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SUi!MARY

The problem of flow -of a compressible fluid past a %ody
with subsonic flow at. infinity is formulated ly the hodograph
method. The solution in the hodegraph plane, is first con-
structed a%out the origin by superposition of the particular
integrals of the transformed equations of rnoticn with a set
..ofconstants which would determine, in the limiting case, a

● known incompressible flow. This solution is then extended
outside the circle of convergence %y analyti’c continuation.

--
● The previous difficulty ~f the Chaplygin meth~d af slow

convergence of the series has been overcome by using the as-
ymptotic properties of the hypergeometric functions so that
numerical solutions can be obtained without difficulty. It
i’s emphasized that, for a solution covering the whole domain
nf the field of flow, both fundamental solutions of the hyper-
gegmetrical differential equation are required.

Explicit f~rmulas for numerical calculations are given
for the flow about a body, -such as an elliptic cylinder, and
for the periodic flow such as would exist over a wavy surface.

Numerical” examples based on the incompressible flow so-
lution of an elliptic cylinder”of thickness ratio of 0.6 are
computed for free-stream Mach numbers of 0.6 “and 0.7.

The results of this investigation indicate an appreciable
distortion in the shape of the bodies in compressible flow
from that of incompressible flow, which necessitates a serieS
of computati~ns with vnrious values of the geometric parameter

r in order that the desired body shapes can be selected for a
given Mach number. It also is shown that the breakdown of ir-
ratational flow depends solely upon the occurrence of limiting

.
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lines, which, i,n turn, are dependent on the boundary condi -
~..-

tions.

The numerical calculations show that at a free-stream
Mach number of 0.6, irrotational supersonic flow exists up to
a lbcal Mach number of 1.25: whereas breakdown occurs at 1.22
for a Ma6h number of 0.7.

INTRODUCTION

When a flow of nonviscous incompressible fluid is irrota-
ti onal, it is well known that the problem can be reduced to
either the problem of Ilirichlet or that of Neumann, and that
there exists a unique solution for any given boundary condl-
ti.ons. When the fluid is nonviscous but compressible, the va-
riation of density makes the mathematical problem very diffi-
cult and complex, In this case, a pure pbteniial flow through-
out the region ie not always possiblz for a given body; this ‘
depends very much upon the condition at infinity. If a certain
speed of the flo’w at infinity is reached$ regions within the ●

field of flow will be created in which tLe irrotational flow
does not exist owing to the appearance of ~llimiting lines.ll
Such regions were picturesquely desi.gnatedas Ilforbidden re-

--
●

gionsll by Th. von K&rnlAn (reference 1), and they appear when
the local speed of the flow considerably exceeds the local
speed of sound. It has been shown that the occurrence of Iim.
itlng llnes is directly connected with the breakdown of irro-
tational flow and with the resultant increase in drag of the
body due to shock waves. In other words$ if there is a limit-
ing line in the field of flow, the isentropic irrotational
flow must break down. However, the trrnLational flow nay break
down before the a~pearance of limiting line due to the insta-”
bility” of the velocity field, On the other hand, shock waves
can occur only in supersonic flow. !?herefore, there is no
danger~of breakdown of isentropic flow if the whole field of
flow i~ subsonic. Con9effuent].y, the Much number correspondi-
ng to:the first appearance of local ~pfied equal to that of
sound ~a~ be designated as the I!lower CI.itiCa3. Mach numbert’;
and th

1

Mach number corresponding to the first appearanceof
limiting lines can be designated as the f~upper critical Mach

I
number. ‘ The actual critical Mach number for a given body
will be influenced by the boundary layer and hence the Reynolds
number.~ However,. it must lie between these two limiting crlt- ‘ ...
ical values. (See reference 2.) Thus, knowledge of these
critical speedq of the flow are essential for the design of ~,

efficient aerodynamic bodies. .
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To determine the critical Mach numbers, the general prob-

lem of flow of a compressible fluid about a given body must
be solved. The often-used methods treating such a problem
are Janzen-Rayleigh’s method of successive approximations and
Glauert-Frandtlls method of small perturbation, The latter
method has been extended recently by both Hantzsche and Wendt
(reference 3) and C. Kaplan (reference 4). Indeed, both meth-
ods yield valuable information regarding the effects of com-
pressibility and are useful for many practical design problems,
particularly the determination of the lower critical Mach num-
ber of a given body. But , so far as the general problem of
limiting line and upper critical number is concerned, none
seems to be adequate, owing to the doubtful convergence of
such successive approximations at the required high Mach num-
bers.

An entirely different a preach first was made by Molenbroek
(reference 5) and Chaplygin ?referenc6 6) by introducing the
velocity components instead of the usual space coordinates as
independent variables. The advantage of the method is that,
instead of a nonlinear differential equation as is the caee in

P the physical plane, it leads to a linear one in the velocity or
hodograph plane. The particular solutions of this linear equa.
tion are found to be products of trigonometric functions of the

t angle of inclination of velocity vector and hypergeometric
functions of the magnitude of the velocity vector. It is then
possible to construct a general solution from the particular
solutions of the differential equation. The difficulty, how-
ever , is that the character of the field in the physical plane
to which the solution in the hodograph plane corresponds cannot
be determined beforehand. This difficulty prevents the exact
formulation of the boundary value problem in the hodograph
plane . Chaplygin has overcome this handicap by first choosing
a%uitable solution!’ in the hodograph plane and then proceeding
to find the corresponding flow in the physical plane. The
suitable solution is one which, in the limiting case of zero

Mach numler at infinity, becomes identical with the incompress-
ible flow over a body similar to the body concerned. This will
ensure the satisfaction of the proper boundary conditions in
the physical plane. Furthermore, such a solution would be ex-
act both for the subsonic and for the supersonic regions, as .
no approximation is introduced. Therefore, it is particularly
suitable for the problem of determining the upper critical Mach

# number for a given body, as limiting lines occur only in mixed
subsonic and supersonic flows. This method is followed in the
present report, except for the Introduction of the transformed
potential function ~, for easy calculation” of the space

●

coordinates.
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For the flow around a %ody, ChaplyFints procedure vill .-w
lead to a solution in the form of an infinite series, each
term of which is a product of a trigonometric function and. a
h-ypergeometric function. To put the method on a firm founda-
tion, it is necessary to establish the conv{r~ence of the” in-
finite series. Chaplygin himself hfis done this for the SU%- .
sonic region. Thus , only the extension to include the super-
sonic repion remains to be completed. In p~rt I of this r6-
port, the general properties of hypergeometric functions of
large order are investigated in preparation for the proof of
the convergence given in part II. The esseatial point in
these parts is to establish the upper and lower hounds for

., the hyper~eometric functions so that the sum of the infinite
series can be discussed. It is appropriate to mention here
that for the proper representation of the ger.eral solution
in the hodograph plane, both fundamental solutions of the hy-

,-.pergeometric differential equation are required. This fact
has not %een considered by many of the previous investigators
in this field. In other cases (reference 7) the investigator,.
has chosen to work vith only the first solution.

The general solution constructed by the Chaplygin method
is really an existence theorem. The extre.m-ely slow. conver-

A

gence of the series makes numerical calculation very difficult,
if not impossible. This, in fact, constitutes the main d-iffi-
culty of the method. In part 111 Qf the present report, this ‘
difficulty is svercome %y using the asymptotic properties of
the hypergeometric functions. Ths result is the separation of
the solution in the hodograph pls.nj into tw-o parts. One “part
is of clos,ed form and is the product of a ulLi-tersal function
of the velocity and the same solution as. for incompressible
flow but with a velocity distortion, or velocity correction
For instance, the first part .of the stream function for tho
Conpressille flow iS equq.1 to the product of the univers~~
function of velocity and the st.rcaw.function for the incom-
pressible flow with the magnitude ~f velocity modified by a
given rule. The other p~rt is an infinite ~eries which con-
verges rapidly everywhere excemt in % small region on both
sides of a critical circle with a “radius equal to q = c- in
the hod-ograph plane. Iu practice, by using only a few terms
of the infinite series, this zone of slow convergence can-be
limited to such a small interval that, it is of no consequence.
Thus the Chaplygin procedure is inprovad to a point where ac-
tUal nUmerical cn~culations can be made without difficulty.

As a result of this part of the study it becomes clear
c
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. that by the mere substitution of a different speed scale, or

velocity distortion, in the solution for an incompressible
fluid, an accurate enough solution for the compressible flow
cannot be obtained. 3’or if thfs were the case, then not only
the second part of the solution (the rapidly convergent se-
ries given by the present method) would be negligible, but
also the value of the multiplying universal function of veloc-
ity in the first part of the solution would be unity. How-
ever, the value of the second part of the solution is not
snail compared with that of the first part for-a speed near
that of sound, and the value of the multiplying function of
velocity is.far from unity. In other words, the usual so-
called hodograph method (reference 8) cannot, in general,
yield satisfactory results, for mixed subsonic and supersonic
flow. On the other hand, the present method does show that
the second part of the solution is zero and the multiplying
function in the first part takes the constant value of unity,
if the isentropic exponent is equal to -1. This means that
for this particular case, a simple speed distortion is suffi-
cient . This iS, of co~rs$, in accordance with the previous
investigation of bon Karman (reference 1) and Tsien (reference

● 9) and L. Bers (reference 10).

Furthermore, the preseat method also shows that the rules
* of speed distortion for the firet part of the solution can be

used only for subsonic flow and that there is a singularity at
the local sonic speed. For regions of supersonic flow, the
first part of the solution involves both the incompressible
stream function and the incompressible potential function.
T!hus even without considering the second part of the solution,
there is no possibility of making the compressible stream
lines coincide with those for incompressible flow in the hodo-
graph plane by a simple stretching of the speed scale. The
mathematical basis of this fact is the change in character of
the differential equation from elliptic to hyperbolic in the
transition from subsonic to supersonic flow. For the super-
sonic regions, it is not possible to use a real transformation
of the velocity variable to conve”rt the differential equati~n
of flow to the La-place equation, and thus make a simple con-
nection between the compressible and the incompressible flows.
This iS one of the difficulties of the previously proposed .
hodo~raph method. In fact, writers using this method must
generally limit their calculation to subsonic speeds. (See
references 9, 10.) Now this limit is removed, and the whole

s field of mixed subsonic and supersonic flows can be treated at
once with eaee.

. For the purely subsonic flow, the second part of the
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solution is small compared with the first part and may be .
neglected. Furthermore, if only the zero streamline repre-
senting the body is considered, the universal multiplying ~
function of velocity is of no importance. In other words, ‘
fcr this case, a simple speed distortion from the solution of ‘
incompressible flew is sufficient to give accurate enough re-
sults ● However, the subject of the l~hest~ “velocity distor-
tion rule ir. su%sonio regions has been the subject of many ‘
discussions,. (See references 1 and g.) The present annlysis
id considered t, settle this question. This is due to the
fact that the present velocity distortion rule is o%tained
from the asymptotic properties of the hypergecmetric functions,
and that such properties are definite and unique. Therefore,
the resultant velocity distention rule is not the result of
uncertain speculation. Furthermore, it is also the best rule,
because the analysis implies that this rule will make the .
second part of the solution, or the correction terms, the
smallest . This distortion rule is found to coincide with that
of Temple and Yarwood. (See reference 11. )

For the p+~rely supersonic flow, the second par%”-~f-the -
solution is again small compared’with the first part and may ~
be nbglected, In fact,. the solution then can be reduced to
that of the simple wave equation with the inclination of the
velocity vector and the distorted velocity as independent val-
ria%les. This iS, Sf course, the counterpart of the fact that ‘
by a siwple distortion in velocity, the, differential equation
for” subso~ic flows can he reduced to the Laplace equation.
The usefulness of this new result for purely supersonic flow
has yet to be exploited.

Once the general problem of mixed subsonic and supersonic
flow around a body is solved, the determination of the upper
critical Mach uumber or the Mach number for the first appear-
ance of the limiting lines is a simple matter. This problem
is discussed in part IV of the report. A sipple method is de-
veloped, based on the properties of the limiting line as given
%y von K~rn6n (reference 1), Rtngle% <reference 12), Tollmien
(reference 1>) , and Tsi”en (reference 2),

To test the practica%lli.ty of the method developed, two
nu~erioal examples are worked out tn detail, However, in

order tq reduce the amount of comput,~tional work and in view
sf the lirlted”time availa%le, a slightly different procedure
actually is Usad, This procedure is only ~pproximate hut Is .*.

.
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. believed to be sufficiently accurate in the supersonic region
to give a satisfactory description of the most interesting
features of such flows. The examples ohosen are derived from
the incompressible solution of an elliptic cylinder of thick-
ness ratio 0.6. The free-stream Mach numbers of the compress-
ible flow are 0.6 and 0.7 for these two examples. The first
case gives a smooth flow over an “elliptic 11cylinder of thick-
ness ratio 0.42. The maximum local Mach number is approxi-
mately 1.25. Thus a considerable supersonic regien exists.
The second caee gives a flow with limiting line.

Finally, it must be satd that owing to the limitation of
time, only the case of flow without circulation is investi-
gated in detail. The explicit formulas for numerical calcu-
lation are given for two cases: (a) Flow around a body such
as an ellipse, (b) peri-$e-flow-p~&~ch_as that over a
wavy surface. However, it is believed that mor6--ge-raL.casea
can be studied by a slight extsnsion of the present results
and use of the sane method of approach.

This investigation, conducted at the Guggenheim
. Aeronautics Laboratory, California Institute of Technology,

was sponsored by and conducted with the financial assistance
of the National Advisory Committee for Aeronautics.

●

NOTATIONS

The symbols used in this report are classified according
to the following groups:

A. Physical Quantities

x,y Cartesian coordinates

U,v the velocity components

q the absolute value of the velocity vector

d the inclination of the velocity vector with x-axis “

r P density of the fluid

P. density of the fluid at q = O
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P

PO

Y

c

co

u

z =
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pressure within the fluid corresponding to p .

pressure at qao”

ratio of the specific heats

the local speed of sound

the speed of sound at Q=”o

the value of q at infinity, assuming parallel to the
x-axis. With subscript, however, it may be a function
of T.

—.

B. Hydrodynamic Functions in the Physical Plane

X+iy’

Wo(d = 90(X,Y) + fvo(x,y) aomplex potential for incompress-

ible flow in z

J ●

To velocity potential for incompressible flow

*() stream function for incompressible flow ?

T velocity potential for compressible flow

$“ stream function for compressible flow

C, Hydrodynamic Functions <n the Hodograph Plane

w=u- iv

We(w) = qo(u,v) + i+~(u,v) complex potential for incompress-
ible flow in w

Qo(u,v) -.velocity potential for incompressible flow

*O(U,V) stream function for incompressible flow

Ao(w) = ZW - We(w) = Xo(u,v) - iuo(u,v) transformed complex

.ax. potential function *
Xo(usv) = Ux -1-Vy - Cpo(x,y); x . - *

,=:; transformed potential -
-# function
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. W(W; T) the complex potential function for compressible flow

W(u, v) =Im@w;T)} ,~tream function for compressible flow

A(w;T) transformed complex potential function for compress-
ible flow

X(u,v) = Ux + Vy - Cp(x,y) =
‘t P’w”)}

@o(u,v) = *

S20(u,v) = ~

transformed potential
function for com-
pressible flow

represents the con-
tribution by the
velocity distortion;

$=~~)(q,$) stands
for the transformed
infinite series,
where the super-
script 1 may ei-
ther mean i the
inner, or o the
outer solution. In
the case of coordi-
nates, the notation
is exactly the same.

G+)(T) = l?v(T)A3n(~~ + ‘n AZU(T)
f(Tl)Tv(Tl)

,

—
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D. Parameters and Variables .

positive rational numbers

positive integers .-

denotes 1 or 2 when used as superscript with a bracket

‘r””e

denotes the dependence on P when used as subscript

or 1@—
‘7-1

a# 2
2(2P)

— — the ratio of the distorted speed
+ aja /2jT, T(~l) to that at infinity(1

T
1

‘m
“a
Q-—
co a

‘“=Cos-’*
~,?l With superscript or subscript they denote some functions

of ~ or stand for,the two families of the character-
istic parameters $+ w(T), ~- w(T) of the partial
differential equations for v(q)$) or X(q, d).

t complex variable or C(T) a function of T

lq=x the Mach number at infinity
c1

E geometrical parameter of the body

*

A Laplacian or difference between exact and approximate
values of a function or a constant
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Il. Hypergeometric Functions

a,b, c parameters of the hypergeometric functions. In par-
ticular, bav’ v’ ‘v are defined by (29).

~vo) = F(av, bv; cv; T) first “integral of the hypergeometric
equation associated with the
stream functi”on

Iyvm =F,(l+av.- Cv, l+I)V- Cv; 2- Cv; T)

,77 T-v T(av)T(bv)
FV(T) = ‘“

(a13coa~T( cv-l)T(cv) [
Tv gv(’T) ‘

T(l+av-cv)T (l+bv-cv)

T(cv) F (T) 7

1
second integral of the same equation

T(2-cV) ‘-v

QV(T) = qav FV(T)

.
%,1 (T) = I?(l+av, l+bv; l+cV; T)

●
F ‘r)(T) = ~v(T)/lv(Tl)

i;,l(r) (T) = Zv,l(7)/Fv(Tl)—

~~( T) = ~v(T) + iYv(T)

RV(T) = ~*v(T)
I

@v(T) = arg I*V(T)

If any function or a coustant is associated with Xf.q,fi),
it will be marked on top by a symbol -, such as kv(’O .

*

.
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D13’3’ERENTIAL EQUATIONS OE’ COMPRESSIBLE FLOW AND “

,,
FROPERTTES 01’THEIR PARTICULAR SOLUTIONS

1. Equations of Motion

It is proposed to study the irrotational steady motion of
an inviscid nonconducting compressible fluid in an infinitely
extended domain containing a cylindrical body wi,th ite axis
perpendicular to the constant,velooity at infinity. The flow
is then two-dimensional. Let x and y be the Cartesian co-
ordinates and u and v the velocity components parallel to
the X- and &o y-axis. The dynamical equations governing such
a motion, in the absence of body force, are

.. . .

(1)’

(2)

Here p is the pressure and p the density of the fluid,
both being continuous functions of x and y. In addition,
the following equation of continuity must be satisfied:

-$ (pu) + ~ (pv) = o (3)
*

.

Furthermore , since the velocity is constant at infinity, the
flow is irrotational there. Then, according to Thomson’s
theorem, if the pressure is a fundtion of the density alone,
the flow” will remain Irrotational; that is,

(4)

In the case of flow of an Inviscid nonconducting gas, the
thermodynamic change of state of the gas is adiabatic, If “
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. . .
. the flow is assumed to be continuous, excluding shock ~a~ess

then the relation between p and p must he that of an
isentropic process:

p = constant p’Y (5)

where y is the ratio of the specific heats.

AS in the case of incompressible flow, there are more
equations than the number of the variables. However, by vir-
tue of equations (4) and (5), the dynamical equations (1) and
(2) reduce to a single differential equation and can be inte-
grated easily to give a relation between the pressure and the
magnitude q of the velocity; namely,

.{ }

‘Y
‘Y- l*G

P ‘PO l-—— s with qa = Ua + va (6)
2 a

co

Here. Po and co are res?ect%vely the pressure and the

rspeed of sound at the stagnation point q = O and c = ~.’
dp

It is possible to obtain a similar relation between p4 and
q by means of equation (5):

(7)

where p. denotes the value of p at q = O.

After integrating the dynamical equations, the velocities
u and v can be determined from the kinematic conditions
specified b

Y
equations (3) and (4). By eliminating p from

equation (3 , the result is

(8)

where Ca = YP/p and thus can be calculated in terms of the
speed by equations (6) and (7), It is of intereet to note
that the equation of continuity (8) now, unlike the case of -
incompressible flow, becomes dependent on the dynamical equa-

. tions and, consequently, is nonlinear. This change in the
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character of the’ fundamental equation makes the direct solu-
tion of the problem in ~pace coordi.nat&8 viry difficult.

2. !I!ran8formation of the Differential Equation8

The assumption of $.rrotationality implie8 the existence
of a velocity-~atectial for 8ueh a flo~. If this fullctiOn i8
introduced to eliminate u and v, equ~tions (4) and (s)
,would.gi.ve rise to a nonlinear partial dif~erential equation

,, of the 8econd order. Theproblem is further complicated by
the: possible appearance of supersonic .region8~ or r~gions.,
where tho speed of flow is larger than ths local scr.ic speed.
Th~8 means that for sohe part of the dom~in, the equation ist.
of the elliptic type~ while in the other Fart$ it i~ of the
hypez)boll~ type. Tha,lHthe equation not orly is nonlinear but also
fs of mi’xel type, ead there 18 ne yet no snccesaful method to
deal with it directly in the physlca.L’pl&ne. Molenbroek (ref-
erence 5) and Ch[{piygln (reference 6) made sone progi*es8 in
solving the problem by transforming the equations from the
phy8ical to the ho?.ograph plane in which u. and v are taken
as the in~opendant variables. If this is done, the differen-
tial e~uatlon8 “~ecome linear and thus csn be solved by well-
known methods.

Let the transformation be defined byt

u = U(x,y) . (9)

v = V(x,y) ‘(10)

If u and v are contiuuou8 function8 of x and y with
continuous par”tial derivatives, and if the Jaco3ian ‘ ‘

(S&9)
..

is ‘finite and nonvani8hing, a unique inverse tran8-

formatiion exists. Under these conditions,equatlons (8) and
(4) are.easily transformed i“nto

(11)

(12) ‘

t
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●

Corresponding to q(x, y) in the physical plane, there is in-
troduced here a function X(u, v) defined by
,“, ” ... .. . ,.. . .. . . .< .,. .,.

(13)

While equation (12) is satisfied identically, equation (11)
becomes ‘.

,.

AS c is a function of along, the equation fer X(u,v)
i? then, linear. From e~u~tion (13) it is recogni~ed.that if
X(U’,V) is known, a one-to-one correspondence between the
space coordinates and the velocity component can be easily
established.

.,. .“
However, it is also clear that this function is incon-4 venient for obtaining the streamlines and the fldw in the

physical plane. TO solve this part of the problem, a plan
may be adopted similar to Ohaplygtn!s by introducing both the

● Potential function ~(x,y) and ~he stream function ~(x,y)
defined by:

“acB”.U’=—, v.’=”
ax Sy

., !.

(15)

(16)

From these definitions are obtained immediately the following
equivalent relations

dcp = udx + vdy (17)

poii!jl= -PTiX + pudy (18)
,. ,,

. For the subsequent calculations, it was found convenient to
introduce the polar coordinates in the hodograph plane de-
fined by:

.
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.. . .
U&q”coae* v=q8in0 (19)

wher’e 6 is the in-clinattori of the veloctty vector to the x-
axis. Functions dx and tly can be solved for from equa.
tions (17) and (18). As dx. a~d dy are exact differentials,
the’ conditions of- int,e’grability then give:

., (20)

. .. Is,. =~ay “ ““”” ,’
.’ (21).... . . : ‘a6 Paq.

.,. .

By eli’m’inat ing T between eauations (20) and (21),’
tion for $ is obtained:

..
.:”

~. “~+ ~+:a?&@-”~)q:=.o,,,,... .= ., .,
Bqu&tion (14) can also be transformed in polar

nate8. The procedure is straightforward and yields
,. .

.,. .

an equa.

{22)
*

. . ,.

?:.,
coordi - F

(23)

,.

There is an additional relation between x and CP de-
rived from equation (13): ,.-..;.,. ;,. ,.

v=m q-x (24)

Since q is connected with “k, this relatton ensures that
~ and X are properly c.oagectqd an~ represent the same flow
pattern fn the physical plane. It can be thus considered as
the equation of compatibility. flquations (22), (23), and (24)
are the three fundamental qquations in. the present problem
dealing with the two-dimensional’flow of a compressible fluid. ,

.
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. 3. The Particular Solutions of the Differential Equations

As the differential equations for $(q, e) and x(q, ~)
are linear, a general solution can certainly be built by
superimposing the particular integrals of the equations. “To .
obtain the particular integrals, let $(q, e) and X(q, e)
be of the following forms:

*(Q$e) =.qv$V(q) eive ‘ .

X(q,e) = qv.Xv(q) eiue .

where v is any real number. By substituting in equations
(22) and (23), the eauations satisfied by Ov(q) and Xv(q).-
are:

2
q= d2Wv + ( )

I%*V
2v+l+L-q — ‘+ V(v + ,1) $ Wv =’0 (25)

dqa dq

a dah + (
a

q ) dxv
2v+b> q—

dq2
+ v(v- l)$XV=

aq
o (26)

Now each of these equations can be further red~ced by changing
the independent variable’. The appropriate transformation is
found to be

T =~&
with $

1
2$ co~’ “i -1

By expanding the gas to zero pressure, or vacuum, the maximum
velocity is obtained. Equation (6) shows that the maximum

speed is qmax
‘R CO* ‘hereforeg ‘he ‘ax’mum ‘a’ue ‘f

T is unity, Sim%larly, it is found that for the speed of

the flow equal to the local sonic speed, T . ~, equa-
2f3+l

tions (25) and (26) then become

.

T(l -
[

T)WV’l(T) + Cv - (av + IJv + l)T
)

V’(T) - avbv~v(T) = O

. (27)



,

..”

..- q + Io(b’v‘+13)xv(?) = o (28).“ ,..

where

Lpv(v+ 1), ~~
av

+bv=v-f3, ~b
VV =-,.2 and = v + 1“ (29)

These are the hy’pergeornetric equations, of which equa-
tion (27) was first obtained by Chaplygin in 1904, (See ref -
er,en,ce6,) The di$f?rential equation of this type has three
regular singularities at (j, 1, and +m. If the differences of
the two exponents at the” respective singularities; namely, ,
c- l,a - b,a+b - C, are not integers or zero, the two
fundamental ‘!nd,ependent solutions are ,F(a,b; c; T) and

T1-c F(1 + a ~ c“, “
,.

i + b - C; 2- C; T)”. They are single-val-
ued and regular in the whole plane with a cut from +1 to +m.
The function; F(a,b; c; T) known as the hy~ergeometric func-
tion of geheral: para.me.ters’ a,. b, and ;c, is defind by the
hypergeometrlc series which is absolutely and uniformly con- .
vergent when !T! <1, provided Rl(c-a-b)>O. For
I-fl~ 1, analytic continuation .hqs to be used. .Furthermor.e,
it.ts norxnalized;,so”that at .T = O ●

. .. .

., F(a,b:lc; 0) = 1 (so)
-..

Hence, the part.ic,u~ar.solutions of equation (27) are,,$ ., .
,,, .. .

,“ ..

T1-c~ F(1 + av@(av,bV.;cv;T), -Cu, 1 + bv - CV; ~ - CU;T),,

. . (31)
. .

The particular solutions of e~uations (28) are .-,---

,,-.... ..+? -c~; 2-c~:. T) (32)

Here b
(29), au’ U’ and Cv

are parameters defined by equation

.

.
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. When v is a positive integer while av and bv re-

main as they are, the second integral will reduce to a con-
stant multiple of the first one. This case was first studied
by Gauss (reference 14), who found a second integral involv-
ing a logarithmic term by considering the limiting value of
the integrals given as v- tends to an integral value. The
method has been further developed by Tannery (reference 15)
and Goursat (reference 16). However, the form regarded as
conventional nowadays was that obtained by Frobeniusl general
method. According to this methodi the-~alr-of .f-u.nda.mmtal.
solutions of a ,hypergeometric equation are

‘n{Tn F(a, b; n + 1; T)log TF(a,b; n + 1; T), Ku 7 .

(Z)(a, b; T) + ‘n-l+ Tn Qn (l)(T))

J
(33)

when ‘n =n+l, n being a positive integer; and

m- 1

[
~(a,b; m) = ~ 1 + 1

a+r
‘—-*J-?:

r=ko b+r
r=s

Here a,b may be either an, bn or an +@, bn + @ de.

fined in equation (29) according to whether the system (33)
is referred to as solutions of equation (27) or (28). And
Kn can be determined eo that the product of the second inte-
gral and q2n satisfies the condition (30) .

In view of the fact that the second integral in (33)
does not constitute a family of solutions with the second in-
tegral given in (31) or (32), it. is very desirable to ,define
a new function as second integral which will be continuous in
v as well as in T. Let ~(r) denote the first integral.
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F(a, b; Cv; T). As a second integral, take the- llnear combi-
nation of the solutions:

1-O*
Ov)r(l +“b - CV)T Z-v( T)] (35)

where

X-V(T) =F(l+a-c V,l+b-c V; 2-c V;T)

This is evidently a solution and valid for all vaIuesof v.
The constant KV is determined subject to the following con-
dition:

. .

~ ‘v TV(T) = 1 for T=O (36>...- --.. .

The value of Ku then is found to be

K
-1

= (2Pco)vr(cv -.,l)r(l,+ a + Cv)r(l + b - CV)

Using the relation

,. r(cvuw - Cv) s fl csc CVW .

equation (35), when multtplfed by qav, will define a new
function gv(T): aj ~ #- n

QV(T) = n G P(a)r(b) TV~V(T)

sin c~’n (CV)I’(CV - 1)!7(1 + a - Cv)r(l + b - Cv)

When v takes integral values, the expression in the
bracket vanishes; however, the limit of the ratio exists:

(38)

.0
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8 The usual definition of the limit of a quotient gives

By considering separately the first n terms in E-V(T), as “

m -v) has poles at V = n, a straightforward reduction
yields:

where
m

Q ‘2)(T) = (-l)n+l
n ~[r(n)~(-n + a)r(-n + b) ~

*(a + m) + $(b + m)

m= o

1-*(cn + m) - ~(m + 1) ~1~ + dr(b + m) ~m
. I?(cn + m)!7(m + 1)

n- 1
. P %) =

1
T (-1)

m p(a-n+m)~(b-n+m)P (n-m) ~m
n.z

I’(n)r(a.n)r(b-n) m+. !7(m + 1)

n+t

Qn = (-1) T(a)r(h)
i?(n)~(n + I)r(a - n)17(b - n)

and’ $(~) denotes the derivative of log~(~). It can be
seen that the difference between (33) and (39) lice only in a

in Q ?2)(T).
consta t multi~le of the first integral which has been absorbed

n

In the following discussions, the two fundamental solu-
tions of the h pergeometric differential equation will be
taken as ~1,(7Y and q-au ~,.(T). The normalization condi-

tions given”by (30) and (36)vare chosen for the continuous
passage of a compressible to an incompressible flow. Ultimate-

. ly, these functions are again defined in terms of power series
which are absolutely and uniformly convergent within the do-
main ~T~ <1. However, since the maximum ‘value of 7 at-

. tainabie by the fluid is unity, the continuation of the solu-
tions beyond the unit circle will not be discussed here,
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Thus ~(’T) and q-av~V(T) denote the two independent

integrals .of equation (27) where u is any positive number.
The particular solutions of equation (22) are then:

[

(a)A (z} cos V3 + Avqv~v(T) ~
1

sin v~ ,
[

q-V~ (T) &)co5 ~~

. -v

Av(l), ~v(a), ~v(l), Bv(a~ are constants.where and sim-

ilarly, those of equation (23) are

q’%”v(T)
[
~v(z) cos vd + AV 1 [*(2)sin~+, fv~v(T)i~(z)COS ~$

+ ii-p sin ,0
1

(41)

where ‘av~ (T) are the two independent inte- ‘~v(T? and q

grals of equatioa (2$) 2% Iv(z), Xv(s), SV(l), and ~~(z) .
are constants.

?-”

In addition to the e solutlons, there are two other Inte- .
grala each of which !s z functton of one variable only.
Assurcing W =’*(q) or W(*), then equations (22) and (23)
yield, respectively:

(42)

(43)

which correspond to the fundamental eolution of the Laplace
equation.

AS co approaches infinity, all these particular solu-

tions reduce to the fami15ar harmonic functfons: namely,

[
qv Av(x}cos VO + AV

‘a’sin “1’ q-vFv(’’cOs :$ + ‘v(2) sin ‘al’44)
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. .
.. and

.,

Clt$, Ca 10g q (45)

This property which is the consequence of (30) and (36) is
essent~al in the method presented in this report for connect-
ing a compressible flow with the incompressible flow of simi-
lar configuration.

In the subsequent calculations, another integral will be
encountered for the function x(q,~) which corresponds to
the imaginary part of w log w eim or q log q sin,$
.-q(w % $) Cos t9 of the incompresalble-- flevr. “’$’.zpposethe SO-
lution possesses the form:

.,.
,.(46)X(q,a) ‘= Xl(q) sin $ - Xa(q)(fl = ?) Cop 3, , ,

.,,,.. ,,

By subst?.tuting the expressio~ tn equation (23), Xl and Xa
* . aye found to satisfy simultaneously the following d~f’fere@’-

t,ial equations: ‘ ..,
.,

b

‘.. . . .
,. ...

q%tl’’(q) + @ - ~) (qx%’ -
‘~) ‘ 2 (1 - ‘%)X2. “(~7)

.

‘ax’”+ (1-$) ‘qx”- ‘a)‘.O (48)

“~13quation (48) can be easily integrated by putting ~a =.~k=(q).

The condition that Xa~q as co ~~ requires ka(q) to

be a constant., l?he second integral of equation (48) is just
.- the second of (43) which, in the limit, tends to log q. Thus
‘“ Xa = q’ is the appropriate solution. With this’ solution, it

is,possible to proceed to solve equation (47) by e.c:s,ming
“’ Xl = qkl(q). The equ~,tion for kl(q) is again into.gralile by

quadrature, and the result is
T

,. . .

kz(q) =
1.

[ f 1:(2f3+1) 10~,”T - ~+ & (1 - @ $ + Ka (49)
2(9 + 1) T

%.. . ,;:- . ...,
where KI and .“K= ..are the co~stants of integration. Hence,
the desired particular integral is ‘
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X(q, $) = qkl (T) stn ~ - q(m - d) COS $ (!50)

~he correspondence between solutf.dns for compressible flow
and. for incompressible flow is summarized in table 1.

4. The Properties of the Hypergeometric lhzrictions,.

of ~arge Order

The behavtor of F(av,bu; Cv; T) f@r large positfve

values of u has been discussed by Chaplygfn in connection
with the question of convergence of his series solution for
the flow of a gas jit. However, hi’s discussions ’are limited
to the subsonio flow and, for this reason, the value of ‘f

is restricted to the interval _O<T<&, In the more
. -2@+l . -----......

general problem where both subsonic and super-sonic flow may
exist, the whole interval O < T < 1 has to be considered.
Furthermore, both integrale o~ th~ hypergeometric equation *
are Involved, as will be shown in part II. As a preparation
for the proof of the convergence of the solutions, the prop-
erties of the hypergeometric functions of large order in the
extended interval will be discuesed presently.

.

Chaplygin (reference 6) introduced a new function

~ ~v(’f) defined as the logarithmic derivative of T: IV(T):

namely,

(51)

where F (T) “ denotes the first Integrql of t-he liypergeomet-
-! ‘ric equa ion (27) or (28) and v can be either an integer or

not an integer. Then in the place of equation (27) or (28],
the corresponding differential equation for ~V is a Riccat%
equation:

where the lower s%gn corresponds to eqqa$iov. (28). AS shown
by Chaplygin, Zv(?), although a~ oscillatory function, - - - ,
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. can have no root in o<’r<~
–2$+1

is finite and continuous in the same
can be deduced also that gJo) = 1

~v’ (?) does not change sign in O ~

25

and, consequently EV(T)

interval. Moreover, it

and ~V’(0) = -P. Since

monotonic decreasing and &v.entually vanishes at To ~ T*, T*

being the first root of the hypergeometric function for
V>o. Since T* is a decreasing function of V, when v
becomes large, T* and consequently ?0 will differ from

1—— %y a small quan%ity.
2$+1

Cha~lyg in’s theorem.- In _O<?<l if a monotonic
- m’

continuous function T!V(T) satisfies (i) TIV(0) = 1 and

(ii) X(~v) ~ 0, then

● The proof is given in Chaplyginls paper (reference 6,) In
the case of the second integrul FV(T), the theorem is still
true with the signs of inequalities reversed. because it can

b be verified that X(EQ7) = 0, where gw(T) corresponds to
the case of FV(T) instead of 3v(T) in (51)1, and !L~(o)= -l;

therefore Lv(r} is negative in _ —.O<T~
2~+1

Corollarv (51).- In 0 ~ T<-._+__ the functions
–29+1’

~v(T) and &v(T) fall between the limits:respectively

(ii) T1-v (T) >~v(T) > T,-V(T), v > 1

where

.T’(’)=“+.m-ml%}
o

(55)

(56)

(57)

. .
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.

evidently, inO~T<~
— ‘- 2$+1

and

(58)

(59)

and furthermore, X(l’)v)~ o are satisfied, consequently, it
follows the results.

Corollary (5?).- In O~T$-& the absolute valwe
2p + 1’

of the, logarithmic deTtvativo, of ~(av,hv; Cv; .T) divided by
is b~unded both above and balow - that is,

●

v,

where ML(T) and Ma(T) are independent of V. This really

Is a consequence of (58) and (59).

It shall be noted that the results established in the
,foregoing are applicable to IV(T) = ~(av + P, bv + ~: Cv; T)*

provided v is lnrgs, because then the two equations (27) and
(28) tend to be the same.

Obviously, Chaplyginis theorem ceases to be true when

T> -A---- 1For in the interval ————— <T<l, the solu-
Z$+l 2$+1

tions of the hypergeometric equation are oscillatory and,

1hence, within any closed interval ih —— <T<~ the num-
2$+1

ber of roots of ZV(T) will be proportional to v. (See ref.- -

erence 17.) When v ~s large, there will be a large number
of roots in the interval, As a consequence, the function .
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~v(T) will have there an ever increasing number of simple
poles, and a finite interval in wh.ieh
for all v

tv(T) remains finite
does not exist. -

TO carry the investigation over into 1 <T<l,
20+1

the method Is modified. Let ZU(T) and TV(T) be two inde-
pendent solutions of equation (27) or (28); and let the lin-
ear combination be denoted by

FV*(T) = 2V(T) + i Fv(?l (61)

The complex function is, of course, a solution of the same
differential equation. In terms of ?.ts mod~lus RV(T) and

argument @v(T) , the function may also be expressed as

I

. . . . (62)

c where both RV(T) and @v(’f) are continuous functions with
continuous derivatives. By comparing with (61), it is neces-
sary to have

.
1$ T) = RV(T) COS @v[T) (63)

~v(T) = RV(7) sin @v(T) (64)

According to the $turm separation theorem, IV(T) and FV(T)
never vanish simultaneously in any clcsed interval and RV(T)

1never vanishes in — <T<l
2@+l

and remains positive In

the whole interval. Then corresponding to (51), a complex
function CV*(T) can be defined as follows:

(65) ‘

which satisfies the same equation (52). On separating into
real and imaginary parts, the Riccatl equation for ~v*(~)

becomes
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+(2B+l)7-1=~

1
(66)

1 -’r

where ~v(l) and fv(a] are real continuous functions of T

defined as

@) = @(T) + i@2)(T) (68)

Their connection with RV(T) and @v(T) separately are giv-

en by means of (65]: namely,
T

(69)
.

(70)

Now equation (67) can be integrated in terms of ~v(l)(T)

and whence tv(2) (T] can be eliminated from equation (66).
Then the equatfons for . ~v(l) and ~v(a) are

“($.(’))=“J’)+* ‘V(l)+* %(”[
T

p v(l) ,$
- foa(l - 7)2%2! o . +(2~+0T -1=0(71)

‘1-T 1

.

(72)
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.,

Equation (71) together’ with the condition ~v(l) (0) = -1 de-

termines uniquely the solution ~v(i)(T). The aatual value

of !V(X)(7) cam be expressed, of course, in terms of the
known hypergeometr,ic functions. B t the problem on hand is
to determine the properties of gvti)(T) for large V whi ch

given by the. following theorem.

.- If ~v(3)(T) is continuous and monot~nicThe orem (52)

To< T < 1 and satisfies Xl(71v{z)) ~“0~ . then. fo~ all

N ,.

UV(2)(7) ~ fv(z)(T) . (73)

proof is given in apper~dix A.

Ccrollary (E3).- In To <T<~,— —- the following lnequal-

holds for the modulus of ~~(T):

v/2

%(T}/%(’ok (~) , u > N ‘ (74)

where.

(2P + l)TO - l? O

I!’or in <T <l, iv
(1) ~v(z) (T) = OTo .< o; and hence

satisfies the condition O> 8V(1)(T), which gives (74) by
integrati~n.

Now, since ~v(l~(T) is bounded by zero for all v#o

in To<T<l, it is ‘implied also fhat

RV(T) < ~3v(T) , (75)

where T3(T) =T~/a. Here the conshaut to can be determined ‘

ly jcjning T!X at 7 = To with T; .0r T2 de~ined hy
eqj~.tj.o,os(56~ a~~d (57) . Then from equations (63) and (.64)
it f’vllows that for v>N

,.

~v(T)” c T3V(T) (76)

I
< T3-V(T), TO<T<l (77)
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CONSTRUCTION OF TH3 SOLUTIONS FOR

COMPRESSIBLE FLOW AROUND A BODY

5. Chaplygints Procedure

In the previous sections, the particular solutions of
the differential equations in the hodograph plane are ob-
tained. Since the differential equations in the hodograph
plane are linear, superposition of solutions is allowed.
In other words, if these particular solutions are multiplied
by different aonsta.nts and then added together, the sum is
again a solution of the dffferentia~ equations. By this
procedure, general solutions can be constructed from the
particular solutions.

However, there is a difficulty in such a method of
constructing the general solution - the difficulty of making #
a proper choice of the multiplying constants for the partic-
ular solution~ so that the resultant solution will give a
flow satisfying the boundary conditions specified in the : .
physical plane. This can he seen from the fact that the
space coordinates x and y are o“btained from x which is
not explicitly connected with ~, the stream function. In
fact , to obtain the coordinate x and y directly from ~
would involve an integration in the hodograph plane, l?hus
the linearization of differential equations in the hodograph
plane is obtained at the expense of the simplicity in boundary
value problem. To guarantee that $ and X do .actuelly be-
long to the same flow in the physical plane, an additional
condition besides the differential equations for ~ and X
has to be satisfied. This condition will be discussed in sec-
tion 11.

Chaplygin (reference 6) suggested an ingenious method
of solving this difficulty by using the well-known solutions
of the incompressible flow, The first step in this method is
to find the incompressible flow around a body ‘!similar~’ to
the body concerned. (The moaning of the word ~lsimilartl wfll
be made clear in the following paragraph.]

The stream function $., for ~nstance, is then expressed

in terms of the speed q and the inclination e . The function
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*O (Q, e) can be expanded into an infinite series each term,

of which is of the form qn cos nd or qn sin n$, R’or the
flow around a body with cdnstant velocity U at infinity,
the function $o(q,~) has a singularity at the point q = U,
0=0 in the hodograph plane, since there all the stream-
lines, or lines of constant W. originate. Thus , there. are
two forms “of the series expansion of $.: One Is convergent
within the circle q = US while the other is convergent out-
side of the circle q = U. The first, or Ilinside,ll series
must be reguldr at the origin of the hodograph plane. There-

, fore, only positive values of the integers n can occur.
The second, or Iloutside, 1!series can have both positive and
negative v. Chaplyginls method is to use the inside series .
for to as the starting point for obtaining the desired
solution ~ for the compressible fluid, He suggested
choosing the multiplying coefficient of the particular sol-
utions for the compressible flow by the condition that for
the limiting case of infinite sonic speed, or incompressible
fltiid, the series will degenerate to the inside series of
the incompressible flow already obtained. The series for
the compressible stream function ~ so constructed can be

4 called as the inside series of. ~. The outside series for
$ then can be obtained by the method of analytical continu-
ation with the aid of the Iloutside seriesll of the incompres-e-

. ibie flow.

These -eolutio~s so constructed for the compressible flow
contain’ the Mach number of the undisturbed flow as a parameter.
They constitute a family of singly infinite solutions, In-
cluded in this family of solutions is the limiting case of
zero Mach number of the free stream. This limiting case will
give the incompressible flow around a body used as the starting
point of this method, For other values of the free-stream Mach
number, the body contour is generally different from that corre-
sponding to zero Mach number, Thus , if the compressible flow
around a given ’body is desired, the body shape for the initial
incompressible flow must be slightly different from the given
body shape. Eowever, if a geometric parameter is included in
the solution, such an adjustment is not difficult to make.

It may be stated here that owing to the regularity of the “
solution at the origin of the hodograph plane, only the first
solution of the hypergeometric differential equation appears
in the ineide series. For the outside seri’es, both the first.
and the second solution of the hypergeometric differential
equation are necessary. This is in direct analogy with the
appearance of both positive and negative exponents of q in

.
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.

the ‘incompressi?Jle outside series. This fact is particularly -
important, sj.nce previous investigators seem to be unawaie of
it, Chnplygin himsg;l.f did not use tke sc~ond solut$on of the
hype~geometric ~iffersntial equaticn: but that is simply be-
cause, for his p~ohl~rn, there is no singu~arity in hhe hod+
graph plane end hence only the inside series is needed.

6. The Functions for Incompressible Flow

Following the procedure outlined in the previous section,
the analysts Etarts wtth the functi~as rcquir?~ in defining an
irrotational incompressible ,floi~. Frjr;tl..j,scase, the SOPIC
speed tends to infinity, and ths equations fob the veloc-
ity pot~~tial qo{x,y) and the. stream function $O(x, y) all

became harmonic:

A(po = O

A+. = o

wl-iere A stands for the Laplacian operator.

the complex potential, it can be shown that

We(z) =Wo+oo

where

z =x-l- i.y ‘

If W denotes the complex velocity u-i v,
. 0 (Z) bywith W

?

If We(z) iS

(80)

it is connected

If w~(z)#O, it always is possible to solve’ for z in terms
of w; namely,

.

,. ,. z = 26(W] (82)
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In general, this solution is not single-valued and will be
discussed later. 3y intrcduc~ng this relation into equation

(80)~the c~mpiex potential function in the hodograph plane
can be obtained

We(w) = q) (Iz,v) + i Vo(u,v) (83)
o

In case equation (82] is many-valued, “this would correspond
to one branch of the function.

It is clear that in this case ?( (,U,V) is also a
harmonic function, Let Co(%v) be ?he conjugate function
defined by

(84)

.

Hence
-

AO(W) = ~ - i U. (86)

where

~=u- iv

Thus LO(W) is an analytic functton of w. From equation

(13) the derivative of Lo(w) with respect to w must be
z. That is,

dA.

Tw-
= Zo(w)

But Zo(w) already has been foupd from equetion (82).
Therefore,

.

Ao(w) = J zo(w)dw + constant (87)
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Whe ~eal part of Ao(w) gives Xo(u, v] as require~, accord- .
ing to (86).

7. Conformal Mapping of Incompressible Flow

on the Eodograph Plane

Before the construction of solutions for the compressi-
ble flow, the general character of the solutions in the
hodograph plane should be examined. This can be done easil~
by investigating the behavior of the transition function
z (w) for. an lncompressi%le flufd.
Y

To start with the
0 mplest case first, consider a ~teady irrotational flow in
an infinite, simply connected. domain D bounded by a curve
C in the z-plane, with a parallel flow at infinity (fig. 1).
At every point z of 12 there is one, and only one, velocity
vector ~, If the curve C is mapped into ~ and infinity
corresponds to a pofat P on the axis of reals of w within
c-* then the domain D ““is mappe~” into Q by a tiajping func-
tion

defined in (81), where w(z) is an analytic function of z.
The inverse function

will set up a continuous
w- and z-plane, provided

g = Zo(w)

one-to-one correspondence between
the mapping is conformal. This

requires that w(z) is analytic, simple within D, and
Wl(z) # 0.

However, for most problems these conditions cannot be
satisfied throughout the field of flow. In the first place,
the function W(B) is generally nonsimple, for example, in
the case of a uniform flow, w(z) = constant, thus w~(z) = o
and the whole z-plane corresponds only to a point in the
w-plane. Yurtherrnore , the complex velocity for a two-
dimensional boundar~value problem generally can be put in
the following form:

.
W=W=+W*(Z)

.. .
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.
where Wm is a constant . The boundary condition requires

that W*(Z) = O and, as a consequence, WI*(Z) =Oasz
. becomes infinite. Therefore, in all cases, the point g

in the w-plane, is a singular point. It is a branch point
at w= if z (w) is many-valued; or a pole, tf otherwise?

In practice, !here are two kinds of fiingularities that play
a dominant role in the pr’oblem af two-dimensional flow.

. These singularities will be investigated presently.

-ch moint of order l.x- It may be recalled that,——
when a olosed body is present in a uniform flow, there
always exist two stagnation points both of which correspond
to the origin of the w-plane. If a streamline PS is fol-
lowed, for instance,(see fig. 2) from +~ to s, the por-
tion S1’isf and then tQ ~,’ a curve pS in w-plane would
be described twice. This indicates tha~the function Zo(w)
possesses two branches of Rimann surfaces joining together
about the branch point l?, In order to make the domain g

single-valued, a cut is put along the axis of reals from
the branch point to .+=.. Then one portion of the z-plane
is mapped into a definite branch of the Riemann surfaces
in the w-plane, and this will be defined as the domain D.
If the body is symmetrical with respect to the coordinate.
axes with parallel flQw at infinity, then the domain
D:RIz sO will be mapped conformably into ~ on one branch
of the Riemann surfaces and DI:R2z > 0 on the other, where
the region within C is excluded.

Logarithmic singularity.- !lhe flow over a wavy surface,-—
for instance, placed parallel to a uniform stream has a
periodic nat-s. E’or-such flows there are infinitely many
points in the physical plane that have the same velocity,
He~ce, there are an infinite number of branches in the w-
plane, each of which corresponds to a definite portion of
the z-plane. The function !3.(w) must have a term log

(%) and the point ~ now is a logarithmic singularity.

I-f, however, a cut is introduced from the branch point to

+@ and
()

- m < arg 1 -~ c n, then the domain L) is again

made single-valued,

‘The function Zo( w) is said to ha~e a branch point of
order katw=wa if its inverse w(z) contains the

part w* which has a zero of order lc+l at Z=CXI.
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8. Oonstru,ctton of a Solution about the Origin

~~~.- From the considerations of the last

section, the domain within a circle with radius !wl = ~ = U,
where U is the absolqte value of w at Infinity in z-plane,
Is in all oases single--valued, If a function w~(w) is s,s-
sociated w%th a definite flow in z-plane, fr~m section 6 it
Is an analytic function of w and regular within the circle
Iwt = u, Consequently, the following Taylor expansion exists:

C8

Wo”hd = L An Wn, l,WICU

n= o

(88)

where A~s are, in general,’ complex. Since w=qe -id

and by (80) the tmaginary part of Wo( w) is equal to in-
compressible stream function 00s it can be written as

According to Chaplygin$s procedure, the corresponding
compressible so~ution can be obtained by simply replacing

in equation (89) by the corresponding
‘:e f:?ction q

q & (T) a6 shown by (40). The second integral is e=

eluded by the regularity requirement at q = 0. However,
in order to preserve the proper singularity at the point
(U, O) in the hodograph plane, the compressible stream
function * is w~itten as

a
,

I (r)

{

(1) (a)

$(q,$)= qn 3’ 1-= (T) An cos n~+An sin nil (90)

n=o

where
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. 2
lU

and T~=— — the value of ?3 corresponding to the
2.$ C02’

.

free–stream velocity U. It is seen that if co -z=, then

=Tl~O,
~ (r)

T and (T] ~l”:due to the normalizing COn-
—n

dition (30). Thus the solution is reduced to the incompress-
ible form. I’unthermore, if’ “tY.->U tlie ch.aract~r of. the sol+
ution is exactly lika that b~ t~he fncomp~essihle solution, “
Hence, all the spectf~ ed condi?lons ’are sahisf:ed~ of ~~~~.se, ~’
for the mixed subsonic and supersonic flow, the free–-stroan ● ~’
Mach number is always less than unity. Thus ?I < l/2@+l.. .

. .
For later analysis as given in part 111, ~t is convenient

to writ? $ in”’a’different fdrrn. Since F ‘r)(T) is a purely
. .“,: -n

real quantity, a:com~lax ~unctton ~(w;T) cube constructed,
as ... . ,.. ..’...., i

.,.
. .

m“.’ ”.’ .)

lV(w;T) = ~ A $*)(T) Wn, IWl <u
4 n

(92) ‘ ‘ ,,,

.
Then , similar to the relat~o’n between eouations (88) and
(89), ~(q,e) cen be taken as t,he imag~nary,part of the
new function- W(W;T). .Tk”<s● .,.

,,

.(93)

02

In this expressto~, the coeffjcien~s ‘“3
,,

fire obtained fvom
the expansion of Ao(w) for t]ie lncorn~rbes ible” flow (5’i):

,.’

Ao(w) = I- Iq ‘“wn, Iw!cu , (95)

n=o
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and

(96)

Equation (96) is the result of equation (91) and the equation
of compatibility given by equation (24), Then the function
x(q,a) for the compressible flow 18 given by

%( m!) = Illp(w;.j (97)

..’
Yhe functions W(M;T) and L(w;T) are actually regular

at the origin and satisfy the imposed condit~ons. However,
the following question may be raised: DO the series (92)
and (94) converge and represdht” the functions ~(q,~) and
x(q,a) in the domain of validity? TO settle this question,
it is necessary to prove the following theorem:

Theorem. If the constants An---— and ~ are ziven in
r(r)equations (88) and (95), while ~ (T) ‘and Z~r)(T) are

defined respectively by equations (91) and (96), the series

(92) and (94) are uniformly and absolutely convergent in the
same domain as those of (88) and (96). The proof Is given in
appendix B,

9,, Analytic Continuation of the Solution

Branch Point 0$ Order 1

Stream functlon,- 4s proved in the appen”dix B, the series.———.—.
(92) =bsolutely and untformly convergent an: ~o:s<r:present
a regular function \i(w; T) for every T in - -- ~ and

OB the circle of convergence it agrees with Wo(Ue-ie), of

which the Fourier expansion exists:

03

JYo(Ue-i8) =
I

, An Un e-in*
n=o

(98)
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In the present section, it is proposed to continue
the solution (92) analytically outside lthe domain \wlsu
with the iniijial value given by equation (98).. The domain
outside lw~~su “is generally manp-valued. To fix ideas,
discuss first ‘the case of a branch point of order 1. Gen-
erally, the functi~n W (w) has other singularities besides
the one at W=u. Ho$aver, such’singularities lie outside
the regio~ of interest and thus need not be investigated.
Let the nearest singularity be given by lwl,= V > U. Then,
the domain to be considered outside Iwj =U is an annulus
with a cut joining the two singularities, The proper repre-
sentation of’ Wo( w) in such a.region which has a branch
point of order 1 at w = U, is

..

,. We(w),= i%’-+ WO*(W) (99)
1

where iio*(w) is single-valued and regular within the open

annulus U<lwl<v. “Hence, in any closed domain

.

being a small number, there exists a uniformly and absolutely
convergent series: .

m“

WO*(W) ‘= 1[ ,“ Bn Wn + Cn W-n
1

n=o

(loo)

which, on substituting in (99), will give the continuation
of the Taylor series (88).

lFor instance, in the problem of the.flow around an
elliptic cylinder treated in part V, there are two singulari-
ties of tile W. function given-by equation (280): namely,
w = 1 and w = l/ca. The first singularity corresponds to
the flow at infinity and is the singularity under discussion. ,
The second sfngulartty corresponds to a point inside the circle
of the ~-plane, thep lane of the circular section. Since only

. the flow outside the circle of the E-plane is of intereet
here, the singularity w= l/c=” need not be investigated. In
other words, it is necessary only to expand the W. function

.

Hin the annular region 1 < ~ < ~.
g%
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The solution for a coxnprbsstble fluid, which has the
same chmaote,r of singularities as’ We(w) and is valid

in the annulus u</wJ<v, can be obtained from (100), “
,by introducing the proper hypergeometric functions corre-
sponding to each exponent of w. That is: —.

Ji) ‘
which is the continuation of (W;T).

1
‘e=e “ ‘n+%’

n being a positive integer; ~v(T) and q-au ~v(T) are

the first and second integrals of the hypergeometric equa-
tion; and BnW and Cn* are aonstante. It should be

noticed that the coefficients Bn* and Cn* in the outside
series for the compressible ,flow are not equal to Bn and
Cn in equation (100) fov the outside series of the incom-
pressible flow. The outside series of the into p essible
flow is used only to give the proper form of H~ o (w;T)

for the desired branch po n
H

characteristics; while the

exact determination of h’0 (w;T) has to be made by the
conditions of continuity which will be di=cussed presently.

Since the partial differential. equation considered here.

is of the second order, to ensure that w(OJ(w;T) is the

\$i)(W; T),analytic continuation of two conditions have
to be imposed at the boundary of the respective regions of
convergence; that is, the circle .O=u, These two condit-
ions are the following:

.,

On account of equations (102”) and (103), there are two
relations which have the imaginary parts;
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Ca

+ c: (3V(TJ u-”
1’

Cosva = -
I

An Un sin n~

n=O

n=O ‘

J+ Cg U-V(-WV(TJ+ 271 gv?bz )), Cos Va

Here the prime denotes differentiation with res Pect to ‘-
Evidently. the coefficients on the left-hand side can be “-

“.

solved for in terms of the known constants

m
--v 1=--B: ~v(Tl) Uv+C~~v(Tl) U - 7

Am Urn
n-

~=o

An. !i%ey arek

(~+~) (104)
m+V m-V

m
1 I m Am Um~m(~l)

(

1+1=--
)

(105)
‘IT ZZ

m= O .,

From these two equations, the conetants B; and C: can

be uniquely determined, provided the determinant A(~v, Fv )
.“

does not vanish. These results are:
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Zv(’fl)c;~-v=+
2WT(1-T1)F

as the Hronskian A(

~v(T) is defined in (53). ‘

The solution is again formal. To prove that the
function W(W;T) is a regular function in the annulu6
region, the truth of the following theorem must be first
demonstrated, (See appendix C.)

Theorem (9@. If the constants By and C: are” determined

according to (102) and (1’03) and If the series (100) con-
verges uniformly and absolutely in a closed domain

U,+aslwlsv-”a, then the series (101) will converge

uniformly and absolutely in the domain U’+6SIWI<V-6,
~’> Om

,~a~forxned potential functi~@- 3y a similar procedure,

th-e,cqqtjnua’tion of (94) is
!“,

wher e IV( T) and ~v(T) are the first and second integrals

of equation (28) and the oonstants fi~ and ~; can be

similarly determined; nam~l,y, ,.
..

jj*
n

=

CQ

Q;( TI) V( )( ‘)-(r)Emu L- J-’ ‘rni”m(Q-~?_v( TJ Z.” (TJ
2ii”(l-T1)-~ n:. m+v m-V

(109) -
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The solution determined so far ‘is understood to be, the
principal branch of the function W(W; T). It was assumed

that the flow at infinity is paralleltc the x-axis. If, in
addition, the body is symme~rical with respect to the co-
o~d$nate axes, the expression for the second branch of
w(o)

(w; T) will be identical. However, in a more general
case where asymmetry exists, the two branches will require
separate consideration.

10. Continuation - Logarithmic Singularity

~tream functj.oQ.- Consider now the second important
type of singularity: it is assumed here that the only
singularity possessed by the function Wo( w) in the finite
part of the w-plane i“s a logarithmic branch point at w = U
about which infinitely many Riemann surfaces are joined,
By analogy with (99), We(w) now can be conveniently written
as .. .

~o(d = w;(w) + io(w) (111)

where w:(w) .1s a regular function in the entire domain with
possibly an essential singularity at infinity, and hence
generally is .gi.venby a Taylor $eries or a polynomial in w,

and ~o(w) = $O(qsa) + i~o(q, a) is an analytic function

which characterizes the singularity of We(w)? Thus , as ide

from a constant factor, :

.
io(w) = ()+ l-+

.. ... .-
.,

,..,,:.-”
.

(112)
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If a cut is laid fro’m +U to +~ and the armment of .

()1; .- is restricted in -n<arg (~_2 ;W,
(~ )

then

the function tio(w) will be single--valued in the whole

cut plane,

The question ot constructing a solution for the com-
pressible fluid consists, ther~fore, of two Fsrts: w:(%)
and ~o(w). However, the construction for W:(w) :s~ in

principle, exactly the same as that of (22) and hence only

~o(w) will be considered. Iirst, let FO(w) be de”relG~ed

into power series in the respective domains of validity:
The tmaginary parts are:

p

f ()
?3

l.~(q,i$) = ~ ~ Cos II&, q<~ (1”13)o
n=l

03

~(o) 7 ()
-n

(q, %)=-log;+ ~: : cos n 4, q~u (114)
o .

n= I

.
The corresponding expression for $(q,d), accordingly, will
be:

wh er e ~(?) stands for F(an,bn; Cn;~) and ~n(T’) iS

defined by (39).

,,... The function ,~o(w) may be regarded as the complex

potential of a complex source situated at w = U. -It iS

known that in this case the normal derivative of *o(q,4)
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on Iwl =U is a constant, except at w = U, where it

becomes infinite. This boundary value can be expanded
uniquely:

The corresponding problem in the cas8 of compressible ~low
San be put in an analogous manner: td find a function

$(q,~) which is continuous together with continuou~ pahtial
derivatives and the normal derivative of which on lwl=u

is constant, Thus , the conditions (102) and (303) in con-
duction with equation (117) demand:

(118)

[ 1

$
+ n ~n(TX) - 2 T1 &n’ (Tl) Cn=4B(1-T1) (119)

where the constant B can be determined when the normal

derivative $q(q,9) on Iw! = U Is assigned. By solving

equations (118) and (119) and using the relation of the
Wronskian of the two independent integrals of equation
(27), there ie obtained

Thus the function ;(q,e) Is completely determined,

(120)

(121) ~

Transformed uotential function.- The associated functioa---

%~q,e) can be similarly constructed. As Lo(w) is derived



;
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.

from (87) by integration of the inverse mapping function,

it must involve a term
(’”-:) ’”$k:)w hichrep’esents “

the singularity of the function Ao(w), As in equation (111),

Ao(w)

where

is split again into two parts:

.-~

A*(w) is an entire function and Xo(w) iso

10(W) = +(’-3’0’(’-:)
,

(123)

Now the solution corresponding to
()

log 1-; can be

determined in exactly the same manner except that the

hy@ergeometric functions involved are ~n;?) and ~(?)

instead of In(?) and &n(’r). The part that will require

special consideration is the term
()

:logl-; m Let it

N

be denoted by Ao(w) = ;--- -Wo:

! ()io(w)=-~;log 1-: (124)

.
.--

This function is also multiple~alued. Let the argument of

()lW--u again be restricted in
()

- n c arg 1 - ~ < n; then

in the cut plane the result will be

n=l .

(125)

(126)

.
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. .4ccording to equation (-86), the function ~o(q,lt) is
defined as the real part of Ao(w). That part represented

by equations (125) and (126) Is then

The particular solution corresponding to.

(127)

(128)

already has been given in equation (50). Hence the solution
for the compressible flow is

-$0)
~ K(T) sin &(q,$) =U -; (n-a) Cos a

co
“Y-1

+ 1 %%(T)’~-no sin nd (1301

n=l.

where . ,.

k(T)= >
[ : -(+-:)+’J “-’r’ $](’3’)

(2s+1) log T
2(6+1)

T

1 .
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ion

+

s 102) and (1

)

+~
, n-l

,03)

8in

togeth

n $= (

with

—

‘) Cos

expans

require that:

1—.
n-1

+ G(
—n

‘r ( 132 )+

TJ +

+

[

-n 71)+ 1TJ ‘ 1
n-l

+1 (133)+ ,.
Q n

and

(134)

[-

‘-’lgJTJ
1

n= 1 (1352TI -1-+

By solving (132) and
obtained:

( for

. .

In

.,

and

:,

&n, there

)i’=,n(~J
.,

(l-n. .
( 136)

( 1

.

nf (
n

73)) T:)* (137)

by
ti
be

us
on
so

ing the tirons-kian of
(28). With C
lved for from t13$;e

th
n

it

e’”independent
by (134) , the
is

int egrkls
constant

of
Kz’

equa-
can
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.

$
[

E:(TJ
,Kz =- (I-?l) 1 + @Tl + (@+l)T12 —

1
(138)

.
&l(Tl)

The solutions ~(q, d) and ;(q, a) in the whole domain
under consideration are uniquely determined. Since the
dominant properties of the h.ypergeometric functions discussed
in secti~n 4 hold, in general, the equation of convergence
can be similarly settled,

11. Transition to Physical Plane

-~. ths preti~~a~i.uy .i,kh~.~.se~.u-e~ ~h@&s.,?~r.. ..
a given incompressible flow for which two associated functions
$O(q, il) and X(q, i$) ar:(;~~;ned, there exist two associated
functions ‘~(q,$) and for the corresponding com-
pressible flow, depending upon two parameters ‘Y and T%.
The question is whether the associated functions ~’(q,$) and
x(q, ~) belong to the same flow pattern In the physical plane.
To answer this question it Is necessary to fall back once more
on the equation of compatibility (24); since when $(cJ,4) is
given, V(q,$) is knowr, by solving equations (2G) and (21).
Henoe, if X(q,a), satisfying equation (23 ) and approaching
X. as Co mm is to be associated with ‘~l(q,$) for the

same flow, then it is necessary that the equation of compati-
bility be satisfied. XXOept in the case of logarithmic singu-
larity in section 10 where the complete ~b(q,t) function was
not discussed, this condition has been properly considered.

Once the relatio~ship between V(q,t’)
>

and %.-$) is
established, the next obJect is to cal-cu71H~-ttrS - low pattern
$(x,y) = constant in th’e”physical plane corresponding to
$(q, *) and X(q, $). In the first place, the fact that the
transformation defined by equations (9) and (20) is generally
one-to-one must be recalled. Suppose that in the hodograph
plane there is a line defined by

~(q, $) = constant = K (139)

which will correspond to a definite streamline in the physical
plane or a definite part of it. The streamline can be obtained
by eliminating one of the two variables in x(ci,~) and Y(q,e)*
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To do this , first the equation (139) Is solved for 4;
namely,

i? = $(q,K) (140)

provided ~d(q, $) # 0. Introducing this relation into

equation (13) which, when transformed into polar coordinates,
are

givee a parametric representation of this particular stream- “ -
line corresponding to $(~,$1) = K in the hodograph plane.
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PART III

,

IMPROVEMENT OF THE CONVERGENCE OF SOLUTION

BY THE ASYMPTOTIC PROPERTIES

OF HYPERGEOMETRIC FUNCTIONS’

12. General Cencepts

The significance of the general solutions constructed
In part 11 of the present report when viewed from the prac-
tical point, rests in the fact that they constitute an exi-
stence theorem. It shows that an irrotational isentropic
flow about a body can be obtained from ”the corresponding
problem of an incompressible fluid, if the free-stream Mach
number is not too high, However, the solution in the form
of a“ slowly convergent infinite seriee cannot be conveniently
used to obtain numerical values, as the labor of computation
would be prohibitive. ,

r

By examining the infinite series obtained in part 11,
the essential difference b~tween the compressible flow solu-
tion and the incompressible flow solution is seen to be as-
sociated with the fact that, while -i’n”incompress ible flow’
solution the individual terms of the series are of the forms

Cos us Coa Vt+

qv ~-v ,.,
sin V3 sin V& .,

i’n c~mpressible flow solution the individual terms of the “
1 series’ are of the forms .,

Cos V* Cos L@qvYV(T) q-”v Qv(’r),. ,
sin V* sin V&

If it were possible to write

qvIV(T) = [Q(,)]v, q-v ~v(T) = [Q(d~-v

there would be no difference between the incompressible flow
.’

. .

..
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solution and the compressible flow solution except the ‘tdis- -
tortion of the speedl! q by the new soale Q. In ,fact,
this possibility is realized under the special oondition of
‘yU.l as shown by von K&bm&n (reference 1) and Tsien (ref-
erenoe 9),

~or the ease of isentropic flow with the general expo-
nent Y there is no such ecale factor Q. However, if V
is assumed to be very large, ,then there is such a function
Q, at least to a first approximation. In other words, the
leading term in the asymptotic rspresentati,ons of ~v(T)
and ~V(T) does .give,the desired form. On the other hand,
the use of asymptotic representation ,necessarily implies an
approximation. But this defect is not difficult to remedy
as the difference between an e’xact hypergeometric funation
and Its asymptotic form.can be added to.the approximate so-
lution as a aorreotion term. Sinoe there are an infinite
number of terms in the series form’of the solution and eaoh
gives a correction term, the correction terms also constitute
an infinite series. Therefore, the”orlginal infinite series
is now transformed into a closed function plus another in-
finite series of correction terms. At ftrst. sight, such a
transformation seems unable to give a result that will avoid “
the difficulty of prohibitive oomput~tional work, But aotu-
ally, owing to the good approximation given by the a?ymptotlo
representation even for moderate values of V, the correo- -
tion series converges very rapidly. A few terms seem to be
all that are neaes~ary. Thus , for a21 praotical purposes,
the original infinite series ia now aonverted into a olose&
funotion with ‘Ispeed distortion plus a few correction terms.
The fundamentally interesting point is that for the case Of
a general exponent Y, the simple method of speed distor-
tion will not give an accurate enough solution, (Cf. ref-
erence 8.)

The change in type of the differential equation at the
sonic speed also introduces a singularity in the speed dis-
tortion funetlon Q. However, by using the correction terms,
the effeot of the singularity can be limited to a,very nar-
row range in $he neighborhood of sonio speed, and no practi-
oal difficulty is experienced. Thie w311 be made clear by
the numerical example given in part V of this report,

13, Asymptotic S~lutions of the Hypergeometric Equation, .

Let UV(T) and VV(T) be two new dependent variables
iiefined by .
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The differential equations (27) and (28) reduce respective- .

JY to

,,..

.
.,

wherre ‘“..

,,. ,

. .

-!r

... ,
‘.

IT;(l) - 1‘vacp(?)+p.ph’,)- UV(T),..=:IQ
.- L

.
. .

,:. C&)=l- L3S+I)T,,”’ , ~
4T2 (I.- ‘r) ‘

,.!’

.. h ..

;,. . .. . .

(145)

,046’)

Both equations (145) and (146) involve a constant parame-
ter V, which is real and positive but ctherwise arbitrary ,,
for any fi~ed cdnstant S. In the $nterval O< T’<~” ’i’n
whioh the flow takes place, the functions CP{T”) and PAP(T) ‘.

are finite and continuous except at the extremities T = O
and T = 1. To-avoid the repetiti~n, let ea-ua$ions (145).
and (146) be re?laced by

+

&Jv - [
,-
,1

Ua q(T) + pa(T) Ua, v(’d = O , ., ‘(147.)
,,

. .. . .
..

where U~,V(T) = UV(T) “when a = S; a~d U-p, v(T’) = ,VV(T) I
r

- P’,
1

when a = In the interval —M 8, 8 > 0,
6~Ts2@+l”

. q)(?) is boupded from zero and is positive. F. Horn
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,* “i

(reference 18) showed that when v is a large positive num-
ber, a pair of solutions of the following forms exist in the
interval ~concerned.: ,,

-’.. ,. ,,

‘(T) “(149”)” ,,,‘a)(~) ●. e-.vK ~k+ ~ . + .Va . . . +’fa~~ ]
[

fa@ f22(T) ~’
. .

‘a,v ,..,.,
,..’. ‘,,

:-1.’
where ! -’

,“:: .,.
.,.;

f

7P*(T)~T,K(T) = . . o<T<~ (160)
.ap+l ,,h,,

,,

‘ A constant in equation (150) was left out, as it can be ab-
sorbed. in the constant ‘fact~fn-equations (148) and (149).
This representation can he shown to be unique as lo.lg as p .,:
remains g’enter than a Ierge positive numbe$- H,

?1?
B~ sul)sti-

tuting Ua,v(T) and U$~(T) -i.n equation (147) and choosing

, (Tj (rthe coefficients f= ~ = 1 and 2; and S=l, 2, 3, *..)

to make the individual..’tierrns’Vanish, equation (147) reduces
to

. ..., . .
“,‘

2K1 f’ + x’t f = Paf~,s “ ‘J,S (151),,. r ~. ,T~,s+l x,e.tl., ..,’. .. .
...’-.!*: *,, . ‘.

!,”, ,.,.

2K1 q;,,~+l,+:X:,’’fa;;+x
;l:;’’:”””!:

:-& ’?2,8:xf2” a., S=! 0N1,2;:,; (152)
9,,,’ .,,. j,$

4
f.,

.,, ,.: . .

,.. J. ‘A”” ‘ ‘ @
. .. . ,.

f’i ;;~((~) L, i:,ow = q--,

.i’

where The ,co’efficie,n’t’sfr,~(~) :,:

then are given succe8siv&’ly by” a f~rst .or,der,or~irie.rydif~; ‘ .
ferential equation and their deterriaation’d oes. tiot invdlve’

The problem is thus formally SOIVeId.’ ; “ ~ .any &ifficulty. ... ,,,.

Obviously, the golut’iori-i’s.of t:h:eex~~ne,ntj.al t~.pe when
9(T) is positive i

7
the range concerned. and of an .csoi’l.la-

tory” t~~(i yhqni .w(T is negative. Now in the intc~vai

-...
—

,,.,.

,.

types of sol~$ion’e;S’st, ““Zt is ’”evid~fit”tha~$n, the neighbor- t,,.,/ ,
hood of T = 4 a“ cli’ab~e’of.chhraoter of jhe solutions .

2$+1 ,,.... .. . 1’.,
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must take place, hut the manner in which, the transition Oc-..
curs cannot be deduced from equations (148) and (149) be-
cause of the failure of the representation of the solutions

in the neighborhood T = ~ This is closely related to
~p+l”

the Stokes phenomenon. .

The method WaS extended by Jeffreys (reference 19) to
include the case where v(T) has a simple root in an inter-
val under consideration and can be applied suitably to the
first order of approximation, The general problem has been
treated by Langer (reference .20-).in..a series of papers, cons-
idering both the case,where v and T are real and that
where v and 7 are complex, Attention was given especially
to the Stokes phenomenon, and a law of connection of the so-
lution valid on each side of the critical point was explicitly
otated. In the present case, however, only the, first approx-
imation is used and Jeffreys’ method is adopted for conveni-
ence.

It is seen from equations (148) and (149) that the
. fi 8

1!
approximation depends only on cp(T), and the effect of

PI-J,T is felt only by the higher order terms. Henoe$ for
the first approximation only, equation (147) can be written

. as

U;(T) - V2 (153]g(T) UV(T) = o

where Up,v = U-p,v = Uv! Thus, when v>N, the dominant

terms of the asymptotic solutions are
..”

(154)
7

#)(T) ~q-~ eV~
v [1+‘? (*)]

*(2)
O< T<*

~ (T) - cp-* e-vK[l”+ O (’)]
2$+1

(155)

()Here O ~ , in each case, denotes the fact that the term

is uniformly of the order V-z when v is sufficiently

large in an interval &<T<l —-6, “6 > 0 and is a
. 28+1

function of v-z.

.
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.
. .

On the other’hand, in the interval 1 + B< T< 1 - 6, .
2s+1

whore ‘~(?~ < b and K is a pure imaginary quantity ,iUJ
where w is real, the dominant terms of the asymptotic SO-
lutions must he a linear combination of equations (148) and
.(149? F@d must be of the forms:

. .
,e.,,,

1, @ -“,$a++~! .. 1sin (VW,+ Cvl ; —— <T<l , ‘;157),.., v
T* ,

2$+ 1

,.,.,.. . where “Cl,” Ca, and ,E;
,.., are constants to be determined.:., .

., Th”e question of determination of these constants is ac-
tually the same as that of determining the mode of continua-
tion of the asymptotic representation of the solutions in the. .
range . *+ 6 ~ Tsl - ~, !l!hiscan be done, according

‘‘to ,Jeff;eys, hy considering the solutions valid in the neigh- .

1
borhood of T = —. Let t

1
=T-—, When g is suf-

a~+l , z~+ 1

,, . fici.ently small and’ V is large, equation (153) can be written o
approximately as

UVW)+ Va qf(o).t UV(O = o (158)

T(n)(0) ~ ~
provided. . This Is known as Stokes equation.

n! ~1(0)
.,.,.

The:independent integrals are
. .

* f~)(g) , &$)(c) ;,LH3 with c
+= : ~vt (())& (159)

3 5’

‘c)(~) are the ?lankel functions ofh~(~) and “H:whare’” HI

order ~:v Consider as two independent sO~Utio~S
3

the f~llow-

ing linear combinations:

(160)

.

.
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(161)

As IIy(c’) and i$a)(~) are analytic functions in the

. whole% L-pla”ne, thi~ immediately provides a means of iden-
tifying the asymptotic forms that represent the same func-
tion.

,.,, - ,. Suppose first that for arg e = 0, the solutions are
given in equations (160]. and. (Udl). Th’e a~~.LQ-f .~x

,. .,

$ ~,i s ‘la’r~e“and

‘Sn’n”
and when” -m < arg ~.e a <, n, the dominant

,.. ,. ,.

y (’ ‘3 an’terms of the asymptotic expansions of H

H:2) (~ e%) “are” ‘, ~ “
. . ,.. .
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By au%stituting in equations (162) and (163) and neglecting .
the term of lower order in !, there is obtained by expand-
ing at the same time equations (160) and (161);

r

(165’)

Here the arrow is used to indicate the transition of the as-
ymptotic representation of the same function from the left-

hand to the right-hand member? For small g, @ *V-+,

and ! - --VW;. (156) and (157) ‘finally become ,

.

with c1 = 2, Ca = ‘1, end Ev = -~? Under the hypothesis

ust made, the pair of expressions ~154), (166) and (155),
/)167 actually represent reepectivi3LY the dominant terms
of the tvo asymptotic expansions of the solutions UJW T )

and U}2J(T) for a v which may be any positive but large
numb er. ,.

14. The Asymptotic Representation of F(av, bv; Cv; ‘f)’

and F(aV + P, bu+P; cv;T) t,

The dominant terms of the asymptotic expansion, Of

(~j(T) are given(1)(7) and UVUv respectively by (154),

(266) and (155), (167), By evaluating the simple integrals
in (154) and (166), the exp~icit expressions for the firs?

‘2)(T)are(x)(~) and,~v , .
approximation of Uv .

.
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TV*(T) (168)

(169)

,
,, .’.

wher’e’:. ., :.,. .’
-....

.
. .. . . ..Lj’ ‘,’,’. “,.

...’ . . ... . .,,
8 .,

~

.........‘..

ul(~} = a tan-l
F

a2~T.-~.~ ,“’~’ari-~ aT-l

aa(l -T)- 1-Ti:, ,.
●,:, .... *.,. ,., . .

The values ot ,the funct:i”on UJ(.T.]“ a~e:qgiven. in figure 3 tO -
gether with t~~’~nc~i:~.n w(T), ‘defined.,by 00s 1.11= l/N.

In the respective range s’of ‘vi%l$dity, each Pair’o’f expres-
sions differs from t“he exact s,,alution”.on~y by a constant
factor which c,an be deterxtiinpd to “~”htisfy,the normalization

‘ conditions (30) and (36)? .:BY substituting “equation (168)
into equation (143), these.’:were found to be

, ,,
c?,” ,,,

,.
....

c
:V,= * ‘2P)‘-{-r

,,
.

Thu S , the expressions for the desired asymptotic forms, when

v>~; are, for the interval OST<*,
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F (T) -
-v

f(T) TV(T) (173)

,.,

QV(T) - f(T) T-V(T) ‘ (174)
. .,. . .,.../. .

.’.- . . .: :..
,,. ,

[

*“’’a*a
JL a(l- 7) +(1-UT) 1

‘,’, (175)
(l+m)a’. (1~”’r)*+ (1 - #@

,.
,,:.

<++, they are

-, ,..
~,i ,,, .,.

,!

,,

!. r i‘For the interval .>
2@+l

; 4. ,“

,. .’..

(177)
,

.

.

A ., where ,., ;.
.. ~+~

4
Sk

f(~) = ~ (1-TJ: T(T) =,2 (213r

?. “(y+ ‘a)-a * +
(178)

(a2T- 1)* /’ . : ,....,... .,-,... .
&..’ ...”, ., ... -“:.

~h~ values’ &f T(T)’ are given- (fig, 4) as a function of T
togethkr with the local Maah number M,

,..,’.,. .
Similarly, as from (253) ,.UV(T) ,- .V~.(T’),. corresponding

expressions.

q?) : : .(179)-a(T)-TV(T). ‘,”‘, ‘ , ‘.,. .
. -..OS;T< JL’” ,:;,

.2.p+ 1 ‘
&v(T) ~ g(.T) T-V(T)’ (, j ,,:. , (1”80)

l.,..’s~. ~-..
., ,,... ,-,..
-&”+’&r : .“, :,; .,.
a..4 , ., ,..

g(T) & ‘1.”-7”)

(U- #T)*

.
t.,.

,. : ,. “.

.

where . ..

(181)
.

.,. ?:., .,:
,.

.

.’
. . ,.’.

.,1’ .,;.,,...
. :.*...’.,.

* ,.,
f

‘
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. and

qd * g(T) TV(T)Cos (’w-9
A g(T) T-V(T) 00S&(TL2

v (’w+9
where

(182)

~<T<l

(183)

.:++.

(1-T),
g(d = 2

(a’T - @
(184)

Here ~(?) denotes invariab~y the first integral

F(av, bv; ov; T ) while QV(T), when multiplied by q-2v,

denotes the second integral FV(T), defined by equation

(37) when v is not an integer or by equation (39) when u
is an integer, since the asym~totic expansions are valid for
both integral and nonintegral values of V, provided v>N.

In the domains of validity, the asymptotic expansions
may be differentiated with respect to 7 with the same order
of- approximation Hence, for V>N, it can be shown

g., z(d - r o}h(T) TV(T) 1 + O $
L

-V,JT) -
ii r (Nh(?) T-U(T) 1 + O $

L
where

c12-- .

[

h
-1

4 (1- &)-z +
h(?)=a (lwT) (1-T] + (1-a2T)

1

and for *CT<l

iv,l(T) - h(?) Ta(~) COS
(
vw-#- ‘ ~){1+ o(+)}

that

(185)

(186)

(187)

(188)
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; (T) - ~h(T) T-U(T) COS (
v~l ‘w+ ’+:){’+” t)} ““’)

The values of the funotions g(T) and h(T) are given in
figure 5. .-

It is interesting to note that when W = -1 the con-

stant al vanishes and only
)
he exponential type of solutions

exist. In the case of $V(T the solution is exact, namelyg

for $=-$

of which the first is in ag~eem&nt’ with the result obtained
by Tsien (reference 9), while for XV(T) the solutions which

are not exact reduce to .

v

F+0’(9} ‘1’3’
V2JN
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~h~.s may be the cause’ that destroys the analogy between the
coordinates of the corresponding compressible flows and the
i.ncompressihle flows.

For Y = 1.405 and V = n+~,n being a positive
6

integer, the three groups of functions %(T), ~-v(T); ~(T),

~-v{?) ; and
<,lfTJ$ ~_v,.@’ together with their asymp-

totic expressions were calculated for T varying from O
to 0,5 and n from Clto 10. The aesults are presented
in tables 2 to 1.3, The behavior of the approximation is il-
lustrated in figures,6 to 11. It can be observed that the
degree of approximation of the functions increases, on the
one hand, with v for any fixed ?. On the other hand, for
any fixed n, the approximation becomes worse as T ap-

proaches the critical point T = --,
Zfi+l

correspon~ing to

the local sonic speed. On the whole, if the critical point

1T— = ie not raached,
Zp+l

the agreement can generally %e

regarded as excellent, especia13.y for larger values of no

●

15. ~ransfo~mation of the Function Y(w;T)

,Branch ‘Point of Order 1

The function W(W;T) for a flow that possesses a branch
point of order 1 wa~ given in sections 8 and 9. The forms of
representation, as can be seen, are not, in generalt s~itab~e

for practical calculation. The difficulty is twofold: First,
the series involves infinitely many hypergeometric functions
which themselves are, in turn, defined as infinite series.
The convergence of hypergeometric series generally decreases
with an increase of the parameter V. This means that it is
very difficult to compute the value of the later terms of the
series for W(W; T). Secondly, the convergence of the power
series defining the function ~(w;Tj itself is, as expected,
very slow in the neighborhood of the singularity, To in-
crease the convergence, the following method is used:

Observe that the corresponding function fpr the incom-
.

pressible flow that has the same character of singularity is

.
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which is absolutely and uniformly convergent in any closed

-(r)
domain in Iwl <u. Now, if in (’32) ~ (T) is replaced

by —
.

%?T]‘- ‘n(’)’ 0 sT< 2:+1 (195)

where t(T) =
+

T T)
T(T1 ‘

-as by hypothesis, ()< Tl<<~;
2p+2

then it is clear that

which is also absolutely and uniformly convergent in the

same domain as IiO(w) and, consequently, (196) will he cl-
ef(?)

noted by — ‘Wo(tw}. In &oing this, however, the re-
f(Tl)

s’triction that (395) holds only when -n is greater thnn a
large number X is violated. The error can he removed by
adding to and subtracting from (91) the quantity given in
(196); then it follows immediately that

where
f(T)

~fx(w;’) = ~ ‘o(t”)
(198)

with

‘ #)
m

(w; T) =
1,

An G=(T) Wn, Iwl <u (L99)

n= o

.

.
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Here n is a pos&tive integer. The function if(w;T) then
is represented by the sum of two functions W3(W; 7)) which

&
is of closed form, and. (w;T), which is the difference
of two convergent power series and hence is also convergent
But, according to the theory of asymptotic expansion, Gn (T)

tends to zero as n approaches Infinity. In fact, Gn(~)

is of order n-l; thersfore, the convergence of ~(w;T) is
increased by the order of n-l. This actually iS the gist
of the whole problem.

As the form of’ thp reprcsent~tion of the hypergeometric
functio~: given in equati~n (1S5) is valid for all T in

OcT<—l_ w,.(w;Tj given by equation (198) holds auto,-25+1’

. mattca~ly eve~ Ouisida tk.e ci~cle Iwl = u. Nor this reason,
W1(W:T) should be identical in, form with that derived from
equation (101). !lhzt this is the case can be seen from the

. following consideration. For, in addition to equ~ti.on (195),
if it is assumed that

it follows that

(200)

*

.

(201)

(202)

By using these sets of approximate coefficients and. replucing

~V(T) and G (T) hy their respective asymptotic expression,
-v

the following relation is o%tiined with the aid of equation
(100)
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Jo) (01
(w; T) = W1(W; T) + Wa (w; T) (203)

where

In this case the coefficients Ill
*

Emd. Cn”, as well as th9

functions %(T] and gv(’T) used in deriving Wz(w’;‘r)o,are

approximate- Hence, if hotp are corrected~ G~z) (T) and

G(a)(T) should. be of the forms ,
v ..

where

)(206)

* *
Here the differences ABn and. AOn depend upon the condi-

ditfon at infl,nity for any sets of constants Bn and Cn,

while those of A~v(?) ‘and A&v(T) ‘are functions of T

only and, for this reason, can be tabulated once for all.
It also can be shown tha$ the order of AS3~ is at least Of
-1 and therefore the convergence of (204) is again increased

:y” n-~.

(t)
Con.8equently, if @(q,el = *l(q, @) + W? (q, 8) where

the superscript (1) ‘denotes either (i) or (o), and if
the coefficients are reali, the stream function for ,tbe eub-
sonic flow is according to (93) .gi~en hY

“

.
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. f(T)
Vl(q,e) = — vo(tq,e), 05T5* (207’)

f,(TJ

(i) ‘
W2 (q,e) = - ~ AnGn(T) ~n sin n,, q < U (208)

n-~o .

and in U<qcv

with a restricted by o~6<2’x. This result is striking
in that for T = 71, V(U,~) ~ ~r~(t~,$) as GV(71) = 0;

that is, the function w;(q,6) represents the correct sin-

gularity of the exact function. Far away from the singular-

~:z)ity the term (q,9) (1 = i or o) gradually comes~
into prominence, e~~,ecially near T = ——” %ut the con-

2$+ 1’
●

Vergence there is already BO rapid that a small number of
terms is enough to secure a high accuracy in $(q,~).

It is interesting to es%imate the mp.gnitude of the sec-
ond p rt of the stream. function. By nbting the fact that
Gn(T1~ = O, G11(T3} = 0, the expansions of” the Gn(T) and

GV(T) are

Gn(T) = Gnt(Tl) (T - 73) + . * ., ()<T<T,
,,

GV(T) = GJ(’T;) {T - TJ + ● . ., TX < -f <&

Then from corollary (52), it is sho!;n that for 4+ o

.

*(O
a

()
(q,6) - $$. (T- TI)+, O.

‘ Q=u

In other words, the s,econd part of the solution is of the
order of magnitude of (T - Tl). However, the magnitude of.
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(T - ‘rI) depends essentially upon T1 for a given incom-
pressible flow. If TI is not small, then when T = G,
~T-Tll will be Xarge, Thus for large free-stream Mach
numbers, the second part of the solution $~ cannot be rieg-
lected, This means that for high free-stream Kach numbers
the correct solution for compressible flow is considerably
more complicated than the usualiy assumed simple speed dis-
tortion rule would lead ope to believe. Thus , any theory
based upon suob a simple rule cannot be acourate enough for
transonic flows.

On the other hand, if ~, is small, or T1 << 1.
2$+ 1’

then the value of \T=T1i for T = O is small. Further-
more, if the maximum velocity of the flow is well %elow t~e
sonic velocity, then the maximum value of T
thus I,T- Tll

also is ,smsll,
for, the whole flow is small? Then the sec-

ond part of the solution W9 is negligible, However, even
then the solution for the compressible flow cannot he ex-
pressed as the solution of the incompressible solution by “a
simplo distortion of the ve~ocity scale, as is generally as-
sumed in the so-aalled hodo~raph method,

5
this would be

the case only if the multi.p~ying factor’ fi: /f(Tz) is
identically equal to 1, Since the multiplying factor is a
funotiorfof the magnitude of velocity, the sl,reamlines of
the compressible flow and the streamlines of the incompress-
ible flow cannot be made to correspond to eaoh other. On
the other handj equation (207) showst hat if $’0 is zero,
then $1 is also zero, Thus there is this one streamline,
the zero streamline, in both 71OWS satisfyin~he require-
ment of direot mapping. Since the zero streamline generally
is ohosen to” represent the contour of the bodyj on the sur-
faoe of the %ody in purely subsonio flows, the velooitY of
the compressible flew can be calculated from the incompress-
ible flow hy a simple ~tcorrection formula.’l This formula i.s
given by equating the velocity q of the incompressible

—

fluid to the velocity function %q of the compressible flow.
Thus

●

where the subscript O denotes the quantity for incompress- .
fble flow and T(T) is given b? equation (175)$ This i’Or-
mula is the same as that suggested by G. Templo and J, Yarwood
(referenoe 11), This coina~~ence Of TempleJs theory with the .
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present investigation can he considered as a further substan-
tiation of the method.

For the supersonic r“egtons, ~(T) and &v(7) in (101)
should he replaced by

(210)

1
_<T<~

.Sp+l

&v(T)
( )

a~ f(T) T-U(T) CO~ VW+ & ‘ ::(211)

where f(’r), T(T) and W(T) are given in (178) and (172):
then by writing

.

{

i(vu+) -i(vu-g)
~v(T) =$ f(T) e +e

}

and substituting as before in equation (101), it leads again
(0)

to the sum of W1(W;T) and Wa (w; T), where

~3(w;T) = ‘(T) [i+ i ~ -pn(tw<w)v + Cn (twJw)-”}
4f(T~)

n=o

nn 02

i ~ fBn (twe-iw)v + Cn (twe-lw)-v

.
+e4

L }1
ll~o

and

co

1{ (2)(T) @ ~W(T)J)+ GvW2(W;T) = i Gv <-T<l
Z’fi+l

n= o

According to equation (100), Wi(W;7) also can be summed:
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‘,.,’

Furthermore, from (17g) it can be seen that .lt~~=~u,~ , .
being a constant given by “

a

A=—
2(2$)= 1

—>1

(1+ a)” ,(26Tl)k T(71)

(213) ‘

...

.“

which is a functio’n of the Mach number and the characteristic
constant g of the gas but independent of the shape of the
boundary. The value of this funotion A iS given in table
14 and figure 12 for Y = 1.405. As a consequence, the funo-
tions constituting the stream function for the supersonic
flow are ..

ly~(q,d) “ ,“

~:::) th:Jfunctlons :~o and 00 are defined, on account of
.

*

where To’ and $0 are the ’velocity p“ote~ltial and the stream.. .
function, respectively; of tha corresponding incompressible’

G~l)(T) ~nd G~a)(T) are the same asflow, ~he functions

defined in (205) except that ‘A~v(~)’ and A~U(T} now are .

given by .
.. ,,. ~,.
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(217)

A&v(d = G#) - ~T-U COS
()).
W.u+f

JIJ(T) j.~ (211) is ,Unlike the previous calculations,

not of the order of u-z due to the pres~nce of 1/? in front

of f(l) Tv coo (W - ‘), This, however, does not offer a
serious objection, as % he series in which it appears already
converges with (tq)~, t being less than unity,

It is worth noting rcoreover, that in the hyperbolic
domain the function $ltq,a) depends, aside from a factor
f(T), only on the two independent families of characteristics
defined by

This result is most striking, as it shows that the main part
of the solution satisfies the simple wave equation and thus
clearly demonstrates its hyperbolic character. With both
the incompressible stream function $0 and the incompress-
ible potential function cpo appearing in the solution, it
iu impossible to establish a simple relation between the in-
compressible streamlines and the compressible streamlines.
Sinoe such a simple relation is the foundation of the so-
oalled speed correction formula for a quick estimation of
velocity distribution in compressible flow from that of in-
compressible flow over the same body, this idea cannot be
extended to supersonic regions. On the other hand, this
also indicates that although the differential equation for
$(C!,4) is hyperbolic in the supersonic range, it cannot be
reduced to the simple wave equation by a mere distortion of
the speed scale as given by the fu~otion w(T), For if this
were the case, then v~(q,t) would constitute an exact so-

V$o)(a 3lution without the additional
i

-m ●
This fact is all

the more important as the additional W2 0) (q,$) is not

small in comparison with ~3(CJ,d) for the mixed subsonic
. and supersonic flows, especially for the trafiaitional region

near sonic velocity. However, in the case of pure supersonic

flow, w$0)(q,19). might be small; then Wx(q, d) alone may
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be used as a satisfactory approximation. Of course, when
y = -1, then, as in the corresponding case in subsonic flowl
the exact differential equation for the stream funotion can
be reduced to the simple wave equation, In this case, the
appropriate form for the speed function w is

w(q) = - tan-: I 1 (219)

~a.— . 1’

..

where the subscript I denotes the conditions at the point
of tangency of ‘the true fsentropic curve and the approximat-
ing tangent. This agrees .with”the result obtained by N.
Oo%urq. (See referenoe 21.) ,

0

26. Continuation: Logarithmic Singularity

In the case of the logarithmic’ singularity the functiOn
W(W;T) was broken up into two parts of which only the one
that characterizes the singularity was’ given in equations
(115) and. (116).: .4s an example, it is proposed to show that
thi6 p“roblem can be treated by the same method. If the same
approximation is introduced as in equations (195) and (201),
then the coefficients defined in equations (121) and (122) :
beoome approximately:

with B f2(T~) = ~, so chosen that the form of equation

(207) is again preserved. With these coefficients and if
there i6 wri~ten for the function inside the circle q=u:’

.

Equation (115.) reduces to the sum of

. . .

.
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.

●

✎

#
n.

(q, a) = (222)f ~ ~nb) (;) c~s n~t q<u
~n
n=l

where

with

AXn(?) = q(T] - f(T) Tn(T)

Similarly, in the case of equation (116) it reduces to

-(0)
Here ~l(q,d) is again the same as (221); while ~a (q,d)
ie

T

;~o)

J

,

(qoa) =“ 1 (1 ‘T)P ~+ ‘log $
2fa(Tl) -

?I

where

&(o)(T) = ~n(T) A~n(Tl) + f‘l(TI) Tn(?z) A~n(T) (226)n

with

Enol) Tn(TJ
A~n(T1)=–—- , A&n(T) =&n(T) -f(T) ~-n(T) (227)

f~(T1) f(Tl)
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Unlike the previous case, V(q,a) = Vo(q, a) when, and only
when, co tends to ~nfinity, Because of (221), however,
the singularity of $(q,~) remains unchanged..

Again, if in (116)

~ f(T) T-n(T) COS&n(T) = “
2 @w+:) ‘ ‘

is substituted for Cl(T), it can siailarly be shown that

.,

t3- W>o
.. T

-(0)
w~ (q,a)=- 1

f f(T) (log A-w)

J
(l-T)$ dT+ z-$

2f2(-r3) “Tz T f(’r~)

riyl

w-here yo(a * w) and ~o(a ~ W) are defined analogously tO

~(o)(T) is now given by .(216), and A~~T) in
,,,

n

This seems to indicate that the res~~ts obtained sO far
for Yl(q, $) are quite general: It.may differ for different
oaees, at most, by a constant factor. The general property,
however, iS not shared by $a(o, $), the character of which
changes radically with the nature of $he eingularitiy and the
shape of the bound,ary, Hence, its importance in the present .
problem is evident.
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. l?. The Coordinate Functions X(q, a ) and y(q,$)

Yhenever the function x(q, a) for a boundary problem
is determined, the coordinate funotions X(q,fi) and y(q,$)
can be calculated according to equations (141) and (142).
Suppose, for instants, a ~oundary is assigned with the prop-
erty that the function fl\w;T) is truly described Iy (94)
and (110), o~w~hich the real part X(q,3), defined within
the circle . = u, is

-(r)
X(q,$) = yxn~ (T) qn cos n$, q<u (231)

u
n=o

where the constants in in (S4) are again real and are re-
-~r)(T) =garded as known, and ~ ~n~7)/~(TI).

As the series is absolutely and uniformly convergent in
. qcu, it can be differentiated p&~tialiy term by term with

respect to q and O. When the differential coeff~cients
Xq(q,ti) and X~(q,d) are calculated and are substituted in

. equations (141) and (142), there results:

m

‘s -(r) ~n-~
X(q,$) = ,, ‘inq - cos (n - 1) $

n=l

m

‘Y S(r) qn-l
Y(q,o) = - ni n-n sin (n - 1)0

L
n=l
m

-@T
T

1 fl(r) (T) qnln~ ‘-1 cos no sind (233)
_, n + 1 ~tl

n= 1
where

~(r)
_n ~ (T) =

~(an-k~+l,bn+~+ l;cn+l; T)
(234)

F(an, bn; On; 73):
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Now, .since

a!

Xo(q,ti) =
z

~Anq ‘-1 Cos (n - 1)*

n=z
and

.
.-.

. . . .

-.

by introducing the approximation given by equations (179)
and. (185,), that is

.

by defiriing

(?)
Y(q,a) = Yl(q,$) + Y2 (C!,lej) (236)

it can be shown by the same m’anner that

g(T) i5Th(T)’
— t(T) Xo(tq,$)-— —-– S20(tq,a) Cos a (237)xl(q,$)= f(T1)

q f(T~)

o~T<--L-
2$+’ 1 .“

~T ‘(T) f~o(tq,t$) sin$ (238)yl(q,o) = J@- t(T) yo(tq, +-- ——-—.———
f(T~) q f(T1) .
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. and

77

03

X:i) (q*d) =
I

n & 6n(T) qn-zoos (n - 1) d

n=l

@

- f3T I n-l
n in 6n,1(T) q C08 n$ cos d (239)

n=l

q-=u

where

6n(T) =
I?(an +.p, bn + 5; Cn: T) - $?$~ t%) (241)

F(an, bn; cni Tl)

Gn,l(T)=~:~ ‘(an+ @+ls ~B+@+l; 6n+l; T)
h(T) n

t (T) (242)
I?(an, bn; Cn; Tl) f(Tl)

au.
s-lo(d) = —

?ld

On the other hand, the expression for X(q,$)
outside the circle of convergence is

m

X(q,al =
1[

‘; IV(T) qv - 6; &v(T) q-vB
1

sin U$

n=o

(243)

val id

(244)

-*
provided the coefficients S; and Cn in (110) are real.

The functions X(q,o) and y(q,d) corresponding to (244)
can be found similarly, These are:
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.

(T)
~v- v-

‘hin(wl)fn( v- vi)*+.. x( cl, + ) (T) ii

n=o
m

pT2
n=o

1 (7) ~v-l

q
-v- 45)( T )+-

=

+

sill Cos

u

.

<

‘c

<

S(

m

I’
L
n=o

}
ly

.

v-‘l COS( v- l)ti (T)Y(q, #) JT)

v-l
V+l ( ‘f) 1 .

—

sin-V,,(dE
.

-1

.}

( 6)-v v&sin

(
Here

and

th

(1

ec

10)

ons

an

tants

d can

-*
Bn

be

and

educ

-’*
en

ed to

satisfy the relations

r109)

T
v (Tl)‘“*

23n T-v (Tl), -’*
Cn (

provided
more,

the same approximation is made as in ( 202 . Further-

J-
i )+

}
V;n qv-= -1sin (v 1)* (v ++ sin 1

r
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~J -v-1
Yo(h~) = ~“ @ ~u-l Cos (v- 1) a-v6n q. 60s (v+ 1)$

}
n= o

and if ~v(T) and ~V,3 (T) . for the high-order terms are
substituted by the asymptotic forms: namely,

F (?) = g(T) /(?), <,,(0 =h(T) T-V(T); OS T < -&
-v

then in like manner (245) and (246) can be transformed and
can each be represented ky the sum of twG functions xl(ql~),
Yl(q,a), and x2(q5$)s Y2(qt~)i where xl and yl are

the same as (237) and (238); whilo Xa and ya a3?et

#
m

(q;*)=
~ &:l)

z{

-(2)
(T)qv-lcm(v-~ )$- Gv (T)q-u-lCOS(u+l)d

}
n= o

g(a)’ and ~(a) are defined by:

where v U,l
.
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while A~~ and Agv(7) are defined just the samo

in equation (206),

1(251)

,,

1.(252)

as those given
.

Similarly, if the hypergeometric functions involved in
the high-order terns are substituted by

and 39 resolving the products of the trigonometric functions
into sums: for instance,

2 sin (v- 2) d cos
(’w - i)= “n [ ( )]

(V-l) (a+ w)+ w-y

.
[

+ sin (v-l)($ - w) - (w-~)]

2 sin (V+ 1) d cos
[(’w+:)= “n ‘u+ ’’(”+ W’- ‘-2( )]

[ ( -:)]
+ sin (v+l) (it-W) + W
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●
1a brief reduction gives when —Zp+l < T <1,

t(7) g(T)
xJq,w = —

{[T f(T,) -
Xo(ti + w) + Xo(l$ -= .)].0s & )

,- [
YO(8 + w) -. Yo(t!+-

“1 ‘in G- ~)}

{[

~7 h(7) -.—
- LI f(T1)

Qo(a+ u.))+ Qo@ -.~)] co, (w+ ;)

.

~1t(T) g(T) ‘-
jl(ct,f+] =-’yp

f(.@
Yo($ + u.))+ Yo(& - .,] Cos $- ]

.

1
-,i- .+(k):}XO(* + UJ) - Xo(s -.W)

pT h(T)

- ~~ f(Tl) {[
Qo(ti + U)) + DO(?9 - tu)]cos (+:)

-[
@o(8 + w) -6.(8 - w)]sin~-)}.fn~ .(2514)

%y the fact that qt = AU in the interval under consideration.

Here

Xo(+ + w) = XO (AU, & + w), Y*(3 + w) = yo (AU, & + u)

.

.
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where bxo
eo(q,a) = ~

NACA TN No. 996 -

.

and

(o) ‘
Yzl (q, $)

w
~ p)= 1{ ~ (T)qu-%os (v- 1) - ti:2}(T)q-u-lcos (v+ 1)197

J
n=o

{

~(l)
.@T$v G

v,l(T)qv-l+ ~(a)~,l(T)q-u-z } sin Vd sin d (256)

n=o

~(al
~ (7) and

g(a)
where ~,l(T) retain the definitions given

in (250) and (251) except that ~,l(T), A~v(T),A%(T), 6i

~, l(T) are replaced %Yand A G

L%(T) = %(T) . ~g(T) TV
‘Os (’w -f)

.

.

,

(257)

.

.
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res ectivelr. It must %e noted again that the orders of

~$23(T) and &$~~(T) are the same as those of A%(T)

~,l(T), respectively, hecauee of the way they are de-and AF

fined in” (257). For the same reason as stated in seotion 15,
this agsin cannot jeopardize the basic assumption of conver-
gence of the series,

‘.
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PART IV

,.

CRIT31RIA FOR THE UPPER CRITICAL MACH NUMBER

18. L5miting Line and the Breakdown

of Isentropic Ylow

The solutions constructed in the previous sections are
known to be regular in the hodograph plane except at a few
singular points. It is also known that for the limiting
case of infinite sonio speed, or co * ~, the solution
will give the desired flow pattern in the physical plane.
When the sonic speed, is finite or when the Mach number of
the free stream is different from zero, there is no guar-
antee as to the behavior of the solution in the physical
plane except the probable continuity of the flow pattern
with respect to the free-stream Mach number, It is found
that such continuity in the flow pattern actually exists
up to a certain Mach number. In other words, the pattern
of the compressible flow is only slfghtly different from
that of the incompressible flow up to a certain Mach number
at which the so--called limiting lines appear. At the limi.t-
Ing line, the acceleration of the flow is infinite and the
flow is reversed. It was shown by Tollmsin (i”eference 12)
and Tsien (reference 2) that, without considei’ing viscosity,
the flow cannot be continued across the limiting lines, and
a forbidden region is crel~ted in the space where no fluid
can enter, In other words, continu:.ty of flow pattern Grists
up to a critical Mach nuiuber beyond which no isentropic flow
is possible wtth the imposed physical boundary conditions.

The breakdown of isentropic flow, or the compressibility
burble, can be effected in two ways. First of all, the ac-
celeration in the neighborhood of the l’i.mitin~line Is very
large. Thus each one of the follow~ng f~,ctors gives appreci-
able alterations in the dynamic relations:

(a) VISCOUS stress due to ordinary viscosity of the
flu$d (reference 22)

.

(b) Stress due to expansion or compression of the fluid,
or viecous stress due to the second viecosity coefftolent “

(reference 23, pp. 351 and 358)
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(c) Small but appreciable relaxation time required for
the vibrational modes of the molecules to reach equilibrium
state (reference 24)

(d) Heat conduction from fluid element to fluid element

Secondly, the +sentroptc flow also can break down through
the appearance of shock waves. The breakdown of $sentreplo
flow is associated with the introduction of,vorticity to
the flow. Thus the flow becomes rotational with part of
the mechanical energy of the fluid converted into heat
energy, All these factors t,end to increase the entropy of
the fluid and finally to increase the drag of the body.
Thus the critical Mach number so defined is of great physical
importance to the aerodynamic characteriet$cs of the body
concerned.

Of course, the isentropic flow might break dewn due te
the instability of flow fluid with the final appearance of
chock waves, Furthermore, the action of boundary layer and
possible condensation of one component of the flu$dl on the

. flow might lead also te the premature destruction of the
isentropic flow. On the other hands shock waves can appear
only in supersonic flow; thus , if the speed of tho fluid is

. everywhere subsonic, there is no danger of the compressibility
burble. Hence, the free–stream Mach number for the first av
pearance of sonic speed in the field is called the “lower
critical Mach number~i; while the free-stream Mach number for
*he first appearance of limiting linee is called the ltupper
critical Mach number.” (See reference 2.) The latter iS
always higher than the former, due to the fact that limiting
lines appear only in supersonic flow. The actual critical
Mach number for the compre~sibility %urble must lie between
these two limits and depends, among other parameters, upon
the Reyno~ds number of the flow,

. 19. The Condition for the Limiting Line

At the limiting hodograph, or the hodograph of the
limiting line, it was shown (references 1, 2, 12, and 13)
that

.
3(X$Y) ~- R)aK “ (. -?)j’]= 0

(258)
a(u, v)

‘The phenomenon ~f condensation shocks due to water.
vapor in the air flow around an a$rfoil was first brought to.
the attention of the authors by Kate Liepmann, who observed
them in wind-tunnel experiments.

.. . .
i ..-. ,..
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Since the factor before the term $4= 5s positive for

supersonic regions only, C<q, where p+o, the
limiting line can appear only when the local speed exceeds
that of sound. It should be nqted that the vanishing of
the Jacobian is the condition for the failure of the hodo-
graph method, as the transformation (9) and (10) would no
longer be one-to-one and continuous. l!hus, the appearance
of the limiting lines is then the physical counterpart of
the singularity of the transformation.

As W[T,$) is known, equation (258) defines two lines
in the hodograph plane:

(259)

Geometrically, this expresses the fact that th’e streamline
$(q,a) = constnnt and a characteristic curve belongtng to
either family has a common taagont (reference 1). The
problem can then be formulated based on this groperty~
the necessary and sufficient condlvton for the existence
of a limiting line is that there exists a solution between
the two simultaneous equations

[1

1 ““T *
2T --— *T-$d=o

a2 T-1
(261)

*=O (262)

or

(263)

$=0 (264) 0

where $(TD@) is-adefinite branch associated with. the .

largest possible T ffir a gtven hounds.ry and a free-s$rkam
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Mach number. ~he zero streamline is chosen, as it generally
‘ gives the highest velocity and is the place for the earliest

appearance of the” limiting line.

Generally, these equations may not possess a solution
for a known function W(T,d) when the parameter Ml is
assigned. This means that there will be a system of bounda-
ries corresponding to a sequence of values of MIS for
which the limiting line does not occur. The first Mach
number for which equations (261) and (262) have a solution
will be defined as the upper critical Mach number and the
corresponding boundary as the critical boundary.

The actual solution of the equation is, in general,
difficult owing to the fact that w(T,~) is, in most cases,
represented by an infinite series. However, if the stream--
lines are determined in the hodograph plane for the calcu-
lation of the shape of the body, a simple graphical test

‘ of whether there is a point of tangency between the zero
streamline ‘and the characteristic can be easily made. on-
the other hand, if the form (214) ~nd (215), for instance,

. is used, an approximate analytic solution can be obtained
without involving much labor,

. .
. ..

20, The Approximate Determination of the

Upper Critical Mach Number

As can’ tie seen from secti,on,15, the importance of
(o)(T, i)

w r“elative to v~(T,a) will decrease as T
2“

1recedes from the critical circle T = — toward the
2$+1

supersonic region, For the first appearance of the
limiting line, T is,almost always high, especially when
the boundary is a slender closed body. Let this be the

case; then ~~o)( 7, d) can be neglected in comparison with

*X( T, ~) and a great simplification is possible. The ze~o

streamline then can be represented approximately by
.

.
$( T, $) =“lJr@d) = o

. ,

4:

--
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‘firtherrnore a simple raduotipm. -shows that the two pairs .of
(261) , ( 262). and (263), (264).reiLu.ee

,, . . . .

equations ,
tively to

.,

or

.
,

,,

,.
. . .

“.
,. ., ( 265.)

... ,! . -.

(.266)
,’ .”,

(268)

,..

where ~ and n are the characteristic ~arameters .defin,ed
fri equation (.21i). This reduction is rsad~ possible .by the :

,,

fact that f( T) never vanishes in the interval
1’

—< ‘7<1.
26+1

Whenever the ‘stream function ~o”” and the potential

function v~ of the imcompressib~e flow are given, the

funct ions VO and @o can be easily obtained by substi-
tuting AU for q ‘according to dquatlon (~16). Then, ,

since k decreases with an increase in the freemtream
Mach number M, as shown in table 14 and figure 12, the’
upper oritical Mach number will be given by the largest
value of k that .gives a solution either of equations
(265) and (266) or equations (267) and (268). Aq analytical
soluti”on c“an”be made, .’as the functions Go and @o atik i‘
quite sikplei .

There is, however, ’an interesting direct geometrical
in,$erpretation of these sets of equations in the physical,
plane of th~.incompressible flow as shown by figure 131
According to equ”atiidris(226), the funcfioris tio and “O.

are the stream function V. and the potential function W.

at the constant value of the spesd, AU, Since A > 1, for
the body shown in figure 13, the constant speed AU curve
CA forms a loop symmetrical with reepect to the y-axis,

r
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The variables are really the angle of inclination of the
incompressible velocity vector. Along the constant speed
curve CA from the point S2 to P, the angle of inclina-

tion of the velocity vector is monotonically decreasing.
Therefore, the parameter of the angle of Inclination can be
repleced by the distances alo’ng the curve CA ● Let equation

(267) be satisfied at the point S = S2; then

(269)

This means that, at the point S = S2, the rate of change
of the potential function q. along CA Is equal to the

negative of the rate of change of the stream function O..

Since potential linas and streamlines in incompressible
flow form an infinitesimal square mesh, this condition
requires that the angle between the tangent to the curve
CL at S = S2 be 45°, as shown in figure 13. This is

easily seen by remembering that from S2 to p~ the val~e
of tho stream function increases while the value of the
potential function decreases, because of the indicated flow
direction. Thus the point S2. can be easily determined by
this graphical condition. Equation-(268) can then be written
as

(O.(s) -To(s) = @ow3) + l.(%) . (270)

$f this condition is satisfied at a point S1, then the
condition for a limiting line Is completely satisfied. A
similar graphical interpretation for the equations (265)
and (266) can be worked out for the sfde of the constant
speed curve lying to the right of the y-axis? From these
considerations, it is clear that the upper critical Mach
number is the lowest free-stream Mach num%er which gives
a constant speed CL containing two po$nts, S1 and S2,

defined by equations (269) and (270).
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,,
..$’ .

,,
,,.. ,. PART V ,-

. . .
.,.,

,, AI?PL’ICATION - XLLIPTIC CYLINDERS
,,

21, Preliminary Discussions

)... ,

,. This part of ‘the”report is devoted to the application
of the general method, develope~ in part 111’, to the study
of the flow of a compressible fluid. around an elliptic
cylinder . Accordin~ to sections ?3 and 9, if a solution
were constructed about the stagnation point, the continua-
tion of thfs solution would req,~ire that conditions (102)
and (103) and, hence, (1C6) an~ (107) be satisfied. These
equations inv,olve two sets of hypergeom~tric functions with
parameters m and m + 1/2, as well as their derivatives.
To shorten the lengthy “calculation’s, in.view of the limited
amount of tine available”, the following approximate procedure
was adopted.

Given the domain ~, the solution valid in the annulus .
region, rather than that about the stagnation point, was
first constructed. The constants which determine the Laurent
expansion of the solution, B: nnd C~, for example, are
now assigned and, consequentl~, the set of hypergeometric

.

functiens with integral parameters is not immediately re-
quired. The difficulty, however, is the question of whether
it is possible to continue the solution within the circle. of
convergence, This continuation may not %e possiblo owing to
the stringent continuity conditions given by equations (102)
and (103) , and to the requirement that the function must be
regulnr within the circle q = U.

This , however, does not offer a serious objection from
the practical point of view, In the first plnce, the summed
function ($ (q, ~), for instance) actually holds even within
the circle ./ convergence q < ‘3, and the correction function

*2(q, ~)* is generally small compared with ~l(q,~) due to

the C1OSC asymptotic approximation of the hypergeometric
functions in the elliptic domain. In other words, although
the solution within the circle of convergence strictly repre-
sents n differ~nt flow, numerically it approximates very
closely that d~fined in the annulus region, IG tho second
place, since this region q<u Is relatively unimportant

.

In the case of mixed flow, where 71 is very much less than
.
J.

— - that is, for free-stream Mach number considerably less ,
2p+l
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than unity - the inaccuracy of the solution is limited to a
small region in the hodograph plane. Furthermore, the most
interesting phenomena of such a flow, such as the appearance
of limiting lines, always take place in the annulus region.
Therefore, this modified pr~cedure, although unsatisfactory
from the general view point, is an expedient capable of
yielding an interesting result and furnishing a test of the
practicability of the proTGsed solution.

The situation also may he considered from another angle.
The procedure used in this section can %e derived ly replac-
ing the functions iv (T) and ~-u(T) with the approximate

values given in equation (201) in the expressions for the
coefficients involved in the solution within the annulus
region, that is, (1c6) and (107). Thus the procedure may be
regarded as an appropriate method of approximation. The

1error introduced is generally negligible if TI c e A,
25+1

This is indicated by the fact that the correction function
w~(q,T), for instance, is very small In comparison with

Vl(q, $) when “q 5 U.

Another simplification is made by using the elementary

integral q-au ~-v (T) instead of q-2u ~v(T) in the con-

tinued solution, as, in this case, ~_v(T) is a well-

defined function. In doing so, the asymptotic behavior of
the second solution remains unchanged because the first term
in Qv(-r) is always small in comparison with the second.

If, however, all the required hypergeometric functions
are computed, there is no difficulty in carrying out the exact
method developed in part III of the report for any accurate
study of two-dim,ensional flow. For this reason, the expres-
sions for the hydrodynamic functions derived for both the
exact and approximate procedures for the problem at hand are
given,

In the numerical example, detailed calculations are made
for the flow of air about a cylindrical body derived from the
incompressible flow about an elliptic section with a ratio of
the minor and major axes eaual to 0,6. The calculations were
carried out for two different free-stream Mach numbers, 0.6
and 0.7.

22. The Functions Zo(w), We(w) and Ao(w)

The irrotational flow of an incompressible fluid about
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c.11elliptic cyl.incler with the velocity at infinityparallel to
the major axis is represented by the complex potential
Wo( Zo):

W:(zo)d+l -!5
with

~
o

.~++
“,

..”

For convenience in practical calculation,

(271)

(272)

all the physical

quantities ‘o’ ~$ and p, will be normalized consi~tently

throughout the present part. The majoi- and minor ax.+e of the
section are respectively 1 + C5 “and I–”c2, where
C<l; q-=1 at infinity anfi p = 1 when q = O. This will

automatically render tho kydrodynnrrtic functions dimensionless
and the constants U and PO #ill be eliminated from the
formul’as in the succeeding sections.

By differentiating (2’71) with r.cspect to Zo, the di-
mensionless complex velocity of the flow is

Thus “

~=-[-1’”, “-PW’+”
(273)

This function is two-valued w“ith t,wo branch points at W=l
-a

and w = c . In order to make Zo(w) a single-valued

function of w, the expru-ssion (273) is supposed to be the
principal value so that Iarg(l-w)l cu and 1 <Iwl< C-2.

—
.

The condition !Cawl<l
-2

must be satisfied, for w = E

corresponds to L = O, which is another singularity. With
the principal value sb @efined, If the nsg~,tive sign in (273) ‘
is taken, then the domain Q corresy~nds to the hnlf plane

Rt E~O and I C~ZIC On the other hand, since the’trans- ,
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.
formation (272) is one-to-one when Icl >1, then the
domain D, which iS Rtze~O with the region inside
the section excluded”, corresponds uniquely to ~.

Consequen,t,ly, the inverse mapping function !zO(w) is. .
.

‘Jw)=-{[-r+=[-]”2} ( 274)

wh$ch will be single-valued, provided a cut is introduced
to join the branch points in such a way that the argument
of (1-w) is restricted to -m < .arg(l=-w) < n and
IC*WI c 1. On separating into real and imaginary parts,
it is found that as 054<2V

[{

1 /s
. . So(q,a) =-

“%
I(q,l$) + J(q,$)

,. }

K 1
118

Yo(q,a)= 1
3

-I(q,$)+J(q,8)j .

.
[

I/a
..

}1– ~aj- Ic(q,a).+ J-z(q,$) (276)
L

.

with w = ~ e-$4 9 where the functions I(q,6),
and J(q,dj stand for:

.

l–(l+r)q Cos a + Caq~
I(q,a) =.-.. 1- 2 q Cos $ + qa

IE(q,4) = 1 - (1+C2) Cos a +Ca qzq

1- 2c~q Cos 4 + c4qa

Ic(q,$), “

(277)

(278)

.
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.

[’ 1
1/2

J(q, i3) =
1-2 c-a q Coti a+chqa

(279)

1- 2qcoa8+q=
,. —.

On the other hand, substituting equation (273) in equation
(271), the function Wo(zo) Is carried over into D; namely,

(2go)

Now Wo(vf) = qo(q,i+)+ ~wo(q,~), and similarly

3y integrating 2.(”), according to (gT), the trans- .

formed potential function A~(w), aside from a constant,
takes the fcrm:

Ao(w) = 2(1.-W)* (1-C%)* (2a3)

The principal value of this function is again defined
by”restricting the argument of (1-w) to -n s arg (l-w) < n

and Iwl <c-a. l~ithin this domain Q, the real and imaginary
parts are:

~o(q,~) = 2* [K(q.,8) + L(q,,@]~

OS ~ < P’n

ac(q,+) = - 2A [-K(q,fi) .+L(q,~)]*

as Ao(w) = ~o(q,~) - icro(q,ti), where the.functions

and L(q,$) are defined by:

(2!34)

(2@5)

K(a,&)
“

●
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.
K(q, $) = “l’”- (l+ca)q C03 $ + “Ca qa COE 2 $ (2t?6)

.

23. EXpanSiOnS Of We(w) and Ae(w )

The functi~n We(w) defined in (2g5) is single-valued
and regular everywhere “in IWf < 1 and, hence, possesses the
fnllewing expansien:

We(w) = - 1“An Wn, \wl<l “ (2f3g)

n=n

where the coefficietits An are real and given by

with

m=e

H?wever, in the ~egi~n ot~.tside Iwl -=1 the function
We(w) is doubled-valued; and when a cut is put between the
%ranch points w = 1 and w = c-a, the principal value is
discontinuous aleng the positive axis ef reals within the
annulu3 region, To ~btain the desired expansion, the function
is written in the f~llowing form

i 2- .(1+C2)W
WJW) = —

w% (l-W-:)”* (1-C=W3
(290)



ITOW (l-~ -1 )-ii (1- pw )-k is single-valued a“nd continuous
within the annulus regf on; its Laurent expansion is

(l-w-l )-$ (1- ~aw)-*

= ~:”) + y ,(0) p 1Wn+w-n,/n l<lwl<c-a (291)

n= I

where (n

S$’+2) = ——
~.~’ r(n+mfi)r(m+-$) ~am

‘LJ J7(n+m+l)~(rn+l)

.

—

(292)

Substituting
(;-y:;* (:::~w )-*

from (2gl) in (2gO), the
expansion fer o in the annulus region is

@

\
\

Wa(w) = i En ~zn
~[ 1

WV + Cn w-’ , lclwt <~-a (293)

n=o
when the constants Bn, Cn and the exponent V are de-
fined by:

(o)13n=2 Ca Sn+l - (1+C2) Sy
1

Similarly, the transformed potential function
can be expanded and is :

m.—

J
%

llo(~) = 2 l’n wn, Iwl<l
..

(294)

An(w)

(295)

n= o
when the constants In are

(i)- (1+C2) s~:j + ~2 s~:~Xn = Sn
1. \

xl = -~ (1+C2), 10 = 1
(.

and S~i) is given in (2t3g).

(296)

“
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.

Ofi the other harid, in the annulus region the expansion is

A&)=- 2i ~n + ~ ~—n

j. F“ ‘en n 1’
1 </WI< c-a(297)

with the constants s“ 6=and defined as

}

(298)

24. The Stream Functio~ W(q,a)

The relationship between the domain D and D is
thus fully established and the functions corresponding to
such domains are also given. From the general scheme de-
velaped in sections 8 and 9 the solutions for the similar
riotion of a compressible fluid can be coristructed. First
of all, the stream function $(q,$) goverl~ing the subsonic
flow is tke sum of $~(q,t) and Ifa(q,d). AccGrding to

(20’7), (208), and (2G9), for O ~T<& ,
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.

where the functions I(tq, ~), 1&q,4) and J(tq, ~)
.

are obtained from 1, 16, and J in (272) to (2’79) by

replacing q by tq, t-being defined in (195). For
.q <.1, the function *a(q, a) ~s

(300)

n=o

wher e An is defined in (289) and Gn(T) in (199). For

q>l and in sub’sonic region the function $’:~lq,4):

(2) (a)
wher e Gv (T ) and Gv (T ) are defined by (205) with

.

tho constants Bn and Cn defi~ed in (294).

When the motion becomes supersonic, the continuation
of $~(q,$) defined in (299) givee

according to (214). Here g and v
b

arc the characteristic
parameters defined in (218). The upper sign in the last two
terms corresponds to q>o while the lowei one, to rj co..
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The accompanying
(0)

function *2 (q, ~) is

(o)
co

1[
(t)

Qa (q, $) = Gv (T) Csn q“

n=o

(a)(T) q-v1 1
+G

v Cos Vij, —<?<1
2$+1

(303)

(1) (2)

Here the functions” Gv (T) ‘and. Gv (T) are defined by

(205) in conjunction with (217) in such a wny that (303)
will be the continus.tion of (301). It also skould be

noticed that the variable is restricted to &<T<~

1“
instead of — < T < TIC-4, a8 TIE-4 is generally

2p+l

greater than unity, which is ‘impossible for the actual gas.

Jai) “
It should be remembered that (q,~) is always

neg~igible compared with $I(q, $) within anil on the unit

1
circle q = 1 when TI is small in comparison with —---*

2$+1’

*(q,$) can be approximately represented by *l(q, d) alone
throughout the interior of the unit circle. As a consequence,
the calculation can be simplified considerably by constructing
first a solution for the annulus region by using ~ (T) in-
stead of EO(T) and naking an approximate connecti=~ across

the unit circle. In that event, the stream function will he
reciuced to

(304)

when o~q~l; here *l(q,ti) is again defined in (299).

on the other hand, when TI < T < ~
2$+1’

(o)
IIJ(q,a) = Wl(q,a) +*2 (q,a) (305)
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(o)
where the function *2 (q,d) which is small on q = 1
is given by

Here the functions 13U(T) and G_u(~) can he shown to be

and the coefficients Bn and Cn are defined in (294).

The continuation of vl(q,$) is naturally the expres-
sion given in (302} while that of (306) differs only in the
definition of GV(’T) and G_V(T) which are

—l—<T<~
2$+1 (308)

25. The Coordinate Functions X(q,d) and y(q,d)

With the functions Zo(w) and Ao(w) defined In

sections 22 and 23, the corresponding functions A(W;T)
and consequently Z(W;T) for the motion of a compressible
fluid can be constructed, , The coordinate fu~ctions defived
from A(w;T) are given. respcctiv”ely by the sum of two
functions ~l(clsa) and yl(q,d) which, accorting to equs,-
tions (237) to (238), are

.

.

.
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~(T) g(T)
X1( q ,,4)”’=--

7f(T, )

[
Ic(tq, $)

101

h(T) t sin 219

{
-l+4ca.tqcosa-ca ‘

f(T~) Uo(tg, d) ..

+J(tq, O) + ~* J-l (tq, $)
}

(309)

t(T) ~(T) “_

{[

-+

Y3(q, a) = —— I(tq,4) + J(tq, d)
2* f(Tl) 1

a

[
-c-

11
Ic(tq,$) + J–l (tq, $) -

h(T) t Si~2a

{
.-l+4Eatqco6 b-e=

- ‘T f(T1) ao(tq, ~).

+ J(tq, $) + ca J-l(tq, $)
}

(310)

where ao(tq, a) is obtained from Uo(q?$) in (285) by

(f)(q, $)replacing q by tq. The functions Xa and
y~i)(~,$)’,

according to equations (239) and (240), ar e

w

n=l

.
- 2pT

I
nA ~; n,i(T) qn-l cos n 4 cos 4 (311)

n= 2

q<l
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l’1=1

Here the functions &n(T) and &n, l(T) ~re tllf~:;~)by equa-

tions (241) and (242) and the constants An 9

The same funotions valid in the annulus region are
(“)(q, $) andagain represented by the sums Xx(q,d) + X2

‘o)(q,t$), where xz(q,t$) and Yz(q,$)Yl(q*~) + Y2 are

defined by equations (309) and (310), respectively. When

m

Z[ &)
‘o)(q,a) =- 2 v ~ (T) Can qv-’ sin (V-1) $X2

n-o

-(2)

[

*(1)

+ Gv (T)q-v-’sin (v+l)$~+2~T ~ v Gv,l(T)c’nqv-x
J n=o

(313)

,.

On the other hand, when L CT<l, the continued
Zp+l

expressions of

. .

Xl(qt$)o Yl(qt~) across the critical oirole ,

T = & are, acoording to equations (253) and (264)?

...
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.

,.

.,

t(T) g(T)
- p“m { r[

- -, I(x, !J+J(A, t) - C* -I;(LO
f(’rl) ~ .

*

1[

‘+

+ J-l(A,”~) - 1 [
-I(A, n) -!-J(A, v) + 62 - Ie(~,~)

-,

(Xslnql— —— -4<s A cos q + Ca +J(~, m)
Xo(h, rl)
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.

+ Cz
)1

J-l(A, V)
c03&$-[ &-(1 -4’aAc OB’

(316)

. .

.
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. While xa(q,$l and Yz(q,$) remain to be defined by equa-

tions (313) and (314) except the functions &~)(T) and

&$~(T) are replaced by those given in equations (Z!bO), (?~l)

together with ect.uations (257).

By the same argument as that used for the stream function,
the practical calculation of x(~,ti) and y(q,~) can be sim-

X:ihj,o) Ji)plified by neglecting and (q,~) when q < 1;
namely,

where x~(q,$) and Yl(q*~) are defined in equations (309)

and (310); aud in the. a~~ti.u~..,r.egion ...... .

.

.

X(q, +) = (0) (q,+)Xl(q,a) + X2 (319)

‘1 <T<l

Y(q,~) (C’+q,q= Yl(q,w + y~ (320)

Here Xl(cl,$ and Yl(q,$) are either given by equations

x$o)(q, $) and(309), (310) or (315), (316). The terms

Y! O)(@, on the other hand, become

.

. ... .- .- . - .
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.

\
‘ (326)

(

..
-v

“i

.’
t Cos’ :vm+~+~!

4

. .

. .

As an example, the motion of air past a cylindrical body
1was considered by taking E =.-. T,he flow patterns in the
2

‘r,& plane for two free-stream Mach numbers Ml = 0,6 and 0.7
have been calculated and were given in figur,eo ~4 and 15. It
should be noticed that there is considerable distortion in
the shape of the bodies in the compressible flow from that in
the incompressible flow, If the compressible flow around a
given body is desired, a series of computations should be made
with various geometric parameters e, so that the desired

. body shape at a definite Mach number M.l could tie picked out.

These computations definitely demonstrate the pract+ca—
bility of the proposed method. They a>so show that, in the.
case of two-dimensional motion of a compressible fluid, the
mixed subsonic and supersonic flows exist within the field of
an irrotational isentropic flow about a suitable body, and the
transition from one to the other is continuous and reversible.
Furthermore , the breakdown of the irrotational isentropic flow
depends soltly upon the occurrence of limiting lines which, in
turn, is determined by the condition at infinity or the shape
of the boundary,, while the magnitudo of the l,>cs,lspeed at—
tained is imnater”ial. In the case of Ml = 0,6, the irrota–
tional supersonic flow continues to exist up to the local Mach
number M = 1.25; whereas for til”= 0.7 it breaks down. as
soon as M = 1,22 is reached, The singular behavior of the
streamline is marked by the point of tangency of $ = O with
a characteristic at M = 1.22,

The calculation Of the flow pattern in the physical plane
is yet to be completed. When this is done’, the pressure dis– .
tribution can be coi~parcd with that over the same body of the
incompressible fiow.

Guggenheim Aeronaut$:al Laboratory,
California Institute of Technology,

Pasadena, Calif., April 17’, 1945~
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To faailltate the discussion, equation (71) is first
writ,ten in the. form:

and .

.

when v ia large, the char%cter o
?!

he functions ~ and ~a
aan be easi.1~ studied in the’ T5~v 1 -plane (fig, 16} by neg.

letting the tkird term under the radi,cal sign. This car, be
justified In the following manner: ilon~ider the case wken v
is positive and large but not an intege~. In the inierval

o < T ●C ._L_.... ~v(T) << iv because Fv(?) - T-v~4v(T) ~v——
2p + 1’ .

equations (35) and (55). Then r~ RV(T) * T%’ T1-u, There-

fore, T: RV(T) >> 1 when u “is large. But both ~v( T)

and YV(T) are continuous, with reepect to v: so the fore-
going result applies equally to the case of integral U.
Hence , the third term in the qadical for VU(T) oan %e neg-
lected for large v. ,,

Owing to the manner in which ‘YV is defined, correspond.

ing to each v there is a line T=To>~, such that b

25+1,
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. ,:. . when T-$ To,,‘.:“At$‘“”a’e6’niequence ~~ aid La are

...
real or ,qoap:~e%’”c”onj~gate according as T,~ To. In

0<7 <7.; ~1=() and C= = O ,;will..~ive two l-parameter-—,.,.,
families radiatin~, frprn (:0,‘=’1’)’anti”(0,1) , respectively, and
joining t.og~~h~r ht, a point where Yve = O. If O ~ T ~ To,

the product ~l~a may b~ negative or,poei.tive according to
whether t’he point lice ~to lihe,l.eft‘or’’the;r;ght of the curve

c1 = O and c= = g; :~n..,t~eo~~e~ hand! -if T > ‘0$ ~l~a
is always~$o,sfttve. ,.”’

Now ~y(o) = ~,. while t~i initfi;l,,slopO of ~1 = O

is ~:(>..v$,: : ‘ , “,:., “, ::; : “ ,1= 0,the integral” curve. must lie:’above

and.h.blow ‘ ~~ = 0. ‘If’it ,W.i.renot”; t“~e“i”nte’ra:l curve would..
cro,qa the. C.u<rv”e ?),’~1 = 0’s C.2= OS where gjl (7) = Ob and.

,’:.@)(T)’ ‘wou’ld be nega,tlve somewhere in O< T<~.
.f .\.- -2$+1

. This is not possible, $or’ ~v(=’ - ~_v by an argume~t simi-

lar to. that u’kbd for determining the.,magnitude of T= RV(T)

,. ~“-’’-v’ -”’”’” ‘n
and according to (55) Y

O < T ~:.z.. Eence ~~(1)>() in o<~<’ 1
2p +’ 1

and-. -2P+1

~v(z) continues:~o in<rbase un~il i? intersects with ~z = O.
. . .

After it crosses the curve cl *-0, ~v’(i) <0 and never

changes sign as t3ca > 0 :in ‘To< T.< 1. Consequently,

~ ‘t?(T) is monotonic and decreasing in the intervalv’.
To <’.<1. When v is sufficiently large, To will ap-..

.-.
1 1preach very rapidly to and Toa———— when v

becomes infi,+te. “’ 2$+1 2p+l

Proof of theorem (52).- Form the following identity:

(1)1Xl(m v ❑’(11’$)- ($)) + (l-l;>)- t;’) (1)
j[++~(mv ‘
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It can be shown $hat the differential expression poesessem an ‘“ -
integration factor ‘: .,. .. ., .

where

(~v(lJ.A:gi(?)J.Ti~,(l,w”T);$~”R:vs:v (A2). .,., ,. . . .,*.. . . . ,.,., , . . —t . . . . ..

.{/
R; = Rv(To)eq i

}
.(~~i%,)’~’i)~ - , ‘; ..,0

..:- ,., ,,.,..,. “ OT ,,
., ,,.: -,. , . . ... ,

{/,

8V = Su(To)exp v

,}
(I’@ - 1)+ ‘ ‘

.:
l.. . .r.

o !.,“. ,

It w$ll be rioti~”edthat the sigfi’of (A2) is determined by the” ““

.. .

: “(~~~~”)” - ~’ti(3))~ only,. On multiplying (Al) by. c:first faotor

(A2) and inteiratl’ng th; resulting t.o’taldifferential from “To.

tO T, with a suttab.ly chosen initial ‘value ~t$)( To) = g$).( 7.)” ‘
it Is found t,hat “ “ .,

.,, . .. . , .“
●

where in To <T <i. Since both’ &V(~) &nd fiu(l) are Con-

tinuous and m,oqotonic, the C,onditkon-is both neceeeary,pnd, ,

sufficient . Yurtherrnore, it shouldbe noticed that the condj.- “

tion ~v (+6) = @(To) .
is purely a convenience. If ‘

T@(To) + @(To), the validity of the theorem is not iii“

the leaet impaired. ‘ c ‘ . ..

. ..:

b

.’

. .
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PROOF Ol? THEOREM (gg)

Consider the first series: Multiplying throughout the
inequality (5g), namely,

[
En(T) >

1-(2@+1)T 1
o<Tc—

1 - T—’ ap+l

..
by ~: and integrating both sides from T to Tl shows

that “

~(r)
-n (T) < t~(T)

T1(T)
. where tl(T) = — 2 1.

T~(Tl)
Then it follows-that

I ~(r)(T) >,n < An(tl~)n-n

converges when Itlwl e U due to

eq-~ation (Sg). By Weirstrassls theorem, the series (92) is
uniformly and absolutely convergent if }tl~l = tlq < u.

Nqv tl(T~) = 1; thus tlq is eaual to U when q = U and
= The term *lq 5s zero if a = O and remains positive

for :“< q < u. B; the definition of Tl(T) given by eauation

(56), it can be easily show’n that

for ()c T < T1. Thus tlq increases mcnotenically from

zere to U in the interval OST~T1. Therefore, the
series (92) is uniformly and absolutely convergent in any
closed domain in Iwl <u.

Similarly, the convergence of the series (94) can be
established.
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.-
PROOF OF THEOREM (98)

“

It is observed that the following identities exist
among the constants involved in (98) and (99):

.BJJV=-& ~ .muq;,+-+)(.+.).’

m=o

Cn u-v = & ~ Am u“ (, +--.&m-v,

Now, by the inequalities (58.) and (59), the functions .

~v(Tl ), ~-v(?l ) can be boufided both above and below for
.

all V+o, when O~T~a-.--. And ff a smaller value of ,
2p+l

dzv,~v) is taken’, it can be deduced that

.,”

where Ml and Ma are constants independent of n. On the

other hand, from the inequality (58)
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* it follows that

I’v( T) v 1
< t2( ?), T1 ~TC_—

~v(TJ 23+1

Consequently, the ftrst part of (101) can be dominated:

Ia:Iv(?) Wv ‘t< pn{tzw) j

T-.(T)
where t2(T) = -.* The continuation of this inequality

Ta( ~1)

1
for T >—- can be easily done by defining a new tz( T).

2@+l ~

Similarly, it can be shown that

~c:gv(? ) w-v / < /c= (tlw)-v/
.

Ca

But 7’_ icn blw)-v~ converges if Itlwl >U. Since on

{w]= %=0t3(Tl} = 1 and A ~og ~ tl~l ~ o when 0< T <J..
dq 2p+l

&3wl
T

or = I) when ~ < T <1, the condition
2#+1

ltlwl>U holds for all 7 in TzsT<~. Hence, by

Weierstrasals theorem the series (101) converges untformly

and absolutely in U + 8 ~!wl SV - 6.
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TABLES OF T!HM EYPlU3GEOM11?RIC FUNCTIONS

The values of the hypergeometric functions given
In tables 1 to 5 are calculated from” power series for

‘Y = 1.405, The function 5“__v,l(T) in table 6 is con-

nected with ~v(T)t $_v(7), and ~v,z(T) through the

follcwing equation:

This is simply the iironski~n of the two independent inte

grals of the hypergeornetric equation and $t holds every-
where except at the singulsvities T = O and T=l,
Tables ‘7 to 12 cOntain the corresponding approximate func-
tions as indicated,

The numbers in these tables are expressed in terms of
approprie.te powers of 10. However , a not:ition was ~evised
in which only the powers are given while the base ‘11011is

omitted. Thus , 3,14159 x lGm = 3.14159, m, Here m nay
be efther a positive or neg~tive intege~, or zero, Unless
indicated by the sign ~ On the heading, accidental errors
were detected and eliminated by the difference method.

.
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TABLE l.- CORRESPONDING PARTICULAR INT3GRALs FOR TEE SOlt~TIONS
OF COMPRESSIBLE FLOW AND INCOMPRESSIBLE FLOW

Incompressible

Q,v cos ve
(j~n ~~

-v cos Ue
q sin ve

log q

e

qv cos Ve
sin Ue

~-v Cos Ue
sin ve

log q

e

.
The functions EV(T), q-zu~v(’r) and N (T)~v(T), q-2vQv

are respectively the two independent integrals of equa-
tions (27) and (2t3).

-r
o
.02
.Cb
.06
.Og
.10
.12
.lb
.15
.16
,165——

A

2.&
1.6376
1.3751
1.2267
1.1322
1.0697
1.02~3
1 ● 0141
100041
1.0011— ..—

TABLE 14
——

): T M
0 0.17 1.0057
,l@07~ ,lg 1.0412
.z05TG .19 1.0763
.31521 .20 1.1111
.z2~J1 .21 1.1457
.54g7C1 ●Z2 l,lgo2
.67340 .2

z
1.2145

.$30jgl 2 1.24gg
;25 1.2g30

,g4062 .26 1.3172
.27 1.351-~_—.— —

o.213 1.
{

i5 g
. 1. 202
:;: 1.454g
.32 1,5244
● 34 1.5950
.36 1.6667
*g
2

1.73gg
l*g140

:4; l.gglo
● 44 1.9698
,46 2.0510-
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