
.15 | 1l.08518, o | l.a40m, o0 | 1.6788T, O =2.15387, 0| 2.88480, O | 3.8970, 0| B5.01470, 0| ®.54263, ©| ©6.4962¢, O | 1.0989%6, 1| Ll.4T36, 1
.18 | l.0%032, 0| 104185, O | 1.6599e8, ©| =2.21820, O 35.02264, ©| 4.20081, 0| &.60301, o| T.5428, O 9.76040, O | 1.29237, 1| L.TOTEE, 1
<186 1.08289, o | 1.4, o | 160888, o 224885, o | 5.10088, ©| 4.282%, O B.7TI, o| T.rs704, 0| 1.02982, 1| 1l.30181, 1 1.0604¢, 1
.17 | 1l.08543, 0| 1.24219, O | l.61875, O 2,278TY, © | 3.16514, O | 4.35623, O | B.PSORS, o| a.11578, o©| 1.1010¢, 1| 1.48961, 1| %.01070, 1
J176| 1.09796, O | 1.14218, O | 1l.68348, 0| 2.20884, O 323029, 0| 4.47051, O] 6€.18844, o| 8,aT28n, ©| 1.36980, 1| 1.88%7, 1| 2287TTRXR, 1
.18 | 1.10048, 0| 1.14199, Q| 1l.6291Cc, ©| &2.3208Y, O | S.2THa8, O | 4.07%66, O | 6,35782, O 08.80080, O 1.21425, L | 1.87L18, 1| 2.28e30, 1
2186 1.10898, ©0 | 1l.14182, O | 1.65368, O 2.3587Ts, O | 3.me24, O | 4.08889, O] &.82428, o| 9.086, O l.26235, L | 21.74878, 1| 2.7, 1
219 | 1,10546, © | 1.14108, O | 1.83887, O | =2.36335, O | 2.36182, O 4.73882, O &.88343, o| s.5%08s, O l.5o229, 1| 1.81288, 1| 2,61778, 1}
J1951 1.10795, o0 | l.14038, O | 1.,65008, 0| 2,36430, O | 3.38032, O | 479786, O | 8.7H089, o( 9.51385, O 1.33197, 1| 1.88%08, 1| 2.887Y88, 1
20 | 1.32089, € | 1.139%45, O | 1.64000, O | 2,37172, O | 3.40004, O | &.B3TM, 0| B.B4LOB, o o9.62282, 0| 1.3481s, L | 1.88%07, 1| 2.81858, 1
221 | 1.11585, O | 1l.1572a, O | 1.63842, O | 2.37625, O | Z.41289, O | 4.08625, 0| 6.85T11, 0| s.eoe28, © 1.33853, L | 1.84480, 1| 2.52a29, 1
22 | 1,12006, O | 1.15429, O | 1.63210, O 2.3eze3, O | 53354, 0| 4.TE04E, O | 0.87158, o 9.16810, O 124449, 1 | 1.85604, 1| 2.1408%, 1
o3 | 112461, O | 1.12085, O | 1.62106, O 2.3%41), O | 3.30%5, 0| 4.59764, O | B.2497, o Bs.28288, O 1.06268, L | l.rofw, 1| Ll.40074, 1
24 1.12960, © 1.126%5, 0 | l.60638, 0| z.288l8, 4] 5.,18495, 0 429634, 0 | B.56T98, o 6.¥8110, 0| T.40006, O | B.45688, O L0088, a
25 | L3424, O | l.a24, © | 158805, O 222417, © | B.01182, O | 3.066865, O | 466782, 0| 4.c0497, 0o 2.m953, o0 |-2.56113, O | =l.z8T29, 1
2 | 1.1387, O [ l.11745, o | 1.58018, O | 2,04375, O | ®,78819, 0 | 8.30162, O ( 2.25617, o{ 1,73352, O | -3.08a69, O | ~l.4em18, 1 | =2.05195, 1
«27 | l.4383, 0 | 111196, O | 153092, O =2.04504, O | 2.50893, O | 2.59526, O [ 1.80707, o | -l.89288, O | -1,06008, 1 | =3,0002s, 1 | -8.P5187, 1
428 | La47%0, O | 1.20806, O | 1.4973, O | 1.928m, O | 2,1738s, O | 1.74570, O | -3.88633, -1 | -8.28854, O] -1.06180, 1 | -4.88017, 1 | -l.0Ms8, 2
o3¢ | 1.18211, O | L.0PETS, O | 16978, O | 1,79645, O | 1.788e8, U | B.BB4B5, ~1 | ~3.82183, O | ~l.14295, 1) -3.080%, 1 | -T.01848, 1) -lANM, 2
«30 | l.lb648, O | 1.00%04, O | le42812, O | 1.04635, O | 1.34789, O | -2.77%64, ~1 | -6.3B666, 0| -1.720%0, 1 | -4.28761, 1| -9 e 1] -l.926TR, 2
«22 | 1.16500, O | 1.07881, O | L.52381, O | 1.,28780, O | B.2)FR7, ~} | ~3.02438, © | ~l.15868, 1 | -3.07618, 1| ~7.02622, 1 | -1.44505, 2 | ~2.06%12, 2
oB4 | 1.17323, O | 1.08296, O | 1.22608, O | 8.95074, L | -B.78444, -1 | =8.09500, © | ~2.86550, L | ~4.86705, ) | -8.8m007, 1 | ~l.96022, 2 | ~3.63061, 2
=28 1,18145, 0 | 1.04880, 0 | 1.,00882, O | 4.40208, =1 | =2.21428, O | =9.48146, 0 | -2.80G668, 1| =6,00882, 1 | ~1.235174, 2 | -2,28798, 2 | =3.8E523, z
«58 | L.amess, O | 1.0288), O | 9.,67975, -1 | ~E.002GE, -2 | -5.63765, O | -l.2%%1, 1 | -3.321m), 1| -7.20287, 1| -12.578as, 2 | -2,209805, 2 | -B.158T1, 2
0 | 1,18706, O | 1.01084, O | 8.3162F, -1 | -E.6548Y, =1 | ~6.09175, O | -l.8%C38, 1 | ~3.91243, 1| -7,96883, 1| -2.86028, 2 |-1086609, 2 | ~l.3R807, 2
2 | 1.BO4B6, O | V.51088, -1 | 6.894T2, <! | -1.08308%, O | -6.51410, O | «~l.91396, 1 | ~4.82781, 1| -7.55387, 1| -l.14410, 2 |-8.63%67, 1| l.70887, 2
o | 1.21187, O | 2,72048, -1 | G4BT, =l | <2.61928, O | -7.84257, 0 | =2.14584, 1 | -a.4m183, 1 | ~T.17273, 1 | -6.87301, 1 | 46.63411, 1| B.8TL07, 2
48 | 1.,21809, 0 | 9.55707, -1 | 3.9663, -1 [ -2.15087, O | -5.01412, O | ~R.Z9M47, 1 | ~4.312%0, 1| -5.30606, 1 | 4.00007, -1 | Z.69%t7, 2 | R.B4lll, 2
W8 | 1,22591, O | 0.34408, <1 | R.53285, -1 | «2,61293, O | -~0.96814, O ) ~.234080, 1 | ~3.79201, 1 |. ~2.871L7, 1| e.T4704, L | 4e6T487, 2 | l.35421, 3
o0 | 1,28268, O | 9.15143, <1 | 1l.30727, -l | «3.06472, O | -l.0e545, 1 | -2.27281, 1 | -2.5LsT, 1| -68.1288, 0| l.88606, 2 | s.5203t, 2 | 1.5%667, 3
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TABLL 4
F (0 Fo(r Fo(r Foo(r F F T ¥ 1) T - T F T ¥ )

| T T2t Toret™) Lt | By Fapt™ | D Lod™ | Ly | Dopl™ | Ty

0 21.00000, O 1.00000, 0| 1,00000, ©Of 1.00000, O L.00000, O 1.,00000, ©| 1.00000, O | 1.00000, © | 1L,00000, O [ 1.00000, O 1.00000, 0
=10 1.027535, 0 9.60632, ~1 | 8.66856, =1| T.08644, 1| 8.TT4S, -1 594750, -1 B.ROTEE, -1 4,85218, =1 | 3.97428, -l 246662, -1 3.02175, =1
W12 1.027E4, 0 §.52185, -1 8.38224, -1 T.24888, -1 | s.20321, -1 5.28e08, -1 4.48608, -1 3.79976, -1 | >5.215ls, -1 2,TL588, -1 £.28981, 1
ol4 1.03281, '@ 5.43406, -1 | 8.10818, -1| 6.808T4, -1 | s5.68817, -1 4.868T5, =1 | 385376, =1 S.14005, -1 | 2.66617, -1 2.09574, -1 l.70610, =1
=16 1.03661, 4} B.3808, <1 | T.BST38, <~1| O6.58561, -1 | 5.39198, -1 | 4.3740¢4, -1 3.5%240, =1 2.54245, -1 | 2.28146, -1 1.82T70, -1 1.46198,~ =1
16 1.03627, Q 9.54427, -1 T.852803, -1 €.3851T, L1 515352, -1 4,19778, -1 T.041, =l 256517, -1 2.02048, -1 15888, ~1 124604, -1
«166| 1.02887, 0| 9.32141, -} | 7.7631e, -1 C.27T7T3, )| ©5.00858, =) | 3.8874s, -1 | 32,0098, -1 | 2.43385, -1 | 1.80880, -1 | 1.&77e8, -1 1,14781, =1
W17 | 1.04109, 0| 9.20839, -1 | T.68817, =1| 6.172Y8, <1 | 4.88088, -1 | 3.828Y0, -1 | 2.0T682, -1 | 2.30725, -1 | 1.781%¢, -1 | 1,57508%, -1 1,08568, =1
«175] 1.04252, 0| 9.27620, -1 | 7.51304, =1 | 6.08830, -1 | 4.7889%, -1 | 3.e82s8, -1 | 2,3473P, -1 | 2,18827, -1 | 1,0M08%, -1 | 1.2T4l5, -1 0.60383, -2
+18 | 1.04297, 0| 9.26183, -1 | T.54TTY, -1| G.06432, -1 | 4.83486 ~1 | 3.5807¢, -1 | 2.72184, -1 | 2,087Ml, -1 | 1.68450, ] | 1.18063, -1 8,.85880, -2
85| 1.04543, 0 | 9.22829, -1 | T.ATT3S, -1 | G6.00063, -1 | 4.51380, -1 | 3.453%2, .1 | 2.89%9, -1 | 1.96476, -1 | 1.46383, -1 | 1.0023%, 8,15007, -2
219 | 1.04691, O | 9.20457, -1 | Y.40661, ~1| E.T6VB4, -1 | 4.20415, -1 | 3.514€1, -1 | 2.48088, -1 | 1.84B08, -1 | 1.366T3, -1 | 1.00000, ~1'| Ted2442, o2
<1881 1.04B41, 0 9.28088, -1 | 7.83611, ~l! B.68636, -1 4.P7T619, -1 | =& lovis, -1 | 2.%eE79, -} | L.f4as0, -1 | 1.27488, -1 | 9.30451, -2 8.T6615, =%
<20 | l.04902, 0 9.25669, =1 | 7.20628, 1| Ob.58335, =1 @.16972, =l | 3.07666, =-1 | 2.26412, -1 | 1.84001, =1 | 1.,18737, =) | &.86588, 2 8.15277, -2
.21 | 1.06230, 0| 9.10786, -} | 7.122317, -1 | -B.BO067, -1 | 3.95124, =l | 2.54728, -1 | 2.040B5, w1l | 1.48177, -1 | 1.02821, -} | T.21522, B B.0B1BE, 2
22 1.06814, 0| 906838, -1 | 5.98047, -1 | b5.1B041, =1 370870, -l 2,.62805, =l l.84065, =1 1.27Y78, -1 | B.75080, -E 8.02589, -2 4.10322, =2
»28 | 1,069%6, 0 | 9.00808, 1 | 68,8875, -1 | 4.90808, -1 | 3.49208, =1 | 2.41870, -1 | 1.86304, =1 | 1,118L%, =1 | 7T.4T778, -2 | 4.908%07, -2 3.29142, -2
<24 | l.06288, O | e.96884, -1 | S.0882Z, -1 | 4.TEYL, -1 | 3,20136, -1 | B.21889, -1 | 1.47789, -1 | P.T2075, - | €.20801, -1 | 4.07333, ~E 2.60114, =2
25 1.06604, 1] 890498, -1 8.64864, -1 4.58180, -1 3.07862, 1 2.02841, -1 1,51388, -l 8,38878, -% 6.Bp6EE, ~2 3.28408, -2 2.01865, =2
26 1,06850, Q 8.86210, -1 6.4042, -1 436042, -1 2,877T86, -1 1.54M08, -1 1.18240, =l T.1T8LE, ~2 4.32661, =B 2.60403, % 1.53124, =2
«£7T | 1.07%6, O | 0.79833, -1 | 6.26758, -1 | 4.17049, -1 | 2.88443, -1 | 1.67473, -1 | 1.01679, -1 | 6,081809, 2 | 2.50638, -2 | <2.02210, -2 112740, -
«28 | 1,07669, 0 | 0.7T4382, -1 | 6.11079, -1 | 3.9917%4, -1 | 2.49T, -1 | 3.61216, ~1 ] 48.88898, -2 | B5.09933, -2 | Z.78547, -2 | L.52m2, 2 T.9¢572, =3
»29 | 1.08042, - O | B8.68752, -~1 | B.96314, -1 | 3.80821, -1 | 2.51685, =1 1.38818, -1 | 7.87418, -2 | 4.20088, =2 | £.16R215, =8 1.11558, -2 B.29181, =¥
«50 | 1.08425, o© | 8.63120, -1 | G.BM582, -1 | 3.82289, -1 | 21387, <1 1,20088, -1 | 8.EEMY, -2 | s.43?), 2 | 1.60320, -2 | Y.s8688, -3 BJ1EEH, =3
82 | 1.09221, 0 8.61457, =1 E.ELTH4, -1 3.24M0, -1 1.80688, =1 9,41082, .2 4.89760, =2 2,008, -2 | T.2l412, I 2.5T288, -3 C.49TE4, -4
34 | 1.10083, 0 | 839238, -1 | b.216P1, -1 | R.9Izs2, ' -1 | l.do470, -1 | 7.0me61, -2 | 2.97227, -2 | 1.0M08, -2 | T.PE990, -4 | =6.20633, -4 | -1.31fT0, -3
«38 | 1.10984, O | 8,28728, -1 | 4.91128, -1 | 2,87170, -1 | 1.20828, -1 | 496611, -2 ] 1.68104, 2 | 5.19286, -5 | ~2.7p923, ~3 | ~2.20870, =3 | ~1.9693)}, =%
.38 | 1.11888, o | 8.3792, -1 | ¢.s0288, -1 2.24084, -1 | D.40421, -2 517171, =2 | 6.03759, ~3 | -2,07404, 3 | <8.BTE8T, ~Z | -3.14716, -3 | -2.00867, =3
40 | l.12%02, o | 7.89850, -1 | 4.20084, =1 | 1.809ed4, 1 | G.P6B4S, 2 1.657T72, <2 | =1,68761, -3 | -5.48776, % | -g.0f901, -3 | -3,18032, -3 | -~l.TMGEB, -1
<2 | Ll.15972, o T.85882, -1 3.07400, =1 1.00035, a1 | 4.7B8B8, -3 3.90822, -3 | -Y.B472E, -3 | ~7.20513, & | ~1.0p8H1, -2 | =B.T9564, -3 | -1.26803, -3
4 | 115114, 0 | T.TOAPE, -1 | 3.05450, -1 | 1.30978, -1 | 2.76Me, -2 | «5.38482, -3 | -1,1813, <2 | ~T,80179, -8 | -1.18892, -B | -2.1614¢, ~TaT408, =4
&8 | 1.18338, 0 | T.54598, =1 | 3.52965, -1 | 1.02145, -1 | P.5T#62, -3 | ~L.448587, -2 | -1.41468, ~-£ | -T.BRB73, =5 | -1.32383, =2 | =1.44823, =% | =l.0084r, =4
«0 | 1.17855, O | 7.57924, -1 | 2.99%88, -1 | T.4810, -2 | -5.TRZS0, -3 | -2,36344, 2 | -1.E0977, ~2 | -5.43288, -3 | -1.49087, ~£ | -T.57447, -4 | V.00, -5
80 | 1,180M1, O | 7.20312, -1 | 2.68448, -1 | 4.80325, -2 | ~1,81987, -2 | -2.48214, 2 | ~1.49069, -2 | -4,83756, 3 | -1.704M1, =B | =1.57282, -4 B4%s0t, -4
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TABIE B .
P T ) T F = = -~ - = - R 5

r | Bast? | Laplm | Egptn | Eauatm | Egp Epatm | Eigp( | B | B | R | E

01 l.00000, 0 [ 1.00000, O [ 1.00000, ©Q | 1.00000, O | 1.00000, @ 1,00000, © | 1.00000, O | 1.00000, © | 1.00000, O | L.00000, O | J.00000, @ ©
-}g g.oom, =1 | 1.87186, O | 2.1a50%4, O | 251548, O | 2.02885, 0| 3B.57eT7, O | 3.87Y57, O | 4.44205, O | G6.08274, O | B.81B60, O | B.48YE, O
12 TeSTE00, -1 | 1.74ST9, O | Z.54B5%, 0 | Z.96216, O | S.mEBEY, 0| 44070, O | 5.314§5, O | 0.37910, O | 7.68148, 0O | #.10878, O | 1.08584 1
14 | T.1BEEY, -1 | L.79165, O | 2.64679, O | 3.30068, O [ 4.27911, O| &m.e0als, O | T.11%e4, O | B.ou2¢3, O | 2.1ms%, 1 | l.aresy, L[| Llyrms, 1
«l5 | 6.89180, -1 | 1.80M0, O | 2.63622, © | B.60260, O | 474977, O e.20984, O | 821157, o | 1.08082, 2 | 1.38661, 1 | l.7asel, 1 | 2.2a182, 1
1lé 6.68665, ) 1.81762, [+] 2,T0976, o 5. 7804, 4] B.10184, 1] 0 9,11876, [1] 1.20984, 1 1.80928, 1 211004, 1 2.ATEEL, 1
«165| 6.68760, -1 | 1,R204], 0| 274200, 0 | s.84382, 0| s.2eeT6. © 0| 9.81558, 0] l.28B42, 1| 172861, 1| r.20849, 1 | 3.086882, 1
217 | Gu€1781, -1 [ 1.82182, o | 2.7%0%0, O | 3.91883, © | pB.42181, O o[ 1.00938, 1| 1.38736, 1 | 1.B4660, 1 | 2.4Basp, 1 | F.mT24, 1)
<178 | 6420635, -1 | 1.82177, o | 279800, O | S.9886B, O | 556612, O o} 1,08489, 1| l.a4lss, 1 | 1.98664, 1 | 2.87380, 1 | 3.63228, 1
+18 | 6.1M10, -1 | 1.82024, O | 2,81720, © | 4.0BO08, O | EAMM, O 0| 1.08862, 1| 161121, 1 | 2.07706, 1 | 2.84888, 1 | 3.90136, 1
2185 | 64050740 - | 1.8L720, O | 2.884%, O | 4.10291, O | B.M086Z, O 0 | 113584, 1| 1.57337, 1| 2.17724, 1 } 3.00655, 1| 4.d4478, 1
1 B.92628, =1 1,81269, 0 2.BS724, 0 4.14855, 4] 590425, 0 [ 1.16552, 1 1.52601, 1 z.28169, 1 5150064, 1 4.34694, 1
196 | 5.30060, 41 | 1.80662, O | 2.86674, O | 4.18023, O | E.9a082, O o | 1.180%, 1| l.ssss0, 1 | 2.22540, 1 | B.22840, 1 | 4.46028, 1
«20 5.6T578, -1 1. 79904, 0 | =.86888, O | 4.w0322, 0 | 8.03384, 0O o | 1.20708, 1 1.60241, 1] 2.38284, L 3. 28633, 1| 4.58460, 1
<2l | B.41663, <1 | 1.77e28, O | 2.88809, O | 4.21425, O | s.088M, O 0| 2.20086, 1| 2.88774, 1| z.smzs, 1| s.20172, 1 | 4.36108, 1
22 8415438, =1 1.76380, 0 £.8Rse4, [} 4.17383, 0 5.9@032, [¢] [} 1.16441, 1 1.58626, 1 2.12176, 1 2.T1520, 1 3.62612, 1
23 4.50698, -1 1.72100, ] 2.77789, 1] 4.07623, 0 B.T808L, 0 0 1.05626, 1 1.35986, 1 1.88490, 1 1,95177, 1 Lo82405, 1
34 | 4.61428, -1 | 1.68229, o | 2.70801, O | S.91688, O | p.3ea8s, © 0 | 8.78518, O | 970024, 1| &.50249, O | B.87425 0 | -l.0Z029, 1
<28 | 4.33808, -1 | 1.53Y07, O | 2.61182, O | 3.6093%, O | 4.84185, O 0 | s.0228, 0| 4.24123, O |-2.40221, O | -l.84421, 1 | 5.28308, 1
.20 4.06202, 1 1.508626, o | p.aouez, 0 3.3a643, O | 4.10792, 1] 0 | 2.82562, 0 | =3.85181, 0 | =1.81466, 1 | ~4.035084, 1 | =1.1%000, ]
<27 oEragen, Sl Lgeem, o R3ASTS, O L0088, O | S.1as%0, O $ | -2.43708, O -.I7808, 1 [ =3.27854, 1 | =8,8¢705, 1 -l.A0woR, 2
<28 | 3.4EETL, -1 | l.46134, O | 2.17265, O | 2.5423%, O | P2.00900, O] -T.23d1l, =1 | ~-8.504T2, O | ~2.85047, - 1 | -€.56840, 1 | ~1.40799, 2 1 -R.0TRE6, 2
-28 | 3.18201, -1 | 1.86905, O | 1.97120, O | l.es236, O | 6.,17218, 1| ~d.04821, O | ~1.88006, 1 | -4.29351, 1 | ~P.50LE1, 1 | ~2.01987, £ | -.02003, 2
-8 [ 2,86352, -1 | 1,50964, O | 1.v4l05, O | 1l.36168, O |~1.0098%, O| =7.91966, O | ~-Z.44136, 1 | «B.00089, 1 | -1.32402, 2 | ~2,TM47E, £ | -6.82062, 2
=33 | 2.21258, -1 | 1,12805, O | 1,19081, © | =2,14514, -1 | B.OGSTL, O -1.74900, L | ~4.568010, 1 | -l.04287, 2 | -2.18261, 2 | ~4.34121, 2| -9.16299, - 2
+54 | 1.B4090, -1 | 9,16780, -1 | 85,13%02, -1 | -2,17478, O |-1,01306, L | -2.9ese6, 1 | -7.14962, 1 | -1.56262, % | ~3.ls041, 2 | ~6.9778R, Z | ~1,08987, 3
-3 | 8.36413, -2 | 6.1247, -1 |-2.esope, -1 | oauemees, O lale21m1, 1| wa.m9e0, 1 | -l.00772, 2] -2.008, 2 | -4.l5e38, 2 | -T.0edrs, 2 | -l.1%99, 3
«38 | B.28131, -3 | 4.03268, -1 |-l.23464, O |=-T.30208, O |.-2.32206, 1| -s.p4p4s, 1 | -1.51003, 2 | -2.60430, 2 | -4,83683, 2 | -T.lsegs, 2 ) -8.7GE2D, B
10 | -8.00856, -2 [ B,52728, -2 | -2,31348, O | ~l.044835, 1 | «3.09875, 1| -7.55860, 1 | ~1.69694, 2 | ~2.98013, 2 | -4.57158, 2 | -6.3OML, 2| -1,23822, 2
42 | =1.61882, -1 | -2.48382, ~1 | ~3.65128, O | -L.30444, 1 | -3.91086, 1| -p.ommox, 1 | -1.793%, B | -2.B4768, 2 | -3.5%661, B | =7.8174f, 1| 1.25182, 3
4 | A2,39785, -1 | ~8.20646, ~1 | ~4.88782, 0 | ~laT7402, 1 | ~4.76806, 1] =1.04238, 2 | =1.8TB49, 2 | ~2.51863, 2 | ~1.18912, 2 | 4879219, 2 3.15928, 3
46 |-3,35225, -1 |-1,06064, O |-8.3842, O |-2.7681, 1 | -6.56041, 1| -1,13686, 2 | -1l.TT439, 2 | -l.40208, 2 |+#2.6:088, 2 | 1.72583, 3 | G.42080, 3
A8 | ~4,32808, -1 | ~1.6M24, 0 | -8,00840, O | =R.68318, 1 | =8.31298, 1] =1.18%61, 2 | -l.431¥8, 2 | +2.21182, 1 | 7.98187, 2| 2.95775, 3 750831, B
<60 | ~B.29078, -1 | -2.02198, O |~9,T6204, O | -3.01237, 1 | -5.84533, 1| ~l.11468, 2 | -T.96316, 1 | R.66768, 2 | R.4368], 5| 4.164435, B | B.sp3OT, B
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TARIE §
~ - - - -~ - o~ - -
F T T F ¥ T ¥ T) T (1) ¥ T

r| Bt | Eygaa(m | Egpp a7 Lpaal™ | Ky ,(m Bz | Bggeaf™ | Dgpal? | Egpal “18/2.1 LR
o 1.00000, 4] 1.00000, 0 1.00000, 4 1.00000, o 1.00000, 0 1.00000, 2] 1200000, ] 1.00000, 0 1,00000, o 1.00000, 0 100000, 4]
L10 | 1.20003, o | L1380, o0 | 1.08268, o0 | 9.27334, -1 | s.2eE0T, 1 7.30513, -l | G6.43762, ~1 | G5.86800, -1 : 4$.96434, ~1 | 4.24327, -1 | 3.00406, =)
.12 | 1.248%, © i 1.18243,° 0 | l.0598¢, 0 | 9.12019, .} | T.oo88Y, 1,| 6.807TR, -1 | b5.85106, 1| 4.97€60, -1 | 4.23687, -1 | B.50815, -1 | 3.0513§, =l
«14 | 2.29998, O | L1950, 0 | 1.0am1, o [ 8.96412, -1 | T.5E6M, -1 | 6.32718, -1 | 6.26848, -1 | 4.360%0, -1 | B.68ep2, -1 | 2.ea889, 1| Z.agz, -1
16 | 1.32712, 0 | l.21211, O | l.08151, 0 | 8.884s5, -1 | T.ZSe46, 1 | 6.09252, 1| 4.95459, 1| 4.06788, L | B5.28965, -1 | 2.85801, 1| 2.14400, -1
-6 | l.¥8628, O | 1.22867, 0 | L.06630, O | B.80409, =1 | T.22402, 1 | G6.86159, 1| 4,791, -1 | 3.7Tv47, -1 | 3.000%8, -1 | 2.m90m, -1 | 1.89326, -1
o166 1.569T, O | 1.08866, O | 1.06733, O | &.784Y1, -1 [ 7,15896, -1 | 6.T4%54, -1 { 4,58540, 1 | B5.04223, <1 | B.ETTI5, -1 | 2.28420, ~1| 1.T7663, -1
W17 | t.38448, © | 124777, - 0O | 1.08857, 0 | 8.7T2422, -1 | T.05402, -1 Be6544%, -1 |. 4.4017), .2 | B.61085, -1 | 2.74808, -1 | R.lagss, -1 | 1.66665, -1
o176 1.8004d, 0 | 1.2T02, O© 1.06144, 0 B.58368, -1 | 8.56019, 1 B.52226, -1 4.38002, -1 | 2.38l46, -1 | 2.82510, -1 | 2.02685, -1 1.56085, =1
«18 | 1l.,41470, O | 1.26642, O | 1,06365, O | B.64262, -1 | 5.88447, 1 | b6.42104, -} | 4.21286, L | 2.26665, ~-1| B.6021L, -1 | 1.90438, -1 | 1.4692T, ~1
~180 1 1.4%024, O | 127597, O | 1.06565, O | 8.60160, 1 | G.¥8987, 1 | 5.30077, =1 | &.09086, -1 | 3.13285, o1 | 2.38508, -1 | 1.8070s, -1{ 1.56370, -1
A9 | 144807, O | 1.28667, O | 1.06779, 0 | 8.66017, =~) | 6.71mZ8, 1 | 6.191¢4, -1 | B.97088, 1 | 3,0018085, -1 | 2.27179, =1 | 1.P04le, -1 | L.27292, -1
196 | "l.48220, 0 | l.2ees2, O | 1.08%0L, 0 | 8.6188), -1 | §.85101, -1 B.08306, i | 3.85883, L | 2.80622, -1 | £.182%0, -1 | 1.80667, =1 | 1,188TT, -1
«20 | 1.,47865, O | 1.50688, O | 107215, O | B.47634, -1 | 6.54876, <1 | 4.97563, -1 | 5.73747, -1 | e2.T8%30, -1 | 2.05850, ~1 | 1.51118, -1 | 1.10807, -1
«£1 | l.pi24s, O | 132605, O | 1.07668, @ | 8.30260, -1 | 6,57859, -1 | 4.78383, 1| B.5117B, .1 | 258205, -1 | 1.84102, -1 | L.58460, <} | U.54AN, -2
+22 | l.p4T85, Q ( l.34720, O | 1.08112, O | 8.3074d, 1 | 6,21092, ) | 4.56648, 1 | 3.29581, 1 | 2.56802, -1 | 1.88850, =1 | 1.17311, ~1| 8.1042), -2
25 | 1.668406, 0 1.56%08, o0 | 1.08m78, 0 [, 0.22152, -1 | &.043735, -1 +.36112, -1 3.08348, -1 | 2.15789, -1 | 1.48489, -1 1,02812, -1 | 6.99108, =2
«24 | l.62200, O | 1.29171, © | 1.09066, O | B.18421, -1 | 5.87704, ~1 | #.15083, -1 | 2.80087, -1 | 1.97138, -1 | 1.58sze, -1 | 8.02418, -2 ( b5.92827, -
+26 | 1.66150, O | 1.41812, O | 1.09643, 0 | H.04608, -1 | 5,72085, -1 | 3.96401, -1 | Z2.688522, -1 | L.79518, 1 | 2l.lse02, -1 | T.TiTeA, -2 | 4.97e?Y, -2
.26 | l.70262, 0 1.43888, O 1,10044, 4 705692, =1 | 5,B4618, =1 5.7e125, -1 2,40754, -} | 1.620895, 1 1.06622, -1 | B.82107, -2 | 4.04415, -2
.27 | l.M548, O | 1l.48443, O | L,10657, Q | T.866885, -1 | 5.38004, =1 B.67241, -1 | 2.31565, -1 | 1.4724R, =2 | 9.19344, -2 | b.64oM1, -Z| 3.41430, R
428 | l.7%011, O | l.49043, O | 1.11084, O | 7.97B2D, -1 | B.2AB43, -1 | B.38747, -1 | 2.14310, 1 | 1.32555, -2 | O.0=ees, -2 | 4.vesny, -2 | 2.TTE08, R
«2¢ | 1,53670, 0 | 1.61758, 0 | l.11€24, O | T.68276, -1 | 5.OBI®S, -1 | 3.20845, -L | 1.97688, -1 | 1.18757, -1 | G.9621e, -2 | B.98486, 2| 2.22000, ~2
.50 | l.mepm2, 0 | l.5463, O (117179, o | 7.5ae0s, -1 | 4.66785, 1 | B.omess, -1 | 1.81v31, .1 | 1.05825, -1 | b.9esz0, & | s.20R90, -2 | l.ToEos, -2
52y l.98e18, O | 1.60482, O | 1,138, O | 7.30786, -1 | 4,56266, -1 | 2.68712, -1 } 1.51891, 1 | B.25283, -2 | 4.30265, ~f | 2.34362, -2 | 1.,00028, -2
-3 2. 10888, (4] 1.06646, +] 1.14556, 0 7.20138, -} 4.28061, -1 2.3s082, ) L.4T44, =1 B.24100, o2 2,93387, -2 1,274, -2 4.,8885%, «3
38 | R.22ve2, O | L7377, o | 1.156850, O | £,99920, -1 | 3.9194, =1 | 2,05064, =1 | 1.00200, -l | 4.62708, -2 | 1.84272, -2 | 6.21080, -5 | 1.B6188, -3
38 | 2.364m, O | l.81298, O | L1728, O | 6.76089, -1 | 3.60125, =1 | 1,75873, -1 | 7.81778, 2 | 3.08881, -2 | 9.06781, -3 | 1.81838, <5 | ~T.3mM, ~4
40 | 2.5l64s, 0 | 1.59602, O | L8891, O | B.676M, -] | 5.28808, -1 | 1.4ve24, -3 | 5.86941, -8 | 1.89868, -2 | B.60510, ~3 | =1,13827, -3 | -l.moR1s, B
42 | 2,68480, O | 1,8847, 0 | 1l.20286, O | 8.53378, -1 | p,97ET4, -1 1.21835, -1 | 4.13637, ~2 | 9.35188, -3 | -9,57188, -4 | ~2.88447, ~3 | ~2.27552, -3
«4 | 2.87173, O | 2.08328, 0 | 1.B19%), O j S.125V6, -1 | 2.86841, -1 | D.742T5, -2 | 2.63985, -2 | 1.82987, -3 | -3.96479, -3 | -3.00243, -3 | -8.21080, <5
48 | 3.08085, 0 | 2.19185, 0 | 1.28738, O | 5.88618, «1 | 2.38825, -1 | 7.4T18L, -2 | 1.36070, ~2 | -5.82048, -3 | -5.71341, =B | ~3.77645, =5 | =1.86820, =3
48 | 3.81871, O | £31208, O | L.286¥8, O | 5.63715, ~1 | 2,05644, ~1 | 5.5729Y, -2 | 2.00695, -5 | =7.00648, =3 | ~6.46857, -5 | -3.41425, -3 | ~1.36790, <3
»50 [ 3.80063, O | 344683, O | L.2TTT9, O | 5.278%, -1 | 1.75021, -1 | 3.44m58, -z | -5.83218, -5 | -1.08310, -2 [ <#.41mev, -3 [ -R.7s5e0, -5 | -6.2n008, -2
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TABLE 7

Foand ™| Bgp 0 E o 0 F (e E (0 ) B 00 [ B (0 | T e 0 | Eygse 0T | Eggsm T | Egy e o)
T ~-1/3,1 —-3/2,1 —-5/a,1 “r/2,1 =.g/2,1 =a1/2,1 =113/a,1 “-18/8,1 ~17/3,1 ~19/3,1 -a1/8,1
0| 1.00000, © [ 1.,00000, O [ I1.00006, O | L.0O0O,” ~ U | 1.00000, O | 1.00000, O | 1.00000, 0 | LI0O000, O [ L.OGOOO, O | L.00000, O | 1.00000, O©
«10 | 1.15828, O | 4.42163, -1 | 1.87e70, O | 2.77963, O | 3.7T524, O | 4,787, © | 6.66871, O | 6.E3484, O | Y.50322, O | 8.80668, O | T.BT090, o©
+32 | 1.19615, O | 3.28681, -1 | 1.62093, O | 2.8280%, O | 4.21870, O | p.vamey, o | v.46418, 0 | 2.41584, O | 1.27888, 1 | 142505, 1| Lanws, 1
eld | 2.238685, © | 2.02270, -1 | 1.2TEQ1, O | 2.54275, O | 4.50283, O | e.p4974, o | s.B8812, o | 1l.20820, 1 | 1.83378, 1| 2.08970, 1| 2.09m48, 1
ol 1.265780, O | 1.40631, <1 | 1.}2111, O | 2.45630, O | 4.18385, O | e.28881, O [ 5.22080, 0 | 1.27240, 1 | 1.B2064, 1 | 2.35452, 1| 2.5626%, 1
«6 | 1.27991, o | 7.98480, 2 | O.48388, -1 | 2.,19%25, O | 2.a7620, O | 6.12465, o | 9.14821, o | 1.32069, 1 | 1.95739, 1| 2.60576, 1| 3.0%081, 1
W65 | 1.29120, O | A4.6408T7, -2 | 8.49844, -1 | 2.04465, O | B.6724, O | F.88994, O | 8.01705, © | l.3044%, 1 | 1.98170, 1 | 2.02854, 1| 324452, 1
#17 1.30289, 0 1.4T568, -2 T.48280, -1 1.87208, 0 3.42510, O B.57106, 0 | 6.53824, 0 | 1.28362, 1 | 1.88801, 1 2.60202, 1 2.47005, 1
J175| 1.51439, o | -1.7iBOY, -2 | 6.43868, -1 | 1.88112, O | %.15%63, ©0.| B.26186, O | v.oems, © | 1..1%07, 1 | l.96642, t | e.5os34, 1| 3.8Yess, 1
18 | 1.52688, O [ ~4.95480, -2 | 06.33227, -} ( 1.4TI77, O | z2.7e887, O | 4.656877, O | 7T.26647, O | 1.092aT, 1 | 1.M1887, 1 | 2.31428, 1| 2.88548, 1
+185] 1.33840, O | -B.17085, -2 | 4.17B12, ~1 | 1.24383, O | 2.42085, O | 4.04768, O | B.34140, O | 9.0466l, O | 1.F61TE, 1 | 2.019765, 1| =.880%0, 1
+20 | 1.26073, 0 | -l.14294, -1 | R.978l9, -1 | 9.9¥208, -1 | 1.97632, O 3.33198, o | 5.20278, © | 7T.TT186, O | l.41218, 1 | 1l.60206, 1| =.80108, 1
+196| 1.38328, O | =l.47082, -1 | 1,720, -1 | V.31B47, 1 | 1.49182, 0O 2.50388, O | 3.85603, O | 6.56283, O | 1.)4M7, 1 | 9.3327¢, O =z.40m87, 1
20 | 1.37808, 0 | ~1.80120, -1 | 4.36729, -2 | 4.47784, =} | 9.56201, -1 1.68872, o | a.zersl, o | 2.em420, o v.remsz, o | B.sEE0T, O oMM, )
W21 | 1.40234, O | -R.asBaY, -1 | -2.26849, -1 | ~1.76609, <1 | -2.71781, -1 | -B.07658, -l | -1.78508, O | ~4.01080, ¢ O (-2.23286, O |~l.62844, 1| 1.a7e88, 1
22 | 142881, O | -5.148570, =1 | ~E.151%78, -1 | -B,TB136, -1 | =1.T1ls4, O | ~B.46162, O | -5.85T60, © | =1,31405, L |-1.81473, 1 | -4.40872, 1| -1.88801, O
223 | 1L.4b795, O | -5.83285, -1 | -B.2851&, L | ~1.84880, O | -3.08388, O | -5.Fé68H, O | ~1.310d9, 1 | ~2.48841, L |-3.52810, 1 |~8.08284, 1| ~5.3477Z, 1
224 | 1.4875%, , O | -4.B2008, ~1 | ~1.1BOBS, O | ~2.4BBVR, 0 | -5.23640, O | ~1.08848, 1 | -2.06260, 1 | -3.B6501, 1 {-B.6TEOZ, 1 |-l.2y082, 2 | -7.80288, 1
«28 1.60992, O | -6.23828, -1, ~l.48003, O | -3.39013, 0 | -T.20248, 0 | -1.487%9, 1 | =2.90078, 1 | =B.BOE23, 1 |-8.32837, 1 | =2.834%2, 2| -1.37088, 2
«26 | 1.84972, O | -b.96778, ~1 | -1.84493, O | ~4.3Td45, O | -B.56201, O | -L.9e¥38, 1 | ~3.,87493, 1 | ~T.36874, 1 [-1.1B6m4, ¥ | -2.45881, 2 | «2.21339, 2
27 | 1.58281, O | ~B.08908, -1 | <2.2)434, O | -5.41065, O | -1,19908, 1 | ~2,49138, 1 | -5.03664, 1 | =9.42180, 1 |-1.46658, 2 | -3,18074, 2 | -3.00506, 2
«28 | 1.81728, o | «-T.43277, -1 | -2.69¥68, O | -6.60814, O [-1.48906, 1 | -z,08228, 1 | ~5.07380, 1 | -1.181%8, 2 |-1.8%0985, 2 | ~3.BBA2D 2 | -4.02893, 2
28 [ 1.66520, O | -B.I8040, -1 | ~2.9N385, O | -7.84661, O | ~1.75288, 1 | -3.64B28, 1 | -7.26828, 1 |~1.28754, 2 [~2.24706, 2 |-4.BBB10, 2 | -G.141%k, 2
+30 | 1.69086, O | -B.55989, -1 | ~3.40245, O | ~8.83508, O | ~2,01788, 1 | +4,267EL, 1 | -E.47EVE, 1 [ ~1l.81100, & |2.45488, 2 (-6, 16824, 2 | -5.201%4, 2
W22 | 1.77064, O | -1,06433, O | -4.2E339, O | ~1,13198, 1 | ~2.,60870, L | -8.49728, 1 | -1,08288, & | -2.0111), 2 |~2.8625¥, 2 |=5.A5280, 2 | ~B.34089, 2
oB4. ] 1.857TY8, O | -1,21399, O | -6,1435T, O | -1,58089, 1 | -E,20182, 1 | -8.63000, 1 | ~L.2TB20, 2 | -~2.2B488, 2 [~2.76616, 2 |~-6.1840W, 2 | -p.pBGRT, 2
«36 | 1.96335, O (-1,8908Y, O | ~6.08662, O | ~L.64812, 1 [ -3.T6112, 1 | «7,60001, 1 | «l.28184, 2 | ~2.21908, 2 |-1,81Y51, @ |-R.509Bi, 2 | -T.73Y59, 2
.58 | 2.06837, O |~l.68%0, O | -T.0l148, o© | -1,90222, L | -4.24450, 1 | -8,18865, 1| ~1.38408, 2 | -1.77635, @ |*2.46748, 1 | 2.75928, & | -2.520%, 2
40 | 2.101428, O |1, 76784, O | -T.07208, O | -2.13%46, 1 | —4.60461, 1 | =8.2240, 1 | -1.14230, £ | -8.08183, 1 | 3.62909, 2 | L.ovm35, 3| tr.3T08B, 2
A2 | 2.30237, O | ~1,96548, O | -B.95768, O | «R,30018, 1 | -4.TBOG3, 1 | -T.B3BG5, ) | ~T.08419, 1 | ¥7.53841, 1 | B.408§3, 2 | 2.07630, B3| 2.2.3%8, &
ot | 2444482, O | ~2.18400, © | -B.B9719, O -2.52288, 1 | ~4.T4E56, 1 | -E.9T172, 1 | 42.23201, 1 | Z.9184D, 2 | 143078, 3 | S.04165, 3| 4.04231, 3
46 | 2.60378, © |-2.58491, O | -1.08382, 1| -2,84398, 1 | «4416T6, 1 | -3.37TTR7, 1 | 9.70606, 1 | B.59TBO, 2 | R.O0V4D4, 3 | 4.,02085, 8| s.e3812, 3
.46 | 2.78201, 0 | -2.81982, © | ~1.17488, 1| -2.89882, 1 | -3,84513, 1| 43.44805, O | 2.200M, 2 | B.57%13, 2 | 2.07861, 3 | 4.26885, 5| 723171, 3
«50 2.98280, 0 | -2.8T114, 0 | =l.2808%, 1 | «2.874B9, 1 | =2,68133, 1 5.23018, 1 B.03400, 2 1.15008, 3 | 3.12B0, 3 5. 71966, 5| T7.82871, 3
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TiBLE 8. !ff)(-r) = £(1) T°(1)—>£(r) T°(1) ocos (w - E)
-(q)r- '!o.)l-\ ‘(0_) =1 s(o_)f-\ -(o,)l-\ -(0) Y (0) =% _(0) =1 _(0) - -(0)_ faY !(0) (€3]
T E1f8\VS £3/avi -‘-5[8" I Lpjavts ;gla\'u ;11/3\1 M :1313\1 } _l'u’a\'l’ 317,3\1 i 1]9/3" ’ -31/3" ’
02 | B.BE0AB, -1 | P.64368, -1 | 9.40206, -1 | 9.16045, -1 | B850, 1 L¥IW5, -1 | BA997, -1 | 0.28712, <1 | B.00085, =1 | T.8T876, -1 | 7.58217, -3
O | S.ELTT, -1 | 9.31M7, -1 | 8.MR17, -1 | 6.40268, -1 | T.STEBS, a1 T.57592, ~1 | T.19360, -1 | 6.83058, -1 | &8.4B8687, -1 | 6.16856, -1 | E.84TTT, -l
«08 | 9786834, -1 | 0,08632, -1 | 8.34378, -1 | 7.70431, -1 | 7.113B6, «} 658865, =1 | 6.,0662%5, 1 | ©.80038, 1 | 8,17118, =1 | 4.7Tads, -1 | 4.40801, w1
08 | B.B278Y, .1 | 8,80975, <1 | 7.00704, -1 | Y,0TABD, a1 | G.3E4D, 1 5.00008, -1 | 5.09578, -1 | 4,87058, -1 | 4.0070L,, -1 | B5.67255, -1 | 3.20206, -}
JI0 | 9.08516, =1 | B.5Y001, <) | T.B20BR, -1 | 8.58918, -1 | B.ATE04, wi .95004, -1 | 4.28330, -} | 3.7198%, -1 | B.2506F, -1 | 2.80688, -1 | Z2.43561, -1
.12 105452, 0 | B.888T3, -1 | T.2pEE4, -1 | B,11T98, -1 | BJME), =l A.508B0, =1 3.81865, -1 3.0365¢, =1 2.54Td6, -1 | 2,13800, =1 L.T945, -1
«14 | 112160, O | 9.06489, -1 | T.32M1¥, -1 | B.92204, w1 | 4,787C4, =1 .35, -1 | s.aerez, -1 | 2.e2ves, -1 | 2.04331, <2 | 1.e51BB, =1 | 1.334P6, -1
215 | 1.21594, O | 9.82870, -1 | 7.82408, -1 | s.05828, -1 | 4,77854, =1 3IBMT, -1 | 2.99eB8, -1 | 2.37269, -1 | L.8TATY, -1 | 1.487T6T, -1 | 1l.a778Y, -l
»16 | 1.4%733, O | 1.11788, © | B.0184¢, -1 | s.sT136, -1 | G.16836, w1 .95, -1 | B.09661, -1 | 2,39750, -1 | Ll.86628, -1 | 1.43T26, -} | 1.,11180, ~1
«168| L.TTEE7, O | 1.3777, O | 1.08845, © | 7.94235, -1 | 6.0M4E0, -1 404892, -1 | B.66%81, -1 | E.TIT6S, -1 | R.0TEEB, -1 | 1.5897, =) | 1,21685, -1
W17 | 2,98348, O | 2.26111, o© | 1.608P4, O | 1.28180, O | 9.67T008, =1 1.298%, -1 | B5.6055, =1 | 4.10382, <1 | 3B.13¢28, -1 | 2.36488, -1 | 1.78438, -1
JL7T5| 2.06247, O | 1.83751, O | 1,14€24, O | 8.64387, -1 | 6.36862, 1 4754, -1 | B.53807, -1 | 281918, -1 | 1.96886, -1 | 1.46561, -1 | 1.00242, -1
218 | 1.Te69%, o0 | 1.%0268, O | D.00844, -1 | Y.,08567, 1 | b.2263Y, 1 3.85009, <1 | 2.84192, -1 | 2.09841, -1 | l.54488, -1 | 1.,13801, -1 | B.5065B, =2
L1865 1.89%44, O | 1.18351, O | B.49924, -1 | €.20721, 1 | 465232, -1° 3.30848, -1 | 24401, -1 | 1.76225, -1 | 1.28669, -1 | G5.37840, -2 | G.B59TZ, P
«19 | L.ATiPd, © | 1.06572, O | 7.T188l, =1 | B.58488, <1 | 4.04013, 1 £.92140, -1 © 2,11188, -1 | l.B2Be2, -1 ! 1.10182, ~l | 7.95442, ~2 | B5.TH03R, w2
J198| L.37854, O | 9.90878, -1 | T.11764, -2 | B.loped, -1 | 3.se084, -1 2.62272, -1 | 1.BTTM, -1 | 1.343%4, 1 | S.60388, -E | E.B6160, ~2 | 4.B9904, -2
o20 | 1.30280, o | 9.30366, -1 | s.pEOBS, -1 | 4.TlTES, .1 | #.35310, -1 2.58040, -1 | 1.08M85, -1 | 1.19662, 1l | B.48004, -2 | BE.9PB00D, -2 | 4.22285, -t
oZL | 1.i8785, O | 8.56116, -1 | BGuBTOZE, ~1 | 4.11061, -1 | E.BTLLE, -1 2.00077, -1 | 1.36114, ~1 | 9.66R16, -2 | G.68858, -2 | 4.51870, -2 | B.186%7, -2
22 | 1.08852, 0 | 7.64888, «1 | B.RWM, -1 | 3.84T20, ] | E.50505, =1 171108, ~-1 | 1.18838, -1 | 7.90968, -2 | G.36088, -2 | B.60T67, -2 | Z.42484, 2
«25 | 1.02575, O | 7.0888), -1 | 4.B2651, -1 | 5.275T8, .1 | 2.20873, -1 1.47783, -1 | 0.84304, -2 | 6.52868, -2 | 4.30185, -2 | 2.82288, -2 | 1.04004, 2
o4 | 9.68405, 1 | B.EB4AS, -1 | 4.45618, -1 | 2.96966, -1 | l.95625, -1 1.88263, ~1 | B.34500, -2 | 5.547%8, -2 | Z.46389, -2 | 2.19882, -2 | 1.3600T, =R
«Z6 | 9.14389, -1 | 6.17082, -1 | 4.10028, -1 | 2.68044, -1 | 1.741ER, -l 1,11574, -1 | T.0T345, ~2 | 4.43988, -2 | 2.7p871, -2 | 1.69T30, -2 , =B
26 | B.emmq8, -1 | 8,807, -1 | 3.60812, -1 | 2.4s0%E, -1 | 1.BE3B6, sl 9.70808, ~2 | B.98E02, -2 | T.04024, -2 | 2.18440, =2 | 1.29264, -2 | T.52685, ~P
oFT | 8,27TT80, -1 | 5.48343, -1 | 5.8414)}, =1 | 2.257TTE, -1 | 1.B8887, =1 8,43758, ~2 | B.Qdddd, ~2 | 2.98308, -2 | 1.70884, ~R | 9.66225, -5 | B.3458, 3
«28 | 7,90640, -1 | 5.19166, -1 | 3.p0282, -1 | 2.04584, -1 [ 1.23M14, -1 10373, -2 | 4.2786, -2 | 2.%880f, -2 | 1,31K%8, -2 | T.04085, -3 | Z.83048, I
P20 | T.BTOE8, -1 | 4.9P479, -1 | B.08481, -1 | 1.8TM10, -1 | 1,10837, 1 8,318%5, -2 | 3.51761, -2 | 1.90082, -2 | 9.91462, -5 | A.9B455, -3 | 2,388T4, =3
-30 | 7.26976, -1 | 4.6T%80, -1 | 2.B83M, -1 | 1.7rOMM, -1 | 9.60281, % puakB46, ~2 | 2.90000, ~E | 1.48748, -2 | 7.25808, -3 | 3.30618, -3 | 1.35l48, -3
-5t [ £.70161, -1 | 4.23617, -1 | 2.52384, -1 | 1.42680, -1 | 7.68408, R 5,95380, -2 | 1.80878, -2 | B.48527, -3 | Z.36TTA, B | 1.040K, -3 | 1,017, -3
O34 | 6.20992, -1 | 5.08159, -1 | 2.20817, -1 | 1,18810, a1 | 6.52781, =2 2751651, -B | 1.18088, -2 | 4.07567, -3 | 0.2v234, ~4 | -2.06000, -4 | -4.75ES3, 4
o36 | 5.TEO27, -1 | B.50441, -1 | 1.92838, -1 | P.7R4EE, -2 | 4.4MiTR, a2 1.0266Y, ~2 | 6.10693, -3 | 1.14648, -3 | =4,9889Z, -4 | -T.69940, -4 | «6.B167G, =i
«38 [ 5.36904, -1 | B.18878, -1 | 1l.67820, -1 | T.50178, -r | 3.27109, =2 111127, =2 | 2.26204, =3 | =0.50167, 4 | -L.20160, =3 | -9.81438, -4 | ~6.300ME, -4
o0 | 5.00089, -1 | RIS, -1 | l.abBeE, -1 | e.3R5uY, -2 | 2.29020, 2 5,72187, ~3 | -2.88008, -4 | ~1.54658, -3 | -l.44188, 5 | -9.26138, -4 | <5.00405, 4
42 | 4.66139, -1 | e.s3e99, -1 | l.eszof, -1 | 4.ve8m5, -2 | 1.40833, -2 177128, =3 | =1.38862, =3 | ~2.48134, -3 | <1.39363, -~ | ~7.50448, -4 | -3.41783, -4
odd 1 AMER, -1 | 2,39199, -1 | 1.010d8, -1 | 300819, -2 |- B.69781, o3| -Ll.00216, =3 | ~2.6T083, -3 | -2.11722, -3 | -l.1869G, ' -5 | =5.58T9T, 4 | «2,00086, -4
odt 4.04898, 123 £.1647%, -1 2.07388, -2 2,81887, -2 S.01561, -3 -2,80T48, <3 | -5.00054, -3 | -1.92284, ~3 3 =0.10019," -4 | -3.BADGT, -4 -‘m' =5
4% | B.76233, -1 | 1.96361, -1 | G.Te0%, -2 | 1,96805, -2 | 1,32100, -4 | «3,90218, -3 | -B.BB282, -3 | -1.59828, 3 | -6.26381, 4 | -1.85424, -4 | -2,6228%, -6
B0 | 350230, -1 | 1.7668, -1 [ 545218, -2 | 1.207v82, a2 | Z.EB621, B | ~4,30783, -% | ~2.78413, ~3 | ~1.22238, -3 | -B.T1628, 4 | -4.02791, -6 | W.18385, 6
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TABLE .- gf_‘;)(v) = I(7) 1 "(T)—-—>§r('r) (1) cos (m- + ’I‘)
(0} Lol #£0) £0) £o) (0) (o) {0) o plo)
T T t o) {1)

T !‘_1/3( ) 3/3( ) __5/3( ) 7/3( 1) _Gla('r) I_ll’a('l') ____13/3(1') _‘_15/2(1') !_17/3( T’l __19/3(1‘) ——Blla

02 | 1.0143p, o | 1.04081, O 1.,08698, o | 2.00a2F, 0 1,12225, O | 1.15084, O | 1.18089, © | 1.21060, O 1.22167, 0 1.%7534, O | 1,30883, ©
0.04 | 1,083584, © | 1.08487, 0 1,14843, © | 1.2078, 0 1,87168, © 1.33010, © | 1.41027, o0 | 1.48523, O 1.56416, © 1.84728, O | 1L.ThB4, O
0.06 | 1.089%8, O | 1.14783, O | 1.24810, O | L.B462f, o 1.45802, O 1.57804, o | 1.71000, o0 | 1.86R06, O | 2.006577, O z.17226, O | 2.%6285, ©
0.08 | 1.08639, 0 | l.22310, O 1,36443, 0 | 1.B2217, 1] 169808, © 1.68435, 0 | 2,115%, O | 2.35765, 0 2.53003, 0 z.g3a00, O | x.27810, O
0.10 | 1.14982, o | 1.32382, O 1,62410, 0 | 1,TE4E3, 0 2,02073, O | 2.32a79, O | 2,67020, o | B.08499, @ 3.55224, O | 4.00028, O | 4.709T5, O
0.12 | 1.28522, o0 | 1.48825, O | 1.,76088, O | 2.086§8, O 2.48548, O | 2.86146, o | 3.562882, O | 4.20441, O | 5.00982, 0O .96906, 0 | T.1l2Md, 0O
Dol | 1,38780, o | l.78e8, 0 2.12373, 0 |, 2.62744, 0 T, 26062, 0 4.02161, 0 | £.9T646, O | &.15585, ] 7.81553, 0 9.42179, 0 | 1.18686, 1
0.16 | 1.F3686, O | 1.53%44, © | 2.44989, O | B.09B4%, 0 3.90600, O | 4.9348, O | 48.23139, O | 7T.88988, O | 9.98923, O 1.28625, 1 | 1.58530, 1
0.18 | 1.85839, 07| 2.2¢764, O | 3.00668, O | 3.9965L, ] B.lé565, O | 6.87TL75, 0 | 8.61692, 0 | 1.11203, 1 | 1.43741, 1 1.856468, 1 | 2.,387T17, 1
0.166| =2.=£115, © | 3.03488, O | 5.96807, O | G.l8822, [} 6.78555, O | S.sagd42, O | 1.15967, 1 | 1.51a2s, 1| 1.08249, 1 2,69209, 1| 3.z913, 1
0,17 | 1.87704, O | 2.82022, 0 | 5.47696, O | 4.8027, o 6.09P66, O | B8.08400, 0 | 1.0M40, 1 | l.el996, 1| 1.88189, 1 249418, 1 | 3.80851, * 1
04178| 1.28551, O | L.856E8, O | 2,48804, O | 3.538%70, ] 2,478%1, O | 6.00688, O | 8,06606, O | 1,08086, 1| l.d4tda, 1 1.94403, 1 | 2.50787, 1
0.18 | 1.19657, O | l.e2z2s, O | 2.18684, O | 2.97967, 0O 4.05782, 0 | E.47065, 0§ 7.41185, O | 1,00410, 1| 1.380M4, 1 1.84289, 1 | 2.48508, 1
C.1865| 1.08851, 0 | L.4%049, O | 2.08856, O | 2.78781, 0 3.01068, © | B.20810, o | v.16%8, - 0 | 0.72086, O | 1.327s8, 1 1.81256, 1 | 2.47382," 1
C.10 01602, O | 1.3%982, © | r.02961, o | 2.emez2, 0 3.66014, O | c.085680, O | &.92715, o | 9,521, O | 1.80782, 1 1.79581, 1 | 2.46285, 1

A85] s.58228, 1 | 1,33082, O | 1.84861, 0 | 2.86847, © 2.54508, O | 490170, O | 6.T7185, O | S.%4B48, O | 1.28782, 11 1.77174, 1 | 2.43446, 1
0.20 | $.12385, -1 | 1.27454, ©O | 1,77869, O | 2.47727, 0 5,459, 0 | 4.rrasT, 0 | 6.61686, O | 9.14080, O ( 1,25074, 1 1.73152, 1| 2,578, 1
0.2 { A.40758, -1 | l.18858, O | 1.86783, O | 2,23714, 0 2.25928, O | 4.50281, 0 | &.24245, O | 6.58188, O | 1.18889, 1 1.57371, 1( 23081, 1
022 | T.BT016, -1 | 1.12880, © | L,A7412, O | 2,20367, 0 3.08778, O | 4.19690, 0 | 6.60606, O | 7T.58028, O | ©.80410, 0 | 1.257%, 1 | 1.62638, 1
0.2 | 7.26885, -1 | 1.06431, © | 1l.4857%, O | 2.08468, ©O 2.81962, O | a.7601, O | 4.888)3, O | 6,06080, O | 7.06475, 0 [ 7.50895, O { T.10740, °'Q
0,24 | 7.00080, ) | 9.96920, ~1 | 1.7989%, O | 1.913%2, O 2.65%, O | 3.71218, O | %.79363, O | 3.9EESl, O | 2.05418, 0 | —4.59889, ~1 [~2,31481, Q
0,26 | 8.80402, -1 | 9.47280, <1 | 1,309, O | 1.m481%, O 2.19831, O | 2,520, O | 2.%8208, O | 1l.10m02, © | -2.5147h, 0 | ~1,12276, 1 |-2,91860, L
0,28 6.341p8, -1 | Q.96065, -1 1,2:048, 0 t.EE128, o 1.00486, [\ 1,48068, o 6.237a5, 0 | ~g.4B811, 0 | ~2.77446, o | =2,B154%, 1 | =5.565670, 1
0.27 | 6.08e84, -1 | 8.50627, -1 | l.128Yp, O | 1.38765, O 1.85267, O | 6.898165, =1 |-1.4P09¢, O | -8.BB430, O | -1.85750, 3 | -4.28m8, 1 | =B.84T48, 1
0,28 | £.70147, -1 | B8.06895, -1 | 1.,02888, O | 1.13898, O 8.42660, -1 |-4.02808, -1 |-3.0836%, O | -1.2028%, 1| -R.09845, v | -6.27818, 1 | -L.,27228, 2
0.28 | B.E4476, -1 | 7.5869T, -) | 0.28825, -1 | B.PpesE, <) 2.78121, -1 |-1.78800, O | -8,7T226, O | =l.TRU48, 1| -a,.08t78, 1 | -B.EB920, 1 | «1,T0TTH, 3
0.20 | B.X1244, -1 | T.13734, -1 | 8.286800, -1 | B,38R75, -1 |-3.42880, <=1 |-3.l8072, 0 | ~9,90920, O | ~2.44750, 1| -8.206%8, 1 | ~1,11282, 2 | ~2,17816, H
0.22 | 4.88404, -] | 6.26000, -1 | 6.04706, -1 | 7.787OC, -2 |=2.72408, o© |-8.5791E, 0 | ~1.88445, 1 | -5,90549, 1 { =R.28018, ¥ | -1.84088, 2 |a«3.00189, 2
0.8 | 4,48410, -1 | 5.38827, -1 | S.74012, -1 | -5.34045, -1 |-3.28621, 0 |-9.93145, 0 | a2,54788, 1 | wB.43888, 1| -1.10483, 2 | -2,08452, 2 |-8.75029, 2
0.36 | 4,1381A, =1 | 4.54018, -1 | 1l.38204, -1 |~l.a7E27, O |~4.ATMC7, o |-1.35081, 1 | -3.21358, 1 | ~8.%07W0, 1| -1,31R99, 2 | -2,32895, 2 |=3,731K4, 2
0.78 | 3.80168, 1 | 3.TI185, -1 | ~1,00542, -1 |-1.87848, O |«8.49920, O |-1.T47S, 1 | =2.87758, 1 | -7,M0525, 1| -1.40803, 2 | -2.15888, 2 |=2.72873, 2

o0 | 3.49107, -1 | 2.90807, -1 [.3.00002, -1 |-2.48311, O |-B.08630, O [-2.02870, 1 | ~4.36049, 1 | -B.18R40, 1| -1.20898, 2 | ~1.84484, 2 |4.98821, 1

oL 3.19980, 1 | 2.132687, -1 | ~5.72Y¥70, -} | -~B,11B42, O |-0.48830, O |-2.25M0, 1 | 457667, 1 | ~R.d8785, 1| =8.R2830, 1 | ~3,04725, 1 | 293140, 2
O.44 | 2.92¢20, -1 | 1.59091, -1 |-7.96420, -1 | -3.ep668, O |=1.08211, 1 |-2.40959, 1 | -4 .45007, 1 | -8,1R020, 1| -3.58255, 0 | -1.4321, 2 | T.1843%8, 2
(R ] 2.86012, -1 | 6.87472, -2 | -1,00%82, 0 | »4.20472, 0 | ~l.14889, 1 | -2.43071, 1 | -3.98644, 1 | ~B.RA254, 1 4,84826, 1 5.52680, 2 1,14148, 2
0,48 | 2.42713, -1 | 2.69076, ~5 |-l.6885%, O |.4.82520, O |-1.19376, 1 |-2.318%4, 1 | -2,08828, 1| ~1.8M851, O | 1,43m01, 2 | b5,81980, 2 | l.A8880, 3
0.50 | 2.1ppBs, ) | -6.0B485, -2 |~1l.6Y610, O | 404868, O |-1.lus4c, 1 | «2.05754, 1 | =1.72386, 1 | -4,00740, 1| 2.45137, 2 | 7,291285, 2 | 1.87088, 3%
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(f)=¢g

(1) !9('1'7-—-3(1'3 !!('r-) ocos (v. - 'i‘)

{0} =fo} ~(0) ~(a) <{a) =(0) =(a) =(a) =(0) (o) 7o) o

r | hzaln Fa/pln) Is/a(7) I7/alt) Fo/alv) B8l i3/a() LTy Ey7/alt) Fig/alt) Tn el

.02 | 1,0088%, O | 100889, C | 0.88408, =1 | 0.6014%, -1 | @.08697, <1| 9.16251, -1 | &,00880, -1 | B.TLI0L, -1 | B.a0068, -z | #.28175, -1 | A.0ML, -1
04 | 1,08556, O | 1,08078, O | 9U.78782, -1 | 9.20368, -1 | 8.8M469, 1| B.979E5, -1 | 7.95648, <1 | T.5eA98, =) | T.17ETO, .1 | 6.81168, -1 | B.45793, -1
«06 | 1.14018, O | 1.06279, O | 9.72108, -1 6.97606, ~L | 6.26813, b | 7.68204, -1 | T.08842, -1 | 6.52488, -1 | S.024TD, -1 | E.ES305, -1 | 5.18869, -1
08 [ 1,20748, O | 1.082857, O | 9,7023, -} | &.987T12, -1 | T.7ReOT, 1| &.98833, -1 | 8,28438, -1 | 5.81535, -1 | B.03I3BR, -1 | 4.51208, -1 | 4.04482, 1
«10 | 1,20406, 0| 122481, 0 | 9.¥8e8S, ) | 8.4327, -} | T.36845, -1 | &,59780, -} | 5.65600, -} | 4.82818, -1 | 4.19060, .1 | B3.64929, -1 | 3.18060, -1
el2 | 1.41008, O | 119084, O | 9.985)2, -} | B,38808, 1 | T.0M028, ~1| E.00885, -1 | 4.9869%, ~1 | <.18188, .1 | B.a92eR, -1 | £.95150, -1 | 2.4608), -1
14 | 1.62764, O | 1.51683, O | 1.06355, O | B.5M78, .1 | 6.54705, =-1| &.81622, -1 | 4.6EGT2, -1 | 3.66860, -1 | 2.96529, -1 | 2.38600, -1 | 1,9373%, .1
o1 | 1.81630, O] 1,43828, O | 1,13863, O | 9.00660, -1 | T.13980, =1 | B.6B301, ~1 | 4.47608, -1 | 3.54418, -1 | 2,80830, -1 | 2.22204, -1 | 1.75843, 1
.16 | 2.21088, O | 1l.71lsl, [ 1.32640, 0 | 1l.C2608, 0 T.54448, =1 0.13684, -1 | 4.7a288, -1 | 3.668743, -1 | 2.BB503, -1 | 2.Z1063, )} | 1.70998, 1
JA68| 277087, O (| R.119%0, 0 1.62089, o | l.2zvo, o PaABL50, -1 7.25168, -1 | 5.54688, -1 | 4.24181, <) S24452, -1 | 2048133, -1 | L.89T78, 1
»17 | 4.T2637, O | 3.55034, 0 | 2.80081, 0| 2.03050, 0| 1..8193, -O 1.15587, © | 8,72144, -1 | 6.858217, -1 | 4.p8833, -1 | 3.74629, <1 | 2.82883, -1
=176 5N1eeY, 0 ¢ ZATEEE, 0 G L.B4XX), o § 1 3TEME, O 1 1,0%41%F O  7,5%405, -1 | 5.8808%, -1 4.08080, -1 | 3.1818%, -1 Z.3STS, -1 1,75859, sl
-18 | z.88285, O | R.12835, © | 168840, O | 1.1567Y, o0 | B.s3n1s, 1| a.29112, -1 | 4.65389, -1 | 3.azozs, -1 | Z2.52177, -1 | 1.85806, -1 | L.pTOLL, Al
#1608 | £.63693, 0 | 1.926812, © | 1.40845, 0| 1.02863, O | T.510M8, =1 548305, -1 | 4.00188, -1 | EB.92025, -1 | 2.13061, -1 | L.BB4ls, -1 | 1.13348, -1
«19 | 24TS44, O [ L.T9E1, O | 1.29637, 0 | 939680, X | 6.7975%, -1 | 4.01Em4, -1 | 565283, -1 | 2.5688Y, -1 | 1.65381, ) | 1.38835, -1 | 9.05840, 2
<96 2.35634, O | 1.69287, O | R.22SON, O | B.72B1S, -1 | G6.B5436, <=Ll | 4.48075, -1 | B3.20796, -1 | 2.2408, -1 | 1.66078, -1 | 1.17225, 1 | s.38970, -2
«£0 | 2.26210, O | 1.61418, 0. 1.1600, O | 8.18401, a1 | B.8LT43, =1 | §,12085, -1 | 2.92841, -1 | 2.074%9, -1 | 1.46774, -1 | 1.023749, -1 | T7.32830, o2
21 | 2,02539, O | 1.49837, O | 1.06068, O | T.26848, 1| B.3841, 1| 3.pe072, -1 | 2.48968, =1 | 1.72mE, -1 | 1.18610, -1 | B.28505, -2 | s.v0186, =2
#32 | 2.02900, 0| 1l.4117T), 0 | 8.TTE6S, -1 | 6.7388Y, i1 | 4.82278, ) 3.18014, -1 | 2.18231, -1 | 1l.4s0768, -1 | 9.88131, -2 | S.66288, -2 | 4.4TER2, -
«£3 | 106768, 0 | 1.54738, O | 0.20208, -1 | B.24105, .1 | 4,20886, 1| 281732, -1 | 1l.67889, =1 | .24384. -1 | 0.20170, -2 | G5.38186, -2 | 3Z.51008, =2
w4 | 190304, O | 1.298E1, O | B.73E89, -1 | G.82184, w1 | 3.88226, -1 | 2.52668, -1 | Ll.04R%4, . -1 | 1.08088, -1 | &.s0le0, -2 | 4.B982, -2 | 2TITEI, 2
25 1.,86048, o | 1.25542, ] B.34283, -1 | 5.47005, -1 5.54363, -1 227014, -1 | 1,48920, -1 | .9.0825%8, -2 | B5.81301, -2 | 3.4634l, -2 | X.,10362, ~2
+18 | 182898, O | 1.22137, O | 8.00288, -) | B5.15868, -1 | D.28748, -1 | 2.04201, -1 | 1.28878, -1 | 7.86623, -2 | 4.64Ef, -z | 2.71871, 2| 1.58518, F
8T | 1.80186, O & 1.19%2, 0 | T.TOT31, -1 | 4.87004, -1 | 3.00767, 1| 1.8%%0, -1 | 10878, -1| 6.a4se0, -2 | s.masor, 2| 200285, -2 | 1.18282, . -2
+28 | larmem, © ( 1,18852, O | T.43RT3, -1 | 4.80400, % | 2.78408, 1| 21.8¢890, -1 | 9.51444, <2 | 5.37T404, -2 | 2,96015, -2 | 1.56448, -2 | e.a9fE8, =2
«29 | 1.70572, o | l.loazs, 0 | 6.04187, -1 | 4.21078, -1 2.48080, =1 142144, -1 T.01878, -2 [ 4.27607, -2 2,23181, -2 | 1l,114e8, -2 | p.tsems, -3
«30 | 1.75les, D | 112806, O | 8.05719, -1 | 4.13T47, -t 2.38499, -l 1.5004, -1 | s.mea7, 2| 3.58080, -2 | 1.7e073, -2 | 9.97822, 3| 3.20045, =3
2 | L7373, 0| 1.08880, O ; G.540l4, -1 | 3S.69788, o1 | 1,99152, -1 1.0148, -1 | 4.92078, -2 | 2.19926, -2 | 8.T2167, -3 | 2.71854, -3 | 2.80343, <3
% | 1.Th2, O | 10762, 0 | 6.15038, -1 | 3.30081, i | 31,0538, -1 T.87615, <R | 3.28470, -2 | 1.13647, -2 | 2.5T864, -5 | -5.74979, -B | -1.32608, -3
«36 | 1,73086, 0 | 1.00483, 0 | B.00438, 1 | E.S2TIS, -} | 1.34889, oL | B.awme8, -2 | 1.8%815, --2 | 3.48108, =3 | -1.48351, -5 | -2.40783, =3 | -l.99185, -3
#35 | L.TeTET, O L0884, O | 5.4058%, -1 | E.57EBR, -1 | 1.08489, L | Z.51TT1, -2 | Te4291), =3 | «E,11660, -5 | ~B.91145, -5 | -3.18604, -5 | «E.004%6, B |
40 | 1,7e88S, O | 1.02433, O | S.15202, -1 | R.23507, -} | B8.08441, =2 2.01900, -2 | -2,00808, -3 | -8.50232, -5 | «B.OB9TY, -3 | ~2.288T4, 3| «1.76843, =B
A2 | 1786014, O] 1.01215, .0 4. 4.80B83, -1 | L.90T05; -1 y B.TEO92, -2 6.7985T, -3 [ -T.z24885, -M| «R062WBOK, -3 | -B.54807, -3 J-2.36421,, -3 | -l.BLITR, : -B
«45 | 1.m833, 0] 1,00119, O | 4.43061, -1 | L.69312, -1 | B.64068, <2 | ~4,18461, -2 { ~1.11778, -2 | ~8.86180, -3 | -4,96262, -3 { ~2.28819, B | -B,5TABZ, =4
«a6 | 1.85306, O | 9.91200, -1 | 4,1s481, -1 | L.29083, -1 | 1,7a711, -2 | -1.20488, -2 i -1.41888, -2 | -8.80350, -3 | ~4,16TIE, -5 { ~1.53372, «B | +5.89578, -4
48 | l.89087, 0| 9.81846, -l 3.33806, ) R8s, -2 6.63945, ~4 | 1,981, ~2 | ~1.5T4, -2 | -8.03296, -5 | -3,1482%, -3 | ~0.31431, <4 | ~2.28787, B
o0 | 183027, 0| 9.72785, -1 | 3.00787, -1 | 7.18620, -2 | «1,40878, 2| .2.43514, ~2 | ~Ll.54181, -8 | %6.76851, =5 | <R.06TY6, =3 | =2.23031, =4 | -2.319421, -4
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L4 & . L] «
razte 11.- FOr) = gtr) 1 "tr)—>Jatr) 777r) oos (o + 1)
$o) o ‘ (o) =({a) (o) ( ) ( ) ( ) (o) {0} o
v | Eaatm -—3IB{ ) —5/al™) B () Foralt) Fhyam --13/3(" 15/3(") Eaygstt) | EigyalT) i) YoM
.02 | 1.,08628, O | 1.09%62, o 1l.12180, O | l.1sG20, 0| l.l7oe3, o0 l.208m1, o[ 1.,24077, & | 1.27262, o | 1.5080B, @ | 1.35847, o | J.37ET3, @
O 1.14326, Q 1.20401, 0| l.2s801, L} 1,52640, 0| 1l.e0838, 0 1.4811), 0| l.6RAPAS, O | 1.64274, O | i.75004, © L.82199, o | r.eimsz,. o
+06 1.23482, O | ).337T80," O | 1,44830, 0 1.66851, 0| ).89310, O 1.83%9, o 1.,99238, o | 2.15777, © | 2.%36BS, o| 2.5%082, 0| 2,74089, 0
.08 | 1.34702, 0 | 1.50270, 0| 1.87634, O | 1,AT0l4, O | 2.0827, O 2,32M40, O | 2.59640, O] 2.88849, 0 | x.2mi25, O 3.60471, O | 40223, @
<20 | 1.49308, 0 | l.7isfl, © | 1,978%, O | 2.2T6%7, ¢ | 2,621)8, O R.0MN5, O | BaTe2y, o 4.0mes, O | 460772, o | s.%0668, O | 6.10918, O
A2 1.89082, 0 | 2,01465, 0 | E.4004%, 0| 258014, 0| 3.40180, O 4,06088, O | 4.93825, O | B.76485, O | 8.%6885, O | 6418440, O | f.¥5lR4, ©
o4 2.00387, 0 | 2.49115, 0 | 3.0R200, 0| 3.81.89, 0 4.71734, O 6.85624, O | 7.22049, O | 4.,9%06, O | 1.10613, 1| 1.ze131, 1| 1.a0181, 1
W16 | 2.29888, 0 | 2.89702, 0| T.668TE, O | 4.B207, 0| b5.838T4, O 7.83%080, 0| 9.30808, ©| 1,i75%5, 1 | l.4A4e5, 1| 1.87502, 1 | 2.8%3803, 1
16 | 2.86618, O | 3.487B4, O | 4,T8RR0, 06,1543, | 9.p4482, © | 21,0218, 1 | 1.3%5, 1| 1,772, | 2.210m, | z.85632, 1 | Z.6ATB4, 1
165 | B.5230%, [ 4, 73706, 0 | G.lF564, o 3,00814, [} 1,068B52, 1 1.38440C, 1 1.81009, 1| 2.26069, 1 3.09%441, 1| 4.04592, 1 | s.28995, 1
17 | B.13201, 0 | 4.1608%, 0 | B5.5087, 0| 7.,200108, 0| 9.68200, O 1.28065, 1| 1.e9728, 1| =z.2¢4048, 1 | 2.9R127, 1| 3.95118, 1 | 6.23M18, 1
75| 2.ze38, 0 | 2,98579, O | 4.00240, O} 6.0€BS6, 0| 7,20L17, O 5.86907, 0 | 1.29667, 1| 1.787T:, L | 2.33071, 1| 3.1260e, 1 | 4.19268, 1
18 1.9558%, O | 2.84805, O | ®=.De88%, 0 4.88301, 0 | 6.E8052, o 8.0%0%6, O | 1.20978, 1| 1.68801, ) | 2,22019, 1| 8§.00721, 1] 4.07277, 1
L185 | 1.80548, O | 2.48908, 0] 3.376822, 0| 4.5l9m8, 0| e.5461, 4} B.85085, O | 1,17¢28, 1| 1.81087, 1 | 2.18885, 1 | 3.00337, 1 | +.0991m, 1
S0 | 1JIOTE0, 0 | R.25524, 0] 3.24848, O | 447263, 0| 6.15630, O B.4T467, O | 1.18851, 1| l.s00%8, 1 | 2,20045, 1 | B2.02048, 1] 44220, 1
.198 | 1.63709, O | 2.27364, . O | 315467, O | 4.37273, o0 | 6€.05e88, O 8.5T431, © | 1.15890, 1| 1l.68628, 1 | 2.19988, 1| s.02ee8, 1 | ¢.5914, 1
«20 | 1.68284, O | Z.211%4, O} 3.08592, O | 429751, o | s5.97%08, O 8.20063, O | 1.14T¥3, 1| 1.G686M2, L | 2.38681, 1 | 3.0040, 1| Mz, 2
.21 1.60468, o | 2.2888, 0| 2.58408, Q| 4,227, 0| s5.65304, © B.08785, O | 1,11718%, 2 1,65270, 1 | 2.08820, 1| 2.81s42, 1| ®.7ss8T, 1
222 | 1.46352, O | 2.960%, 0| Z2.0071, O 4.0%42, D 56474, O 7.75208, O | 1,06023, 1| 1.599%7, 1 | 1.8esls, 1 | 2,32198, 1 | P.A3es3, 1
#23 1.40878, [ £.01020, 0 7.83288, a 5.08840, o B.MY584, o 7.18048, (] 6.81063, [} 1.16782, 1 1.34700, 1 1.39261, 1 1.3651%, 1
.24 | 1,37882, 0 | 1.96707, O | R.TE4T7, 0| &.70751, O | 4.29251, O 8.52542, O | T.aAT0R2, O | T7.78T29, O | B.RLT3L, O | -0.54841, -1 |-5.54233, ©
+25 1.56386, 0 1.92738, 0| 2.e8741, 0| 5.e6274, 0| 4.472TH, 0O 5.1200%, 0 | 4.84686, 0| R.2F240, O | -p,32010, 0 | =2.28444, 1 | -5.95408, 1
<26 | 1.33%78, O | 1.88884, O | 8&.568%4, 0| x2mM12, o | 379822, O 3.5M84, © | 1.81193, O | -5.22084, © |-2.08578, 1 | -5.29043, L |-l.17089, &
27 | 131797, O | 1.881%0, O | 2.46219, o | 2.85552, 0| 2.e4385, O 1.6012R, 0 | =3.244R4, 0 | =l.49350, +1 |-4.04268, 1 | -9.21896, 1 | -1.92860, 2
«28 | 1.%0333, O | 1.81¥84, O | B.32854, O 56843, O | 1.806M, O | -1.01982, O | -6.91958, O | ~2,70640, 1 |~8,52a94, 1 | -1,41217, 2 | -2.86310, 2
-29 | 1.290167, O | 1.78740, 0 | 2.18425, O | 2.08880, O | e.47888, -1 | -4.0608), O [ ~1.57760, 1 | -4,17829, 1 |-g.52262, 1 | -2,00088, & |-~3.97822, 2
30 1.28157, 0 1.72183, 0| 1.98745, Q L.B41%%, 0 | =8.77091, =1 | ~7.64462, 0 | =2.5083, 1 | =6.90469, ) | «1.30408, 2 | -2.88382, 2 | ~B.24T88, 2
B2 | 1.26572, O | 1.52487, O [ 1.6873%, 0 | 2,02068, <1 | ~4,48807, O | -1,66315, 1 | —4.39125, 1| -1.01213, 2 (-2.14086, 2 | -4,2p185, 2 |=8.01279, 2
o5 | 1.25316, O | 1.5C323, O | 1.OME95, Q| -1,4B088, 0 | -D.08123, 0 | 2.7TT068, 1 | -6.84998, 1 | -1.52680, 2 |[-3.00170, 2 | -p.se3z9, 2 |-l.04319, 3
o356 | l.24ssr, C | 1.26850, O | 4.16996, -1 | .3.64061, O | -1.45620, 1 | ~4.09648, 1 | -B.67201, 1 | -2.04028, 2 |[-3.6%017T, 2 |-v.0e020, 2 |-l.12=20, 3
o268 | 1.25773. 0 | 1.20%34, 0 | -3.20892, -1 | -5.0BABL, O ; -2.1)mRX; 1 | ~5.88241, 1 | -1.2e23E 2 1 -2.B4p0B, 2 |..4.57013, 2 1 =T.)zasn, 2 1-0,98380, H
40 | 1.zs2ss, 0 | l.02885, O | ~1.20024, 0 | ~3.80088, O | .2.m4E8T, 1 | -7.15425, 1 | -2.58925, 2 | ~2.88345, 2 |-4.5783Y, 2 | -6.acees, £ |-l.Teeve, 2
o2 1.22815, O | 8.,186668, -1 | -2.19844, O | -1.19730, 1 | -3,83030, 1 | ~A,TO278, 1 | -1.7E624, 2 | ~2.4R245, 2 | =B.85640, 2 | -1.2079%, 2 | 1,12514, ]
o4 | 1,22484, O | 6.8218), =1 [ -3.326R2, O | -).F4729, 1 | —4.44658, L | -L.008B8, 2 | -1.86205, 2 | -2.68679, 2 |-1.49106, 1| B.0zmT, 2 | 2.908v2, 3
) 1.20215, D | 5.14783, ~1 | -4.5963, 0 | -1.92628, 1 | -Bu2R14E, 1 | =1.11209, 2 | ~1.8016R, 2| -1.867R7, g 2.12700, 2 | 1.81487, a3 | b.e2es6e, 3
«48 | 1.21089, O | L.36241, -2 | -T.TE300, O | .2.365, 1 | -B.;OeRS, 1 | -L,062710, 2 | -1.4A58, 2 | -R.m2672, o | 7.20692, 2| z.amau, 3 | Yosm202, 3
50 | 1.21792, O | -5.247A3, -1 | -0.3TB2S, O | 2737, 1 | -g.eBs70, 1 | -1.13018, 2 | -0.54518, 1 | ~2.71895, 2 | 1.Ms26, 3 | 4.087Ee, 3 | 9.20452, B
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. TARLE 13.- l‘i j). 1) = n(r) T°(1)—m2lr) T°(*) cop (w B - m
=%¥a
#o) =(0) 4o} ={a) o) ™) 5(o) (o) «(o) =(a)" 9
| Tzaal™ | Zyzalm | Zggp (M | Bypaln Jaal™ | Baan Bare (0 | Fspaa(0 | Breat™ | Fagzea( | fmpan
0% 10800, © 1.0618, © 1.0564, © 1.0096, O U.8438, =l | 9.8077, -1 9.3683, -1 9.1248, -1 8801, -1 B.6761, -1 | 6.4087, =1
.06 1.19%68, © 1.1566, © 1.0782, O 1.0238, O g.1212 L 9,2506, -1 3.7648, -1 8.3224, -1 T.9024, =1 9.5088, -1 | T.1280, -1
»08 1.527a, 0 1.2257, [} 1.1318, 2] 1.0450, [} 0.6495, -1 ¥.9088, -1 8.2268, ~1 T.6084, -1 T.0042, - 6.4767, 1 5.9303, =l
J08 1.4964, [+] 13404, 0 1.2018, 0 1.0t1, 0 D.6648, wl 8,6493, -1 7.7680, -1 B.9542, -1 6.2558, -1 5.EBTP, -1 £.0090, =1
10 17215,  © 1.4M49, O 1.2983, © 11296, O 97919, o1 8,089, -1 7,588, -l 8.4139, -1 E.5702, -1 4,838, -1 | 4.2013, -1
12 2.0622, o© 7224, Q 1.4465, 0O 1.21%2, 0O 0082, © | apasE, -1 7.1718, -1 5.0180, -1 £.0616, -1 4.2398, -1 | Z.5602, -1
24 R.6233, 0 2.1204, O 1,718, 0O 1,3863, O 1.1107, 0O 9.0607, ~1 ¥.5i88, -1 5.0151, -1 47796, -1 5.8632, -1 | 3.1206, -1
.16 3.1488, ] 2.4911, o 1,9726, 4 1.5817, a 1.2385, 0 8.7910, -1 T.7T885, -1 61386, <=1 448806, -1 3.8488, =1 | 3.04T3, 1
18 82822, o 3.2758, O 2.5571, o 1l.8844, O 1.5209," © 1749, 0 9,11%6, , -1 7,0895, -1 B.4658, =1 4.2318, -1 | 2.27%6, -1
«186 B5.T440, 1] 4,3032, V] 3.3900, ¢} 2.5698, Q 1.9555 o 1,5032, 0 1,1497, 0 8.7932, =1 8.7262, =1 5-1438, ~1 3.9540, -1
.17 1,0088, © 7.5871, © B.7252, O 4.2205, O 3.2000, © 1 2,4800, [ 1.8682, © 14007, © 1.0669, © °| Tv.9785, =1 | €.0182, -1
Ars | s.0088, © 44232, O 3.M88, O 2.4996, O 1.8880 ol 1.3, 0 10599, © 7.7630, -1 6.7984, =1 4.3255, -1 | Z.z2BT, -l
.18 4.5172, [+] %.425%, 0 2.6378, 0 1.8810, 4] 1.5540, [+ 1,0329, 0 r.6816, =1 5.6684, -1 4.1991, -1 3.1086, ~1 2.0018, ~l1
«106 | 3.788), O g.1981, © 2.0668, 0 1.6260, © 1.1247, 0| sg.2918, -1 6.108T, -1 4.4980, -1 S.8120, -1 2.48M, -1 [ 1,728, =1
19 3.2003, [\] 2.3710, /] 1.7492, 0 1.2893, 0 9.4670, =1 8.9705, -1 5.1174, =1 5.7636, -1 2.7503, -1 2.040, -1 | 1.A47%, -1
<195 27704, [} 2.0046, [} 1.6606, [ 1.1202, 0 8.2404, =1 6.0484, -1 4.4298, -1 B.5081, -1 2.3654, -1 1.7T218, -l l.2626, ~1
.20 2.4217, /] 1,6004, 0 1.3442, 0 9,6452, =1 1.3220, 5.3716, -1 20082, -1 2.9454, -1 2.0802, -1 1.8080, ~1 | L0908, ~l1
21 1.68962, [ 1.4542, 0 1,0994, ] 8,2052, =l 5.0406, -1 44502, -1 3.2403, -1 2.5465, =1 1.8888, -1 1,2098, =1 B.8292, =2
22 1.5163, [ 1.2128, 0 9.3028, -1 T.1076, -1 5.2818, =1 3.8602, .l 2,8018, -1 £2,0080, -1 1.4238, ~1 1.0086, =1 T.0T41, -2
+25 1,2280, © 10419, O 3.074, =1 6.3850, -l 4.7587, 1 | 3443, -l 24048, -1 1.7727, -1 1,2888, -1 8.8207, ~£ | 8.0114, -2
24 1.0538, 0 04566, -1 7.6710, -1 5.8352, -l 4.4124, -1 B.2115, wl g.kns, -1 1.67686, -1 1.0828, -1 7.2785, R 4.0081, -2
«25 0.2084, -l 8.5498, -l T.04T4, -1 5.5284, -1 2.1170, -1 | =z.s800, -1 2.0057, =1 1.4159, -1 9,6260, =2 6.5, =2 | 4.1300, =2
«23 5.7288, -1 7.578C, -1 6.6788, 1 5.3822, -l 3.9066, -1 | a,T708, -1 16041, -1 1.2886, -1 s.3m52, -2 5.3830, P | 34575, 2
27 5.5087, =l 7.0728, -1 8,4208, -1 50845, -1 3.7332, -1 | 2.8084, -1 1.7415, =1 1.1417, -1 T.3RTA, =R 4,695 -2 | BER1, -2
o238 | 44824, -1 B.T019, -1 8.2417, -1 48404, =1 3.5868, =l 2,482, -1 1.6254, =1 1,0304, =1 6.4390, =2 50062, -2 ] 2,348, -2
28 3.68188, -1 E.ABM, -1 6.1199, -1 4.8889, -1 B.4538, =1 | 2.3068, -1 1.4977, -1 B.2624, -2 B.597E, -2 52742, 2 | 1.B687, -2
«50 2,0a85, =1 6.2479, -1 8.04658, -1 4.7384, -1 3.3515, =1 2.1884, =1 1.3795, -1 B8,3091, 2 4.80878, =2 2.7000, -2 l.4271, -8
o328 1l.T183, =1 8.08%0, -1 6.9844, -1 4.6910, -1 31178, =1 | 1.9881, -1 1.1589, -1 8.5189, <2 3.4825, -2 1,rr7e, -2 | B,5E09, -3
5 B,2097, =2 B.04Te, -1 6.0014, -1 4.4730, -1 2.9088, -1 17254, =3 9.6719, -2 44,9686, =2 2,308, -2 1.0801, =2 4177, =3
«36 1.81353, -2 6.1588, -1 s.0828, -1 4,20, =1 2.7028, -1 1.,6088, -1 T.71268, -2 3.6118, -2 1604, -2 52777, -3,| l.a8sl, =3
W58 | -8.20TE, -2 8.36%2, -l g.1547, -1 4.2180, -1 2.4981, -l 1.89%4, -1 §,0080, -2 2470, -2 3,1e82, =2 18080, =3 l-8.uFPa, =4
A0 | -T.0ReE, -2 6.6887, -1 §.2825, -1 41862, -1 2.2843, -1 1.0061, -} 4.5%89, - l.5128, -2 2.9145, =5 | -%.0087, -4 |<L60N), -3
A2 | -8,90m, -2 6.0887, -1 8.3866, -1 4.0154,, -1 8.0715, -l 90012, -2 5.1024, -2 ¥.3506, -3 | -8,6088, ' 4 | -Z.AB5, -5 | =1.566l, ' =3
o4 b o-1,2043, -1 T.11, -1 6.4808, -1 5.8789, -1 1.8557, -1 T.19M, -2 2,0181, ~2 1.2420, =3 | -5.5780, -3 | -3,1855, -3 ]-2.910Y, -3
A8 -1.3565, =1 T.7687, -1 8.6%88, -1 37242, 1 1.8381, =1 5.4T48, -2 1,0025, -2 -3.6581, ~3 —4.8441, -3 | =-5.2283, -3 |-l.6081, -3
1] =1.4566, =l B.2464, -1 T.3486, -1 5.6810, -1 1.4181, =1 3.0897, -2 4.1007, =3 5104, -3 -5.,4880, -3 -2.9123, -5 |-l.1672, -3
o580 -1.511%, ~1 8,7878, -l T.3424, -1 5.3825, -1 1.2068, =1 2.5874, w2 -5.4212, ~3 -8.6539, =3 5,0848, -3 -2,3428, =3 |-T.0100, -4
[l L 4 . ] A
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TABLE 13.= FS) () = n(1) £(mh—>La(r) £%(r) com (o + 1 + T) :
23

[ ]

§lo) Fo) (o) (o) §lo -(0) (o) . (o) ~{a) ~(0) §to)

T *\-1/8 1( 1) -3]8 1(7) !--B/a 1( " -7/8 (T) -9/5 1(7) 11[2 1(7) 1-1313,1( ) 15/3 1(') 1_17,'3,1(") —19/3 1(7, -...m_/a 1(’)
.02 1.1188, O l.1456, © l.1748, 0 %48, 0 1.238T, © 1.2675, O 1.2897, O 1,8530, O 1.36M, © 1.4021, O 1.4579, ©
«Od 1,254, O 1.8265, 0 1.30e8, O taTh, © 1,.5482, 0 L8818, o 1.9185, © 1.809%, © 1,9068, O 2,007, O 2188, O
06 1,457, O 1.6668, O L.6882, O l.8281, © 1977, 0 2.1418, o0 25198, O 2.5121, O 27207, O 2.465, O .00, 0
+08 1.6688, © 1.8810, © 2,00180, © 2.3180, 0 2.585T, © 2.8823, O 3.2156, © 3.567T1, O 4,007, © 44842, O 4.5802, O
«10 1,9820, [} 2.2832, 0 2.8270, [} 3.0259, [} 4042, () 4.0119, D 4,805, o 6.5192. o 8.1248. [ 70628, L} 841206, [+)

.22 244463, © 2.018, 0 .47, O 4.1584, @ 1.6288, © E.8¥28, D 8.8872, 0 8,337, O 9.8540, © 1.185T, 1 1.4105, 1
J4 B3.2466, O 4,085, 0 4.8676, 0 B.1458, O Y.8035, © 9.4070, 0 1,138, 1 1.4308, 1 l.1813, 1 2.,20%8, 1 z.vasa. 1
»16 3.94T8, © b.0L76, O 6.3289, O 8.0031, O 1.0107, 1 1.2786, 1 1.6121, 1 2,0880, 1 2,674, 1} 342476, 1 4,104, 1
«18 S.4001, [} 7.059T, o 9.1181, 1] L1778, 1 1,5210, b | .ma, 1 1 3.2770, 1 4,2324, 1 5.4663, 1 7T.0801, 1
JBG | T.5108, @ 5.515%6, © 1.275%, I 1.8767, i B,18d8, 3 g.08W8, 1 1 40080, 1 6,414, 1 H.3669, 1 i.0b66, £
AT 6.6824, ¢ 8,205, © 1.1700, 1 16306, 1 2.0548, 1 2.y208, 1 1 4.7825, 1 8,3382, 1 A, 1 l.um, 2
JATE| 4.0228, © B.3876, O T.2158, O 96663, © 1.2042, 1} 1.78387, 1 1 $.1080, 1 41818, 1 5.5730, 1 Tod650, 1
«18 3,145, © 14,1990, © b.a581, 4 7.6269, 0 1.0278, 1 1,384, 1 1 2,512, 1 3.582, -1 4.6636, 1 8.1258, 1
.188 2.8651, o 344656, Q 4,3826, a €,3829, [} 0 1.1 ] 1 2.0888 1 2.8085. 1 5.TT14, 1 5.0881, 1
10 2.1899, [+ 2.9279, 0 J.9419, Q 86,2801, o 0 0 1 1.8826, 1 2,2471, 1 2.9735, 2 5.9229, 1
JBE| 1.881T, O 2.5Y6T, © .3248, O 4.4129, © o 0 1 1.2850, 1 1.6456, 21 2.0757, 1 257137, 1
«20 1.6103, © 2.1267, © t.50%8, O 3.8006, © 0 0 [ 8.47%, O 9.6607, O 10877, 1 S.5511, @
21 1.2125, 0 1.5140, O l.s242, 0O 2.08M, 0 0 ] 8.2618, =L |-l.8642, O | -6.6914, O |-l.8089, 1L | -3.2854, 1
«22 S.0427, -i 9.5%08, -1 2.82638, -1 f.1244, -1 | «5.6841, -1 0 | 6.6094, O [-l.42p9,. 1 | -2.7958, 1 |-6amMs, 1 | -B.2218, 1
23 8.5000, -1 B.4ll4, <1 | 1,1811, -1 | -8.M08, L | -3.2W71, O o | -1.5%9, 1 | -2.9688, 1 | =5.4Tab, 1 | -8,7820, 1 | -~1.0008, 2
L4 A.5486, -1 1.2106, ~1 | -B.T4B3, -1 | -R.4024, O | ~5,0921, 0O 1 [ -2.6824, 1 | -4.8819, 1 | =8.7R6, 1 | -1.5B15, 2 | -B.TO029, 2
25 g.g048, -1 | -2.7A10, -1 | -1.B228, O | -3.9343, O | -9.%083, 0O 1 | z5.7087, 1 |-6.9218, L | -l.£G66, 2 | -2,2314, B | -~B.B916, ®
.28 7-7487, -2 | ~-m.8220, -1 | -2.3325, O | -5.8268, O | -1.2v88, 1 1l weom, ) laasme, 1 11884, 2 | 5.008E, 2 | -S.R420, 2
WBY | -T.5RET, -2 | ~1.00180, O | B8, O | ~7.8306, © | =1.5450, 1 1 | -s.4007, @ |-laesv, 2 | -2.1875, R | ~5.B483, E | «8.8008, 2
28 | -z,588, -1 | -1.57%, O [ ~4,0025, O | -p.286), O | ~2.0m08, 1 1 | -1.5008, 1 |-~liaT24, 2 | -2.6874, 2 | -4,7133, 2 | -8.1388, 2
89 | ~B.aET4, <) | -1.7262, O | =4.3560, O | L2408, 1 | -2.4401, ) 1 | -9.4821, 1 |-1.9887, 2 | ~3.1801, 2 | -6.pad9, 2 | wS.A538, 2
0 | ~4.8578, -1 | -2.073T, 0 | =G.7R3Y, O | 1,388, 1 | -2.p610, 1 1 | -la51s, 2 | -2.0423, 2 | -B.eas2, 2 | -6.,2849, 2 | =1.0489, 3
32 8,616, ~1 ~E,T621, O | =T.4987, U | ~1.7473, 1 =3. 7204, 1 1 | ~l.8104, 2 -2.5448, 2 -4,5684, 2 T 0807, z *1.0728, 3
o84 ~9,1082, «8,4502, [ =9.3168, 1] 2. 1687, 1 ~4..5850, 1 1 ~1.8691, 2 ~-2.6402, 2 -4,5038, 2 -4, 7079, 2 w7 10S8, 2
38 | ~r.10e, 0 | <4.2435, 0 | -2.87, L | -2.683%, 1 | ~5.3870, 1 2 | 2965, 2 | -2.6087, 2 | -3.67ER, 2 | «3.l45, 2 2.0631, 2
28 | -2,3099, 0 | -t.na96, © | -1,3043, 1 [ ~2.9857, 1 | -8,09%, 1 2 | <l.rsv2, £ | -2.2484, 2 | ~l,5332, 2 3.0880, 2 1,7608, 3
40 | <1 moas. 0 | -s.seas; 0 | ul.amss; 1 ) asen, 1 | aEam), 2 I P WPT." S T O P 1T SO | 21617, 2 1.2400, 2 5.8506. 3
A2 | -1.7007, O | =6.28Y6, O | -l.673l, 1 | -3.6¥24, 1 | -£,787T, 1 2 | -804, 1 2,018, 2 7.518), 2 2.4368, 3 8.1268, 3
d | -2.p017, O | -7.0612, O | -L,8611, 1 | «5.9228, 1 | «e.0801, 1 1 | ~A,6908, =1 B.ET04, 2 1,3788, 3 3.588T, 3 T.004, 3
A8 | ~2.1088, O | ~T.3288, O | -2.0201, 1 | -s.0817, 1 | -8.3500, 1 1 1,288, & 8.8608, 2 2,062, 3 4.7035, 3 8.3882, 3
A8 | -2.3372, O | -g.&2sT, O | 21317, 1 | ~.1264, | -6.1338, 1 o’| 3.6809, 2 1.0407, 2 2,6612, & F.0T41, 3 6,3901, 3
50 =2.6515, o -9,5288, 0 -2,2006, 1 -4, 0822, ) =2.5419, 1 7.2191, 1 4.6080, 2 1.4009, ) 5.0108, 1 4.5463, 2 1.1663, 5
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Figure 3.- ®{t); u(r); v = 1.405
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Ffigure 168.- The behavior of the integral-curve; l‘(,l) (7).



