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STATIC LONGITUDINA1 STABI1ITY 0]' AIRPLANES.* 

By Theodor Bienen. 

"By the stg,tic stability of B,n airplane is meant its ability 

to wtthstand fOl'ces c..nd Moments) which tend to disturb its stat e 

of equilibrium, by opposing grea,ter forces and moments (whose 

production is the task of the tail group), and thus to retain 

its original equilibri~~. 

In considering static stability, no attention will be paid 

to the motions of the airplane, whic11 are produced by the dis-

turbing f07ces, as these corr"e uncer tt,e head of dynamic stab il-

ity. Static longitudjnal stabiJ.ity has been exhaustively treat-

ed in numerous p,rticles, the fiTst of which was published in 

Germany in tlFlugsport," 1910, by.H. Reissner.* 

The accurate calculath.n of static stability, especially 

for mul t iplanes, is now very troublesome. This is especially 

noticeable, when such detai'ls as stagger and decalage (inter-

inclination) are taken into account in calculating the mutlJ.al 

effect of the wiYl:gs. It is a (:1..':?s'ct l)n as to vv-hether such a de-

* II Eine j(infache Met'f{ode ZUT arleJ:TiEL:e:rt en Bere-chnung der sta t­
ischen La.I}gsstabilitat V'J,(l E:i,n·, '~[!d lioppc16.eckern, If from Zeit­
schrift fD.r Flugt echnik unc~ M,')'cc:r.'l'L'\.ft 8chiffahrt, July 28, 1926, 
pp. 299-305. This trec:tiBc Y\'S,8 taken from tile course in aviation 
a t the Aachen Technical High 3C1.1001, which explains its didB,ctic 
character. 
* * See Fuchs-Hopf, "Aerodynmllik," Berlin, 1922, p. 310 ff., and the, 
bibliography on p.459 df the same book. 
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tailed calculation is c~pp:ropria te wheD. other influences of fully 

as much importanct;J ~re mo:ce or less neglected. Such details 

include: 

Effect of propeller slip stream on wings and tail group; 

Deviations of the profile or wing section coefficients in 

experiments with models and fUll-size airplanes, resulting from 
,. 

different Reynolds Nunlbe:rs B.nd from differences always existing 

between the model and the full-size wing; 

Differences between the assmned and actual liftdistribu-

tion, not only between the up-per and lower wings, but also 

throughout the span; 

Di:ferences between the computed and actual position of the 

cent er of gravity; 

Inaccura t e assu,'npt ions on t1:.e magnitude of the structural 

resistance and the poin t of application of its several coeff ici-

ents, especially at different angles of attack. 

It seems at leas t des irable to he ... ve some simple method for 

calculating quickly anel with sufficient accuracy: 

1- The correct position of the center of grav i ty; 

2. The requisite ta::'l-grottp dimensions; 

3. The course of the wing and tail-group r;::Oi11 en t s. 

In our deductions, we 1,,111 first replace the biplane (dis­

regarding the effect of stagger, decalage c.l1d induced drag) by 

an equivalent monoplane, whose dim6nsions and position in space 

can be approximately dete:rr:1ined. in a simple manner. 
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In the corn:OLi..to.tion of" the ta.lancing of the moments and in 

accord. 'wi th the suggest ion of Yon Karm.an, a t whose request I[Je 

employed. the fo11owiIlg method, VIE; ado.fJte.J~ as the point of ref-

erence for the mom ents, the int ersect ion of the wing chord with 

the projection of the leading edge on the chord, i.e., the point 

to which the' moment coefficients of experiments wi th models are 

genere.lly refe:'red. This resulted in certain simplifications, 

since we did not have to conve:rt the ~.ift [',nd. drag coefficients 

into nOl'in~.l force a!ld tangentin.t-·fo'l'cc coe:ficients; in the 

well-known tedious manner, but could utilize directly the cm 

values of the experir:.lent with a molel. 

Replacement of the B·iplmlo by a l'vlonoplane 

We ste.rt wi tho. biplp,ne (,lith steggel' and decalage) accord-

ing to Fig- 1 and seck an equivalent monoplane ..... /h08e moment is 

wherein the moment coefficient ernE refers to the point of in-

tersection of the wing chord. of the desired monoplane with the 

proj ection of the leading eoge on the chord. "iie the:,efore seek 

the momentary effective anglsa cf attack Xo alld xu, Yo ar..d Y1.1 

(Fig. 1) and the wing chor'o. of an '2quivalent monoplane. 

For Gn infinite 2.spect l'~t.tio, '.ve; can .• in gcn erE'..l , write 

,.,. .. ~ " ,'. I a 
t--t:t -- l.,,~3.. \.0..J ' + 6), 

where carta)": is the c'cerl.'1TativG of Ca with respect to a" 
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and. ex. + 6 dena tes th3 c~~ir8ct ion of the air st ream rela t i ve to 

the ca = 0 lin'S (Fig .. 1). For nomal ar..gles of attack, ca t 

i8 a constant, to which Vle will subseq"'.J.ently return. Hence 

ca~ Fges q = (cao Fo + cau Fu) q 

ca,'(a.) ex. 
Ca 1 (ex. + 6 - 0") F 0 + Ca 1 (ex. + 6 + 0") 

- --'- .--
- }i' ges 

-' 

Fu 

from which the effective engle of att8ck of an equiv8,lent mono-

,plane (at first fo·:;:- an infinite as:.oect ratio) is found to be 

F - ~ 
a. = ex, + 6 - c F;~'-+ F'';;: (2) 

With a -positbTE:) decB.lage of 0"_ t:he wing chord of an equiv-

alent monoplane is inclined tow~rd the De~n chord (Mittellage) at 

an angl'S of 
F - F 0" _~._ . OJ. 

~~ --_ . 
.l o'r .. ''''1 

!::; ~ u 

Tha angle of attack ex. + 6 is then di-

minished by this amOl.1.nt) but; with 8, negative d.ecalage, it is in-

creased (provided Fo > Fu)' 

The conversion of the mCG8urement to the correct· aspect ratio 

is then made in the usual r.1anner. Vii th the mos·t favorable lift 

distribution, we obtain. the 3.ngle of attack 

Hence 

ex. = a- -. +- 1\ ex, ~Jl !.....J 

/'. ("( (;~ 
L.:. \,..Y = -'"~ 

Ti 

r )' T 
.! ~: :; ---5" 
i.. 1..)1 

IF \ } 
\'0 2 

J
M 

The index M denotes the: V2.}.ucs for the model measurement. 
F / \., .. 

i --::;- o_enotes tn'S 
\.b .lis aspect ratio of the model; ~ F, the 
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total wing area of the biplane; 01: 't,je s'9.:ln; while K is a 

function of the :ratio, gap to span, and of the upper span to the 

lower span, and of the lift distribution. * 

Thus we ultimately obtain 

c = f (c: _ 0' F 0 - Fu '\ 
a \ Fges J 

Likewise we can 'put 

The quantity 

(­
= f\ a. 

0' F 0 - Fu 

F ges ' 

" 

which represents the effect of 

the d.ecalage, is generally negltg:i.bJ.s. The other quantities, by 

disregarding the decalage, are red.uced very simply to 

to F 0 + ty; F1:j i 
tE = ---F geG --.- I 

! 

Xo = x !u ~ :B'ges 

I :2',. 
Yo = y _LJ._. 

I Ff!es 
c' ..J 

( 3) 

If, for comparison, we cOr.lpute the r.loment of a biplane and 

of an equivalent monoplane, both referred to the projection of 

the _~,::\Jiing edge of th_G m~n?pl:~~E.~, on the wing Ghord, we obtain, 

* ,Prandtl, II Ergebnis se de.:: AE;~:rody n'1mischen Versuchsanstal t zu 
G~ttingen,1I Part II, 1923, p.l::' ff ar:d p.37 ff. The bending ef­
f ect, which is conE'P ic1J.oUS with a rela.t ively 81;.a11 gap, ca.n be 
disregarded in this app:c()x:]m?. ~:= COlri}.·Y0.ta t ion. In like manner, 'we 
ca.n c..steTl'nine the chang::; in t~1::; i:ndaced. dreg according to the 
wel1-1mmvn fOIT!1Ula ca

2 [ K ZF (.E..- \ 1 
t:.. Cw - 11 I\.-:? 1\ b2 ; ~ 

'iJl . "MJ 
a.nd therefro~ 
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by omi tt ing unimporta.nt ,nembers, 

+ ca.u 

i,ie can nmv writ c 

.... = cm 
I (.... " ca + cmp, Vl~l \ lJa I 

ce. = ca 
II (CL + 6) 

\. a) 

By subcti tuting the corresponding values right and left, 

we obtain 

c ' c~ T [ (CL + 6 m a. 

F '" x 
[to U' + tu FuJ I 0 "'u 2(5 + Crop ... 0 + ca cos CL F ryes 

0 

(a 
F - FU\ 

[ Cm 
1 I 6 

0 
+ Cr!1p ] = ca + - (5, 

Fges J \. 

It is obvious that, for (J = 0, the right and left sides 

agree. If (5 * 0, vve would tl1811 r.rave to add to the right side 

(disregarding the higher ordel' of magni tu:t.e of the small members) 

2 c I a 
v '" 

lJ X ·:"B-·~l1~ cos C, 
.t- 2: 88 

so that the expl'E~ssion for tr.c rJ."!oIT-.snt v[ould. assume the following 

form: 
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The second term in the bracl:ets, howev(;r, can obvimlsly be 

omitted, if botil the stagger' and tl1-e c:ecalage do not sim~ltaneous­

ly have large values.· This term is positive when both stagger 

and dece_lage ar~ simultaneously either positive or negative and 

it then increases the moment. "v'f:::en the signs are unlike, how-

ever, the expression is nesative. 

Oalculation of the Static Stability 

We will now turn to the calculation of the static stability 

of a monoplane, to which, as we demonstrated in the preceding 

section, the biplane can be reduced. 

iYe y;il~. first consider the stability in horizontal flight. 

Fig. 2 represents the airplane under consideration. The origin 

of the coordinates is loca ted at the ref erenc e pc int of the mo-

ments and allqup,ntitios are calculated as positive dovmward and 

backward. The moments are be.lanced. (ex. = 0) at the angle of 

attack i. The anO'le ex. re=f~rs to the mean-chord line . t:: (Mi ttel-
\ 

linie) and therefore has a djffe:.reD.t meaning from that given it 

above, where a. is the angle of attack of the wing chord. 

S = -oropeller thrust tUI'ning e.bout the center of n10ments on 

the lever arm s. (8 is assumed to be parallel to the mea-D­

chord line); 

.G = tote.l weight of ai:r:-pl::t!le; 

r = distance back to CGn
J00r of gravity; 

h = distance down to CG1'lt er of gravity; 
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W = total structural drag acting on lever ar-m \7 (VI{ X w is 

assu!"1ed to be inc.epenctent of a.); 

r = distance of center of :!.ift of tail.group from the center 

of moments; 

f = total area of borizontRl tail planes. 

Then the total moment of the alrplane, referred to the nor-

mal center of moments of the wing secJ;.;ion, is 

{ 
s 1 ~ cos a - h s in a. 

M = q F t cm - Cw gas "=t -co~ a. - ca .,}-_. t 

+ Cw s ; + ~; ~ cn t ( cos a. - r t 's ina. ) } 

In this formula, Cm = the contribution of the wing, 

s 
Cw ges t __ .l.._ = the contribution of the pro­

C08 a. 

peller thrust (in unaccelerated flight), 

ca r cos a. t - h sin a. = the contribution of the 

total weight, applied at the center of gravity of the airplane, 

Cws 1 = the contribution of the structural 

drag" which, as alre&.d.y mentioned, is assumed to be independent 

of the angle of attack: 

of the horizontal 

r 
t 

( ccs 0:. 
\ 

.. .., "\ 
" stn c: i= the contribution 

L / 

normal force coefficient 

times the area of the hc,:J . .'iz:n,·,tal tail plane). 

We now transform, the expl'es3ion for the tail plane and com-
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(Fig. 2) in such manner that the 

tail mome!lt,vanishes :for (X. = 0 (hence for the balanced flight 

condition) . 

At first we can disr0g~rd !..£ S i!l a. 
L 

in comparison with 

cos a.. Furthermore, D.pproxima te~y 

'. (a. + i' + A o.F) cos a.. cn 1 = cal cos a. = ca' ( a. ), - u. 

Co. 1 is a cons tan t for the existing augl e-of-attack region. 

Wi th' sufficient o.ccurcLCY, as ciemc)l1st:-ated. by the expe!'imental 

!'esults, we CB.n write 

C I a (a.) = 5.·25 

1 + 1.67 ~2-

f:::, eLF is the dow-u!J'J9.sh angl e produced) 1)y the dmm.wash from the 

wings, at th~ position of the horizont~l tail plane. 

= ~. (X-,,\ ca I F (a. + 6) . 
Ti \' '" I 

,0 '"F 

It is 

The index F shows that the aspect ratio of the wing is meant. 

If the airplane is to be bR.lanced for 6 <-Fig. 2), with a 

* This downwash E'.ngl e 1JVo.S procluc;e1 by ellipt ical 1 j.ft dis t:ribu­
tion resul ting from the descen,-~..l.Ijg vortex, whiJ.e the stn.l less 
important effect of the sup:pol"~i~lg vortex and also the effect of 
the distortion·(rol1.ing up) of the vortex band..;; which occurred 
a t large ca va.lues, V7as dis:r:eg3.:;-.'ded. See Fuchs-Hopf "A erodynam­
i1::," Berlin} 1922, p.J.L~5, a:(:~.espI3cl~.11y, H. B. H~lmbold'l "Ueber 
d 1e Berechr:.ung des Abvnn0.es lllY.::V;r 81nem rechtecklgen Flugel, II 
Z. F.M. 1925, p.291. CU~;:, for::!JU:~.';i., aside f:CO:Il the disregard of the 
support ing v o:ctex, . re.p·.L'z:S9:r!.t::3 ;:;'>:G up;,;<:.' lim: t f or the dO'"m':;ash 
~ngle. It is sufficiently acc1..:..rate for practical purposes. 
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syn~metrical cross section of the horizontal tail pI C'll 8 , we r.:c-

cordingly have 

i 1 = 2 (F \ Ca 1 F 6 
n \b2

/ F 

After inserting .this, '-"Te have 

(6) 

~- (£ \ 
cn L = c I, ex, cos ex, r 1 - , CalF] a ~ n \b 2 JF 

, 

C.., 11 ex, cos ex, = 
'- " 

Serein 

- 1 
c13. F 

( 1 
\ ~. 

- 1 ' Cct ?) 

== :3 (E-\ 
TT '''-b2 'F 1 + 

( 7) 

5.35 
1. 67 (L \ 

\b 2 .' 
"F 

The indexes 1 and F refer respectively, to the tail and 
\ 

wing. We. accordingly ho,ve 

M 
q F t 

= ('-­-m -
S 

C'~T '''''es -t .. 6 
1 ca r cos a. - h s:1n ex, +.. w 

t '-1;'\18 t cos ex. 

L f 
+ - - c ''1 f'Y (1 -c ,.,.,,') t F a ~ .~ - a ~ 

Taken in order, the ter.~s on the right side indicate; 

The moment coefficient of the ning, 

II II \I If II propeller thrust, 

II If If produced by the weight of the air-

II 11 " 
plane, 

of the structural or parasi te drag, 

If If II II II tail .. 

The moment coefficients 0: the propeller thrust and structural 

drag are generally of no importance. 

The airplane is to be balanced :01' the angle of incidence 
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i (Fig. 2), nc:mcc for a. = O. For this CC':.SC 170 hav'C 

M s r w ---'~- = Cm - c- - - cC. - + C - = O. q F t ~ ~ gcs t t ws t 

From this we obtain the eX:9l'es sion for the requisite dis-

tu~ce aft of the centsI' of gravity 

r = 
t 

ges c ~ + cws w 
v t --------.:----"- " c['..o 

(8) 

wherein the values 0:.110, C',7 ges 0, . [\nd cao C'.re to be inserted 

for the corresponding e..ngl e of incide:1ce i (Cl. = 0). 

All the quanti ties ·~re now knm--:n. for cr.lc'..llnting the ;:::lorr..ents, 

excepting Lf for the tail moment. In order to find this~ we 

add the other :i10i~ent coeffic j. ents nnd plot them ~ga.inst a or 

ca' Then L f is so determined tlm t, according to the degree 

of stability desi7ed, the moment coefficient of the horizontal 

tail plane for the existing a· or ca is eqUEll to or greater 

than the maximu];J. 'l."Jing or. other moment. 

Attention is hereby ca.lled to the fact that sand h c..re 

culculated positively downward from the reference point of the 

!!1O!n ents (Fig. 2) and arc therefore partly noga ti v e on biplo..nes 

[l_nd lOW-Wing r:1onoplanes., It is known that the small angle of 

attack combined with large d)~[::g coefficients in some airfoils 

(c. g., those TIi th leadiil.g edgl';s Sh2.Tpl:l curved d01.7nv;ard) can be 

dangerous for low-winged rrwnoplanes, is there is not a suffici-

e~tly large stabilizer provided. 
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Our formula needs to be sup,le~entcd for steep gliding 

fl ight '-'Ii til engine s"coppcd . In this c::\se, the ·,·:.reight of tho 

airplane c:m be divided in"co one COfJ1";)o:cent in tho direction of 

the lift and another in the direction of tho drag (Fig. 3). In 

unaccclera ted flight, thes e CO::lponents c..ro respect ively equal 

to the lift and drag, but in opposite directions. In equation 

(42,) for the total moment, the expression 

1 
cos ex. 

is then to be replaced by 

r sin CL + h cos CL 
Cw ges t 

1r;re mU8t therefore find vJhet'll.er 

__ 8 __ > r sin CL + h cos CL • 
t cns CL < t t 

The moment fonnula would then reac'1..! 

M 
-q-=F-t = cm - Cv:r 

X--E.1X':' G. + h 
ges t 

cos CL 

\,1 L +' 
+ Cw s t' + t -}:; Ca 1 L CL (1 

ca r co s ex. - h 8 in CL 

t 

.( 4'0) 

This is of no practical importance, since the r.1oment coeffi-

cient produced by the drag is' generc:lly small in comparison 'V'fi th 

the other quantities and, oe.3iGes, S/COSCL can hard.ly be smaller 

than r sina. + h cos CL· Moreover, the last equation (4b) 2.1so 

applies to enginel~ss airplanec (gliders) . 

The expression for the requisite aft position on a glider 
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ca.n be found by putting, as before, a. = O. We then have 

C C h + mo - w ges 0 -t-
r = 
t cao 

(8a) 

In closing, we wish to deduce one more simple formula for 

the approxima,te calcula,tion of the dimensions of t1:.e horizontal 

tail plane. Fcr this purpose, we write the equation for the 

equ il ibra t ion of the moments in the following form: 

1 

t . ) ( 6) (-:: + a. h\ + !. 
ca (a. a. + \t tJ t (9) 

in which we develop sino, and cos a. a.nd disregard the terms 

with higher -powers of ex. • 

The stability for:'!1Ula now reads 

:,'5.JA. > 0 
deL 

or, expres sed In words, tf we 3 re to have stabil i ty, ther;:, with 

increasing angle ex. , a more rapidlY increasing positive (hence 

nose-heavy) moment must; be produced and, conve:rsely, wi ti1 a neg-

atively increasing angle, ex. , D.. greater falling nego,tive(hence, 

tail-heavy) moment l'1.1Ust be PT'Js.l'..ced. Or; more briefly, a re-

storing moment must be "rJj~()d:t.lc(;{;. in c:.:~,s tU.i'ban,C8s of the state of 

equilibriUm. 

We differentiate eq1..~.ation (9) vvith res,})ect to a. and obtain 
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M = C I [r ... I _ r 2 ca F. s h (2 rv + 6) ] . 
a -!II f - 11 b2 t + t '-'" q F t 

If 1 ( + tF ca I I - t ) ;> 0 - ca F ~ " 

If we now disregard the terms containing sit and h/t,. 

and writs -cpproxtmately for r/t' the expressj.on Crno/cao -' equa­

tj.on (8), we finaJ.ly obtain 

ca I 1" ( 2.rno - c I ( )'1 
L t ~ __ -_~ ca9 __ ~ __ ca ...!. 
t Ca t I (1 - ca IF) 

A n E x amp I e 

On account of our many omissions, we considered it adviE.a-

ble to test, by an example, the resulting differences, as com­

pared 'Flith the accurate metilOd of computation. For this pur­

pose, we chose the example publis~ed by the DoV.L. (Deutsche 

Versuchsanstalt fLi:c Luftfahrt). 'ihe dimensions of the biplane 

cons idered are represented in Fig. 4, and. are numerically as 

follows: 

Lower Win!:]' o 

Area 

Span 

Fo=19.2 m2 (206.7 sq.ft.) Fu=18.0 m2 (193.8 sq.ft.) 

b o=12.0 m ( 39.37 ft.) bu=J2.0m ( 39.37 ft.) 

Mean chord to= 1·6 m 5·25 it.) 

Airfoil G~ttingen 398 

Dist:· ·'Hft· ro= 0.82 m( 

Dist. down ho= 0.93 m( 

2.69 ft.) 

3.05 ft.) 

tu= 

ru= 

hu= 

1.5 m 4.92 ft. ) 

G~ttingen 398 

0.24 In( 0.79 ft. ) 

0.67 m( 2.20 -"'+ ) J. u • 
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Decalage 

Stagger ~ -- 200 

Gap h = 1.6 m (5.25 ft.) 

Elevator: 

Area 

Spa.n 

Chord 

Distance of center of gr8vity 
from elevator axis, 

Angle of incide:lce of elevator 
to mean chord of wings, . 

Coef. of structural drag, 

Lever arm of structural drag, 

Height of propeller axis above 
center of gravity, 

f = 

bu := 
u 

tH = 

L = 

cr := 

cVlS = 

3.8 m2 (40.9 sq.ft.) 

Z,.74 m (12.27 it. ) 

0.95 m ( 3.12 ft. ) 

4.44 m (14.57 ft. ) 

0.40 

0.02 

0.15 m ( 0.49 it. ) 

0.2 r.'l (0.66 .co. ) 
l. L. 

The wings are balar~qed at an angle of attac;r of 4.50 and 

ca = 0.77. If the position of the equivalent monoplane is calcu-

le.ted according to the a.bove formulas, the clistances from the 

lea.ding edge to the center of gravity c:re 

Aft r = 0.553 m (1~8l ft.) 

Down h = 0.150 rn (0.49 ft.) 

According to equation (8), a distc:nce Qft of r:= 0.558 m (1.83 

ft.) would 'be required. Th'3 engle of incidence of the elevator 

to the mean chord of the wings is fm'>.ild RCcol-ding to equation 

( 6) to be cr = O. 6 0 ( aga ins t ~, 40 ) . 

In Fig. 5, the airplan'3 pol~r is plotted accurately and the 
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points are also given (+) for the approximate polar~ disregcrd­

ing ~:ne stagger c.nd decalage. (The "bending effect" is alRo 

disregarded here.) 

Fig. 6 shows the course of the moment curve both by t~1e ac­

curate method and by the .approximat e method. The'moment curves 

naturally differ~ for one refers to the lee.ding edge of the 

equivalent mono'9lEme and the other to the center of gravity of 

the ~irplane. In both c[' s os, the wing moment is zero , with al-

most the same angle of attack. 

On the basis of the preceding co~side~ations and of the ex-

ample, I thtnk it is not too much to clalr.1 that the simple meth-

0'1. sho'wn is entirely satis::actory for practical purposes. The 

deviations in comparison with the accure,te method of computation 

fall v;rithin the Jimits of the errors in computing with a slide 

rule. 

Summary 

A decalaged and staggered biplane can be approximately 

pla.ced by B. monoplane whose aspect ratio is given by K 2: ~ 
b 2 

1 

The moment of this monoplane is 

M = OrnE t:s F ge s q ( 1 \ 
-J 

re-

j.n which CrnE is the moment cocffic ient of the given airfoil 

ca.lculated for the a"Jove aspect ratio, 



l7 

(Fig. 1), is n3;:;r:.ti'!oly i::1cl ined ':.'i tl1 the 1:~:r:gle 

whil·:? t~le [,ft r.110. depth 1)ositLm of the equiva,lent monoplc.ne 

pith tt.e not'Jtions of Fj.g. 1 is given by the expressions 

1:i' l V" = x ._~u .<\.0 ~ . 
.J. ge8 I 

(3) ~ 
_Fu_ I 

" = y I 

·0 }-'::.J'I".~ I 
i ,,::>,,",,0 

.J 

The course of the tot2.1 Elo:i18nt for ;=>,11 G.lrpl[~ne is given by 

the equntion 

_?fi._= c.::1 q F t 

+ 
L 
t 

- c~'J ---~-- - cE!, t cos a. 

- I ) - c['. F 

L.£:23(1. '-:: 
.\-
L' 

11 sina + w 
cYiS t 

') 

cos~(X , (4b) 

t he last tom on the right be ing the coeff ic ient of the tail mo-

m ent, j.n which 

C I, = a v 
5.25 

/f '\. 
1 + 1. 67 \ -2" ; 

'b / L 

3· 25 2 /Y:' \, == ; ~-' 
TI \ b 'F 1. + 1.67 ,n" '\ 

\ 2 . 
" b "Ii' 

( .-) .:J 

T~e aft position of the center of gravity is gi7en by the 



t = 

C C S + c TI 
~Q - ~ ges 0 ~ us ~ 

cao 
(Engine d.riven 

airplane) 

(EYlgine1 css 
alrplane) 

18 

(8a) 

From the 8 tab:Lli t.y' copeli t:Lon, we obtain, for the size of 

r; . I H / ~m 0 C. I I \ '\ 
. CL - "c8,0 1:1 , Co.)) . 

Co. I 1 (1 - 'ea IF) 

3up-plement 

Professor Von Karman called my a ttention to the following 

method by which a110wr:.nce can be m3.de for the, effect of the 

stagger on the stability. 

Since the effect is only slight, we will bo satisfied with 

an appI'oxima te ca1cu.la tion} Cls8uming, as the basis of our c1oduc-

t ions, th?-t the upper and lower v.rings do not diffe:' very grcf:l t-

1y fl'om one a118ther, (',ither in tl:.f;i:r o.imcmsjo.:1s or in the con-

di tions of flow to 1}~hich they Cere subj ected.-, 

We will cons idel' the cff set of the 10\'[er sup'port ing vortex 

on the upper. T1o.e c irc'u.l[~ t ion of 'i:;~18 lO~HC l' vort ex follows from 

the expression 

to 

C'i 

-~ r u v 'ou 
Cf' 
o 

v 2 
= 'Y -- GEm Fu 

2g 
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A vorte~ of the strength rgenerates, .at the distance 

e velocity of the magnitude 

~ Ii -- r 
-2-'ll'-r ' 

perper-dicular to the radius vector. 

In our cas8, ti1C foilo\<i.ng 8'reed incr8ment is added for 

the LlVper VriYlg, as the I'e:;u~_t.; of the circula.tion about the 

lower ;;;lng. 
__ ru_. C..,.1· Fu v t. V (Ii]. = = --,'-"-.:!:. -. 
2 n r ,~. "rr bu r 

As a result of this speed incrs::tGnt, the upper wing, with 

a positive sta~ger of S dOfrees (Fig. 7), suffers a change in 

the angle of attack of a.p:;ccximately 

6 vou sin (S - a) 
6 aou.~ --- . "'."V;------

If ~'lJe disregard the speed increment, we obtain, as a resul t 

of the change in the angle of a.ttack, the follmving lift incr~·-

ment for the u,per wing: 

ca:u = 4. "'IT 

.., 
1 c try _v~_ ""'1'0 • a I Sln 
r 2'Y 

((3 - a). 

For the lower wing we obtain a re~}uct ion of 

cc.' () ~Q 1 I'Y :r2 
Fu (p a) 6 ,\ '.~ = _::..:. ... -=.-

CEl ['3 in -.l"'-1iJLO 4, n 00 2:g 
. 

1" 

in the lift. 
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Und.er the inItial Sll:)Positions, riC can nO'1\T aSSU;'!1e that the 

total lift is not changed and that 

6. Aou = - 6. A·.l O 

or that 

6.A = ca 
4n 

t ca 1 'Y _v 2 F sin (p - a.); 
r" 2 g 

in w~ich t denotes the chord and F the wing erea. 

Due to the change in tbe lift, there is generated, nmysver, 

a"t positive angles of attack, a tail-heavy moment of 

6. M = 6. A r s in (p - a.) 

ea 1 v 2 
• .....2 - t ca 'Y -- F S .i..lr 

4TT 2 g 

the corresponding moment coefficient.being 

(p - a.) !; 

sin2 ($ - a.). 

The angle P - ex. may be (esigne.t r3cL 8,S the effective angle 

of stagger. When the an(2;le of cttt,:::,.ck is eaual to the angle of 

stagger, the effect of the stagger vanishes. It also vanishes 

when the lift becomes zero. T:1.e coefficient reaches its maximum 

value at 

a. rv 1 (~ - 2 
3 

~ \ o ) , 

in w:'lich 6 is again the angle between the line ca = 0 and 

the mean-chord line (Fig. 7). 

In Fig. 8, the course of the supplementary moment coeffiei-
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e.nt is plotted against the angle of attack a. + 6 

gen airfoil 426, with staggers of 00
, +20 0

, _200
. 
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II 
for the Go-tt i:i.1-

The effect is generally very slight. The tail-heavy mor.wnt 

coefficients, occurring with negative stagger (which is very eel'-

dom !net with) at large .angles of att9.ck, are small in compar­

ison with those of a single· ~i~g (monoplane). 

The following are the :1ecessary formulas for the stability 

calculation, given in -the )'1ore accurate forl'YJ. First ~'Ve have 

for the I"iing mO!:lent of the bi:plane 

F F 
-..g-u cos u 

lIges:2 

The second tenn in the bracke-ts comes from the stagger ar..d 

dec8.,lage. Since we can put cos Q as approxim9. tely 1, this 

term produces only a para,llel shifting of the em values. The 

third term is sllnply a result of t~e stagger. 

In our moment formula (-4a), we would therefore have to 

substitute the bracketed expression from equation (12) in place 

of cm' 

For the more accurate location of the center of gravity, we 

write 
c~ , :2 

t:, Cm = -an (a. + 6) sin2 ([3 - a,), 

in which a, denot as the angle between the whtl direc-t ion and the 
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mean chord (Figs. 2 and 7); 6, the angle between the mean chord 

and the line ca = 0; ~, the angle of stagger (with reference 

to a perpendicular to the mean chord). Corresponding to equation 

(8) ,. we then have, for the location of the center of gravity, 

,2 
C _s_s 
. a 6 8 in2 ~ _ - -8n Cw ges t + cws t r 

= 
t 

Transla t ion by Dwight rd. Miner, 
National Advisory Committee 
for Aeronautics .. 
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Fig.l Bipl.a:2e ::cepl::wed by equj. vB.le~lt monoplane 

c =0" ! . a -l... 1<---------) --.----.->j 
S~';~; _. "cZ;, F~· L 

1- -~~- --"-....... ---.::::'---;r- --7\" 
~-W--I _._-__ 'I i I 

\ ct I S v.' h c,,=O-, ~ I I la 
-<:_.\-Ot--J..-Y __ ~7 : c~-'---:'-U"- .. f' I 

,----\r~ 'r'"-' - ._- .. .;.--, - '---.'" . -7;;' -,~CJ!S--...- 'L 
~-~~;~ __ -y__ / '\-

. I VI,;I' :~e2.n Ci10I'd line 
Fig.2 Aj,l'plane mea8uremonte a.:nd qU8.ntitios 

required for computation. 

/ 

j':Jan<lOTd lir." 

/ 

Fig.~ Ai~~lo~~ ~n steep 31ida. 
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Fig.4 Diagram of wing dimensions . 

. 0 

. 6 l-'J-oJ-O--A--I--l---l--

C"a 

• 41---I4--+-

.08 .12 .16 
Cw 

Figs.4 & 5. 

Fig.5 Course of biplane polar by both 
accu::ate and approximate computation. 

-
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--·------2ioiJ8nts with ref. to c.s. (accurate) 
II !I II H lec.ding edge (Sbl-

plified) 

-6 
-81-+~""l 

-120 -<9 00 

i + (l, 

Fig.6 I.':ome11t CUTves. 

line 

Fig.7 Effect of stagger cn the effective angle 
of attack. 

~=-200 
Course of supplei~!cmtary i:l0l!1Emt coefficient 
produced by various ansles of steggar. 
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