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I. Introdution 

In the Seventy-Fourth Report of the D.V.L. (uDeutsche Ver .

-sucheanstalt fur Luft±'ahrt"), the writer proposed. a method for 

calculating flight performances without using independent coeffi-

cients (Ca, C, Ow/Ca, cw/ca'2 ). These expessionswill here 

be amplified and supplemented. The calculation of the climbing 

and speed performances was carried out on the assumption of con-

stant profile drag, whereby there was assumed a logical separa-

tion of the airplane resistances into one tart which is connected 

with the dynamic pressure (head resistance or drag) and into an-

other part which is connected with the reciprocal of the dynamic 

pressure (induced, drag). These calculations will here be con-

tinued by the investigation of the relations in flight . with the 

best coefficient of glide (LID ratio), whereby it is shown that 

the expressions obtained differ only by numerical factors from 

the ones calculated for the best climbing conditions. Inpursu-
* U Einige weitere flugmechanische Beziehungen ohne Zuhilfenahriie der 
Polare,' the Seventy-Ninth Re port in the 1927 Yearbook of the 
Deutsche Versuchsanstalt fi1r Luftfahrt,'T pp . 145-151. 
This report is supplementary to Reort Seventy-Four of the 

DVLI: Calculation of Airplane Performances without the Aid of 
the Polar Diagrams, by te same author. (See N.A.G.A. Technical 
Memorandum No. 456. )
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ance of this subject, it is found that the performance character-

istics of the airplane (LID ratio, drag, vertical speed of de-

scent, minirnum power required to maintain horizontal flight) fol-

low a law independent of the shape o± the airplane, when based on 

the flight conditions at the best LID ratio. 

The reliability of the assumption of a parabolic shape of 

the polar curve is investigated and found satisfactory for all 

practical purposes. It is further shown that the aerodynnically 

best possible or idealt airplane is produced on this assumption. 

Lastly, detailed suggestions are given on the possibilities 

of application of this method of calculation. It especially sim-

plifies the design and evaluation of structural changes and the 

determination of the limits of technical possibilities. 

The present report deals only with the relations of the air-

foils. The mutual action of the airfoils, engine and. propeller 

will be treated in a subsequent roprt 	 . 

II. Symbols


1. Airplane without Power Plant 

G,. full load, kg. 

F, wing area, m2.

b,	 span, m. 

t,	 mean chord (F/b), m. On a biplane this is the sum of 
the. mean upper and lower chords divided by the span 
of. the longer wing F0 ±Fij 

b 
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equivalent flat-plate areas (W/q), m2: 

f, equivalent flat-plate area of wings, m2; 

equivalent flat-plate area of non-lifting parts, m2; 

f, total equivalent flat-plate area (f	 + f), n'i2; 

	

,	 reduction coefficient (W /WE) for the induced drag 
of a biplane, as compared with a monoplane of like span 
(according to Prandtl).* 

ca, lift coefficient. 

cw, drag coefficient (c, cwr, c 5 , c±). 

2. Power Plant 

	

N,	 engine power, HP. 

	

i	 propeller efficienoy (referred to gliding-flight polar, 
with like ca). 

3. Performances 

v, horizontal speed,. rn/s. 

w, vertical speed of descent, rn/s. 


	

H,	 altitude of flight, km. 

p, air density (y/g) kg s/m. 

q, dynanic pressure (p v 2 /2) , kg/m2. 

The subscripts denote: 

	

,	 sea level; 

	

a,	 critical altitude (up to which the engine power does 
not diminish); 

	

g,	 ceiling; 

	

,	 flight condition of best L/D ratio;	 - 

* ?! Ergebnisse cier Aerodynamischen Versuchsanstalt zu Gottingen," 
Report II, p. 9. ff.
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i, quantities corresponding to the induced drag of equiva-




lent monoplanes (for example, bj "induced span"). 

III. Flight at Best LI D Ratio 

1. Derivation of Formulas 

a) The flight condition of best L/D ratio (glide coeffici-

ent) is characterized by the. smallest possible total resistance 

or drag. This condition is utilized in calculating the perform-

ance values. It is (total drag = structural drag + induced drag) 

K G2 (1) W=qf5+
fl q1i 

or	 .	 2(G	 1 W=v2	 -	 ( 2) 

if b/	 = b	 denotes the "induced span" (span of the equiva-

lent monoplane with respect to the induced drag). The minimum 

value of W is obtained from the condition 

	

• 4 'G"	 .1 
dv	 S -	 (:t511	

:-- = 

to
(4\\1/4

wS	 (3) 

	

p-l/2 () -	
-1/4 

vc = \TtJ 

This is the speed along the flight path at the best L/D ratio. 

Equations (2) and (3) yield the minimu;n drag. 

(4\I/2 G	 1/2	 (4) Wmin =
	 ws 

The best L/D ratio is therefore
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1/2.4,	 1/2 
€	

VJjy - ( 4	 1ws___ 

	

nun -	 -	 ___ 

The corresponding speed of vertical descent is 

-	 VE: Cjfl = (4"4_1/2 (G''/2	 3114	 (6) 
:i-r/	 \t-'.	 lDj 

Moreover,.the energy consumption required to maintain flight 

at the best L/D ratio is

/ 3/4	 3/2 
N	

- Wmin V (4/nS	 1/2( G	 f 1/4	 7 Sc -
	 75	 \75J	 ws 

The air density and the altitude can be easily calculated 

with the aid of the power required to maintain horizontal flight, 

if the exponential law, deduced in the previous article, is used 

for the deciease in engine power with the air density. It was 

=	
(8 

Na	 '.PaJ' 

whereby the subscript a denotes the condition at the critical 

altitude of flight; and c, at the altitude atta-inabie with the 

best LID ratio. (It must be borne in mind that the engine 

power is assumed to remain constant from the ground up tO the 

critical altitude.) 

-

	

	 The ?ower required to maintain horizontal flight at any alti-

tude equals the propeller performance 

( 4t T '	 —1/2 ( G 
3/2	

1/4 - N	 - N WS	 - c Ic -
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from which is derived the air-density ratio 

o • 53 

= 8.90 (_N
	 pah/2 

f	 3/2 /41 
wsi 

With the law for the dependence of the altitude on the air 

density (also previously employed), 

H = 20.9 lg -
	

(10) 
-H 

which represents a close approximation up to 10,000 m (32,800 ft.), 

there is deduced from equation (9) the formula for the flight 

altitude attainable with the best LID ratio: 

r	 1/2 
62.5 a c a	 (ha) = Ha + 11.0 ig	 372 
(_'\	 fws1 
\bjj 

or	 /G'2 fws 

= Ha + l98 - 11.0 ig b1
	 •.	 (hib) 

1 /2 
N a fl 

b) The most important fundamental result of these calcula-

tions lies in the knowledge that all the formulas differby only 

a single rnmierical factor (or a constant quantity) from the formu-

las previously deduced for the best coefficient of climb, and 

that therefore the flight speed, climbing speed, L/D ratio, drag, 

and required power for both flight conditions always stand in a 

constant ratio, when the pro'ile-drag coefficient remains con-

stant. This condition will be considered again later.
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c)	 All the formulas are repeated in the following table. 

The last column shows the mutual relations, which can always be 

expressed as powers of the number 3. 

TABLE

Formulas 

Flight-path speed, rn/s v G a	
(b 5"2 

Gh/2	 f	 1/4 
WS Vertical speed of descent, rn/s 2 a p" 3/2 

Total drag, kg VT f	 1/2 a	 ws 

L/D	 ratio
1/2 

a 

Power required for horizontal
3/2 

a	 _i/2(G '	 f	 1/4 
flight,	 HP. \bj,	 WS 

Na	 1H pa1'2	
053 

Air density ratio a (_ /2

WS 

(G	 '.3/2
WS 

Ceiling, km H H+a—lg
Na flH Pa"2 

Lift coefficient Ca
1 /2 a 

f	 i/4	 t1/2 ç3/4 
ws Coefficient of climb ----

b
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TABLE (Cont.) 

Coefficient a
Ratio 

	

(1)	 (2) 

	

At best	 At best 
coefficient	 (l):(2) 

	

of climb	 LID_ratio 

Flight-path speed, rn/s 	 v	 0.81	 1.06	 l:31=0.7S 

Vertical speed of descent, w5	 1.05	 1.20	 2:3"=0.88 
rn/s 

Total drag, kg	 W	 1.31	 1.13	 2:31/2=1.16

L/D	 ratio c 1.31 1.13 2:31/2=1.16 

Power required for hori- 1 1 23"-O -
88 

zontal flight, HP. 71.3 62.5

3/4 
2.3

0.53 

Air density ratio 9.55 - 8.90 

Ceiling, km H 20.4 19.8 (1)-(2)=0.6 km 

Lift coefficient Ca 3.07 1.77
1/2 

3	 :1 = 1.73 

Coefficient of climb
C 

-	 3/2 0.75 0.85
3/4 

2:3 = 0.88 
0a

ri 
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2. Validity Limits of the Formulas 

The derivation of the formulas proceeds from the assumption 

that the total equivalent flat- plate areas (rofile drag + struc-

tural drag) remain constant throughout the whole range of the 

angles of attack on normal flight (Fig. 1). This assumption must 

be verified and the effect of the deviations estimated. 

a) Among the nonlifting parts of the airplane the fuselage 

plays the most important role. All other parts are either so 

small or so shaped. (e.g., the landing wheels) that moderate 

changes in the angle of attack do not affect the drag values. 

Considered by themselves, ordinary fuselages show a moderate 

drag increase for a large deviation of the angle of attack from 

the line of symmetry. In the presence of the wings, however, 

the mutual effect is usually so great that correct results can 

be obtained., only by simultaneous tests of the fuselage and wings. 

Such tosts lead. to the conclusion that, for favorably shaped 

fuselages, the mean increase in the equivalent flat-latearea 

due to the fuselage is independent of the angle of attack, ex-

cepting fOr very unfavorable arrangements (e.g., wings located 

slightly below the fuselage) and perhaps very large fuselages 

relative to the size of the wings.* In certain positions (high-

* tl Ergebnisse der Aerodynamischen Versuchsanstalt Gttingen," 
Report I, Chapter IV, Section 7. Unpublished experiments pr-
formed at Gttingen in 1924, according to the instructionsof the 
writer, on two models of the Daimler L 20 (both high-wing and low-
winc) lead to the same conclusion.
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wing monoplane) the apparent equivalent flat-plate area of the 

fuselage can even grow smaller with increasing angle of attack. 

b) The profile drag of the wing itself is largely dependent 

on Reynolds Number and on the roughness of the surface. Figure 2 

shows the profile-drag coefficients of a thick Junkers wing 

(d : t = 0.18) for various, degrees of doping and polishing of 

the covering fabric.* It is seen that, with the smoothest sur-

face, the drag coefficient of this profile is actually constant 

over a wide 0a range. 

•	 c) Nevertheless there remains, for all the profiles, a 

•	 great increase in the drag coefficient in the vicinity of the 

maximum lift, produced by the gradual separation àf the boundary 

layer. Hence, in the previous article, an auxiliary iiethod was 

given for the case when the best ca in climbing under the as-

sumption of Darabolic polars is considerably greater than 1, 

i.e., when it lies in the domain of great profile-drag increments. 

This case occurs with most airplanes. 

On the other hand, the lift coefficient in flight at the 

best LID ratio is almost always less than 1 (Fig. 3). Here the 

formulas apply very accurately. This flight condition therefore 

offers a sure basis for judging flight, even with the best coef-

•

	

	 . ficient of climb. Since both flight conditions with parabolic 


polars stand in certain fixed numerical relations to one another, 

*According to experiments by the writer soon to be published.
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incontestable limits can be given for the individual power val-

ues based on the values at the best L/D ratio. Hence, for or-

dinary wing sections with the best coefficient of climb, the ver-

tical speed of descent is 88% in the most favorable case, the 

power required to maintain horizontal flight is the same, and the 

maximum attainable air density is 93.5' of the corresponding 

values at the best LiD ratio... 

The ceiling is not over 0.8 km (1988 ft.), or in the strato-

sphere 0.45 km (1476 ft.), higher than at the best L/D ratio. 

The best values of these performances lie in fact between 

the given limits. The corresponding 1ift coefficients are there-

fore lower, or the speeds higher, than the values given in table. 

When it is considered that.(with a suitable propeller) the 

propeller efficiency still increases somewhat with increasing 

speed, it is obvious that the best value of the mutual action 

of the airfoil system and power plant more closely approximates 

thespeed at the best L/D ratio, which therefore grows contin-

ually more important. 

d) Model experiments on wing sections do not show the con-

stancy of the profile drag so pronounced as the abovementioned. 

tests. * 

So long as we depend principally on the latter (in spite 

of what is said in paragraph c), the need will be felt, under 

*Oskar Schrenk, "Systematische Untersuchungen an Joukowski-
Prof.ilen	 Zeitschrift fir Flugtechnik und Motor1uftschffahrt," 
May 28, 1927, pp. 225-230, (N.A.c.A. Technical Memorandum No. 442).
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some circumstances, of a more accurate comprehension of the rela,-

tions. 

In most instances the profile-drag polars can be replaced 

in the technically important aviation domain by a parabola sym-

metrical to the c	 axis (Fig. 3). Since, in this case, the 

profile drig follows the same law as the induced drag, its var-

iability can be expressed y the introduction of an apparent 

aspect ratio X'	 or an apparent induced span bt j .	 If 

is the contant share for c a = 0 and if	 - c 0 is the


increase in the. profile drag for ca = 1, we then have, after a 

shor.t deduction process,

F 
1 -	 - cvo 

b4 

/	 b'12 
=	 F	

(<b1)	 (13) 
F +	 (c11 - c0)


b12 

Use can be made of the assumptions, wherever it is desired 

to estimate the limits of the technically possible on the basis 

of model experiments. We must then lay an enveloping curve on 

a group of polars of good profiles of varying camber and thick-

ness. If' the very thin wing sections are discarded, we then ob-

tain, up to ca = 1.2, a good approximation to the parabola 

lOOc=Q . 9 +O.3ca2	 (14) 

The aspect ratio of such a wing increases therefore by the
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amount 0.006 IT	 0.019 and the constant component of •thQ profile 

drag is c 0 = 0.009. 

e) It must be borne in mind that the induced drag itself is 

not accurately known. In general, we know only its best value, 

wh±ch appears in elliptical lift distribution. The deviations 

therefrom in actual practice are generally not very gret* 

though they are appreciable in comparison with he refinements 

considered in paragraph d. 

Since, however, the best value of the induced drag can be 

obtained by a suitable contour or wing warping, at least for a 

predetermind flight condition, and the ideal condition is there-

fore practically attainable,** these relations will not be further 

considered here. Only as a starting point', Figure 4 gives a com-

parison of the theoretical values of K and the values obtained 

in Gttingen 'for symmetrical biplanes with rectangular unwarped 

wings of equal spann 

f) If we take gliding-flight polars, measured in flight, 

as the basis for designs, we can easily replace these by parabo-

las in almost all cases. We accordingly obtain (corresponding to 

the process in paragraph d) an "apparent aspect ratio" 

= 1-1 (c	 - c)	 (l2a) 

* For monoplanes, Betz, 't Tragf1ge1theorje u tBeiheft (supple-
ment) 2 of the "Z.F.M."'; for biplanes, "Messungen an Doppeldeck-
ern,,' "Erebnisse der Aerodynamischen Versuchsanstalt zu Gttin-
gen," Report II. 
** With the possible exception of the influence of the fuselage in 
biplanes, whereon data are yet lacking.
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and an "apparent induced span"

F 
-	 (13a) 

U (c	 - c) 

c	 is then the distance of the vertex of the parabola from its 

origin. 

I this way the results of a flight test can be expressed in 

the form of span and total equivalent flat-olate area, an approxi-

mation which is not quite true to reality, but which iiiay be of 

practical advantage. 

IV. Introduction of the "Best Gliding Speed" 

1. Derivation 

1±' the speed required to maintain the flight condition of 

the best LID ratio is termed the "best gliding speed" vc , we 

then have, according to formula (3) 

	

= 1.OS	 G	 \1/2 

1/2 p112 \b 

a value, which can be immediately calculated for any air density, 

provided the values of G, b, and f 	 are known. If this speed 

v	 is introduced into the general formula (2) for the total drag, 

we obtain, after a few transformations, 

	

W = 0.565 G	 1/2 (V\	
(14) 

	

b	 S	 \v J \ V / 

While formula (2) gives only a general relation between
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speed along the flight path and air resistance, formula (14), as 

an independent variable, contains the ratio of the momentary to 

the best horizontal speed. Since the part before the brackets is 

just half the minimum drag, we 

1r 
- 'mJ.n 

2 

In a simple manner we fur

have

(15) " V/ 

her obtain 

=	 n (-__'\+ (	 (le) 2	 \vc,'	 \V,' 

.w	 1v	 v 5€	 € 
= 2	 + 

11	 ( v	 V 

5 = 	 -V..-

2. Confirmation 

It can be easily seen that this surprisingly simple relation 

between the performance values and the ratio of any speed along 

the flight path to the best horionta1 speed follows from the as-

sumption of a p arabolic polar. Proceeding from this polar, we 

obtain

cc	 +kc2 w	 ws	 a 

9wc	 c 5 -F k ca€2 

in which k = .. L. i consideration of the circumstance that, 
ub2	 - 

at the best LID ratio, the shares of the head. resistance and 

induced drag are equai* ( c 5 = k ca 2 ), we obtain 

*Due to a simple geometric relation for the parabola.
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and lastly 

ow
- 2 °ac \sC a Ca I

(l6a) 
2 °ac "Cac °a

the latter being identical with formula (is). 

Considered by itself, any other lift coefficient or speed 

connected with the polar by a geometric relation could be chosen 

as a reference quantity, hut the condition of best L/D ratio 

yields especially simple relations because of the equality of the 

two drag components. Moreover, it is technically the most impor-

tant, because it furnishes the basis for the evaluation of the 

aerodynamic fineness of the airplane. 

3. Application 

The relations represented by formulas (15)-(l8) are plotted 

in Figure 5. It is, to a. certain extent, a "standardized" repre-

sentation o' the "ideal aircraft for the L/D ratio, drag, ver-

tical speed of descent and required. power, based on the values at 

the best L/D ratio. 

These normal curves of the performance values of airplanes 

represent a great simplification for the plotting of the perform-

ance diagrams. Above all,, it is possible in this way to obtain 

a quick survey of the reldtions over the whole flight range, in-

dependently of the airplane type. Only the i'elations at the best 

gliding speed are affected by the values of G, b, and f. 
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More may be said later on the other possible applications 

of such a ll standardized lt performance diagram. 

4. Determination of the Values V€ and En Dependent 

on the Form of the Airplane 

It is seen that the calculation of the flight performances is 

divided into two parts: 

a) Calculation of the flight performances V, Cmifl 

(W e , w) and N	 at the best L/D ratio. 

b) Use of the !mnormal diagram (i.e., the one based on the 

condition at the best L/D ratio), which can he drawn once for 

all for the given airplane. The problem b has already been 

considered in Section III. 

We must proceed from v€ and c in the determination of the 

performance values. Formulas (3) and (5) for these values enable 

the construction of a very simple omogram (Fig. 6). The further 

values are then

= G Cmin	 (19) 

W5 	 v Emin	 (20) 

N =	
= G v C jfr - G 

SE	 75	 _75 

and can be quickly calculated with a slide rule.



II

N.A.C.A. Technical Memorandum No. 457
	

18 

5. Graphic Explanation 

The "best gliding speed" according to formula (3) and the 

corresponding 'best L/D ratio" (formula (5) ) will be considered 

in greater detail. v 	 is determined by the expression 

G 
._	 •.	 1/2 
IJj -w 

This is a wing loading. The area supporting the full load G 

is obtained from the induced span and the side of the square 

equivalent to the sum of all the equivalent flat-plate areas, in-

cluding profile drag (Fig. 7). The greater this area, the smaller 

the speed of the best L/d ratio.* Hence it is called "speed 

areas" It is equally important with the wing loading in ordinary 

calculations. The aspect ratio of this "speed area" yields, how-

ever, when multiplied by 1.13, the best L/D ratio. 

Through these two quantities c and vc we obtain a new 

principle of classification, which renders it possible to classify 

airplanes according to their specific speed (as viewed from the 

standpoint of their airfoil systems) and according to their 

economy. 

Figure 8 represents several airplanes of very different 

types, as classified from this viewpoint.** The diagram shows, 

*If v	 is compared with the final velocity of free fall, which 
would be attained by such a speed area loaded with G with 
cw = 1, this area is found to be Tr i vc, i.e., vc	 is 3/4 of 
this falling velocity. 
**Largely on the basis of accurate flight measurements. The in-
duced span was taken for all airplanes according to the theoretic-
al optimum. The values serve only as examples.
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beside the lines of like vertical speed of descent (V€ Emin) 

several hyperbolas of like ratio Vc/cmin of both reference 

sizes. * 

It is obvious that four of the otherwise very different air-

planes are approximately equivalent with resect to this ratio, 

while the fifth is considerably higher. The latter airplane was 

in fact constructed with exceptional care with respect to head 

resistance and its performances represent considerable technical 

progress.

V. Conclusions 

1, On the Limits of Similarity Considerations 

-a) Similarity or model laws find many applications in the 

mechanics of flight. Newton t s general similarity law furnishes 

the basis for the quadratic law of dynnic air forces. Reynolds 

similarity law includes the viscosity of the fluid, in add.ition 

to the inertia, and enables a statement thereon when the flow pic-

ture is similar.. Hence the application of Newton ! s model law is 

strictly accurate. Here the geometric similarity of the compared 

objects is always assumed. The nondimensional coefficients for 

the air forces are then approximately independent of the size of 

the model and the polar remains constant. 

.b) Similarity considerations in the design and enlargement 

* Vc/ Cmjn indicates the speed cf an airplane with Cü 
which would be equivalent with respect to the ratio Vc/mjn, 
hence a sort of 'eoonomical speed of comparison.
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of airplanes often proceed from the geometric similarity of the 

airplane.. They have often. beei successfully applied (Lanchester, 

Rohrbach) and can be of great service. There is danger, how-

ever, (as demonstrated by the prevalence of certain erroneous 

views)* that more or less conscious use of similarity considera-

tions is made in cases where there is no geometric similarity. 

In fact, airplanes of different sizes and uses differ great-

ly from one another in their geometric relations. The size of 

the non-lifting parts is determined chiefly by the total weight 

(full load), including the fuselage, landing gear and floating 

gear, and their economical dis posal is determined by the arrange-

ment and size of the wings. The size of the wings, on the con-

trary, is determined chiefly by the landiiig soeed (wing loading), 

structural strength, maneuverability, and stowing (span). Atten-

tion is called, e.g., to the contrast between a single-seat 

pursuit airplane, which has relatively small wings, and a large 

commercial airplane, which carries engines and "useful load" in 

its wings. 

c) If geometric similarity can be assumed, the wing and 

power loading, as well as the power per unit of wing area, give a 

good idea of the flight performances to be expected. If such is 

not the case, however, the aerodynmic coefficients (LI D ratio, 

coefficient of climb and coafficient of drag in horizontal flight) 

*For example, that a great wing.loading-is unavoidable for attain-
ing high speed, or that great reserve power is possible only with 
small power loading'(both of which views have been controverted 
by good light airplanes).
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must then also be taken in±o consideration. Th e relations are 

thus complicated, however. Th e coefficients depend, on the type 

of airplane. In particular, the, effect of altering the size and 

shape of the wings can not be disregarded. Altering the chord 

produces quite a different effect from altering the span. If it 

is not desired to calculate every example (which is not usually 

done, due to the time required), the only resource is rough esti-

mation. 

The present method. avoids this obstacle. It is free from 

coefficients whose use depends on the assumption of geometric 

similarity (L/D ratio, coefficient of climb and especially inde-

pendent coefficients). It is strictly limited to the quantities 

G, b, and. f, as the origin for all computations.* 

d) Thus we obtain a series of special model laws, which 

are strictly valid for the assumption o parabolic polars. 

1. The best LID ratio of an airplane is constant, when 

the ratio of the square root of the total equivalent flat-plate 

area to the induced. span is constant. 

2. The best horizontal speed. does not change, so long as 

the speed wing loading' t remains constant. 

3. The lift coefficient at the best LID ratio does not 

change, if the ratio of the square root of the head-resistance 

*The ratio G/bi increases, with geometrically similar enlarge-
ment and constant wing loading, linearly with the dimensions and 
cannot therefore be utilized. in comparisons, but G/b1 2 might 
be used..
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area to the chord (on multiplanes "induced chordu 	 1/2 t) remains 

const ant. 

4. When based on the condition of best gliding speed, the 

ratio between the speed and performance values of the airplane 

without power plant are independent of the shape of the airplane. 

The above laws express in words, what the formulas in Sec-

tions III and IV express in figures. 

2. A Few 0 ssibilities for Applying this Method 

This method seems to be especially applicable to the follow-

ing purposes: 

a) Complete details have already been given on the simplifi-

cation of the design calculations and the facilitation of the ap-

prehension of the structural possibilities. 

b) The facilitation of the estimation of the effects of 

structural alterations of a finished airplane is connected with 

the above. 

c) The judging of the aerodynamic effects of unusual struc-

tural details (slotted wings, removal of boundary layer by suc-

tion, etc.) is considerably simplified. 

d) The determination of the limits of the technical possi-

bilities. For the maximum performances in endurance flight, 

speed and "short-range flight," such widely differing structural
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forms are necessary, when the assumption of geometric similarity 

no longer suffices. In the use of structural characteristics 

(weight, span, and total equivalent flat-plate area), one is en-

tirely freed from this assumption and. can substitute the maximum 

or most favorable value for each of these quantities in the corre-

sponding case. 

Translati on by Dwight M. Miner, 
National Advisory Committee 
for Aeronautics.
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Complete Legends 

Fig. 1. Parabolic and actual polar curves. 

The best coefficient of climb lies at the point of con-

tact of the curve cw/ca3/2 = constant with the polar. The two 

coefficient-of-climb curves for parabolic or actual polars differ 

but little. The best L/D ratios for the actual profile and the 

parabolic substitute generaLly coincide. 

Fig. 2. Profile-drag polars. 

The polars ar the result of flight tests with a thick 

Junker s wing section by the impulse method. They represent the 

effect of the varying surface treatment of airplane linen on the 

profile drag. 

Fig. 3. Replacerrient of polar of Ggttingen profile 387 by a 
parabola. 

The parabola coincides for a long distance with the polar 

of this good medium-thick profile. The best L/D ratios at 

cwr = 0.03 (mean ratio) still coincide for the parabola and the 

actual polar and differ but very little at cw i. = 0.06 (avery un-

favorable value). 

Fig. 4. Theoretical and experimental reduction factors K for 
symmetrical biplanes. 

The values are, taken from the Ggttingen Ergebnisse," 

Report II. They show that, for a symmetrical biplane with rectan-

gular wings, the practical values of K fall 4-9% short of the 

theoretically best values.
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Fig. 5. "Standardized" performances of an "ideal airplane" 
(without power plant). 

The L/D ratio, total drag, vertical speed of descent and 

power required to maintain horizontal flight are plotted against. 

the flight speed. in relatioi to the best gliding speed. The curve 

are strictly accurate, when the profile drag remains constant. 

The deviations due to an increase in the profile drag at great lift 

are not very great, however. The deviations of c and W are 

introduced for the usual relations. The figure shows moreover, 

the components of the induced drag or induced power required to 

maintain horizontal flight, which decrease very abruptly with in 

creasing flight speed. 

Fig. 6.	 omorarn for the best gliding speed .v 	 and the beat 
L/D ratio min 

The nomogram, which was made out on the plan of loga-

rithmic rectangular nomograms shows, on. the left, the "reduced" 

full load G p0/p; on the right, the oest gliding speed v, 

above and below the induced span bj or the total equivalent 

flat-plate area f	 and, lastly, .in the middle, the best L/D 

ratio Cmin . The reading is obtained by applying a rectangular 

cross, as illustratedby an example. 

Fig. 7. The "speed area." 

This is a rectangle with the sides b1 and 5112• 

If this imaginary area is charged with the full load G, the 

load per m2 furnishes a criterion for the "best gliding speed" 

• The aspect ratio furnishes a criterion for the best LID 

ratio.
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Fig. 8. Inverse values of the L/D ratios of various airplanes 
plotted against their best gliding speeds. 

The lines leading to the zero point give the vertical 

speed of descent at the best LID ratio. The hyperbolic curves 

giie the "actual relatie speed." 

1. Two-seat biplane with high-powered engine. 

2. High-wing commercial monoplane with same engine. 

3. Two-seat low-wing sport. monoplane of usual type. 

4. Two-seat low-wing sport monoplane of very fine build. 

5. Two-seat low-wing light monoplane. 

The dashe3. arrows indicate a desirable direction of de-

veloprient. The introduced airplanes are only examples, which 

make no claim to universal vali-dity.
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Figs.1 & 2. 

a= c	 (c-I--c.	 ) 
s	 r	 p 

b = Best coefficient of climb. 
(parabola) 

c = Replacement parabola1(substi 
d = Polar. tute). 

e = Best coefficient of climb 
(actual profile). 

f Best coefficient of glide, 

g =	 /2 = constant. 

=	 r r\	 a	 t y ±
- U a -
	 U (,S £ 

Pig.l Parabolic and actual polar curves. 

1. Undoped linen 

•	 3-i 
0.8 

O6--1J 

0.4 

0.2	
0.01 0.02 
cw 

Fig.2 Profile - drag polars.

2. Linen twice doped and lightly 
polished. 

3. Linen doped six times 'and 
polished. 
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a = parabola 

b=polar 

c	 Gottingen 387 

d = parabola 

-0.06 -03 0	 .04	 .08	 .12 

Fig.3 Replacement of polar of Gbttingen profile 387 
by a parabola. 
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0.7

experimental 

b =
theoretical 

c = (P\h/t 
w) 

0.1	 .2	 .3	 .4

h/b 

Fig.4 Theoretical and experimental reduction factors,, 
for symmetrical biplanes. 



5 

4 

3 

2 

1 

0	 in
kJL -LiJ 

1.4 1.8 2.2	 2.6 

V/yE 

I

N.A.C.A. Technical iemorandum No.457
	

Figs.5 & 6 

f =-- _s_ 
w	 ' 

5€
N, b

€min Wmin 

a = best coefficient of 
climb when c	 = conet. 

0 

	

b	 best coefficient of 
glide when cw = const. 

	

•	
.	 p 

o = for ordinary conditions, 

d = induced drag.° €w). 

e = induced power required 
to maintain horizontal 
flight. 

Fig.5 "Standrdize1' t performances for the "idcal irplane" 
(:'ithout poer p1nt) 
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Fig.6 Nomogram for the best gliding speed v	 and th& best 
L/D ratio	 min .
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Fig.7 The flspeCd area". 
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Fig.8 Inverse values of the L/D ratios of various air-
planes plotted against their best gliding speeds. 
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