
F+IECOPT FFILE corl 

A	

LNo1.J	 CASE pp 
COPY-

TECTICAL IiE.0RA1TDLJMS 

I:AT Iol:AL ADVISORY 0O21.IITTIE FOR AERONAUT 103 

No 409 

KINETOGRAPHIC ETERINATI0N 07 A1RPLAICE FLIGHT CHARACTERISTICS 

P. Raethien 

From "Zeitschrift fr Flutectiriik unci Motoriuftschiffahrtll

December 14 and 28, 1226 

a

- 

I

m 

0 Be mu f f to

ifs Was Ot (flt'	 cç$ 

Mwsory Gomrntue 

for Aeronautics 

ashtoiaGo.

a 

Vanton 
April, 1927



NATIONAl ADVISORY CO1'..ITTEL FOR AERONAUTICS. 

TECHNICAL IAEM0RU :JM NO. 409. 

KINETOGRAPHIC DETER'ITAT ION OF A1PPLANL : FLIGHT CHARACTERISTICS.*


I. Kinetoraphic Flight Heasurements. 

By P. Raethjen. 

In the t Zeitschrift fii' Flugteonik und Motorluftschiffahrt,!I 

for June 27, 1925, pages 235-240, I cl.escribed a. method by which 

the flight characteristics (horiontl speed and attendant sink-

ing sp eed.) of the Darmstadt glider IK0flSU1U were determined from 

measurements of a gliding flight in still air. The evaluation 

of the flight characteristics of the Konsul was rendered very 

difficult by the fact that the measurements made with a theodo-

lite and telemeter, according to a method introduced by H. 

Koschmieder, did not yield more than four points a minute; and 

esp ecially by the fact that the time and distance coordinates 

of these points were very inaccurate. I was therefore obliged 

to introduce a correction factor and to alter the flight charac-

teristics diagram until, by integration, it yielded the time-

and.-sace flight path found by measurement. Nevertheless this 

first experiment demonstrated that an accurate flight-path m eas-

urement would enable the determination of the polar diagram from 

a gliding flight. Since then I have accordingly endeavored to 

obtain accurate flight measurements by means of a kinetograph 

*FluFeigenachaftsbestimmung durch kinematogrsphische Flugvermes-
sung. From 'Zeitschrift fur Flugtechnik und Motorluftschiffahrt," 
December 14 and 28, 1926.
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(motion-picture camera) 

This method was first emDiOyed- at the 3 .926 Rhn soaring-

flight contest. The result of the measurement of a gliding 

flight by the 'Roemryke Bere" will be given by Mr. Knott as a 

Dart of this article. I wfll only mention here that the object 

in Derforcing this experim ont was to obtain a polar diagram of 

the air forces by a method similar to the one employed in 1924 

for determining the flight chaiacte sties of the Konsul. 

Since the accelerations developed in this flight were only 

slight, I assumed that the air--force coefficients of unacceler-

ated flight were applicable . The evaluation by Mr. Knott, how-

ever, shows deviations which contain obvious indications of 

the effect of acceleration. The result is therefore not a real 

polar diagram, but only an estimate of the effect of accelera-

tion. Though the result is to b.c regarded for the present, 

only as an indication, it is nevertheles; very valuable, be-

cause the effect of the accelerations is the real object of 

the kinetographic measurements. (See Appendix for further de-

tails.) Even if this indication' should prove to he an error 

caused by atmospheric disturbances, the accompanying report by 

Mr. Knott continues to be of interest, as the first step in 

kinctographic flight measurement. I will first describe the 

aDparatus and the experimental method.
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I. Experinental Task and General Method 

-

	

	 The ohiect of the exp eriment is the determination of the 

path followed by the center of gravity of the airplane with 

reference to time and space. The task is therefore to deter- 

mine the time and. distance coordinates of points as near to- 

ether as possible in the oath of the airplane. As already 

mentioned, these -ooints hd bcen traviously determined by 

means of a theodolite anc telemeter by a method Introduced. by 

H. Koschmieder. The principal disadvantages of this method 

were the inaccuracy and infrequency (only 3-4 per minute) of 

the measured points. It was especially unsatisfactory that 

the sighting and reading, the dictation and recording afforded 

many chances for errors. Hence the new kinetographic method 

was based on frequent points of measurement (as many as 20 

-	 per second) and on an entirely objective measuring method. 

For this purpose the airplane, the spatial coordinates and a 

clock pointer were si1ulbaneousl7 photographed. 

The measurements were made from two fixed bases on the 

"Weltenseglerhang," 200m (656 ft.) apart, covering flights 

from the "Kuope" toward the "Zuckerfeld" or "Eube." The direc-

tion of photographing was nearly horizontal, which was of con-

siderable advantage for determining the flight altitude. The 

fixed bases (Fig. i) were fitted out as follows. At the basic 

p oint itself there is an Ertel kinetora-ph stand with a top
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which can he rotated both horizontally and vertically by means 

of two cranks K. The kinsto g ra-oh is mounted on this stand 

and is constantly directed. toward the airplane by keeping the 

latter in the field of the telescopic finder V. If the orien- 

tation of the camera at t-he instant of exposure is known, the 

icture of the airplane can be photogrammctrically evaluated. 

-Tie orientation of the camera was therefore fixed or the nga- 

tive by the simultaneous photograp1. of stationary reference 

tables (Fi g . 2) together with the airplane. The pointer of a 

cloak was also photographed simultaneously, by means of a device 

which will be described later. 

Three of the reference tables were placed behind each kine- 

tograph a.t a distance of	 w about 2 metes (6.58 feet), as shoh 

in Fig. 1. inev were placed behind the camera, so as not to 

interfere with the field of vision in front. They were there- 

fore photographed fom the direction opposite to the airplane, 

the result being shown on the section of film in Fig. 3. The 

reference tables 

1.5 m (4.92 ft.) 

by taut iron v;ir

consist C(


square.


es, which

I essentially of U-iron frames about 

Each table was divided into squares 

were drawn through holes bored with 

a drilling- jig, in the franie at intervals of exactly 5 cm 

-	 (.97 in 	 between centers. Eehind this trellis there was 

placed a frame covered with white airplane fabric, on which 

A-
	
individual squares were distinguished by numbers. rrhe nun- 

hers were written backward, becaus they annear in the evalua-



N.A.C.A. Technical eoranthin jc 0 . 4O	 5 

tion as mirror -pictures. In order to avoid confus ion between 

the ivi.res and their shadows, the for.eer were interrupted by 

white paint, co that they appear on the photograph as discon-

nectod crosses. The tables were a.djustcd. with the aid. of a 

plumb line, so that the vertical vrres were exactly plumb. 

The horizontal wires should then have been exactly horizontal, 

but slight deviatn w ios ere found, which are attributable part- 

lv to distortions during transnorta ion and partly to inaccura-

cies in drilling the frames. 

The vertical wires are the reference lines for the horizon- 

tal oscillation of the camera and the horizontal wires are the 

reference lines for its vej'tical oscillation 	 Tii vertical 

-	 wires are therefore the ground—plan coordinates for the meas-

urements and the horizontal wires are the altitude coordinates. 

2. The Kinetoraph 

This consists in part of an ordinary kinetorra ph, as used 

by motion-nicture producers. It was also constructed in -oart 

at the Frankfort a. M. Institute for Scientific Photography 

and. in nart at the Research institute of the P11-Roseitten 

Association on the Wasserkuppe. 

-	 The task of taking two nict.ures from opposite directions 

on the seme film was accoirolished by means of total-reflection. 

risms (Fig. 7) . Illustrative diagrams arc sivcn in the aopen- 

dix to my lecture AcceJ. erat cdt Airc,lane Motion.s, delivered at



N.A.C.A. Technical Memorandum No. 4-09
	 b 

the 1926 Rhn soaring-flia-I"A contest and. a1eady sent to the 

H Z. FM. for publication.	 You are here referred to	 th 4.s aupen-

-	 d.ix.	 The technical task was rendered more difficultb y the


fact that neither time nor moans were available for building, an 

entirely new measuring kinctograph. Hence an ordinary mction- 

picture camera was used and the special devices were abided to 

it. The camera aocoi'iingly consists of two parts let, the 

real measuring camera (Fig. 4) which carries both reflecting 

prisms and the reiclving shutter; 2d, the film-driving mechan-

ism (Figs.	 6 	 consists largcly.of the normal apparatus 

with the addition of the device for uhotographing the clock 

(Fig. io). The two parts must be separated to introduce the 

film, but can always be fastened together age.in by the four 

wing nuts. 

The principal difficult y in arranging the reflecting prisms 

lay in the circumstance that the individual ima ge fields 

and B2 were smaller than the lens apertures (Fig. 7). Hence 

the whole anerturo could not be used on the boundary between 

the two fields. In order to eliminate this fault as much as 

possible, the optical axes A l ' and A 2' were so Dlaced that 

they did 'not fall in the middle but on the edge of the image 

fields. Since even, then the images mutually overlapped one an-

other,'lon, tubes were placed. in front of both object lenses 

*The above-mentioned 1Lect.is was published in the ZFM.' for 
Dec. 29, 1926, and the t:aasj..cticn of said appendix is included 
in the Dresent TechnicaJ ye.o:candum. 
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and a partition was put between the image fields B and B2, 

though this partition had to leave a free space for tho revolv-

ing shutter in front of the prism. The partition S naturally 

covered a strip of the film. Hence the photograph of the clock 

face was projected from the hack side on this strip B3 (Figs.. 

3 and 7) which, moreover, runs around the image field B 1 (Fig. 

3). The crosses F 1 and F2 (Fig, . 3) would have to he located 

exactly on the optical axes A	 and A	 or at least at the 

corresnonding distance from one another; if the pivot of the 

camera (stdtionarr top) were on the optical axis A 2 . Unfortu-, 

nately, we had to dispense with such a Cardanic suspension and 

USC a simple Ertel tripod. With this support, the vertical axis 

of rotation of the stationar y too passes through the optical 

axis A9, but not the horizontal axis of rotation, which lies 

6 cm	 in.) below the optical axis A 2 . The diagram of the 

optical axes passing in onosite directions through the pivot 

can therefore, strictly speaking, be utilized only for the hor-

izontal rotation of the camera, but not for the vertical. The 

lateral rotation is made shout. a point on the optical axis A2, 

but, in .changing the vertical 

as a tangent about a circle K 

an error 4 1 h in the vertical 

table, which is a function of 

the radius r (6 cm = 2.36 in

iirection, the op tical axis moves 

(Fig. 8). This motion produces 

coordinates h on the reference 

h, of the distance a and of 

.) of the circle of rotation.
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The f	 gollowin formulas (Fig. s) apply here. 

i• + A1 h =
cos p 

h+Ah h	
(i) 

tan cp=	 a	
a, hence approximately

(2) 

hence	
A1h = r(/'l+	 - 1) 

or approxi:nately

Ah=	 l_ '_•)	 -) a 

This error A 1h can be cartially offset by locating the 

cross wires of the image B2 a little to one side of the op-

tical axis A 2 ' (Fig. 7), so that the two axes F. and F2 

of the reticles (in contradistinction to the optical axes) d.o 

not lie parallel, but make a small angle A 	 with one another 

(Fig. 9). In this case we have 

A2  	 - a A tan	 = - a (1 + tan' ) A cP	 (4) 

A 9 h	 - a (i + -"A9	 (5)

(3) 

The task is now to give 

correction A 1 h + A 2 h shall 

values for r = 6 cm 

in.). Thereby the constant 

because it denotes only a sh

A CP such a 

be as small 

(2.36 in.) 

a Z\-V may be 

ifting of th

value that the total 

as possible within the 

and a = 200 cm (78.7 

el i minated at first, 

zero point on the
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reference table. This constant shifting of the zero point is 

eliminated in the adjustment of the table. The variable error 

2 / 
Ah	 !L	 -- ACP 

a ',a 

shall also be climinated es far as possible. Preferably, 

--  
2a	

0.015	 is chosen. 

Through an error AP	 0.00 was obtained for both meas-

uring kinetorraphs. 

This causes an error 	 -0.005 , which remains 
Ii	 a 

for inclinations 	 below the accuracy of the film reading. 

* For creater inclinations, it can be easily introduced mathemat-

ically (though under consideration of the terms of higher order). 

According to these considerations, we can therefore oper-

ate with the two reticles F 1 and F2 (Fig. 3) as though their 

respective axes were strictly parallel and as if the pivot of 

the stationary top were exactly on the reticle axis F 2 . A 

slight correction would he necessary under certain conditions, 

only for inclinations exceeding 1 : 4, hence for altitude 

coordinates h exceeding 50 cm (19.7 in.). 

In order to avoid changes in the mutual adjustment of the 

lenses and the reflecting prisms, the base plate, which supports 

them, was made exceptionally strong. The lens on . the side to 

'	 ward. the table was a Zeiss-Tessar with an aperture of 1 : 3.5 

and a focal length of 10 cm (3.94 in.). On the airplane side, 

(e)
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a Xenar lens made by Joseph Schneider, with an aoextuTe of 

1 : 3.5 and a focal length of 30 cm (11.8 in.), was used. 
0

The great focal length was chosen in order to enable the 

measurement of the coordinates of the airplane image for the 

single-station method and for the determination of the angular 

position of the airplane, the angle of orientation for the air-

plane axes. On the table side, it was better for the focal 

length not to be too long, so as not to have to make the table 

divisions so small. 

The most difficult task in making the measuring kinetograph 

was the invention of a device for the simultaneous photography 

of the clock. Since there was no room in the camera in front 

of the film, the clock had to be projected on the back side of 

the film (Fig. 7). in this connection a device, which had al-

ready been used in ordinary kinetographs, was found very conven-

ient. It carries a tube R (Fig. 6), in which there is ordi-

narily a telescope for observing the object while taking the 

pictures. The third lens was mounted in this tube and at its 

upper end a second shutter was introduced which was coupled 

with the first and exposed the clock only at the instants when 

the exposures were made for the airplane and the coordinate 

-	 tables. Above this shutter is the clock face which is photo-

graphed, with the pointer, on a diapositive film by transmitted 

daylight, in order that no disturbance can be created by the 

sun, an adjustable mirror S (Fig. 1) is so placed that the
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sun cannot shine in during the whole operation. 

The double pointer Z (Fig. 10), over the U-shaped dial, 

is so operated by an-electric synchronous motor, that it ordi-

narily makes half a revolution per second and therefore makes 

one-second periods. The pointer shaft itself drives, by means 

of a gear, a seconds recording disk S (Fig. ic), which has 

36 division marks on its periphery. After one nointer revolu-

tion, these marks change, in raatioTi, the place P at which 

they are photographed. Hnce i'.ey a':Ltomatically record the 

seconds of the pointer Z. The synchronous motors are driven 

by a three-phase alternating current supplied from a central 

station consisting of a constant-speed motor driving a rotary, 

reversing switch. This rotary switch interrupts and reverses 

the polarity of a 60 volt direct-current circuit and thereby 

furnishes a nonsinusoidal alternating current for the synchro-

nous motors. This current-reversing motor runs synchronously 

with the two three-phase motors at both measuring places and 

is, so to speak, the central clock for both. 

Fig. 11 shows this central clock with its storage batter-

ies, and Fig. 12 shows the inside mechanism of the clock.. It 

is so arranged that it can be enclosed in a protecting case. 

The current-reversing motor M drives, through a worm gear, a 

recording drum R. Marks were made on the soot-coated drum at 

uniform time intervals (every 1/5 and every 3 seconds) with a 

stylus S (Fig. 12) actuated by an electromagnet and controlled
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by a clock U. On its front side, this clock has the plugs 

and switches for the different wires, a three-wire cable for 

each measuring place, with two direct-current voltages of 60 

and 6 for field magnets, armature and recording mechanism. 

The time-mark record enables the control of the revolution 

speed of the current-reversing motor and consequently of the 

revolution speed of the clock pointers at the measuring stations. 

The recording drum has a total rinnr.g time of 7 minutes and 

enables the evaluation of the rvo1uion speed of the motor ev-

ery 1/5 second. The contact clock U is an ordinary alarm 

clock, which carries a contact point on the balance wheel and 

on the balance lever and makes contacts at every oscillation 

period (every 1/5 sec.) and at every period of the balance 

wheel (every 3 sec.). The balance wheel of an ordinary alarm 

clock does not oscillat.e in every period to within 001 sec. 

and consequently this clock is not really accurate enough for 

kinetographic measurements. It . is to be replaced later by a 

good pendulum clock. This was not iossible at the time, as the 

clock had to be set up out of doors for every experiment. 

3. Evaluation of the Experiments 

a) Determination of the groundJ.- For the evaluation, 

the ground plan of the fi iht path is first drawn on a. scale 

of 1 : 500. This is generally done as follows 	 The sighting 

lines from the two base points are drawn in the ground plan and
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their intersection point is the ground-clan position of the 

airplane (Fig. is). The grcund plan must first show accurately 

-	 the two base points and, the refeience tables in their relative 

positions. For this purpose the distances between them must 

be accurately measured. This is done by a combined measurement 

with a theod.otiGe end a kinetograph in the foiIo'ing manner. 

First the two real base points are plotted as-the oscilla-

tion centers of the cameras at their measured horizontal dis-

tance from each other. Then at each 'ease the location of the 

reference tables is plotted with reference to the oscillation 

center by measuring the distances a from the first and last 

vertical line of each table to the oscillation center B (Fig. 

14). Since the distance b between the two wires is 1.4 m 

(55 in.), the triangle including the oscillation center and the 

table is determined by its three sides. The distances c be-

tween the outer wires of adjacent tables are likewise measured 

and determine the relative position of the three trian gles a b 

to one another. 

Each base is thus plotted by itself and it only remains 

to locate them exactly with reference to each other. This must 

be done with the measuring kinetogreph, in order to avoid possi- 

ble constant errors of angle in the kin et- ograph itself. Some 

central landmark is then selected and photographed from each 

base with the corresponding kinetograph, the same as in a 

flight test. A definite ground-plan coordinate of the central
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landmark is thus obtained at each base between the vertical 

wires on the reference tables. This ground-plan coordiiate is 

plotted as point A in Fig. 14. The same central landmark is 

also measured with the theodolite by the well-known "two-statibn 

method" from both bases and plotted in the I : 500 ground plan. 

Then the reference tables are Diottel as shOwn in Fig. 14, so 

that the point B ceincides with the base point and the line 

AB Das.ses through the central 1andiik. Thereby the base lines 

of the reference tables are preeraby plotted on a larger scale 

(e.g., 1 : 2 has been found satisfactory) and then reflected 

into the measuring field in front, in order to save room on the 

drawing board. 

For the determination of the flight-path points in the 

ground plan, it is first necessary to obtain simultaneous values 

of the coordinates. Since the clock pointers move synchronous-

ly, this is rendered possible by the clock photograph. The 

ground-plan coordinates of a series of film pictures are first 

taken from one measuring place, e.g., once a second, or every 

16th picture, thereby correcting the deviation of the airplane 

from the cross wires in the photograph of the table. Thus the 

oblique cross F. of the small image field B 2 is corrected 

corresponding to the deviation of the center of gravity of the 

air lane from the cross F1 (Fig. 3) of the larger image field. 

The ground-plan coordinates thus obtained are tabulated with 

the corresoonding clock-time readings. Fiom the other measuring
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place there are generally no photographs which coincide exactly 

in time with the ones in the table. Hence, for every p icture in 

the table from one measuring place, two pictures from the other 

measuring Diace must be utilized, one of which was taken short-

ly before and the other shortly after the, one from the first 

measuring Diace. Between these two, the ground-plan coordi-

nates will he interpolated in direct dependence on the time 

values. Since the successive exposures are only 1/16 second 

apart, linear interpolation, is possible within the accuracy of 

the time measurements. Through this interpolation, we there-

fore obtain the ground-olan coordinates of the second measuring 

place, which belong to the table of the first measuring place. 

Each of the two coordinates is plotted from the respective 

measuring place, as a straight line from the base E to the 

-	 correseonding coordinate point of the reference table, and the 

intersection point of these lines is a point in the flight 

path.

If, for any reason, one of the two r:easuring places is miss-

ing, or if the clock fails, the determination of the flight path 

is nevertheless possible in the "single-station method." This 

single-station uethod deduces the distance between the airplane 

and the camera, from the magnitude coordinates of the airplane 

p ictures, the dimensions of the airplane itse].f and the focal 

length of the lens. Under present conditions the calculation of 

this distance is very simple, because the geometric problem is
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almost two-dimensional, since the optical axis (sighting line) 

lies nearly in the plane of the airplane (fuselage-wing plane). 

The general three-dimensional problem reads: "The lengths 

c and d of two vectors (fuselage c and wing d), which are per-

pendicular to each other, are given. The cartesian components 

0 1 , C2, d 15 d 2 of these vectors, which lie in a plane perpen-

diculr to the optical axis, are phoographed." The first equa-

tions therefore express the reatiois between the components 

and the len gths cf the vecors 

2 + c 3 2 = c2 c 1 2 + c2 
(8) -2	 2 

1 + 2 + d	 = d2! 

Thereto is added the perpendicularity condition between the vec-

tors c and d

c d 1 + c 2 d2 + c3 d	 0	 (9) 

Lastly, the relation between the natural-size components 	 -. 

and the image components, which latter will here be designated 

as "image angles." These are obtained by dividing the coordi- 

nate lengths of the film image by the focal length b. The 

axes of the cross F1 , can be used advantageously as the carte .

-sian system of the film image (Fig.. 3). These coordinates are 

therefore

'o 5, b 6 and b y 1 , bY2, 

in which b denotes the focal length and Y, 5 the "image
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angles." We then have for the distance a of the airplane 

c 1 =a eY 1, c2 =ay2	 (10) 

- a	 , - - a 8 2 (-, 

Since the image coordinates ( and. 5	 are known in. these 

seven equations (s and i) ,	 they contain seven unknowns .	 The

distance of the airolane can therefore be determined from these 

equations. The equations (8 - 11) naturally also enable the 

determination Qf the conoonents C 1 , c 2 , o, d, a2 , a3 and, 

with the aid of the orientation of the camera, the evaluation 

of the spatial -.osit-ion angles of the airplane axes. 

First equation () is squared and equation (8) inserted, in 

it:
- (c	 ,2	 2 

	

(c1 a. + 02 a 2 , -	 -	 - c 2 ) (a2 - a 1 2 - a22) 

-	 Then equations (io) and (ii) are introduced 

a4 ( " 1 5 + y2 52 ) 2 = c2 - a2 ( ry 12 +	 d2_ a(612+ 52} 

	

+ r 2 021 -
	 2 + (2	 1 ) (2 + s)	 +• a' -{('	 s

+ a Jc 2 (512 + 522)+ d2 ( 2 + Y2 )}	 c2 d2 

or, after removing the coefficient brackets from a4 

-a (Y1	 - 2 5)2+ a2 j 02( 8 2 + 522 )+ d2(ry12+ 2)

(12) 



1.A.C.A. Technical Memorandum No. 409
	

18 

The coefficient of a 4 aDparently disappears,* when the 

optical axis lies in the plane of the vectors c and d. Since 

this is generally almost the case and since the coefficient of 

a 4 is consequently very small, equation (12) can be solved only 

as a linear equation of a 2 	 A. division by the very small quan- 

tity (v 1 6 2 - ( 2 61 
)2 

w3uld burden the solution of the quad- 

ratic equation of a2 with great errors. It is therefore, 

2 -2 
2  	 C -Cl  

a = ________------------_____________ 
2'	 2	 2.2	 2	 _(	 -	 2 

C 6i ± 6 )+ a ( y]. + Y2	 a Y1 02	 Y2 6) 

It must be borne in mind that the ri ght-hand term in the 

denominator, which contains a 2 , plays the role of a correc- 

-	 -tion term, on account of its small coefficient. Therefore, a 

first approximation a for the distance a can be determined 

as: 

-	 2	 2 _2	 L'	 L.	 / 
a

	

	 --	 14 
c2 (2 + 622 ) + d.2 (,i2 + 

This first approximation is suffici.ent when the optical axis 

f.11s in the plane of the vectors c and d. If this. condition 

is OflIy approximately fulfilled, the second approximation 

suffices, which is obtained by substituting in equation (13), 

at the right in the denominator, a for a and by developing 

the geometrical series as far as the first term 

*The equation
= -
	 ShOws that the fuselage axis and the 

wing spar lie i 
2 

n the same straight line on the picture.
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6)2 
-2	 2	 4

(ey	
2 -	 1,	

(15) 
_ _ 

=-a +a	 2(5	 2 
C	 12 + 2 ) + o (y12 + (.y22 ) 

The distance a is converted into a horizontal distance 

by means of the vertical coordinates on the reference table. 

This horizontal distance is then plotted in the ground plan on 

the corresponding sighting line, which passes through the base 

point B and the corresponding coordinate point on the ground 

plan of the reference table. (See H. Knott' s ground plan of 

the "Roemryke Berge" flight.) 

b) Determination of the altitude.- First the zero line 

must be located on every table, i.e., the number which, as a 

coordinate, belongs to an object on a level with the measuring 

place. This zero line was likewise determined by photograph-

ing the central landmark. As ex plained in the description of 

the camera (Fig. 9), it does not lie at the same height as the 

lens, but at an angle of	 below it. As demonstrated 

above, we can proceed, notwithstanding the altitude evaluation, 

as though the angle 	 were Q . Therefore, the zero line


on the tables is also determined on this plan. 

From the photograph of the central landmark H, we obtain 

an altitude coordinate H' on one of the tables. From the 

measurement of the vertical angle	 toward the central land-

mark, we obtain a corresDonding height h' up to the zero 

line on the table (Fig. 15) with the aid of the horizontal dis-
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tance a' taken from the ground plan. If we subtract the 

height •h' from the altitude coordinate H' of the central 

landmark H., we obtain the zero coordinate N'. This differs 

a little under different lateral coordinates, since the hori-

zontal wires on the tables ar not strictly horizontal. Still 

the inclination of the ze:'o line to the wires is determined by 

a round measurement with the theodoite from the camera stand. 

ifl this manner the zero coordr.ates on the three tables are de-

termined and plotted for all-U-1.e leral coordinates. The de-

termination of the altitude h of a point in the flight path 

above the measuring place is now a simple calculation in pro-

portion. It bears the same ratio to the coordinate height h' 

as the ground-plan distance a of the flight-path point to 

the ground-plan distance at of the lateral coordinate. 

4. Focal Lengths and Accuracy of Measurement 

The accuracy of measurement is chiefly determined by the 

focal lengths. Knowled ge of the focal lengths is especially 

necessary in the transfer of the coordinates measured in the 

image field of the airplane (deviations of the center of grav-

ity of the airplane from the cross wires) to the image field 

of the reference table . The transfer is effected by shifting 

the oblique cross 372 (Fig. 3). The magnitude of this dis-

olacement bears the same ratio to the amount of the deviation 

in the image field of the airplanes as the corresponding dis-
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tances of the image plane from the main Plane of the lens. 

This distance is the focal length itself for photographs taken 

at an infinite distance. This is 292 mm (11.5 in.) for the 

airplane photographs in both cameras. On the other hand, the 

image distances for the table photographs differ fOr the two 

cameras at the 2-meter position of the ?..ens. For every camera, 

therefore, correctioms were made for the corresponding displace-

ment of the oblique cross F2 in the table image field from 

the coordinates in the airplane imse field (Fig. 3). This 

evaluation is made on a projected image magnified about fifteen- 

fold. It was found that an evaluation, of the film to 0.02 mm 

(o.000s inch) vas the utmost possible. This accuracy cannot be 

attained, however, in the present arrangement of camera and ref-

erence table. Hence an evaluation to 0.05 mm (0.002 in.) was 

considered satisfactory, this value just corresponding to the 

thickness of the photographed wires anj to the thickness of the 

cross wires. The accuracy of the evaluation can he considera-

bly-increased by evaluating all the film images and thus deter-

mining 16-20 flight-path points per second. The accuracy of 

the result is considerably increased by averaging so. many ñeas-

urements. 

In the ground plan the flight-path points can be determined 

by the two-station and also by the single-station method as ap-

plied at each camera, hence as intersection points of two cir-

cles and two straight lines in the same point. The two-station
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method ill renerally give the --lost accurate result, but a sfs- 

tematic deviation in the aoplication of the single-station meth-

od would at least show any disturbsnce in the experiment, e.g., 

any error in the siirchronism of the clock ointer. 

The altitude of the flight-path point is also determined 

from both measuring places and. syst:.matic discrepancies in these 

two determinations mould likewise hw errors in measuring. 

Such errors were manifested in the first measurements with the 

"Roemryke Bergett and 'Westpreusen t by a displacement of th.3 

zero coordinate on the reference tables. It was, however, Pos-

sible to determine the zero coordins t e from the measurement it-

self, as will be explained by Mr. Knott. 

In concluding, I wish to disclaim any idea that the kineto- 

graph described in Eectin 2 is a technically perfect instru- 

ment. As already mentioned, the described form was necessita- 

ted by circumstances. A a.tisfactory kinetogiaphic instrument 

had to be nroduced in a short time with very few technical re-

sources. 

The equipment of the measuring station with a wooden stand 

and makeshift reference tables was due to lack-of funds. In 

the evaluation of the first flight measurements it was possible, 

only with the greatest pains, to eliminate errors due to changes 

in the position of the stand and tables. It is therefore essen-

tial, for very accurate measurements, to create perfectly stable 

measuring stations. Moreover, the evaluation of the Roemryke
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Berge' flight shows that the determination of the altitude and 

time are not yet sufficiently accurate for accelerated flights. 

For these measurements we should have an angular accuracy of 

0.0002° to 0.0001 0 and a time accuracy of 0.005" to 0.002'. 

Concrete measuring-bases and great focal lengths on the table 

side, an accurate ccritact clock and a constant motor with con-

siderable reserve pc-,,T er are the resoirces which render these 

goals attainable. 

This improvement in the ki.ieto graphic records must be ac-

companied by accurate records made on the airplane, of the lon-

gitudinal inclinations, dynamic pressure and angle of attack. 

The first experiments with 'Askania" dynamic-pressure recorders 

were unsatisfactory. Accurate records can nrobably be best 

obtained by photographing the instruments. A simultaneous ser-

ies of photographs taken on the airplane, of the horizon, clock, 

dynamic-'pressure indioato, angle-of-attack vane, and possibly 

of the control stick, should supplement the kinetographic rec-

ords made f'rom the ground stations. Only when this is accom-

plished, can free-flight experiments equal wind-tunnelexperi- 

ments in accuracy.
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II. 'Roernryke Berget 


B H. Knott 

S y ru b 0 1 S 

C	 drag cocfficien'G of airplane, 

cw 1 drag coeffic i ent-of wing sect ion or profile, 

0a	 lift coefficient of airplane, 

density of air (kg/rn3), 

acceleration due to	 avity (m /S2) 

F	 wing area. (2) 

G	 weight of airplane (kg), 

measured tangential s p eed (m/s), 

vh measured horizontal speed (rn/c), 

sneed in steady flight (rn./s), 

vh horizontal snee in steady flight (m/s), 

if	 angle of glide in steady flight, 

c	 - tanc° spatially measured angle of flight, 

-t	 time (Seconds), 

correction factor (%), 

a	 constant .(s2/m2), 

constant (2/s2) 

The remarkable flights of the I Roernryke EerRe, ' with 

Nehring as pilot in the 192 Rhn soaring-flight contest, cre-

ated a desire to test the flight characteristics of this glider.
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This was the first oortuiitt to try the above-described method 

Of 'kineto2rapj 0 flight measirements" developed by Mr. P. 

Raethjen. The intention was to determine the Dolar curve of 

the glider by an experiment in which the glider was to pass 

through all the sp eeds at a low ac celeration. In the evaluation, 

however, it was found that the flight was affected by influences 

which made a direct detrminatjon of the Polar impossible, so 

that the work shor's on!-.,,r an estimate of these influences and the 

calculation of an f-curve, which is to be rerded as an energy 

balance of the tested flight. 

The Experiment 

On the morning of August 8, 1926, the velocity of the wind 

over the U Wasserkuppe tt was almost zero (less than 1 m/s). For 

days there had been high- pressure weather. The day seemed suit-

able for the test flight and toward 9 o'clock a.m, the Roem-

rykc Berge started. Nehring, as pilot, was instructed to push 

the glider slowly from the minimum to the maximum speed and then 

gradually slow down again, while maintaining as straight a 

course as possible. The measurements were made from the ground 

with the aid of the measuring kinetograph. The dynamic-pressure 

recorder used on the glider was a s pecial instrument made by the 

Askanja ',"forks. Unfortunately, the clockwork for rapid record-

ing proved ver:r unreliable, rendering it imoossible to identify 
the time. Nev ertheless the diagram furnishes a good record of
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the 5?ecds in the range of the most favorable angle of glide, 

so that it seemed appropriate to publish it (Fig. 19). The 

speed range went only to 20 n/s (65.6 ft./sec.), so that the 

maximum sneed could not be checked with the dynamic-pressure 

recorder.

E-aluat ion 

The evaluation was made n the manner already described by 

Lr. P. Faethjen. Fig. 16 shows the gr( 

path. The reference tables were diavn 

as reflected in front of the measuring 

which were obtained b y the two-station 

as full circles. They were determined

)und plan of the flight 

half their natural size, 

places. The points, 

method, arc represented 

by the intersection of 

two steel wires, which are to be regarded as measuring wires 

and M 2 . The steel wires can be wound around pins which fix 

the Dosition of the vertial axes of the kinetographe. 

On account of the unfavorable location of the first meas-

uring stand and the lack of experience in following an airplane 

in the finder, the first 19 seconds could not be photographed 

from the measuring stand I. so that they had to be calculated 

b the single-station method from measuring stand II, in tbe 

manner described above by 1/ir. P. Raethjen. The calculated 

noints are represented by crosses. The two-statibn method is 

naturally more accurate than the single-station method. The 

scattering of the single- station points is due to the impossi-

bility of accurately measuring the airplane coordinates, since
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one winT tip is hidden by the fuselage. At long distances the 

sinle-station method gies only inaccurate results, since the 

• determination of the magnitudes is difficult, due to the small-

ness of the p ictures. We therefore stopped calculating by the 

single-station method the distances of points on the flight 

math which had already been definitely located by the two-

station method. When maauring points were lacking on one film, 

the measuring rays of the other film were made to intersect 

with the rcund plan (represented by the cross lines in the 

flight path), in order to be able to determine the flight dis-

tance and the altitude for these intersection points. 

The ground plan (Fig. ie) shors slight oscillations which 

might indicate measuring errors. The slight curves are, how-

ever, real because, according to Netring, the glider was longi-

tudinally and laterally unstable and very difficult to hold to 

a' rectilinear flight path. The deviations of the measured 

points from a smooth round-plan curve do not exceed 2 m (6.56

ft.) at the moint 

Nevertheless, the 

must be considera

of intersection by the two-station method. 

accuracy of the flight-path determination 

aly greater, because the ground-plan path is 

smoothed out at numerous points and especially, because the in-

tersections of the individual measuring lines with the ground-

ols.n math are considerably more blunt than the intersections 

of the measuring lines With one another. The ground plan now 

forms the basis for the altitude determination. The altitudes 
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ere calculated b y :.r. Raethien'e method and clotted, in Fig. 2 

ainst the corrected flight path, as was likewise the flight 

time, which was determined from the soot record of the operating 

riotor. There were some difficulties at first, in that the eval-

uations from the measuring base II did not agree with those from 

base I. The error was du to the fact that the reference points 

had changed position in the interval. (about 14 days) between the 

calibration and the xper.ment. The fact that many reference 

points of the 1andscp.e could b foufld on the film itself, led 

to a satisfactory result after recalibrating the reference 

points. The following table contains the results of the calcu-

lation and evaluation for the HRoemryke Berge.t1 

SyLibois 

s	 flight distance on ground plan ,(m), 

-	 h1	 altitude above measuring base I (m), 

hI altitude above measuring base II (m), 

h difference in altitude between the measuring 
bases	

6•7 m (about 22 ft.), 

t flight duration (sec.).



N.A.J.-. Technical Memorandum No. 409
	

29 

Table 
-	 1 
--	 s	 h1-i-Ah 1 111. I1

1
S hi+Ah hIT 

-
t 

0.
m	 m s o.i iii m m s - 

1	 34.0	 - 31.4	 0 311 391.5 11.9 12.2 27.00 
2	 57.5	 - 29. 5,	 0.98 32	 396.5 - 11.6 27.24 
3	 79.5	 - 29.5	 2-00 33	 410.0 9.9 10.0 28.02 
4	 96.5	 - 30.93.00 34	 427.3 7.6 7.8 29.09 
5	 0- 32.1	 4.06 35	 450.8 - 6.5 29.52 
S	 124.5- 35.5	 5-13	 j 36	 451.0 4.2 - 30.19 
7	 136.5	 - 34.5	 G13 37	 458.0 1.0 1.0 31.22 
8	 149.0	 - 35.4	 7.22 38	 33.8 - 2.8 -	 2.5 32.32 
9	 138.5	 - 35.2	 8.24 39	 492.5 - -	 3.7 32.58 

7.0 1 139 .3	 - 34.?	 0.28 40	 508.5 - 6.1 -	 5.9 33.38 
11	 181.0	 - 34.	 10.27 11	 511.3 - 6.2 33.46 
12	 193.5- 33.7	 11.42 12	 534.3 - 9.8 - 9.1 34.40 
13	 204.5	 - 33.4-	 12.51 43	 5:37.0 -10.2 34.67 
14	 216.5	 - 32.7	 13.56 44	 554.0 - -13.2 35.46 
15	 228.0	 - 31.1	 14.59 45 	 559.0 - -13.0 35.72 
16 1 24-0.3	 - 30.2	 15.66 46	 580.5 -16.9 - 36.53 
17	 252.3 - 28.5	 15.78	47 535.3 -. -17.8 36.78 
18	 264.5	 - 27.2	 17.78 4-8	 608.0 -20.8 -20.2 37.62 

76 19	 2.5	 - 26.1	 13.85 49	 612.3 - -21.0 37.87  
20	 286.5 1 25.1 25.0	 19.63 50	 631.8 -23.6 -22.9 38.62 
21	 289.3- 24.5	 19.90 51	 662.3 -24.8 -25.3 39.68 
22	 300.0	 22.9 23.0 I2070 52	 586.0 -25.5 -25.2 40.76 
23	 302.4	 - 22.2	 21.00 53. 1 710.5 -25.3 -26.3 41.78 
24	 313.0	 20.6 20.7	 21.76 54	 736.3 -25.9 -25.8 42.89 
25 1 315.8	 - 20.4 i 22 06 55	 760.2 -24.5 -24.9 44.02 
26	 325.5	 18.7 . 19.0'	 22 82 56	 780.3 -21.4 -21-5 45.08 
27	 342.0 1 16.7 17.1	 23.85 57	 903.3 -18.2 -18.7 46.09 
28	 358.8	 15.5 1 15.4	 24.88 58	 827.8 -16.5 -16.1 47.21 
29	 375.8	 13.7 14.2	 25.95 59	 846.3 - -16.1 4834 
Z(\	 'ZQl	 n	 - 17	 2i2

Hop±' t S equations for accelerated flight were used for the 

furtier evaluation (Fuchs and Hopf, ht Aerodynamik , U 1922, p.346). 

- ClAr 
jLg F 72 = - 0 sinC? - -	 (i) 

IGI 

-	 caFv23.cos(P+V	 (2) 
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On dividing equation (2) by equation (i), we obtain 

S1fl	 ldv -	 ) ---.-- 
CW 	 gat 

Ca	 - cos (p +1v 
g at 

As the first approimaciOn 

dv
r	 d9l 

c	 -tan(p-	 --	 HL- 	 v—I.	 (3) 
g cos 9 d 

I	 g cos 9	 dt - 
In our computation we put 

tancp = C 

2 	 (i - 2) dc	 (4) 
Et	 at 

	

—=l+--	 (5) 
cos cP	 2 

We then obtain 

= [ -	 +	 1 +	 (1 +	 v(i - 
2)	 (3a) 

g\	 21	 dt 

Equation (Sa) is approximately written 

?(i- x) • = c -  
dy 

	() 

whereby the correction factor 

vh dc (e) 
g dt 

is introduced. Then
Vh 

- cos9
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in which vh is the measured horizontal speed. 

dv	 1	 dvh	 tan2 dP -. 
dt	 coscp	 dt	 cOscp dt 

If we introduce the values from equations (4)-(6), we have 

ao roX inst ely

I dr1 dVh\	 (7): 9 Ac g di 
\ being a small correction1 factor tc be added in per cent in 

the vertical flight-path curves . In Fig. 18, X was plotted 

against the time and was taken into account when it was equal to • 

or greater than 2%. 

Equation (3b) presents the task of plotting c and 


	

against	 m the tie, in order to be able to deduce	 (i - ) from 

the difference between the two curves. c belongs to a 

which can be calculated from equations (2a.) and (8). 

'Yr, V1	 G	 Vh	 d(P 
ca 20 r	

G cos .P + - cos	
(2ai

Cos (P 

For una cccl erat od fl i ght, we have 

Ca _F  
Vh

	

 = G cos	 (8) 
2g	 cos (P 

If we introduce the values from equations (4), (5), and (7), 

we obtain approximately

V-k2 
—u-- = 1 - -X 

	

hence,	 -	
(X\	 (0)


VhVhl+2/
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The evaluation as nade b y drawing -o1ygon outlines through 

the altitude and time Doints, whose sections, according to the 

conditions of the altitude and time curves, extended over about 

1 second each. The nolygons yield, between the corner points, 

constant g1idin g-an 7 e values c and speed values vh. These 

values were plotted as step curves against the time in seconds 

(Fig. i°). In the determination of these step curves, care was 

taken that, for longer timi intervals, they actually corresponded 

to the measured loss in altitude, i.e., that the integrals for 

longer intervals were relativel y more accurate than the separate 

values for the separate polygon sides. This was done so that 

the relatively larwe errors in the speed and angle of glide dur-

-	 ing I second should not enter into the result for longer flight 

periods and distances. The p olygons siid the altitude diagram 

of the flight path show that Nhrin g flew part of the time (con-

trary to his instructions) with a very rapidly changing angle of 

attack, which he explained as due to the longitudinal instabili- 

ty of the glider. These fluctuations therefore require a smooth-

ing out of the step curves, since it is o 

curves themselves cannot be integrated. 

ycreover, the aTtitude determination 

the latter part of the flight-path curve, 

only to within 30 cm (11.8 in.), requires

)vius that the step 

which, especially on 

can be made exactly 

the mean value for 

about 5 seconds, since for shorter periods the errors in measur- 

ing the altitude are no loiiger small in comparison with the loss
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in altitude of the g]i.er. These mean values were obtained from 

second to second over each 5-second period. The smoothed-out 

curves of Fig. 18 are therefore the curves for these Mean values. 

The mean speed values were obtained for the quantity vh itself, 

so that the flight distance integral 

I Vdt 

is maintained. The mean values of the spatial gliding-angle 

were obtained over the quantity vh C, so that the sinking g_

 integral

I V C d t 

is maintained. 

The dynamic-p ressure disgram was then plotted for the deter-

mination of the vh curve (Fig. 19). As already mentioned, no 

time identification 7as possible.. The fluctuations in the basis 

are not ascribable to gusts, but to the fact that the pressure 

recorder continued to run during transportation and therefore 

shows the effect of shaking. Nevertheless, the base line, which 

was recorded before the start, can be easily recognized. In the 

pressure diagram, the bend, which lies between the 20th and the 

30th second in the sp eed curve in Fig. 3, is very manifest. 

Also the minimum pressure agrees, -rithin the accuracy of the 

pressure recorder, with the minimum measured flight speed, ac-

cording to the calibration by the Askania Works. The high speeds 

- obtained by the flight-path measurements in the first 3 seconds 


after the start, contradict the pressure diagram. Apparently 
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they are not real since, in this field.., the single-station 

method is subject to large errors. A shifting of the ground-

plan path, within the accuracy of the single-station method 

(dotted curve, Fig. is) would eliminate these differences be-

tween the measured speeds and the dyna,mic pressure. The mean 

CL v 
values of --- for 5 seconds were again determined mathematic-

ally from the vh cnrve. From these values a curve was drawn 

according to equation (7) for the vaLue 

According to equation (3b), the difference between c 

and i	 -, when increased by	 % ? , gives the aerodynamic 

angle of glide, which corresponds, in unaoceierated flight, 

approximately to the same speed according to equation (s). 

Equations . (3a) and (9) therefore enable the determination of an 

angle-of-glide diagram for unaccelerated flight from the 

curv es vh, c and -	 . The result of this'determination 

is introduced with the plain curve into the ?/h diagram in 

Fig. 20. We may conclude from the great fluctuations of this CD 

curve that the measurement admits of no possibility of the di-

rect determination of	 . 0u present tak is to inquire into 

the causes of these fluctuations in the T curve. For compari-

son I have introduced into the C diagram (Fig. 20) the long- 

dash cue calculated according to the wind-tunnel measurements 

(Gottingen p rofile 426) for 1000 m (3280 ft.) altitude and 

placed at'my disposal by Mr. Koch of Darmstadt. With the aid 

of this	 curve, a curve -	 was determined according to 
g at 
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equation (3b) and likewise long-dashed in Fig. 18, which satis-

fies the measured values c . and the theoretical € diagram (Fig. 

20). Furthermore, the values vh were integrated from the 

15th to the 38th second over this curve dv/dt and a correspond-

ing long-dash curve vh was likewise plotted in Fig. 18. The 

deviations of this curve vh from the actually measured speeds 

(sten curve) are ob7iously greater than the errors in measuring. 

The deviations of the meured 	 values (plain curve) from 

the theoretical values ar so great up to the 10th second that 

one is inclined to suspect very great disturbances in the ex-

periment. It has not been possible, however, to discover any 

such sources of error.; except from the start up to the 5th sec-

ond, a region in which, as already remarked, errors may occur 

by the single-station method. We are somewhat inclined, how-

-	 ever, to ascribe even these deviations to errors in the single-

station method. 

The experinental results can, in general, be vitiated by 

various causes in the following orders of magnitude. The time 

may be regarded as accurate to within 0.02 second; the speed, 

therefore, by determining the mean value for 5 seconds, up to 

410 time error. 

The determination of the flight-path point on the ground 

plan may be regarded as accurate to within 1 m (3.28 ft.), mak-

ing, on an average, 75 m (246 ft.) in 5 seconds, an error of 1 

to 1.5%. The altitude determination will have an accuracy of
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20 cm (7.87 in.) at short distances and of 30 cm (11.8 in.) at 

long distances. This might cause errors of about 4 o in the c 

values for aerodynamic sinking speeds of 5 rn (16.4 ft.) in 5 

seconds at short distances and for 8 m (26.25 ft.) in 5 seconds 

at 1onc distances. These errors must be regarded, however, as 

maxima. They do not suffice, even when all added together, to 

exolain the deviatioLs. 

The atmospheric distuibanc.cs arc more difficult to esti-

mate. At low speeds, even slight hnizona1 gusts c,-:n greatly 

affect the € values. This is impossible. however, at high 

s p eeds. The surmise would rather he justified that the flight 

had been affected by ascending and descending air currents. 

These currents must have changed rapidly, however. Their order 

of magnitude would he about as follows: 

At the 10th second,	 60 cm (23.6 in.)/sec. up; 

11	 if	 20th	 11 30 cm (11.8 in.)/sec down; 

if	 25th	 it 0 cm/see; 

	

" 30th	 if 70 cm (27.6 in. )/sec. down; 

	

36th	 if 45 cm (17.7 in.)/sec. up. 

An up-wine. might be caused by thermal currents, although at 

9 o'clock in the morning they would hardly be expected to be 

so strong. On the other hand, down--winds of 30 and 70 cm/sec. 

have never been observed in the lee of the Wasserkuppe with a 

5m (16.4 ft.)- per--second wind. The flight might well be sub-

jected to an atmospheric flow up to the 15th second, but a down-
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wind of 70 cm/sec. at the 3(h second seems impossible. 

The conclusion cannot be esca ped that these deviations are 

due at least in oart to the fact that the air-force coefficients 

are dependent not only on the angle of attack but also on the 

state of acceleration	 u . This conclusion is soported. by the 

circumstance that the theoretical an:1 measured c values coin-

cide in the field of the most favorable gliding angle, because 

it is in this field that they are least affected by the speed. 

The second acceleration d 2 v/d.t2 sems to be especially effect-

ive. Hence this is also plotted in Fig. 18, though of course 

there may be considerable errors in this third differentiation. 

The deviations before the 15th second are hard to explain. 

In each case I have tried to determine a mean curve T in the 

diagram/vh (short-dash curve in Fig. 20). This curve has 

-	 at least the value of an energy balance for the accelerated 

•	 flight under consideration, in so far as the corresponding val- 

ues VhC furnish a mean horizontal force. It is also of inter-

est to see how far an	 diagram can be evaluated from the ex-

periment under consideration. 

Th following evaluation can be made for the determination 

of the T values.

Cw = cw1 + constant 0a2 

•1
a 	 i 

F 
N —

r v 
• 2g 

c	 —	 —2 b 
=a 	 +=-	 ¼ll 

•	 ca	 v
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in which a is a constant of the dimension s2/m2 and 'o is 

a constant of the dimension m 2 /s2. 

According to the method of the least squares, the values of 

a and b can be calculated, which determine, for the measured 

E velues, the least error-squares of T Vh (equation 11). 

The 'error equations,' according to whic'la the constants a and 

b were determined, therefore read	 . 

	

—3	 b	 -- 

	

= a v + - - E- Vn	 12 

The method of the least squares therefore furnishes, as 

"normal equations" for the determination of the constants a 

and h, the two equations. 

—31
	 --I 

	

[v v 1 a + v ± b - [v
3 

£ vJ = 0	 (13a) 
Vi 

1a±[	 lb - l0	 (13b) 
v	 L v v j	 v	 j. 

In the field between the 10th and 40th seconds the constants 

were

a = 0.000104 s2/m2, 

b	 8.26

	

.	 dash-
The curve according to equation (11) is plotted as a short'-

line in Fig. 20. The result is not at, all satisfactory as a 

flight-characteristic determination for unaccelerated flight 

conditions, but the investigation nevertheless shows what possi-
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bilities kinetographic flight measurements offer and at the same 

time indicates the field for which this method of measuring was 

developed, namely, the investigation of aocelerated. flight con-

ditions. In the evaluation it was found that records can be 

made on the airplane itself, along with an exact ground measure-

ment, which i.s only possible when the measuring bases, by being 

concreted, render irpossible any change in the reference sta-

tions. Along with an exact mesurement of the dynamic pressure 

an angle-of-attack recomor is very important, as likewise the 

recording of the rudder and elevator deflections. In this way 

it will probably be possible to learn more about the problem of 

accelerated flight..
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APPENDIX 

Kinetographic Flight Measurements* 

By P. Raethjen 

In the Research Institute of the Rhn-Rositten Associa-

tion on the Wass erku p e, the investigation od accelerated air-

plane motions is receiving s pecial attention.** These investi-

gations rust consist principally of the mechanical analysis of 

airplane motions in free flight, because the unsteady air flow 

conditions are very difficult to obtain in a wind tunnel. 

For the mechanical analysis of an airplane motion, the 

motion of the airplane in space and the motion of the air about 

the airplane must both be known. Thisconstitutes a double 

task. The flow of the air against the airplane must be record-

ed by instruments carried on the airplane itself. In general, 

a dynamic-presure recorcer and an angle-of-attack recorder 

suffice for the longitudinal motions; and two each of these 

instruments in curving flight. Moreover, the motion of the 

airplane must be measured as the 'motion of a rigid body with 

respect to both space and time. This measurement can even be 

T 	 photogrammbcally on the airplane itself from the air-

plane itself. In this case the continuous photography of the 

landscape,characterized by measured points, would suffice. 

Flu gvermes sung. " From "Zeitschrift fur 
•	 Flugtechnik und. Motorluftschiffahrt," Dec. 28, 1926, pp. 547-549. 

**P. Raethjen, "Beschleunigte Flugzeu gbewegungen," from  
CD 

Dec. 28, 1926 5 po. 537-547.
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This is a very elegant method, but necessitates the carrying 

of heavy a-pparatus and a complicated evaluation. 

Another possibility is the two-station method .f±om the 

ground. in order to obtain accurate results, this method must 

be carried out photogrammetrically. The two-station method is 

a simple trigonometrical method. By measuring the spatial 

angle (azimuth and altitude angle) from two base points M 

and M , the position of the airplane in space is found as the 

intersection p oint of tiio lines (Fig. 13). For the measurement 

of accelerated airplane motions, I have developed the two-

station method as a kinetographic-photogrammetric method. This 

method consists essentially in taking continuous motion pic-

tures ,, at both base points, of the airplane and of 'a reference 

table R divided into squares and located behind the camera 

(Fig. 13). Thereby the camera is continuously directed (like 

a theodolite) toward the airplane. The camera is mounted so 

it can be rotated horizontally and Verticall y .by means of 

cranks. Thus, with the ai of a telescopic finder it can be 

kept continuously directed toward the airplane. With a suffi-

cient focal length of the object lens, large enough images of 

the airplane can be obtained, even at distances of 1000-2000 rn 

(3280-6560 ft.), to determine the position of the three air-

plane axes. Behind the camera, there is a vertical reference 

table divided into squares, which is photographed simultaneous-

ly with the airplane. This is made possible by the aoparatus
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shown diagrammatically in Figs. 7 and 21, in which there are 

two object lenses OR and °A	 with their optical axes parallel, 

which throw images on a system of mirrors H J and the same 

film F. The two optical axes are indicated on the film F by 

cross wires. If the camera is rotated, the image of the refer-' 

ence table R continuously shows the direction in space assumed 

by the optical axes. Any deviation of the position of the air-

p lane fror?i this optical axis can be determined from the picture 

of the airplane. The accuracy of this method might theoretically 

be still further increased., since it increases with increasing 

focal length of.the lens and with increasing distance of the 

reference table R. With this apparatus, angles can be measured 

to within 0.0005 of a degree, i.e., at a distance of 1000 m 

(3280 ft.), the position of the airplane can be determined to 

within 0.5 m (1.64 ft.). 

The chief difficulty lies in the time identification of the 

photographs for the two measuring stations. I have adopted the 

method of photographing at both stations a synchronously running 

clock pointer (Fig. 21, clock pointer z). The image of this 
pointer, which makes one revolution per second, is projected on 

the back side of the film. Fig. 3-is a section of a film show-

ing the three image fields, one above the other : the square 

field of the airplane, the field of the reference table with the 

numbers, and the U-shaped field of the clock scale with the 

seconds pointer in the corner. It is a double pointer, which
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completes a period every a.lf-revolution. Hence the scale is 

an open Ti, instead of a closed circle like ordinary clock 

dials. On the film is seen only one or both tips of the pointer, 

which appear as shadows on the U-shap ed scale. The central por-

tion of the pointer is concealed under the dial. This arrange-

ment was adopted to save space. 

The pointer is actuated at both measuring stations by elec-

trically synchronized motors, which are in turn operated from a 

central station (Fig. 13). The central motor M, therefore 

runs synchronously with the motors M1 and M2 , with which it 

is connected by three wires. in order to record the revolution 

speed of these motors, a recording drum at the central station 

-	 is driven by the motor M. On this drum, time marks are regis-

tered by clockwork at regular intervals of 0.2 and 3.0 seconds. 

-	 A telephone line between the two stations enables their harmon-

ious cooperation. 

In this way, the airplane is continuously photographed from 

both stations. The individual exposures are not simultaneous, 

however, but the evaluation is enabled by the time pointer. 

On one film the spatial angles are taken directly and on the 

other the angles are interpolated to correspond. This is en 

tirely possible, due to the frequency of the exposures (16-20 

per second). The time can be determined to within 0.02 second. 

As already mentioned, one can determine, from the photo-

graphs, aside from the flight path of the airplane (the path of
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the center of gravity of the solid, body), the rotation of the 

airplane axes about the center of gravity, especially the longi-

tudinal inclination. The latter can be, determined best by pho-

tographing the airplane from one side. The base points on the 

Wasserkuppe were therefore selected to one side of the starting 

place. At long distances the determination of the position of 

the airplane axes is naturally inaccurate. If, at a distance 

of 500 m (1640 ft.) the masurment is accurate only to within 

0.25 m (0.82 ft.) (which is accurate enough, however, for the 

determination of the path of the center of gravity), this en- 

ables, for a. fuselage 5 m (16.4 ft.) long, at best (with later- 

al photographs), a determination of the longitudinal altitude 

with an accuracy of about 3 degrees. Errors of 3 degrees are 

disagreeable, although the longitudinal inclination must be 

- measured only for the determination of the up-wind. Neverthe-

less, even this error can be considerably reduced by averaging 

for the numex'ous individual pictures. 

In any event, it is desirable to determine the altitude 

of the airplane by a third kinetographic photograph from the 

airplane, even if only with the American Kymograph" by photo-

graphing the sun; better still, by photo graphing the horizon 

by means of a rigidly mounted kinetograph. 

Briefly stated, the problem is to obtain trustworthy data 

which will, enable a complete and reliable analysis of the com-

bined-effect of the forces of inertia and of the air. These
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data can be obtained, as follows: 

1. Through the determination, with rcferece to both 

space a'L time, of the path followed by t n	 he lider (or airplane), 

by means of the kinctographic two-station method. 

2. By the space and time measurement of the motion of the 

three airplane axes. This can he made from the kinetographic 

two-station method, but can ho obtained more accurately by ki- 

netographic photography of' the horizon from the airplane. 

3. By recording the, dynamic pressure and angle of attack 

at one point (fuselage) or at two points (wing tips). This 

record indicates the air' movements (gusts or up-wind) which 

might affect the oicture of the airplane. 

4. By recording the rudder and elevator deflections. 

This is necessary only on piloted airplanes. On models these 

deflections would be made in the desired direction by means 

of clockwork. 

An essential condition is the time identification of all 

the measurements on the air p lane and on,the ground. Th i s can 

be accomplished by simultaneous photography and registration 

of time marks. The take-off and landing supply two time marks 

which assist in the time identification. 

I will add just a few remarks regardinRthe kinetographic 

photography. It can be exceedingly complicated and difficult
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if undertaken in an unpractical manner. It is important to em-

ploy graphical methods and above all to adapt the evaluation to 

the theoretical problems under investigation. It will seldom 

be necessary to evaluate every individual p icture, as a rough 

evaluation of the whole flight will suffice. It is necessary 

to evaluate exactly only the portions of the flight which are 

essential for the actual problems of accelerated flight condi-

tions. On these portions, however, neither care, time nor 

labor must be spared, in order to obtain accurate results. 

Here applies the fundamental principle of all experimental sci 

ences, that one accurate experimenter and one carefully evalu-

ated ecoeriment is worth more Than a hundred inaccurate ones. 

Translation by Dwight M . Miner, 
National Advisory Committee 
for Aeronautics.
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Figs. 1,2,3,4,5 
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K,iirecting crank; S,Mirror; 
V,Telescopic ficuer. 
Fig.1	 Kintograph and ref-

erence tables.

0 1	 0 

01 021 Len8es; ,Shutter. 

Fig.4	 Camera. 
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1	 L,Electric ccrrectir;	 , 
E 1 Aiane	 2	 Synchronizing motor; U,Syn- 
ference-tb1e field; 3 3 Clock chrcnizing clock; D,Shutter for 
field. F 1 F2 Reticles.	 phctcgraphiig clock. 
Fig.3	 Section of film.	 Fig.5	 Film-driving mechanism. 
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R,Tube holding lens 
Fi.6	 Film—driving mechanism, 

open. 
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M,Syrichrcnizing motor; Z,icuble 
pointer; S,Seccns aisk; P,Point 
where seconds disk is photographed. 
Fig10	 Synchronizing clock.
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Figs.7, 9 

0 11 0 2, 03, Lns3s
	 Optical axes 

P 1, p2, Roflcting prisms
	 R3f1.Jctod optical axes 

B], Airplano Hold
	

S, Partition 

B 2 , Table Hold.	 Z, Clock dial 

Fi'.7	 Courses of rays in kinetograph. 

F1, Axis of reticle in air plane field. 

F2, Axis of reticle in reference table 

, Angle of raticlo axis to horizon 

y, Angle between reticlo axes F 1 , and F2 

a, Distance of kinotograph pivot from table 

h, Coordinate altitude on table, calculated 
from zero point-

Fig- 9	 Diagram of reticle axes.
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K, Oscillation circle 

r, Radius of oscillation circle 

Z, Center of oscillation 

, Oscillation angle of optical axis with 
reference to horizon 

h, Coordinate altitude on reference table, 
calculated from zero point N 

a, Distance between oscillation center Z 
andi reference table 

Fig.8 Vertical—turning diagram of kinetograph.
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Fig.13 
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a, DIStS.IICCS of first and last wirs of ach table 
froria dn3tograph 
b, Disi;anc3 et'733fl ach pair of vriros 
C. Distance btwon outer wires of adjacent tables 
A, Ground-plan coordinates of central landmark 
B, Pivot of kinetograph 

Fig. 14 Plan of a measuring base.
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NT 

H, Direction of central landthark or flight-path point 

HI Corresponding altitude coordinates 

h, Altitude of point H above masurin base 

h Coordinate altitude above zero line NT 

N Coordinate altitudes of all the points N in the 

altitude of the measuring base 
a, Distance of point H from kinetograph K 
a Distance of point H' from pivot of kinetograph 

Fig.15	 Diagram of altitude determination. 

Fig. 16
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°R'°A' Object lenses 

J, Prisms 
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