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NATIONAL ADVISORY COMMITTEE FOR AERONAUl'ICS 

HE SEARCH MEMORANDUM 

WIND-TUNNEL TESTS OF A l/12-BCAIE MODEL OF THE X-3 AIRPLANE 

AT SUBSONIC AND SUPERSONIC SPEEDS 

By Robert N. Olson and Robert S. Chubb 

SUMMARY 

The static longitudinal-, lateral-, and directional-stability and 
control characteristics of a l/12-scale model of the Douglas X-3 airplane 
at subsonic and supersonic Mach numbers are presented. The model was 
equipped with an all-movable horizontal tail, an aileron on the left 
wing, and a rudder on the vertical-tail surface. The investigation 
covered a range of Mach numbers from 0.60 to 0.93 and 1.30 to 1.91 at 
Reynolds numbers of 0.98 to 2.61 million. 

In general,the lift-curve slope gradually increased with increasing 
subsonic speed up to a Mach number of 0.93, and gradually decreased with 
increasing supersonic speed up to a Mach number of 1.91. A slight 
increase in drag coefficient was evident at a Mach number of 0.90, but 
the drag-divergence Mach number was not reached within the subsonic Mach 
number range of the tests. At supersonic speeds, the drag coefficient 
for lift coefficients less than 0.3 gradually decreased with increasing 
speed up to a Mach number of 1.91. 

The first results of the stability ipvestigation indicated that at 
a Mach number of 0.85, the airplane would have marginal longitudinal 
stability for moderate lift coefficients and at a Mach number of 1.91, 
have nearly neutral longitudinal stability for high values of lift 
coefficient with the controls set for zero pitching moment. The use of 
a larger horizontal tail (38.4-percent larger area) of higher aspect 
ratio (4.33 as compared with 3.05 for the original configuration) was 
shown to eliminate the marginal longitudinal-stability region at 0.85 
¥~ch number and to provide adequate longitudinal stability for all lift 
coefficients for zero pitching-moment conditions at a Mach number of 
l.9l. 

The effectiveness of the all-movable horizontal tail in providing 
longitudinal control was found to be constant with increasing subsonic 
Mach number, but the results indicate about a 40-percent decrease in 
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the pitching-moment effectiveness with increasing speed in the range of 
Mach numbers from 1.30 to 1.91. 

Although the results indicate that the airplane will be direction
ally and laterally stable in the subsonic and supersonic speed ranges 
investigated, the directional stability may be marginal for small angles 
of sideslip tit a Mach number of 0.90. 

The directional- and lateral-control data indicate linear varia
tions of yawing-moment coefficient with rudder deflection and rolling
moment coefficient with aileron deflection for the airplane little 
affected by angle of attack. 

INTRODUCTION 

In order to aid in the prediction of the stability and control 
characteristics of the X-3 airplane (Air Force Project MX-656) and 
to provide a sound basis for the flight investigations which will be 
conducted using this proposed supersonic research vehicle, the aero
dynamic characteristics of a l/12-scale model of the X-3 airplane have 
been determined from tests made in the Ames 6- by 6-foot supersonic wind 
tunnel. 

The present report gives the results of force tests of the 
l/12-scale model of the X-3 research airplane made to determine the 
longitudtnal-, lateral-: and directional-stability and control char
acteristics at Mach numbers of from 0.60 to 1.91, inclusive. Results 
of additional tests made to determine the effects on the longitudinal
stability characteristics of increasing the size of the horizontal tail 
are also presented. Static pressures at various fuselage stations, 
obtained in conjunction with the force tests, are presented for use in 
determining canopy loads and possible airspeed-orifice locations. 

COEFFICJENTS AND SYMBOLS 

All data are presented as standard NACA coefficients of forces and 
moments referred to the axes shown in figure 1. With the exception of 
the horizontal-tail hinge moments, all data were referred to a longitu
dinal center-of-gravity position at the leading edge of the wing mean 
aerodynamic chord and a vertical position l-inch-model scale above the 
fuselage reference line. 

- ------ --- __ J 
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Sufficient data are presented to permit the reader to compute the 
yawing moments and rolling moments about the stability axes. 

Horizontal-tail hinge moments for both configurations investigated 
were measured about an axis positioned at the 25-percent point of the 
mean aerodynamic chord of the Axposed tail of configuration A which 
passes through the plane of symmetry at the 54.7-percent point of the 
theoretical root chord. 

Cy 

The symbols and coefficients are defined as follows: 

lift coefficient (1~~) 

drag coefficient (~;g) 

pitching-moment coefficient (Pitching moment) 
qSc 

horizontal-tail hinge-moment coefficient (hinge moment) 
q St Ct 

(Moment tending to lower trailing edge 'is positive.) 

• .:l f ff· . t (cross-Wind force) cross-wLn~~ orce coe ~c~en 
qS 

( yaWingqSbmoment) yawing-mo~nt coefficient -

rolling-moment coefficient (rolling moment) 
qSb 

3 

Cru, rate of change of lift coefficient with angle of attack, per degree 

C~ 

rate of change of cros~ind-force coefficient with angle of side
slip, measured at constant angle of attack, per degree 

rate of change of yawing-moment coefficient with angle of sideslip, 
measured at constant angle of attack, per degree 

rate of change of rolling-moment coefficient with angle of side
slip, measured at constant angle of attack, per degree 
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IlCm 
rate of change of pitching-moment coefficient with horizontal-tail 

di t incidence, measured at constant lift coefficient, per degree 

a local speed of sound, feet per second 

b wing span, feet 

b t horizontal-tail span, feet 

chord of the wing parallel to plane of symmetry, feet 

Ct chord of the horizontal tail parallel to plane of symmetry, fee t 

-c 

n. 

T 

mean aerodynamic chord of the wing 
f

b/ 2 2 

C dy 
o 

I
b/ 2 

C dy 
o 

mean aerodynamic chord of the horizontal tail 
feet 

specific heat at constant pressure 

specific heat at constant volume 

, feet 

horizontal tail incidence with respect to the fuselage reference 
line, positive with the trailing edge downward, degrees 

mass flow 

local static pressure, pounds per square foot 

free-stream static pressure, pounds per square foot 

free-stream dynamic pressure (~ pV 2), pounds per square foot 

perpendicular distance along the wing sendspan from the model 
plane of symmetry, feet 

--~-~-

, 
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Yt perpendicular distance along the horizontal-tail semispan from 
the model plane of symmetry, feet 

A cross-sectional area of duct, square feet 

E ratio of duct outlet area to inlet area 

H total pressure, pounds per square foot 

6H (total pressure in the free stream) - (total pressure in the air 
duct) 

M Mach nUInber (~) 

P pressure coefficient CP-:o) 

R Reynolds number, based on the mean aerodynamic chord of the wing 

S wing area, including that portion enclosed by the fuselage as 
determined by extending the leading and trailing edges to the 
plane of symmetry, square feet 

St area of horizontal tail, including that portion enclosed by the 
fuselage as determined by extending the leading and trailing 
edges to the plane of symmetry, square feet 

V free-stream velocity, feet per second 

~ angle of attack of the fuselage reference line, degrees 

~ angle of sideslip, degrees 

1 ratio of specific heats (~:) 

8a aileron deflection, positive downward, degrees 

8r rudder deflection, positive with trailing edge to left, degrees 

p mass density in the free stream, slugs per cubic foot 

The following notation is used in the figures to signify various 
combinations of the component parts of the model: 

BW combination of body and wing 

5 
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BWV combination of body, wing, and vertical-tail surface 

BWE combination of body, wing, and horizontal-tail surface 

APPARATUS 

Wind Tunnel and Equipment 

The stagnation pressure in the Ames 6- by 6-foot supersonic wind 
tunnel can be regulated to maintain a given test Reynolds number. The 
supersonic Mach number can be varied continuously by use of the asym
metric adjustable nozzle, and the subsonic Mach number through regulation 
of the compressor speed with the nozzle set at the maximum-open position. 
A more complete discussion of the tunnel characteristics is presented in 
reference 1. 

The model (shown in fig. 2) was mounted on a sting-type support 
system. For the investigation of longitudinal characteristics, the model 
was mounted with the plane of the wing vertical to permit continuous 
variation of angle of attack; while for the investigation of lateral and 
directional characteristics, the model was mounted with the plane of the 
wing horizontal to permit continuous adjustment of angle of yaw. The 
aerodynamic forces and moments on the model were measured by a six
component, electric resistance-type, strain-gage balance mounted on the 
sting support and enclosed within the body of the model. Hinge moments 
on the horizontal tail were measured by strain gages mounted on a 
cantilever-type beam contained within the fuselage. 

Model 

The 1/12-scale model of the X-3 research airplane was furnished by 
the Douglas Aircraft Company. A sketch of the model is shown in 
figure 3, and the geometry and dimensions of the wing and tail are given 
in table I. The model was provided with engine air intake scoops. 
Boundary-layer bleed scoops were not incorporated within the inlets; 
hence, the area of the intake scoops was made to equal the combined area 
of the engine air intake and ;boundary-layer bleed scoops. Engine air 
ducting was simulated to the stern of the fuselage. Constriction plates 
were furnished for the duct exits to provide exit to ialet area ratios 
of 0.779 and 0.877. An aileron was provided on the left wing, and the 
vertical tail had a rudder. Two all-movable horizontal tails were pro
vided for the investigation of longitudinal control. (See fig. 3.) The 
pOSitions of static pressure tubes. inside the ducts and along the fuse
lage surface are shown in figure 4. 

-- --- ---

I 

_J 
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TESTS AND REDUCTION OF DATA 

Range of Test Variables 

The longitudinal stability and control characteristics of the model 
were investigated for a range of Mach numbers from 0.60 to 0.93 and from 
1.30 to 1.91. Directional- and lateral-control characteristics were 
investigated at 1.40 Mach number only, while the lateral and directional 
stability characteristics were obtained at Mach numbers of 0.90, 1.40, 
and 1.91. Some additional longitudinal-stability and control character
istics Were obtained at selected Mach numbers for the complete model 
incorporating a horizontal tail larger than that used on the original 
configuration. Henceforth, in this report, the model incorporating a 
horizontal tail of aspect ratio 3.05 shall be referred to as configura
tion A, and with the larger horizontal tail of aspect ratio 4.33 shall 
be referred to as configuration B. (See fig. 3.) 

Reynolds number effect was investigated over a range of 1.0 to 
2.6 million (based on the mean aerodynamic chord of the wing) in both 
the subsonic and supersonic Mach number ranges. 

Static pressures at various fuselage stations were obtained for 
Mach numbers of 1.3, 1.5, and 1.7. 

Precision 

The accuracy of the results can be estimated by consideration of 
the uncertainty in determining angle of attack, in measuring tunnel 
pressures, and in measuring forces and moments with the strain-gage 
balance. A more detailed discussion of the factors involved is pre
sented in reference 2. The following table lists the estimated accuracy 
of measurement or computation of various quantities and coefficients: 

Angle of attack 
Horizontal-tail incidence 
Mach number 
Reynolds number 
Lift coefficient 
Drag coefficient 
Pitching~oment coefficient 
Hing~oment coefficient 

Maximum 
uncertainty 

±O.lo 
± .20 

±.Ol 
±.03 x 106 

±.003 
±.0015 
±.OOI 
±.004 
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Cross-wind force coefficient 
Yawing-illoment coefficient 
Rolling-illoment coefficient 

Reduction of Data 

NACA RM A5lF12 

Maximum 
uncertainty 

±.002 
±.OOI 
±.OOI 

With the exception of the drag data obtained for configurationB at 
a Mach number of 1.91, all data were obtained for the model with a duct 
outlet to inlet area ratio of 0.779 which produced a mass-flow ratio 
versus Mach number relationship corresponding to that of figure 5. The 
mass-flow-ratio values used in figure 5 were calculated by means of the 
following equation: 

ml. Hs As Ms =---
~ Ho Al. Mo ),-1 2 

1 + -- M 2 s 

In the above equation, sUbscript 1 indicates duct inlet, sUbscript s 
indicates the duct station 4.5 inches from the duct outlet (the duct 
station of cross-sectional area equal to the duct outlet area), and 
sUbscript 0 indicates free-stream conditions. The total pressure in 
the air duct (Hs) was measured by means of a single total-head tube 
mounted at the center line of the duct. However, a subsequent survey of 
the total-pressure variation across the duct by means of a seven-tube 
total-head rake showed the pressure as measured by the single center tUbe 
to be within 3 percent of the average pressure as determined from the 
pressure survey. 

The test data have been reduced to standard NACA coefficient form 
and corrected for the following factors which would affect the accuracy 
of the results. 

Tunnel-wall interference.- The subsonic results have been corrected 
for the induced effects of the tunnel walls resulting from lift on the 
model (see reference 3) by the addition of the following: 

!::J:J, 0.265 CL 

6CD = .0046 CL2 

Corrections for the effects of the tunnel walls on pitching-illoment 
coefficients were negligible and have been omitted. 

-- - - . -- -_._- --
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Constriction corrections to account for the blocking effect of the 
model in the tunnel test section at subsonic speeds were applied accord
ing to the method of reference 4. At 0.90 Mach number, this correction 
amounted to 3.}-percent increase in Mach number over that for tunnel 
without the model in place. 

stream variations.-A pressure survey at sUbsonic speeds has inii
cated that the longitudinal variation of static pressure in the regi0n 
of the model is less than 2 percent of the dynamic pressure. No correc
tion for this effect was made. Subsonic tests of a symmetrical model 
in both the normal and the inverted positions have indicated no signif
icant stream curvature or inclination in the plane in which the model 
was pitched (model mounted with plane of wing in vertical position). 

A survey of the air stream in the test section at supersonic speeds 
(reference 1) has indicated that the cross flow is very small at all 
Mach numbers. However, significant variations of stream inclination and 
curvature occur in the vertical and axial directions at Mach numbers 
greater or less than l.h. Therefore, the directional- and lateral
stability characteristics are presented for both the inverted and normal 
positions. The survey also indicated that the static-pressure variations 
at supersonic speeds other than 1.4 were of sufficient magnitude to 
affect the drag results. A correction was added to the measured drag 
coefficient to account for the buoyancy caused by this longitudinal pre&
sure gradient. This correction varied from a drag coefficient of 0.0009 
at a Mach number of 1.30 to -0.0008 at a Ma.ch number of 1.91. 

Support interference.- Interference effects of the sting support 
at both high sUbsonic and supersonic speeds are unknown and, therefore, 
no corrections were applied. However, interference effects of the sting 
support on the aerodynamic characteristics of a O.l6-scale model of the 
X-3 airplane have been determined previously at low speed by t esting the 
model in the Ames 7- by la-foot wind tunnel with and without a dummy 
sting behind the fuselage. Results of the low-speed tests showed a neg
ligible variation in the lift or pitching-moment-coefficient tares due 
to sting interference for the complete model. The low-speed drag
coefficient tare for the complete configuration remained constant at a 
value of 0.003 over the 00 to 50 angle-of-attack range, then gradually 
increased to a value of 0.010 at 100 angle of attack, and r emained 
constant from 100 to 240 angle of attack. Further, unpUblished data on 
file at this laboratory indicate the interference effects do not vary 
with speed up to a Mach number of 0.9; therefore, the sUbsonic variations 
of pitching-moment coefficient and drag coefficient with Mach number 
probably were not influenced by sting interference. 

Pressures were ..measured at the base of the fuselage, and all drag 
data were ad justed to correspond to a base pressure equal to free-stream 
static pressure. 

L-______ ~_~ _ _ ___ _ --- -- - -- ~-- --
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RESULTS AND DISCUSSION 

All the force and moment data obtained during the investigation are 
presented in figures 6 through 34. For convenience, an index of these 
figures is presented in table II. All fuselage static-pressure data, 
presented without comment, are included in table III. Unless otherwise 
noted, all data were obtained for the model with the duct outlet to 
inlet area ratio of 0.779 which produced a mass-flow ratio versus Mach 
number relationship corresponding to that of figure 5. 

Lift Characteristics 

The variation of lift coefficient with angle of attack, for subsonic 
speeds, was essentially linear up to the stall except for a slight 
decrease in slope near zero angle of attack. (See figs. 6(a) and 7(a).) 
This decrease was most pronounced at the highest subsonic speeds inves
tigated. Results of tests in the Ames 6- by 6-foot wind tunnel 
(reference 5) of an aspect ratio 3.1, unswep~ wing have shown a similar 
lift-curve trend near zero angle of attack at these Mach numbers. An 
increase in the aspect ratio of the horizontal tail (3.05 to 4.33) elim
inated the decrease in slope of the lift curve near zero angle of attack 
for zero incidence of the horizontal tail (fig. 8(a)), but not the 
decrease in slope near zero lift for a -9.60 incidence of the horizontal 
tail (fig. 9(a)). 

The increase in lift coefficient beyond the angle of attack at 
which the wing stalled,l evident at Mach numbers of 0.60 to 0.85 (fig. 6), 
was probably due to lift provided by the fusel~ge. Choked flow condi
tions in the tunnel, indicated by broken lines in the subsonic-data 
curves, prevented the attainment of the angle of attack for stall above 
a Mach number of 0.85. 

At supersonic speeds, the lift-coefficient variation with angle of 
attack for small tail incidences was linear up to a lift coefficient of 
0.4, beyond which the rate of increase of lift coefficient with angle of 
attack diminished with increasing lift coefficient. (See part (a) of 
figs. 10 through 15.) Increasing the tail aspect ratio (configuration B) 
bad l ittle effect on the lift-coefficient variation with angle of attack 
at supersonic speeds. (See pa.rt (a) of figs. 16 through 18.) 

lStall is herein defined as the condition where the slope of the lift 
curve first becomes zero at a positive angle of attack. 

J 
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Except at a Mach number of 0.90, where the lift-curve slope at a 
Reynolds number of 0.98 million was appreciably greater than that for 
the higher Reynolds numbers, Reynolds number had no significant effect 
on the lift characteristics up to the angle of attack for stall at sub
sonic speeds (figs. 19 through 22) nor through the entire angle-of
attack range investigated at supersonic speeds (figs. 23 through 25) 
for the range of Reynolds numbers investigated (0.98 to 2.61 million at 
subsonic speeds; 1.5 to 2.61 million at supersonic speeds). 

The variation of lift-curve slope with Mach number is presented in 
figure 35 for various lift coefficients. A loss in lift-curve slope in 
the region of 0.85 Mach number occurs at a lift coefficient of 0.3, and 
at 0. 93 Mach number near zero lift; however, the loss is not of suffi
cient magnitude to be of concern. At supersonic speeds, the lift
curve slope generally tends to decrease gradually with increasing Mach 
number and decreases with increasing lift coefficient throughout the 
supersonic speed range investigated. 

Static Longitudinal Stability and Control 

The variation of pitching-moment coefficient with lift coefficient 
was not linear for any of the subsonic test Mach numbers. (See 
fig. 6(b).) Near zero lift, the static longitudinal stability decreased 
rapidly with increasing Mach number until, at a Mach number of 0.93, 
the model became neutrally stable. At a Mach number of 0.85, this 
region of marginal stability persists over a range of lift coefficients 
from -0.10 to 0.25. 

At lift coefficients of 0 to 0.3, a linear variation of pitching
moment coefficient with lift coefficient exists for configuration A 
(aspect-ratio-3.05 horizontal tail) for Mach numbers of 1.30 to 1.91, 
inclusive. (See figs. 10 through 15). Beyond a lift coefficient of 
0.3, the static longitudinal stability generally decreased with increas
ing lift coefficient. This decrease in stability with increasing lift 
coefficient became more rapid with increasing Mach number until at a 
Mach number of 1.91 nearly neutral stability existed for configuration A 
at high values of lift coefficient with the controls set for zero pitch
ing moment. 

Because of the region of nearly neutral stability at a Mach number 
of 1.91 and the marginal stability existing for moderate lift coeffi
cients at a Mach number of 0.85, additional tests were made of the 
l/12-6cale X-3 model incorporating a horizontal tail of greater aspect 
ratio (4.33 as against 3.05 for the original configuration) and 
38.4-percent greater area. This larger tail model has been deSignated 
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configuration B. Figure B(b) shows that use of the revised horizontal 
tail completely eliminated the regions of marginal stability at all 
lift coefficients up to the stall for all subsonic Mach numbers inves
tigated. No marked changes in the static longitudinal stability were 
evident for Mach numbers of 1. 3 and 1. 6. At a Mach number of 1. 9, how
ever, use of the higher aspect-ratio tail did eliminate the neutral 
stability existing at high values of lift coefficient for Cm:O condi 
tions for the original configuration. (See figs. 16, 17, and lB.) 

The investigation of Reynolds number effect at subsonic speeds 
showed that results obtained at 0.98-million Reynolds number generally 
exhibited a greater longitudinal stability than existed at the bigher 
Reynolds numbers of 2.29 to 2.61 million. (See figs. 19, 20, 21, and 
22.) At supersonic speeds, no appreciable Reynolds number effect was 
apparent for Reynolds numbers of 1.57 to 2.61 million. (See figs. 23 , 
24, and 25.) 

The variation of static longitudinal stability with Mach number 
shown in figure 36 for lift coefficients of 0 and 0.3 indicates that 
the most forward position of the neutral point is at about 4 percent 
of t he mean a erodynamic chord and occurs at a Mach number of 0.B5. 
Thus, for a center-of-gravity position at the leading edge of the wing 
mean aerodynamic chord, a minimum stability margin of 4 percent is 
attained for model configuration A. Use of the 4.33-aspect-ratio hor
izontal tail (configuration B), however, increases this minimum stabil
i ty margin to 17 percent while retaining a total center-of-pressure 
movement, over the investigated Mach number range, about the same as 
that for configuration A (about 45 percent of the mean aerodynamic 
chord) . 

A comparison of the tail-on (configuration A) and tail-off (BW) 
pitching-moment characteristics (figs. 10 through 15) indicates the 
tail was destabilizing at lift coefficients above 0.65 for the Mach 
number range of 1.30 to 1.91. Also, the tail-off configuration was 
stable throughout the angle-of-attack range investigated for Mach num
bers of 1.3 to 1.7, inclusive, but became neutrally stable above an 
angle of attack of 100 at a Mach number of 1.91. 

At a Mach number of 1.3, the horizontal-tail effectiveness 
gradually decreased with increasing tail deflection. This loss in 
effectiveness with increasing tail deflection substantially decreased 
with increasing Mach number until at a Mach number of 1.7, at moderate 
lift coefficients, the tail effectiveness was nearly linear throughout 
the tail deflection range investigated (00 to -250

). 

A relatively constant tail effectiveness (fig. 37) is evident for 
the subsonic speed range in~stigated. At supersonic speeds, however, 

-- ~ ---- - -- --- -- -- -- ----

I 
I 
J 

- J 

I 
I 



---~------

NACA EM A5lF12 13 

the results indicate a reduction in tail effectiveness of about 
40 percent for an increase in speed from a Mach number of 1.30 to 1.91. 
The 4.33-aspect-ratio tail (configuration B) was about 40 percent more 
effective than the 3.05-aspect-ratio tail (configuration A) as would 
be expected from almost a 4o-percent greater tail area. 

In general, the slope of the Ch versus CL curve, for constant 
horizontal-kail deflection, is slightly negative for the entire angle
of -attack range investigated for Mach numbers of 1.30 to 1.91, inclu
s ive. (See figs. 10(d) through 15(d).) The behavior of the hinge
moment coefficient with tail incidence was consistent with the varia
t ion of pitching-moment coefficient with tail incidence up to a tail 
deflection of -19.80 • The loss in effectiveness of the horizontal 
tail above -19.80 tail deflection was reflected in the hinge-moment
coefficient curves at a Mach number 1.3, but was not evident for Mach 
numbers of 1.4 to 1.91, inclusive. 

Lateral and Directional Stability and Control 

The lateral- and directional-stability characteristics of the model 
for Mach numbers of 0.90, 1.40, and 1.91 are shown in figures 26, 27, 
and 28. The model was tested. in both the nOTI!ll.l and inverted positions 
at all three Mach numbers to determine any possible effects of varia
tions in stream angle on the stability characteristics of the model. 
As stated previously, no corrections have been nade to these data for 
the unknown effects of sting interference. 

A narked decrease in the directional stability near zero angle of 
sideslip is indicated at a Mach number 0.90. However, this region of 
nearly neutral stability may be due to the low test Reynolds number of 
the vertical stabilizing surface of the model. At a Mach number of 
1.4, the yawing-moment-coefficient variation with sideslip angle was 
more nearly linear. At 1.91 Mach number, however, the nonlinear behav
ior is again evident with generally a greater directional stability 
existing for snall angles of sideslip than for the larger angles of 
sideslip up to ±6°. 

The decrease in directional stability at small sideslip angles is 
reflected in the cross-wind-force coefficient versus angle-of-sideslip 
CU1'ves for 0.90 Mach number. (See part (b) of figs. 26,27, and 28 .) 
No other nonlinearities were indicated in the cross-wind-force char
acteristics at any of the three Mach numbers investigated. 

The rolling moment due to sideslip (fig. 27(c» was linear for a 
~ch number of 1.4, except for the broken-line portions of the curves 
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for the highest two lift coefficients investigated which, llecau.so of 
the asymmetry through zero Sideslip, are believed to be unreliable 
Qata. At 0.90 and 1.91 Mach numbers (figs. 26(c) and 28(c», the roll
ing moment due to sideslip was nonlinear for all values of lift coeffi
cient investigated. 

In figure 38 is shown the variation of the directional-£tability, 
lateral-force, and effective-dihedral derivatives with lift coefficient 
for the model at a Mach number of 1.4 (derived from fig. 27). Because 
of the nonlinear nature of the lateral- and directional-£tability 
curves at 0.90 and 1.91 Mach number, no attempt was made to determine 
the afore-mentioned derivatives for these Mach numbers. About a 
5~ercent loss in Cn~ is indicated in increasing the lift coefficient 

from 0 to 0.70. Almost no variation in the lateral-force derivative 
with lift coefficient was evident although the effective dihedral deriv
ative became more negative with increasing lift coefficient. 

No significant Reynolds number effect on the lateral and direc
tional characteristics of the model was apparent over the range inves
tigated. (See fig. 29.) 

With the vertical tail removed, the results indicate the airplane 
would be directionally unstable at a Mach number of 1.4. (See 
fig. 30(a).) Adding the vertical tail produced the following changes 
in the stability derivatives: Cn~ from -0.0035 to 0.0052, Cy~ from 

-0.0085 to -0.0155, and Cz from 0.0009 to -0.0013. (See fig. 38.) 
~ 

The effect of sideslip angle on the longitudinal characteristics 
is illustrated in figure 33. The results indicate that Sideslip angle 
had no significant effect on the lift characteristics. However, the 
minimum drag coefficient for 60 of sideslip was about 0.010 greater 
than that for the unyawed condition. The pitching-moment coefficient 
increased, negatively, as much as 0.04 with increasing sideslip angle 
from 00 to 60 with the greater change occurring between 20 and 60 • 

The directional-control characteristics for the model (figs. 30, 
31, and 32) show a nearly linear variation of yawing-moment, cross
Wind-force, and rolling-moment coefficients with rudder deflecti9n, and 
were little affected by change in angle of attack (notwithstanding the 
broken-line portions of the rolling-moment characteristics at 100 angle 
of attack which data, because of the asymmetry through zero Sideslip, 
are believed to be unreliable). Due to the high position of the ver
tical tail, the rolling moment due to rudder deflection is quite large, 
requiring about 30 differential deflection of the ailerons to balance 
the roll due to 50 rudder deflection. (See fig. 34.) 
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Results of the investigation of the lateral-control characteris
tics of the model indicate a nearly linear variation of rolling-moment 
coefficient with aileron deflection throughout the lift-coefficient 
range investigated. (See fig. 34.) It should be noted that these 
r olling-moment data are for deflection of one aileron only. 

Drag Characteristics 

Since the high-speed performance of airplanes is largely deter
mined by the drag characteristics, the variation of drag coefficient 
with Mach number illustrated in figure 39 becomes of particular 
i mportance. 

At subsonic speeds, a decrease in drag coefficient with increasing 
Mach number at constant lift coefficient is apparent in the range of 
0.60 to 0.80 Mach number (fig. 39), and is associated with the increas
ing lift-curve slope with increasing Mach number at subsonic speed 
(fig. 35). Although there is a sudden increase in drag coefficient at 
a Mach number of 0.9 for a lift coefficient of 0.3, the increase is 
not sufficient to define the drag divergence Mach number. 

At supersonic speeds, a gradual decrease in drag coefficient with 
increasing Mach number is evident for 0 and 0.3 lift coefficients up 
to a Mach number of 1.91. At a lift coefficient of 0.6, however, the 
drag coefficient decreases with increasing speed up to 1.6 Mach number 
above which there is a marked increase in drag coefficient up to the 
limi ting Mach number of 1. 91. 

Substitution of the aspect-rati0-4.33 tail in place of the aspect
ra tio-3. 05 tail increased the drag of the model throughout the Ma.ch 
number range investigated with the most marked increases occurring near 
Mach numbers of 0.80 and 1.30. 

Several factors must be considered in correcting aerodynamic drag 
coefficients obtained from tests of a model in a wind tunnel to full
scale-airplane flight values. Among these are (a) the effects of 
Reynolds number 1 or the problem of correcting the viscous drag coeffi
cient of a partly laminar flow at low Reynolds number to that of a 
fully turbulent flow at high Reynolds number; (b) the effects of the 
d i fferences in surface condition of the model and airplane such as 
skin roughness, control surface gaps, and various protuberances; (c) 
t he effect of base pressure, since a correction is necessary to adjust 
the base pressure coefficient of the model to that estimated for the 
jets-operating condition of the airplane; and (d) the effect of inter
nal duct flow, since it is necessary to deduct from the total measured 
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model drag force the drag due to internal flow, defined in the same way 
as the engine manufacturer's net thrust, to obtain a drag for direct 
comp~rison with that estimated for the airplane. The drag due to inter
nal flow is defined as the difference in total momentum between the flow 
issuing from the model at the exit and the flow ahead of the model in 
the free-stream tube entering the inlets. The magnitude of this drag 
due to internal flow is a function of the free-stream Mach number, ratio 
of exit total to free-stream total pressure, and mass-flow ratio. 
Sufficient data are presented in table III and figure 5 to permit cal
culation of this drag due to internal flow for the present investiga
tion. 

The extent of the foregoing corrections to the drag of the present 
1/12-scale model has been estimated by the Douglas Aircraft Company to 
b e of the following magnitudes (6CD's to be added to measured CD's): 

6CD(Based on Wing Area) 

M == 1. 3 1.5 1.7 

Effect of Reynolds number -0.0055 -0.0058 -0.0060 
Effect of surface condition .0013 .0013 .0013 
Effect of base pressure .0015 .0015 .0015 
Effect of internal duct flow -.0035 -.0026 -. 0016 

By way of summation, totaling the corrections due to the various 
factors considered in converting the aerodynamic drag coefficients 
obtained from tests of the 1/12-scale model in the wind tunnel to full
scale-airplane flight values shows the minimum drag of the model to be 
approximately 10 percent higher than that to be expected of the airplane 
throughout the supersonic Mach number range of 1.3 to 1.7. 

CONCLUDING REMARKS 

The results of tests of a l/12- scale model of the Douglas X-3 air
plane in the Ames 6- by 6-foot supersonic wind tunnel have shown the 
following variations in the lift-curve slope and drag coefficient with 
Mach number. The lift-curve slope tended to increase with increasing 
sUbsonic speed up to a Mach number of 0.93, and gradually decreased with 
increasing supersonic speed up to a Mach number of 1.91. A slight 
increase in drag coefficient was evident at a Mach number of 0.90, but 
the drag-divergence Mach number was not reached within the sUbsonic 
Mach number range of the tests. At supersonic speeds and moderate lift 
coefficients, the drag coefficient gradually decreased with increasing 
speed up to a Mach number of 1.91. 

~- ---- -- -- ---- ---.--



3 

- ~-~------

NACA RM A5IF12 17 

Results of the stability investigation revealed a region of mar
ginal longitudinal stability for moderate lift coefficients at a Mach 
number of 0.85 and nearly neutral longitudinal stability at high values 
of lift coefficient with the controls set for zero ~itching moment at 
a Mach number of 1. 91 for the ori gina 1 configuration. The use of a 
larger as~ect-ratio horizontal tail of greater area (4.33 as~ect ratio 
as against 3.05 for the original configuration, with a 38.4-~ercent 
increase in area) effectively eliminated the marginal longitudinal-
s ta bili ty regi on at 0.85 Mach number, and provided adequate longi tudinal 
stability for high values of lift coefficient for Cm=O conditions at 
a Mach number of 1. 91. 

The effectiveness of the all-movable tail in providing longitudinal 
control was nearly constant at subsonic speeds, but a 40-~ercent loss 
in effectiveness with increasing s~eed was indicated between Mach num
bers of 1.30 and 1.91. 

The directional stability, although adequate at Mach numbers of 
1.40 and 1.91, was marginal for angles of sideslip near zero at a Mach 
number of o. 90. 

Adequate lateral stability was indicated for all Mach numbers 
investigated (0.90, 1.40, and 1.91). 

The directional- and lateral-control characteristics of the model 
indicate linear variations of yawing-moment coefficient with rudder 
deflection and of rolling-moment coefficient with aileron deflection, 
little affected by angle of attack. 

Ames Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Moffett Field, Calif. 

-----~~ - - - - - - --
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TABLE 1.- MODEL DIMENSIONS 

Wing 

Area, square inches . 
Aspect ratio . . . . 
Taper ratio . . . . . 
Span, inches • . . . • . . 
Root section (at plane of symmetry) chord, feet 
Thickness, percent of chord .... 
Dihedral (wing reference plane), degrees 
Incidence, degrees .....• . . . . • 
Mean aerodynamic chord, inches . . • • . 
Sweepback (75-percent-chord line), degrees 

Aileron 

Span, inches •••.•...•..•. 
Wing station at inboard end, inches • 
Wing station at outooard end, inches 
Chord at inboard end, inches 
Chord at outboard end, inches . . . . 

Horizontal tail 
Configuration A 

Area, square inches . . . • . 
Area, exposed, square inches . . . . • . 
Aspect ratio 
Taper ratio . 
Span, inches 
Root section 

Chord, inches . . • • . 
Thickness, percent of chord 

Section at spanwise station, 1.70 
Chord, inches . • . . 
Thickness, percent of chord. 

Tip section 
Chord, inches . . . . 
Thickness, percent of chord. 

Dihedral, degrees . . . 
Incidence . . . . . . . . . . . 
Mean aerodynamic chord, inches (based on total area) •. 
Sweepback (50-percent-chord line), degrees ..... . 

19 

166.52 
3.09 

0.389 
22.69 
0.882 

4. 5 
o 
o 

7.84 
o 

3.16 
8.09 

11.26 
1.49 
1.04 

31.10 
24.48 

3.05 
0.395 
9.75 

4.58 
7.5 

3.61 
4.5 

1. 84 
4.5 

o 
variable 

3.40 
23 
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TABLE 1. - CONCLUDED 

Configuration ]3 

Area, square inches . 
Area, exposed, square inches 
Aspect ratio 
Taper ra ti 0 • • • • • • • 

Span, inches 
Root secti on 

Chord, inches 
Thickness, percent of chord. 

Tip section 
Chord, inches . • . . 
Thicknes-s, percent of chord • . 

Dihedral, degrees • • . • . • . 
Incidence . . . . . . . . . . . . . . . . . . 
Mean aerodynamic chord, inches (based on total area) 
Sveepback (50-percent-chord line), degrees ...•• 

Vertical tail 

Area, square inches • . . . • . • • • • 
Aspect ratio 
Taper ratio 
Span, inches 
Root section 

Chord, inches • 

. . 
Thickness, percent of chord •. 

Tip section 
Chord, inches • • . • 
Thickness, percent of chord. 

Mean aerodynamic chord, inches •. 
Sweepback (leading edge), degrees •.••. 

Rudder 

NACA RM A51F12 

43.06 
37.44 
4.33 

0.4D9 
13. 67 

4. 48 
6. 3 

1. 34 
5. 4 

o 
vari able 

. . . .. 3.34 
15 

23.62 
1. 32 

0.297 
5.59 

6.58 
4.5 

1.96 
4.5 

4. 69 
45 

SJ?B,.n, inches . . . . . . . . . . . . . . . . . . . 
Height of inboard end above horizontal tail reference 

plane, inches . . . . . . . . . . .. ..... . 
Height of outboard end above horizontal tail reference 

plane, inches .••••.• 
Chord at inboard end, inches 
Chord at outboo.rd end, inches 

0.91 

4.52 
1.98 
1.09 

- - --- ---
_J 
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CL va a 

C:m va Cr, 

en va Cr, 

% va CL 

TABLE 11.- FIGURE INDEX 

Longitudinal Stability and Control 

Horiz . Figu.re number 
tail for M== 

configu-
ration 0 .60 to 0 .93 1.30 1. 40 1.50 1.60 

A 
B 

A 
B 

A 
B 

A 
B 

6(a) , 7(a) 10(a) n(a) 12(a) 13( a) 
8(a), 9(a) 16(a) - - - - -- 17(a) 

6( b ), 7(b) 10(b) n (b) 12(b ) 13(b) 
8(b), 9(b ) 16(b) - -- - -- 17(b) 

6(c) , 7 (c) 10( c) n(c) 12(c) 13(c) 
8(c) , 9(c) 16(c) - - - - -- 17(c) 

- - - -- 10(d) n ed) 12(d) 13(d) 
- - - -- 16(d ) - -- - -- 17(d) 

Dir ecti ona l and Latera l Stability 

Figure number 
for M== 

0 .90 1.40 1.91 

en va /3 26 (a) 27(a ) 28(a) 

Gy va /3 26 (b ) 27( b ) 28 (b) 

Cl va /3 26(c) 27(c) 28( c) 

CL va /3 - -- 33 - --

Cm va /3 - -- 33 - --

en va /3 - -- 33 - --

Directional and Lateral Control 
(M == 1.40 only) 

Figure number 
for a= 

00 50 100 

Cn va /3 30(a) 31( a) 32(a ) 

Cy va /3 30 (b) 31(b) 32(b) 

C7, vs /3 30(c) 31( c ) 32(c) 

Cr va Cr., 34 

21 

1. 70 1.91 

14(8) 15(a) 
- -- 18(a) 

14(b) 15(b ) 
- -- 18( b) 

14( c) 15( c) 
- -- 18(c) 

14(d ) l5(d ) 
- -- 18( d ) 
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a. 
(deg) 

-4.4 

~.3 

-.1 

2 .1 

4 .3 

6 .5 

8.7 

10 .9 
13.1 
15.3 

17·5 

-4. 5 

~ . 3 

-.1 

2.1 
4.3 
6 .4 

8 .7 
10 .8 

13 .0 

15 .2 

17.4 

-4.4 

--f! .2 

-.1 
2.1 

4.2 

6 .4 

8 .5 
10.7 

12 .9 
15.1 

17.3 

NACA RM A5lF12 

M 

1.3 

1.3 

1.3 

1. 3 

1.3 

1.3 

1.3 

1.3 
1. 3 
1.3 

1.3 

1.5 

1.5 
1.5 

1.5 
1. 5 
1.5 

1. 5 
1.5 

1.5 

1.5 

1.5 

1.7 

1.7 

1. 7 
1.7 

1.7 

1. 7 
1. 7 
1. 7 

1. 7 
1.7 
1. 7 

TABLE I11.- SUMMARY OF PRESSURE DATA 

[R = 2.09 x 106
; E = 0.779] 

NI/q P1 P2 1'lJ P3 P4 Ps Pe P7 

0 .115 0.924 0.866 -D .081 -D .014 -D.028 0 -D.031 -D . 180 

.111 .924 .866 -. 017 -.014 -. 028 0 -. 031 -.180 

.164 .866 .808 - .017 -. 001 -. 014 .018 - .013 -. 091 

.203 .839 .791 -.067 .012 .003 .036 .005 -.068 

.234 .839 .786 -.058 .048 .048 .045 .027 -. 042 

.247 .822 .769 -. 058 .052 .061 .040 .040 -. 020 

.256 .760 .751 -.054 .061 .078 .036 .053 .011 

.287 .760 .733 -. 045 .070 .096 .031 .058 .038 

.384 .729 .672 -. O~ .070 .096 .009 .058 .069 

.415 .694 .636 -. 080 . 074 .109 -. 035 .049 .017 

.520 .645 .592 -.116 .087 . 140 -. 039 .080 . 069 

.204 1.016 . 961 -.102 -. 006 -. 010 .003 -. 018 -.170 

.234 .991 .936 -.089 .007 .003 .016 -. 005 -.183 

.284 .936 .886 -. 093 .007 .003 .020 .003 -.187 

.384 .861 .815 -. 089 .015 . 015 .024 .008 -.149 

.396 .857 .812 -.081 .024 .036 .033 .020 -. 112 

.425 .836 .782 -. 081 .036 .049 .024 .028 -. 070 

.471 .803 .728 -.081 .045 . 065 .016 .033 -. 033 

. 580 .728 .699 -.017 .049 .074 .008 .037 - .012 

.663 .674 .624 -.072 .049 .090 - .018 .037 .013 

.684 .653 .603 -. 072 .049 .103 -. 043 .037 .009 
-

.701 .665 .615 -. 114 .061 .128 -. 097 .041 . 009 

.396 1.111 1.056 -. 094 .005 .001 .002 -. OlD -.067 

.421 1.017 1. 015 -.082 .0lD .005 .015 -.005 -. 133 

.505 1.004 .941 - .082 .022 .018 .019 .011 -.155 

.629 .898 .861 -.086 .018 .018 .019 .011 -.171 

.658 .882 .840 -.017 .026 .039 . 023 .019 -.167 

.687 .857 .811 -. 017 .035 .047 .015 .015 -. 146 

.762 .798 .752 -. 082 .043 .060 .002 . 027 -.121 

.808 .723 .732 -. 082 .043 .068 '-. 019 .027 -.088 

.719 .876 .826 -.098 .043 .076 -. 027 .027 -. 058 

.798 .797 .751 - .098 .039 .089 - .044 .027 -. 063 

1.135 .535 .502 -.127 .039 .101 1-. 073 .027 .004 

pressur&-loss coefficient in duct 

Ps 

-D . 100 

- .100 

-. 086 

-.068 

-.037 

-.015 

.011 

.029 

.038 

.047 

. 033 

-.254 

-.178 
-.120 

-.108 

-.103 
-.083 

-.041 
-.028 

-.008 

.013 

-.024 

-.208 

- .217 

-. 205 
- .200 

-.150 

- .108 
-.084 

-. 075 

-. 067 
-.054 
-.021 

static- pressure coefficient measured cn inboard side of air dUct 
static- pressure ooefficisnt measured on outboard side of air duct 
base-pressure ooefficient meas ured at orifices provided around 

the r im of the outlet 
static- pressure coefficient s measured at orifices on the fuselage, 

subscript numbers corresponding t o orifice numbers gi ven on 
figure 4 of this report 

_____ J 
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Figure 2.- The 1/12-scale Douglas X-3 model mounted in the 6- by 6-foo~ 
supersonic wind tunnel. 
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Figure 21. - Effect of Reynolds number on the longitudinal characteristics of the 1/12-sca/e 

Douglas X-3 configuration A of a Mach number of 0 .90 . if:: 0 0
• 

-o 

~ 
&; 

~ 
~ 
I;j 
I-' 
f\) 

---.J 
W 



~ ..... 

-' c::: 
\l) 
...... 
(.) '-:::: 
\l) 

0 
(.) 

~ ....... 
....J 

I L- __ _ 

/.01 I I I I I I I I 
.8 

.6 

.4 

.2 

li 
~ 

0 

1 

v 
b7 

7( 
'( 
~ 

~I~ 
I~ 

R 
o o.98xI06 

o 229xl06 

02.61 X 106 

C21 I' l I I I l I I I I j I I I I I I I I 
-.4[ I r£ I I 1 II ] I I I III 1 o .04- I I~I 

.08 .12 ./6 .20 .24 .28 .32 .36 .40 

Drag coefficient, Co 

(c) Drag characteris fi cs . 

Figure 21. - Concluded. 

--' -- --'--- --- --- -- - - ---- -- - - -- -- --- ---

-4 
+-

~ 
~ 

~ 
~ 

\J1 

~ 
~ 
f\) 



'-:l-.l 

.. ..... 
c::: 
Q.l ....... 
\,) 

:::: 
Q.l 
I::) 
\,) 

.-::: ....... 
-...J 

12 

~ br.. --r. lP I~ J;< 

~ ~ ~ 
. . . -

~ s.. 
""'r.t -r;o 0;- J ~ fV • 'f 

1.0 

.8 'r 119 ~ 
,I ~ l/ I 

.6 
~ . f ~ V I ....-::: 

7 ~ ~..0 V 

.4 

.2 

~ R ~ JiY 
v 

./ 

II o 098xl06 
~ ~ V o 2 .29x106 

j <> 2 . 61x106 

'" ~ 
v 

If ~. 

,j" vi 
p,P 

Gr" 
v' ~ 

o 

Ii' (:/ JI 
v V 

-.2 

~ ~ r:1 ~-
~ v V I 1 I - .4 

-4 o 4 8 12 

Angle of attock, CX', deg 

(0) Lift characteristics. 

16 

(?f 

.04 
z 

o -.04 -.08 -;12 -:-16 --:20 --:24 -:28 

Pitching-moment coefficien t, em 
(b) Pitching-moment characteristics. 

Figure 22. - Effect of Reynolds number on the longitudinal characteristics of the !/:2-sca/e Douglas 
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Figure 23. - Effec t of Reynolds number on the longitudinal characteristics of the 1/12-scale Douglas 
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