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NAT.IONAL ADVISORY COMMITTEE FOR AERONAUTICS. 

TECHNICAL liiEMORANDUM NO. 456. 

CALCULATION OF AIRPLANE PERF0R1\1ANCES WITHOUT 

T:IE AID OF POLAR DIAGRA:·dS. * 
By Martin Schrenk. 

I. Introduction 

Iriall known methods for the calculation of flight per-

formances, use has hi therto always been made of the airplane 

polars from which the characteristic coefficients ca3/cw2, 

calcw and Cw min a~e de~ived. These coefficients constitute 
I 

the basis for all further calculations. 

The wing drag, from vvhich the coefficients are obtained by 

means of the polars, is resolved, however, into two components, 

which are of very differe:Clt character and which are very differ-

ently affected by structural changes in the airplane. These two 

components are the induced drag and the profile drag. The lat-

ter is proportional to the wing area, the coefficient of the pro~ 

file drag and the dynm~ic pressure. The former, on the contrary, 

is proportional to the square of the lift and inversely propor-

tional to the dynrunic pressure multiplied by the square of the 

span. These complex relations obscure the constructor's view of 

*"Zur Berechnung der Flugleistungen ohne Zuhilfenahme der 
Polare," ~eventy-Fourth Report of' the D.V.L.("Deutsche Versuchs­
anstalt fiIr Luftfahrt," 1927 Yearbook of the D.V.L., pp. 104-112. 

The Seve~ty-Ninth Report of the D.V.L., also by Martin 
Schrenk, and included in this Yearbook, pp. 145-151 (N.A.C.A. Tech­
nical Memorandum No. 45:7), constitutes the continuation and com­
pletion of this report. 
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the interdependence between the dimensions of his airplane and 

the effects of the air resistance. 

For good profiles the profile-drag coefficient is almost con-

stant in the whole range which comes into consideration for prac­

tical flight. This is manifest in the consideration of the Ggttin:-

gen airfoil tests and is confirmed by the investigations of the 

writer (measurements of the profile drag during flight by the Betz 

method), concerning which a detailed report will soon be published. 

The' follovdng deduct ions pro ceed from thi s fact. The formulas de­

veloped on the assumption of a constant profile-drag coefficient 

afford an extensive insight into the influences exerted on the 

flight performances by the structure of the airplane. 

II. Symbols~ 

1. Airplane without Power Plant. 

G, full load, kg. 

F, wing area, m2. 

b, span, m. ~ 

t , mean chord (Fib). 
the mean upper and 

of the longer wing 

On a bipl ane thi sis the s"urn of 
lower chords referred to the span 

Fo + Fu 
b 

fw, equivalent flat-plate areas (w/q), m2: 
fwp, equivalent flat-plate area of wings, ma ; 

fwr' equivalent flat-plate area of non-lifting parts, 
m2; 

fws, total equivalent flat-plate area (fwp + fwr), m2
, 

K, reduction coefficient (Wn/WE) for the induced drag of 
a biplane, as compared with a monoplane of like span 

_____ ........ { according to Prandtl*)." _"" 
*"Ergebnisse der Aerodynamischen"Versuchsanstalt zu G8ttingen, " 

Report II, p.g ff. 
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ca, lift coefficient 

H, 

'ri , 

p, 

2. Power Plant. 

engine power, HP. 

propeller efficiency (referred to gliding flight polar 
wi th l~ke ca ). 

static pressure of atmopphere, kg/m2 • 

T, absolute temperature, in degrees C. 

3. Performa,.."lce s 

v, horizontal speed (also maxilllum horizontal speed) m/s. 

w, climbing speed (also maximum climbing speed) m/s. 

H, 

vertical s~eed of descent (also minimum vertical speed 
of descent; m/s. 

vertical speed of ascent (cilso maximum vertical speed 
of ascent) m/s. 

flight altitude, km. 

P, air density ("fIg), kg s2 /n(4. 

q, dynamic pressure (p v 2 /2), kg/m 2 • 

0, 

a, 

g, 

i , 

The subscripts denote: 

sea level; . 

critical altitude (at which the engine power begins to 
falloff) ; 

ceiling; 

quantities associated with the induced drag (e.g., 
Cwb bi)·, 
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III. Derivation of the Formulas 

1. Ra.te of Climb 

The basis is the well-known expression: climbing speed = 

vertical speed of ascent ~ vertical speed of descent. 

'Iv = 

in which 

75 N 'f1 
G 

Cw = cwr + Cwp + cwi = cws + cwi = fws + K 9.L F 
F ii 1; 

(1) 

(2) 

cws is the coefficient cf the frontal drag, i. e., of the 

drag or resistance of all the non-lifting parts combined with the 

profile drag, both assumed to be constant in the flight range 

chiefly under consideration. cwi is the coefficient of the in-

duced drag and depends on the square of the coefficient of lift. 

From the conditions of vertical equilibrium there is further 

introdu~ed 

(3 ) 

and by. introducing equatioYB (2) and (3) into equation (1), we ob-

tain 

w = 75 N11 

G 

P v 3 fws 
2 G 

2 K G 
2 n p v b 

(4) 

This is the general equation for climbing speed, on which all three 

components of the speed along the flight path v depend (the 

first component on accolli1t of the interchangeableness of N~ with 

v) • 
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In ordel' to obtair: the maximum value for "N't, tne first CODl-

ponent, the vertical speed of ascent must be made independent of 

the horizontal speed, since this dependence is -only empirically 

known. 

If the vertical speed of ascent now :rem8.ins constant, the 

climbing s};)8sd will be the greatest for the minimum value of the 

ve:rticCll speed of descent (SUG of components 2 ami 3). This fol,.,.. 

lows f1'o111 8. simple minimal calculation 

dylTs 
d v -

3 P v 2 

2 G = 0 

v (5 ) 

This is the sDeed at ';.;hich the mL:.imum vertical speed of descent 

is attained.* • 1 ) If introduced into equation tL:: , 

-1/2 G 1/2 
7 ~ IT YI ( P\ / - '\ = - 0.75 t - • I --

G \ 2/ ;. bi.' 

it yields 

(6) 

in which bi = b//'K-- the induced span of the biplane, i.e., 

the spa..71 of a iTIonoplanc having the Sal,le induced drag. 

The v~rtical speed of descent is expressed 

-1/2 

*8 min - 1.06 P 
-'" 1/4 
-'-we. 
bi 

The expr'ession conto.ins only constructive quantities, namely, as 

the most impol'tal1t, the span to the 3/2 power, al so the v18ight 

~ t~e __ l/2 _powe1' a~?:d,_.1-.~stly, the :Z:rontal-o..raJ:L~rea_yo the .1/4 __ 
*At this speed it is found thcd the induced drag is th:ree times 
the frontal drag, D.S has long been kn01J'1l1o 
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power. The aspect ratio is therefore replaced by the span and 

the wing loading by a quant i ty which we can call II span loading. II 

It is the load per meter of the induced span and is therefore a 

measure of the quantity of air acted on in the flight. Of course, 

the reciprocal square Toot of the air density is also included. 

Figure 1 shows this relation. Existing airplru1es aTe mostly re­

stricted to the -space between the dotted lines. 

If equation (7) is multiplied by G, it is changed into the 

expression for the power required to maintain horizontal flight, 

which will appear later in the ceiling formula. 

It must now be established at what lift coefficient the min-

imum vertical speed of descent appears, since this value might 

lie so high that there would no longer be any possibility of the 

prrfile drag being constant. From equations (3) and (5) we obtain 

the minimum speed of vertical descent ~ . 

1 /3 n fws 
ca = t K 

(8 ) 

If the values for ordinary airplanes are here introduced, it is 

found that modern airplan·es, with good aspect ratios and high wing 

loading, mostly have lift coefficients far above unity. In this 

case the values calculated with formula (6) would be a little too 

favorable under scme circumstances. The following consideration 

then indicates the way for a more accurate solution. 

Figure 2 shows the course of the profile drag in the vicinity 

bf ca = 1 for a good thick profile of medium.camber according 
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to experiments by the writer. The polar curve bends shortly be-

low' c a == 1. Below this point the profile drag decreases rapidly. 

Hence, for the actual polar, the point of most favorable speed 

,of vertical descent, i.e., of minimum cw/ca3/'2, often lies con­

siderably lower than indicated by equation (8). The most favora-

ble c Ic 3/ '2 W a then differs but little from the value when 

ca = 1. * For this reason, flying at large angles' of attack will 

in climbing not give a greater rate of climb. For such "normal" 

profiles the assumption is therefore made that the airplane, in 

cl'imbing, should fly at ca = 1. Hereby the profile-drag coeffi­

cient should remain constant. This means the replacement of the 

polar curve by the dotted line, a change which, due to the small 

influence of fws, does not affect the result. This assumption 

ag.rees with the actual procedure of most airplane pilots who, in 

order to retain. a little reserve, do not willingly load the air­

plane, in climbing, beyond the Ifunit dynamic pressure" G/F. 

Lastly, the .asswnptiol1 corresponds to the actual behavior 

of the airplane in so far as the propeller efficiency, at least 
I 

of compromise propellers, increases with increase in speed, where-

by the best value of T] lies at a sOii1ewhat higher speed than that· 

established by equation (5) for the minirl1um value of Ws. Hence, 

in this case also, the maxhnun value of w occurs at a someWhat 

greater speed, or smaller c a ' than that indicated by equations 

(5) and (8). 

*These relations can be easily comprehended from Everling1s 
. nomogra.m (IfZei tschrift fur Flugtechnik und M:otorluftschiffahrt, 1/ 

1922, No. 18, p.250. 
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For medium relations the line cw/c a 3 / 2 = cO"nstant, which 

passes through the point ca = 1, just meets the actual polar 

curve. If fwsis relatively large, then the c Ic 3/2 w a found 

for ca = I is somewhat too unfavorable, while in other cases 

it is a little too favorable. The changes are sca.rcely noticeable, 

however, and work ;noreover in a II correcti ve II sense in favor of the 

greatest possible reduction of the frontal drag. Then 

Cw cws + cwi 
f'ws + K F = = -

b2 F TT 
( 2a) 

and 1/2 -1/2 f 
K F '\ Ws = (Q\ (E.'\ {ws + 

\F/ \2/ \ F TI if J 

This expression contains the usual quantities olF ru1d 

FIr}, 1Ning loading and aspect ratio. It applies wi th absolute 

accuracy onli for ca = 1, but with fair approximation, however, 

for ordinary wing sections, as the best value on the whole. In 

the case of an unusual profile, other asswnpt ions must naturally 

be made, which will not be further considered here, however, 

since they would only constitute mo'difications of the abovemen-

tioned assumptions. Any very great accuracy in this connection 

is of no importance anyway, since the induced drag in this region 

no longer accurately follows the quadratic law, while slight var-

iations in the induced drag are important in comparison with simi-

lar variations in the profile drag. 
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2. Engine Power and Flight Altitude .. 

Before we can undertake the calculation of the ceiling with 

the· help of the fo~mulas obtained for the climbing speed, we must 

first establish a law, according to which the engine power will 

diminish wi th increa'se in al t i tude. _ 

The usual assumption in Germany is that the indicated 

horsepower is proportional to the density of the air, while the 

fri ct ion horsepower remains independent of it. For a mechanical 

efficiency of 85%, this ,assumption leads to the expressinn' 

lL = _1_ (~ _ 0.15\ 
No 0 • 85 .J) 0 . J 

... 

This expression is very inconwenient for the further calculation, 

on account of the algebraic swn contained ~n it. Moreover, it 

make s no allowance for the cold, as such, which will result in 

an impairment of the Qarburet ion, as well as in an increase in 

the friction horsepower. Neither does it take into account the 

decrease in the revoluticn speed, which causes a further loss in 

power. 

According to American experiments· (Walter 8. Diehl, "Engine 

Performance and the Determination of Absolute Ceiling" -N.A.C.A. 

Technical Report No ... 171), the mean values of many measurements 

(up to p/Po = 1/3) can be assumed to be 
. " ~Brenner, "Die Steigleistungen der Flugzeuge," -·:rZei tschrift fur 

Flugtechnik und Eotorluftschiffahrt," 1924, No •. 7, pp •. 61-65. 
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N -- (
p ,\1015 
- ,( T constant) 

'Po ..' 

-60 S 
N _ ,f_T '\ ( , p constant) No - \ '1'0 J 

10 

(10) 

(11) 

These laws will now be applied to the course of the air density 

and temperature in the standard atmosphere. At constant tempera­

ture we first have 

(12) 

The German standard atmosuhere assumes a temperature reduction of 

5° C.. (9 0 F) for every 1000 m (3281 ft 0) increase in al t i tude. A 

reduction of 6 0 0 (lO.SoF) probably a9proxirIlates the actual mean 

relations more closely,* whereby this represents a mean value up 

to an altitude of 10,000 m (32,808 ft.). Above this altitude the 

temperature behaves quite differently which, however, lies out­

side the scope of the present investigation. Therefo~e 

T = To - 6 H (13) 

T/To = 1 - 0.0207 H (13a) 

For the relation between ceiling and air density in 13a, the 

approximation formula is introduced which agrees very well with 

the mean experimental values for altitudes of 1,000 - 10,000 m 

(3281 - 32,S08 ft.). It reads: 
*Linke, "Fyknometrische H~l18nformeln. II A special publication of _ 
the "Institut f{ir Meteorologie und Geophysik" at the University of 
Frankfort. 
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or 

P = 0.896 H 
Po 

P 
H = - 20.9 19 -­

Po 

From (13a) and (14a) we obtain 

T - 1 + 0.433 19 ~ 
To - Po 

11 

(14) 

(14a) 

(15) 

For convenient calculation, this expression is converted into an 

exponential function of the form 

The plotting of the function for x on logarithmic paper 

gives a straight line, showing the exponent to be constant. The 

function then reads 

T 
To 

I 

(16) 

The relation of the engine power to the temperature at constant 

air density must now be det ermined, since forinu1a (11) shows the 

'effect of changes in density prQduced by temperature changes at 

constant pressure. If the temperature had no effect, we would 

then have, according to the law for gases, 

N _ (L'llo15 __ (_T ,::. l' 16 
\ (p constant) No - ,po! ,To/ 

( 11a) 
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Actually, however, 

The direct effect of cold on the engine power is therefore 

= (L 'f' 65 

\. To J 

12 

(11) 

(17 ) 

This expression shows the effect of temperature on carburetion 

and on the friction horsepower •. 

Equation (16) holds good. for the standard atmosphere. The 

effect of T in the atmosphere is there:t:ore expressed by 

(18) 

The last step is now to combine the effects of p and T 

in formulas (12) and (18), 

(19 ) 

This reduction in power occurs at constant H.P.M. 

In the previously mentioned tmerican report (N.A.C.A. Tech­

nical Report No. 171), data are also given on the observed de-

crease in the R.P.M. of engines with increase in altitude. Ac-

cording to this report, its mean value is 

n =.(£...'\'.10 
no \Po / 

(20) 
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ConversiJn to the air density in the standard atmosphere by 

means of equation (16) gives 

L 
Po 

= P 
Po 

T 
To 

p \0' 12 

= (-
\ Po;' 

(21) 

Thi s reduct ion in the R. P .1\1. re sul t s, in the mest unfavorable 

case, in a corresponding loss in power.* With this unfavorable 

assumption we then have 

(22) 

This is the engine-power formula aecf"rding to which the following 

nalculations are made. In Figure 3 it ic compared with the cus­

ternary assTh'Y1ption (equation (9) ). For a moderate decrease in 

the air density, formula (22) is therefore more unfavorable than 

the customary assumption, which is especially due to the intro-

dur,tion of the reduction in the R.P.M. The two expressions agree 

at p/po = O~36. This corresponds, however, to a flight alti-

tude, which hardly comes in question for an engine wi th01.lt a 

~upercharger. This assumption is therefore more unfavorable than 

*The Ainerir,'an report and its German translation in J. F. W" 1925/.19 
here draw a false conclusion, in that they confuse the total power 
generated by the engine ~ith the power absorbed by the propeller 
and thus allow twice for the effect of the air density. According 
to thi s !{lethod our formula w(,uld read 

JL. = (2-\1' 2 e+ 0·36 = (P _\1' 64 

No ,Pol \p o ! 

which is much too unfavorable. 
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the usual one within the customary limits. At a still higher al-

titude the formula apparent,~y undergoes an inadIl1iosible extraprla­

tion. 

A certain verifi!)ation rf formula (22) is cbtained by apply-­

ing the decrease in the R.P.M., according to equation (21) to the 

thrust horsepower. This can be put roughly proportional to the 

air density and the third power of the R.P .1,1. Hence 

= P 

This expression does not include the reduction in the power 

absorption, which is effected by the increase in the degree r.f 

advance in climbing at !)nnstant dynrunic pressure. This is"diffi-

cult to determine numerically, but would probably not be placed 

too high.\7ith 

N = (2-"~'04 
No ,-Poi 

We thus return to equation (22). 

If the power of an engine is c'onstant up to a certain al ti-

tude, equation (22) is subtracted from this critical altitude 

Ha , with the critical power No on the ground = Na at the 

critical altitude. 

3. The Ceiling 

It is now easy; with the help of equat ions (l), (8), and 

(22), to develop a simple formula for the'ceiling. For normal 
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engines it is 

N 'l1 
= v'vho N :;;-

o '10 

(P ,1"4 
=: 'Who _.\ 

po! 

P ,\-0'5 
Wso {-- \ 

\Po! 

(.p_'.Oo 5 .!L - \Vso \ 
'Ylo \ Pol 

15 

Herein 'l1 denotes the propeller efficiency at the altitude corre-

sponding to the' air density P at the time 0 For the ceiling 

from which we obtain 

This formula therefore with the knowledge of the characteristic 

vertical s)eeds near the ground and of the efficiency at the ceil-

ing, renders it possible to calculate the air densIty at this al-

ti tude. From this the ceiling can be deterr:1ineq. according to 

any assumption for the at'!losphere. 

The ;'1ost important part of equation (23) is the expression 

Wh/Ws. It can be designated as the "power ration and stands in 

*If No were constant up to the ceiling 

= (W30 Tlo·\2 
,Who 'Ylg; . 

read 2..g 
Po 

the expression would 
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the fol16wing relation to the excess power */*s. 

Excess power 

excess 
The air density at the ceiling is therefore a function of the/ 

power and depends further only on the efficiency near the ground 

and at the ceiling. 

In order to obtain im;nediately a comprehensive view of the 

al t i tude relat ions, the atmosphere formula (14) is also introduced. 

We then have 

(24) 

This formula is represented in Figure 4, where the curves for the 

critical altitudes Ha = 0, 2, 4, and.6 km (0, 6562, 13123, and 

19685 ft.) are plotted. For this case the equation reads 

( 24a) 

in which Pa denotes the "c1'i tical air densi ty" corresponding to 

the critical al ti tud.e Ea-

Still one more step rema'ins to be taken, in order to com-

plete the picture, nlli~ely, the introduction of the values for 

wh and ViS from Section II, 1. According to equations (1) and 

(8) , 

Wso 
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Herewith 

and hence . 

'r)g = 
'r)o 

70.8 
N '\"1 P 1/2 o 'Ig 0 

/ o· 53 
N 'r) P 1 2 = 9 55 (. 0 g 0 \ 

• \~G\312 K 3I 1- f 1/4 j - . ws bJ 

Further, with the atmosphere according to equation (14), 

. or 

Hg = Ha + 20.4 + 19 

N 'r) P 1/2 

Hg = Ra + 20.4 + ( 0 g a \ 
19 3/2 

'( ~ '\ f 1/4 J 
\ bi) . \VS 

17 

(25) 

(26) 

( 26a) 

If we take into account the limitation of the applicability of 

these formulas, vihich is given by equation (8) and the considera-

tions following it, they enable an especially deep insight into 

the mechanics of high-altitude flight. The most important place 

is occupied by the critical altitude, above which the engine 

power can be no longer kept constant. 

This coefficient stands before the logarithmic term. The 

logarithmic term itself contains, in the numerator, the character-

i st ic qUanti tie s 'for the poY!er plant, nal'l1ely, the II cri tical power ll 

of the engine, the II cri tical air densi tyll and the efficiency at 

the ceiling. The denOYllinator contaL1s the corresponding quanti-

ties for the airplane in gliding flight, namely, the "span load-
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ing, If the "reduction coefficient rr of the biplane and the rrtotal, 

equivalent flat-plate area rr with diffexent exponents corresponding 

to their effect on the ceiling. From a different viewpoint, equa­

tions (25) and (26) contain the quotient of the thrust horsepower 

divided by the power required to maintain horizontal flight, or a 

proporti,nate coefficient thereof. 

At constant engine power, on the assumption of constant pro­

peller efficiency and perfect applicability of the altitude for~ 

mula (14), the ceiling would increase to 2/0.53 = 3.8 times the 

value corresponding to an engine power, which decreases from sea 

level according to formula (22). As a matter of fact, these as­

sumptions are far from applicable to the flight altitudes coming 

under consideration. 'Nevertheless, we can get an idea of what 

ceiling can be attained by keeping the engine power constant. 

4. The Maximum Speed 

The expression for the maXimUlll horizontal speed follows from 

the one for the climbing speed (equation (4)) with * = 0: 

p 
= 2 fws (27) 

cr, the available power on the propeller = the power required to 

overcome the frontal drag + the power required to overcome the in­

duced drag. This equation of the fourth degree in v is very 

inconvenient to use. We can obtain an approximation by consider-

ing that the share of the induced power, in comparison with the 
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frontal-drag power (at least ne,ar the ground), is generally ne,g­

ligible. On eliminating this'tel'm, we obtain 

v = p 
2' fws 

(28) 

\ 

,the well-knov-ffi formula for the maximum speed, although without 

taking the induced drag into consideration. In this expression 

there occurs a special quantity, the Iffrontal-area pmver ll N 
fws' 

'lJhich, along with the propeller efficiency, determines the attain-

able maxim~~ speed. 

If the effe'ct of the induced drag is not to be disregarded, 

it must be determined approximately'with the spee4 obtained from 

equation (28) and be subtracted from the available power. A new 

calculatiorr of v with this smaller power according to equation 

(28) gives a very accurate value. 

IV. Nomograms 

Nomographic curves have two' objects. On the one hand, they 

often save the' work of repeated numerical calculations and, on 

the other hand, they furnish a com~rehensive survey of all the re­

latiOns and numerical effects of the cri tlcal quantities. The 

latter object is of decisive importance for designing, because 

numerical calculations alone seldom furnish a quick survey. 

Nomograms for flight performances have often been published. 

They are al~ derived more or Ie ss directly from, the polars o'f the 
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airplane. This means that the polars are first calculated from 

the assumed dimensions of the airplane and this work must be 

repeated for every change in the aspect ratio. This method re­

sults in an overvaluation of the polars and especially of the 

aspect ratio compr.isedtherein. The true relations between the 

constructive quantities are obscured. 

The formulas in the present report avoid this roundabout 

way. Hen'ce, they enable the production of convenient arid compre­

hensive nomograms, a few examples of which follow. 

1. Nomograms for Olimbing Performan ce s 

This is based on formulas (6), (7), (8), and (23). It is 

constructed on the principle of linear addition and proportional 

tables. 

The skeleton of the nomograms forms a reclining liZ" with 

two further parallel scales below at the left. This part solves 

the equation 

\It[ s fws 
1/4 

Po '\ 112 
= 3 3/ :2 

(G b· J. 
P '/ 

(in which' Po = 0.125) by drawing two parallels with the corre-

, . al f b co 'G ppo. If> 1 ( fo r 0 r-spona.J.ng v ues or i, l. yITS ' ana. 'ca 

dinary profiles), which can be read above in the middle, we must 

resort to equation (?a), which contains the following expression 

(
G'\1/2 ( 1 

Vi = 4 ':r.i' cws + -
S ~ ,I \ TI 
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The values of this equation are plotted on the three arms of the 

liZ. II The solution is effected with the aid of two parallel lines 

through the corresponding values. 

At the upper left, po/p is plotted against H, according 

to data by Silrinf;, as the mean v,-;..lue for Europe at 500 north lati­

tude. The reduction coefficient K. for a biplane with equal upper 

and lower vdngs (If symmetrical biplane [,) is also plotted against 

hlb according to Prandtl (Ggttingen IfErgebnisse lf Report II, 

p. 9 ff.), and the value of ca ' according to· equation (8) for 

constant in the vicinity of this "best lift coefficient,1f 

is plotted against fws/Kt2. 

The vertical speed of ascent *h = 75 N~/G is plotted on 

the middle line and near it the corresponding values of the power 

loading for an efficiency of 0.6 (with reference to the gliding­

flight polar at the same ca ), corresponding to the actual mean 

relations. The connecting line for Ws and wh intersects the 

prolonged right arm of the ·"Z" at the point which gives the 

climbing speed w. 
On this right upper scale, there are still to be found the 

values of p/Pg belonging, according to formula (23), to the 

corresponding ratios of the power required for vertical flight 

to the power required to maintain horizontal flight, from which 

values the ceiling can be found for any air-density cuurse. 

The nomogram thus renders it possible to include all the 

climbing relations with three lines ~Dd a few simple slide-rule 
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auxilillry calculations. The somewhat inconvenient drawing of 

parallels is avoided by the use of a celluloid sheet with . engraved . 

parallel lines or of a small auxiliary device with parallel slides. 

2. Homogram for Ceilings* 

Here the form of the logarithmic r'ectangular tables Was cho­

sen. Its basis is formula (25) 

Pa p: = 9.55 
g 

3/2 , 
(G,\ K3/4 f. 1/4 
\b J vIS 

which gives perfectly accurate values, however, only when ca 

does not greatly exceed, according to equation (8), the value I 

with ordinary profiles. In return, this expression gives a gen-

eral view of the effect of the individual quantities. The ar-

rangement of the nomogram is perfectly sy,n;netrical, corresponding 

to the structure of the formula. The fixed values of the air-, 

. plane are at the top, the fixed engine values at the bottom, and 

between these a scale for the air-density relations, supplemented 

by the relation between the air density and flight altitude al-

ready employed in the preceding nomogram. 

The simplest way to use the nomogram is with the aid of a 

celluloid sl1eet with a rectangular system of lines. Three arms 

of each cross must pass through the corresponding fixed values. 

The fourth arm then determines the corresponding point on the 

reference line, which can be noted with the aid of the millimeter 

*This nomogram Was constructed by Erik Thomas. 
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spacing, since the celluloid sheet does not allow direct marking. 

The connecting line to this point on the reference line cuts the 

middle line at the desired point.' 

3. Nomogrartl for Maximum Speeds 

The construction of a nomogram for the equation of the. 

fourth degree with v 3 and V~l (equation (27)) seems difficult 

at first. A surprisingly' simple solution is obtained, however, 

if the two performance components are so plotted against v, that 

their sum can be read directly. 

For this purpose, equation (28) (with Po = 0.125) is con­

veniently written as follows: 

1 
1200 

NoW the power for each square meter of the tot al equivalent flat­

plate area stands on the left, while the correspondingly assumed 

power components, with reference to the total equivalent flat­

plat e area, stand on the right. Hereby the most i!11portant compo-

nent, the power per unit of equivalent flat-plate area, independ­

ently of the magnitude of the equivalent flat-plate area, and the 

corresponding curves in the nO'llogram bear, as designat ion, only 

the air-density ratio for the temporary flight al ti tude. 

The values ~orresponding to the frontal-area performance are 

plotted on the left i'l1argin. It is therefore necessary to calcu-
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late, on the slide rule, only the t~o fixed values N 'rJ and 
fws 

Po (SL ,2 
P .bil 

f -1 ws and we can then find directly, by trial w~th the 

compasses or with a scale drawn on a celluloid sheet, the speed 

at ~hich the delivered power equals the absorbed power. Simulta-

neously this nomogram gives a very good survey of the speed rela-

tions at high altitudes. 

V. E x amp 1 e s 

We will now apply this method to a few airplanes which par-

ticipated in the 1925 Lilienthal contest, in order to demonstrate, 

on the one hand, the applicability of the method and, on the 

other hand, to make a definite presentation of the absolute val-

ues of the constants involved. 

In order to avoid any obscuring of the results through bi­

plane effects, we have chosen the three monoplanes B II (IISause­

wind"), U 10 (low-wing) and U 8 (high-wing).* First the air den-

sities at the ceiling were determined on the basis of an estimated 

equivalent flat-plate area of non-lifting parts and of a profile 

wi th the coefficient c·wp = 0.01. Comparison with the measured 

air density shows the good agreement of the calculation. Next 

the accurate va.lues of these equivalent flat-plate areas were de-

termined from the maximum speeds flown, with the aid of the esti-

mated equivalent flat-plate areas of non-lifting part s, whereby 

it appears that the estimated equivalent flat-plate areas were 

*Madelung, "Der Wettbewerb m,l den Otto-Lilienthal-Preis," 1925 
Yearbook of the W.G.L. 
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mostly too small.* Table I contains the results of the calcula-

tions carried out with the aid of the nomograms in Figs. 5 and 7. 

TABLE I. 
I - , 

l 1 2 3 I 4 5 6 7 8 9 ---- ~-

Airplane G b F fwp I fw~ I fws 
type G F 

b (cwp=O.Ol) Estl-1 t=b ca best kg m rn2' mated! m2 

B 11 570 9.4 61 12.4 0.125 0.225 0.3511. 32 1.37 

U 10 595 10.7 56
1

15.2' 0.15 0.45 10.5E? 1.42 1.5 

U 8 1040 14.3 73123.0 0.23 10 • 70 10 •93 1.63 1.5 
I ! I 

----t-~--_r__-___.-_:_____-_r__~----;__--.-_r____,r__--_,__-------

10 11 12 13 \ 14 I 15 I 16 ! 17 18 

Airplane 

type 

B 11 

U 10 

U 8 

Airplane 
I 

F 
b2 

0.028 0.14 

0.036 0.133 

0.040 0~112 

20 

Ws I N I Tl st 'I v7t 'Y g 
G _ I I G Esti- Calcu-
F Im/s!EP., N mated m/sl1ated 

i . I 

I I I 
4612 • 0 165 i 8 • 81 0 • 65 5 • 5 O. 7 3 

39\2.0163 I 9.4 0.60 4.8 0.79 

I I I 
45 2L1!91 111.4 0.60 4.0 0.89 

I I I 

21 22 23 
2 

v km/h 10-3 (G'\ f -1 Tlhor 
\ b/ ws R!L 

i 
I 

19 

'Yg 
Measured 

0.75 

0.80 

0.89 

24 

fws 

type Measured fws Estimated Calculated 

B i1 11.8 183 112 0.65 0.38 

U 10 5.7 146 61 0.60 0.62 

U 8 5.7 146 61 0.60 0.93 
-

*See footnote, page 26. 
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The best c a (at which the minhmm vertical speed of de­

scent would be obtained on the assumption of a constant profile 

drag) lies far above unity. Hence the calculation is made with 

cws and F/b2
• In 'the other case, the results would be as given 

in Table II. 

TABLE II. 

Airplane Ws 'Yg ~g 
type M:easured 

B 11 1.95 0.72 0.75 
(instead of 2.0) (insteo,d' of 0.73) 

U 10 1.9 0.77 0.80 
(instead of 2.0) (instead- of 0.79 ) 

U' 8 1.9 0.85 0.89 
(instead of 2.1) (instead of 0.89) 

The result s of this calculat ion o,re ;ilore favorable on the. 

whole, but the numerical differences are so small, that they can 

be often disregarded in co~sideration of the inaccuracy of all, 

-, the assumptions, in the constructional computations. Columns 10, 

11, and 12 in Table I are thus eliminated and the calculation 

becomes shorter and clearer. 

"'To simplify the use of the nomogra.'1l in the speed calculat ion, 
the sea-level speed was put eque,l to the measured speed, which 
Was al.most exact. The orake horsepower on the ground can be 
thereby introduced. 
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The following formulas for the flight performances were ob­

tained by the resolution of the polar curves into their compo-, 

nents, the profile drag and induced drag, and by taking as ~ basis 

the American data regarding the dependence of the engine power 

on the altitude of'flight. 

Olimbing speed (or rate of climb): 

W = 
75 N 'rl -1~ 

G - 1.06 P 

Oeiling: 

Maximum horizontal speed: 

75 NY] 
. f yJS 

Herein occur the hitherto unused quantities: 

f 1/4 
ws 

b · - bl!K 1 - 1 

the induced drag (on multiplanes); G/bil the span loading; 

fws, total equivalent flat-plate area (including profile drag); 

Hal the critical altitude (up to which the engine power can be 

kept' constant); P a' the corresponding critical air density; 

N/fws , power per unit of equivalent flat-plate area~ The hith-

erto customary fixed values II aspect rat io II and IIwing loading" 

are eliminated in these performance calculations, as also the 

values and C 3/:2 /c a w taken from the polar curves. 

The wing loading still serves only for calculating the landing 

speed. 
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Since the calculation is based completely on the construc­

tive quantities G, bi' and fws' it shows the constructor di­

rectly the effect of these quantities. No further simplification, 

appears, possible. 

The formulas enable a series of conclusi0i1S, of which the 

following are the most important. 

1. For the climbing speed, the power loading is the most 

important, when there is not too little exce ss power. ' Airplane s, 

designed to climb swiftly at a'low altitude, must therefore have 

a low power loading. 

2. For the ceiling, the critical alti tude of the engine and 

the performance rat io of the airplane are the most important. A 

high ceiling requires high-al t i tude engine-s a...'1d a good perform­

ance ratio on the ground. 

3. The performance xs.tio is the ratio of the power required 

for vertical flight to_the power required to maintain horizontal 

flight. A reduction of the latter hy half has the same effect 

on the ceiling as doubling the former. The climbing speed near 

the ground is therefore generally but little affected by it. 

4. The most important quantity for holding dovm the power 

required for horizontal flight is the span load.ing, in comparison 

wi th which the total equivalent flat-plate area plays only a very 

subordinate role, for which reason the old. Wright airplanes and 
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others flew, in spite of this small engine power and great drag. 

5. For maximum horizontal speed, the power per unit of 

flat-plate area is most import~!t. Swift airplanes therefore re-

quire minimum frontal drags. The wing dimensions are important 

only in so far as they affect the profile-drag component. Keeping 

down the profile-drag coefficient is just as effective as reduc-

ing the .wing area. 

6. For equal spans, the biplane seems to be superior, es-

pecially with regard to the ceiling, though not so much so with 

respect to maximum speed near the ground (with reservation as to 

the solution of the profile-drag problem by further flight te~ts). 

7. With respect to the speed range, most wings have much 

too good aspect ratios. Increasing the chord brings the "best 

Ca" more into the realm 'of actual flight and only slightly im­

pairs the flight performa):;.ces. The landing speed is, however, 

simul t aneously much red.uced. 

8. The designing of a practic~l airplane is accomplished on 

the basis of the lllaximum span, while taking into account its con-

templat~d use, wing loading and propeller efficiency. The chord 

is determined, on the one hand, by the "best c II a and, on the 

other hand, by the land.ing speed. Thus the best dimensions of 

the wings are determined 1;vi th reference to the flight perform-

ances. 

Translat ion by D1Night M. ~!Iiner, 
National Advisory Committee for Aeronautics. 
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p 

Engine power and flight altitude.Comparison of the cus­
tomary formula with the one calculated from American 
experiments. 
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bytascertainine; the corresponding performances with the aid of 
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Nomo~raph for climbing performances. The performances are found 
by dra\7ing two parallels. 
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FiG.6 Nomograph for the ceiling. The ceilf~s are found by the 
construction of reference crosses. 
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