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1-ATI Cl AL ADVI SO:::ty COEiH:'T:;:;3:; FOR AEROTAUTICS. 

TECH!HCAL ~JEI,WRAEDUM HO. 498 . 

l~UTTERI:TG OF TH5; _ AIL SURF ACE S OF AN AIRPLANE 

AND T!-f2; 1:~EArS FOR ITS PREVE~:Tlm • * 

By F . 1 . Scheu be l _ 

1:-: r ecent year s very disagr ee able osc i l lations h ,:lVe often 

dev elopect. on a.irp l ane s, wh i ch in :'1any case s have resul ted in 

lne aks Curi ng- fl i ght ana. b ave be(m followed by d is sters . On 

se v e r al c il')lane s, espec ially cant il e v e r and partly c an t i lcver 

monoo l ane s at h i gh speeds, the rings b e g an t o osc illate, '.lsually 

wi th a s"cronL flapping b y the ailerons . Ot he r a trplanes de-

velope{ st r ong oscillations in the tail surfaces , sometimes at 

l:.i g h sY)eeds) as in diving, and somet 1.':1es at low speeds , when 

the a irpl311e 'V'las ne arly stalled . 

T1J.e ,,-ring osc i llations have been par t i ally i nvest i gat ed b y 

A. G. VO Tl 3a.1..:mhaue r ane';. Kon i g 8l1d par t ial l y b y 3 irn'.:-aum and b y 

l31 e n l'.: G.I"iC Licter s . Th e present al't i c le, wh i ch con s ti-tutes a 

continua.t ion o f the wo r k of Von Bau,nh aue r and Xon i g , will the r e-

fo r e -oe rest ric ted t o the fluttering of the tail sur ia,ces ~md 

especiall~T to osc illatioTls o f t:le ho:rizontal e!;lpcnnaf!.8 . T~lis 

wi l l also illustrate t:-~ e char ac teris tics of all other phenomena 

of fluttering . 

* 1/ e-o"r das Le i t ilre r kflatte r r:. und cti e ~.:itte l zu se iner Ve r h{itung ,1/ 
f r om t~1e \'! . G. L . -[eC'..rbook, Decer.ber , 19 26 , pp . 103-107 . 
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The horizontal empennage exhibits two essentially diffe r ent 

kinds of osc illations (Fig . 1) . ne is a r apid up-an~-down or 

flapping motion of beth halve s of the empe:nnage and may be ei­

t her sym::netrical or nnt . The symmetri cal case iR c \ nnected 

wi th a be:1ding of the fuse lage and the da.'TIping sur faces , the un­

symmet r ical casp, '\ i th a twisting of the fuselagp- and a bendi ng 

)f the stabilizing sur faces . I n e i ther c ase there may be a twist­

ing of the stabilizer about the axis of the spar . The motions 

a r e always diss ipated so qui ckly that the react ions p rodu ed by 

them on the ai r plane may be disregar ded . The te rm " f l utter ing " 

is applied to them alone . 

The second kind of os~illation of the horizontal empenna~e 

(Fig. 2) is essent i ally diffe r ent f r om the above. It has oc­

curr ed on some airplanes in the vi c ini ty of talled flight and 

consists of an up-and- down oscillat i~n of the elevator , comb ined 

with mostly considerably weake r to r sional vibr at i ons of the 

whole airplan~ about the spar axis . Thi s k i nd of vibration 

const i tutes no r eal flutte r ing. of the empennage , but a phenom­

enon r elated to the IIRheinland oscillation " on which I deliv­

e r ed a l ecture last year in Munich . 

I t is characteri st i c of all flutte ring phenomena that the 

forces involved ar e of two distinct k i nds . The individual 

st ructur al el ements of the ai r plane oppose to the changes in 

shape ( the bendings and wis tings) a r esistilllce depe ndent only 

on the s e changes in shape and on the st ructur al di mensions ~f 
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the ai r plane . The ai r forces, 0n the c ontrary, depend on the 

posi tion in the. ai r st r eam , partially dete r ,1 i ned by the changes 

in shape , of the parts on which the ai r fo r ce s ac.t, and also on 

the dynami c p r essure, i. e . , on the square of the veloc i ty . It 

thus happens that these ai r forces affect differ ently , accord­

ing to the flight speed , the oscillat i ons of the emp nnage which 

a r e independent of the speed, so that it is possible that the r e 

ar e ce r tain speed r anges i n wh i ch the a ir fo r ce s s o affect the 

os c i llations of the empennage that the wh ole system abso r bs en­

er gy frcin the ai r flow and thus p r oduces incr easing "negatively 

damped ll a.Y1d t herefor e unstable oscillat i ons . Through this r e­

c iprOCal action between the fo r ces of elast i c i ty and those of 

the air , the p r oblem acquires the concept ion of the cri t i cal 

speed, i .e. , the speed at which the flut tering beg ins . 

I will first show how this negative dMnp i ng c an be qu al ita­

tively explai ned .. Figure 3 shows the natur e of the daJnping a ir 

f cr ces on a stabilizer with and without a movable par t or ele­

vator . On such a sur face without a movable part, any r olling 

mot i on p roduce 8 a supplement ary speed of w = r w, wh i ch cause s 

a change in the ili~gl e of attack wi th r espect to the r esulting 

motion and consequently an air f orce wor ki ng against the motion . 

This osc illati ~n the r efor e abso r bs ene r gy. 

I f , on the c cntrary, the a irfoil has a flap wh i ch osc illates 

, with the s~ne fr equency as th e a irfoil but with a shifting of 

phase with r eference to it, the ai r for c e then var i es a ccordi ng 
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to th e 2T1sul a r phase . Th er eby, in ce r tai n r Lnges of the angu-

lar phase, the ai r fo r ce may van i sh or even acquir e the cont r ary 

s i gn, so as to support and inc r ease the oscillation . The ,:1e2.n 

value of t~'l e wo r k done by the ai r fo r ce then becomes posit i ve , 

and the system ab s o r bs ene r g y f r om t e ai r flow . The maxi;nur.1 

o ene r gy absorption then occur s at an angu lar phase o f 90 . Fu r -

the r "flo re , CQl' e must be ex e r c i sed t hat the damp i ng p or t i on of 

the ~ir for ce , wh i ch comes f rom the r oll i ng oscillation of the 

stabilizer, 

shal l i nc re.:;,se in p r opo r t i on to the speed, 'while the po r tion 

of the ,ir io r ce wh i ch st r engthens the osc i llat ions and whi ch 

i s produced by the oscillation of the flap , 

i s p r oport ion()l to the dynam i c p T8ssur e , i . e ., to the squar e 

of the speed . The B-l1gular phase i s dete r mined on the one hond 

b y the air f or ce s act i ng on the fl ap w'1d on the othe r hcmd by 

the effect of the Tolling osc i llat ion on the [rass of the flap . 

The most i :!'1portant quant i ty he r e is the devi at i on moment ( the 

mi xed inertia moment ) of the flap , s i~ce th i s dete r mi nes t he 

magn i tude n~nd rotational direction of the effect of the r ol l ing 

o sc i llation of the stabilize r on the flap (Fig . 4). 

The ai r plane const r ucto r is inter es ted i n the l r cat i on 



N.A.C.A. Technical Memorandum No. 498 5 

and dependence of the critical speed . I will illus t rat e this 

problem by a numerical example. I will give only the re sul ts 

of the calculation, since the latter would be of little inter-

est in itself and would lead too far. For the horizontal em-

pennage represented by Figure 5, I have calculated the case of 

dissymmetric fluttering with torsion of the fu selage. The em­

pennage has an area of 4 m2 (43 sq.ft.), an aspect ratio of 4 

and a . weight of about 25 kg (55 lb.). The width of the elevator 

is 3/8 of the wi dth of the whole empennage. 

The quantit i e s Tx , Ty , and D are respectively, the i ner­

tia moment of the whole empennage about the X-axis, the inertia 

moment of the el evator about its axis, and the deviati on moment, 

the mixed i nertia moment of the elevator about the X-ax i s and 

elevator axis. I have previously referre~ to the impo r tance 

of the last - named quantity. 

The dimens ions were thus chosen, in order to enable me to 

utilize the results of the only recent empennage tests known to 

me, which were made in Ggttingen at the r equest of the D.V.L. 

(Deuts che Versuchsanstalt f~r Luftfahrt). I wish here to ex­

press my gratitude to professor Hoff fo r kindly giving me the 

r esults of the test s prior to their publicat i on. 

Figure 6 shows the test results, cN be i ng the coeff i c i en t 

of the normal force and cR the coefficient of the elevator 

moment. The cR curve is of interest. For small positive and 

negative angles of attack ~ a a. ' 
the v ari atipn of with the 
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angle of 2.ttack a , is ver y small, almost zero and pr actically 

independent of the angle of deflection ~. On the cont r ary , 

is vervr lar ge in the I' egion of the maximum 1 i ft of the 

empennat:; e . 

The c.iT fo r ce coeffir,ients for othe r empennage shapes, 8S-

pecially fo r empennages with balanci ng flaps on the elevator , 

a r e pr actically unknown . Neve r theless, Engl i sh pressur e-

dist ribution measur ements on balanced elevato r s indicat e gr eat 

i r r egulari ties . 

The exa.:nple can be calculated with the above- mentioned 

qu antit i es . Th i s is done, like all s i mil ar stability calcula-

t i ons , accordi ng to the method of small oscillations . By this 

method we obtain a se ri e s of stability conditions, of which the 

most essential one s in the p r esent case ar e as follows . 

The deviat ion moment, to the importance of wni ch I have al -

r eady called attention, must l i e above a certain limit . There-

by the shifting of the cente r of gr av i t y of the elevator in 

front of tl:e axis of r otation and away f r om the fuselage in-

cr eases the stability . 

For the derivat i on of the ai r-f r ce coeff i c ients ther e are 

a few conditions wh i ch are fulfilled by a no r mal unbalanced ele-

vato r . These c ~nditions may become c r it i cal in a balanced ol e-

vator . Since bal anced el evato r s a r e sel dom built, howeve r , for 

the swi ft ai r planes Which a r e danger ous from the viewpoint of 

flutte r ing, even these condi tions are nearly ,,1ways fulfil l ed . 
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The only disagr eeable condit i on is the last one , wh i ch fol­

lows from the Routh di sc r iminant . I t can be clo thed i n various 

fo r ms according to the quantities whose effect on the stability 

are unde r consider ation . Fr om i t we may f ir st concl ude t~at it 

i s possible to obtai n equi l ibr ium by a suff i cient fo r ward chift ­

ing of the cente r of gr av i ty of the elevator in f r ont of the 

axis of r otation, pr ov ided the other conditions ar e fulfilled . 

I t is anothe r question as to how far th i s can be carr ied i:1 a 

g i ven case . I n any event, r ecour se would be had to this last 

expedient only in an eme r gency . 

The l as t stabil i ty conclition fo r a given empennage with a 

g iven angle of attack r,an be represented by a diagr am . Fioure 7 

shows , as absc i ssa', the II stiffness ll of the fu",elage and as ol'di­

nate, tte squar e of the speed , up to a const ant quanti ty which 

i s , therefore, the dynamic p r essure . By the te r m II stiffness ll 

i s meant the value of the to r sional moment which r otates the 

fuselage by the angle 1 ( 57 . 30
) . Figur e 7 shows the stability 

l i mits , two st r aight lines , la and I b , pass i ng thr ough the 

or igin . The space included between these l i nes i s the unstable 

r egion . The size of this field depends, when everything else 

r emains equal, on the mass distribution of the elevator . Nhen 

the d~viation moment of the elevator i s inc r eased , i . e ., when 

i ts center of gr avi ty i s moved f or war d, the stab i l i ty l i mi ts 

approach each other ( 2a and 2b) and the unstabl e reg i on di!.1in­

i shes until it vanishes altogether ( l i ne 3 in Figur e 7 ) . We 
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h ave then reached the abc ve-menti r ned mass dist ribution of the 

elevator, which is i ndependent of the degr ee of the to r sional 

stiffness . Figure 7 also shows the effect of changing the speed . 

I f the attainment cf stabil i t y by means of a ve ry flexible fuse­

lage ( which in p r actice har dly enters into the pr 0blem) is dis­

r egar ded, then any i ncre as e in the speed always means a lessen­

i ng of the stability, as evi denced. t ,y the fact that tht=' da:nping 

con8t~nt of the oscill ation cODtinually gr ows smaller, until it 

becomes zero on r. eaching the stability limit, the "cri tical 

speed " fixed at the beginning . On exceeding he critical speed, 

the dwflping constant passes to negat iv e values (Fig . 8) . 

The phenomena thus far discusse d are he so- ,alled free or 

inherent oscillaticns of the system. It is known that eve-::y­

th i ng capa'ole of f)s c i llat i ng is made to do s ) by impulses or 

pe r iodic forces . The wnplitude Jf these os cillations depends 

par tly on the magnitude and f r equency of the distur b i ng fo r ce 

and partly on the f r equency and dmnp ing of the osc illatory sys­

tem . A detailed discussion of this sub j ect would lead too far . 

I will therefo r e ccnfine myself to showi ng you i n a di agr a:ll 

(Fig . 9 ) how the oscillati cns , at a given speed , depend on the 

frequency of the dis tur b i ng for ce . The dashed line in Fig . 9 

is the fu~gular deflection of the empennage which vould be pr o­

duced by a s te.t i c ,oment 0f unit magn i t de . The _eavy line rep­

r esents t. e dynamic deflect i ons as plotted agai nst the disturb­

ing f r eque:'lcy for a mo;~ent hav ino the same ampli tude . I t is 
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appar ent that the maximum deflect i cm is about fifty t i i11es tl1e 

stat i c defl e cti~n. I will dis cuss these r elation s fur the r i n a 

futu r e nU3nbe r of the Ze i ts~hr ift f~r Flugtechni k und Moto r luft­

s ch iffahrt . 

The sour ne of the exc iting fo r ces is still to be dete r~ined . 

I n the fi rs t pl ace , pe r iodic ver t i ce s r eleased f r cm the wing s 

may constitute t he distur bing fo r ce . Nothing is kno wn r egarding 

their frequency and magnitude . Exper imenta~i nn is very desira­

ble in this connect ion and al so wi th r efe r enc e to e the r probler:1s . 

The main distur bing causes may be sought in the engine and pr o­

pelle r . Slight differ ence s in pi s ton masses may pl'l'tduce r eac­

ti ~n mo~ents of the f r equen~y of the engine r eVolutions . 

I~regular f unntinning of a cylinde r may cause a lack ~ f 

uniforii1 i ty in the revl)luti ~n speed and a consequent r eact i on 

moment of half the f r equency of the engine r evoluti on s . p oo r 

functioning of the first. cyl i nde r is a chrilJnin evil in many 

s i x-cylinder engines whos e ~ylinders a r e poor ly p ro tected agatnst 

t he wind . 

':;'ui te large and very unpleasant periodi c moment s are oener­

ated by a two- bladed pr opeller in curvi ng flight, these moments 

having twice the f r equency of the engine revolutions . To this 

may be ascr i bed the st r ong flutte ring observed f r o]'11 various sides, 

of a ,nuch fl own Ger man airplane in cur vilinear flight . These 

mass effects can be avoi ded by us ing p r opellers with thre e or 

mo r e blades . 
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The r e still r emain the conclu s i ons to be dr awn fo r the con-

st r uctor . It is of p r ime import~Dce to make the fuselage as 

rigid as possible, as r egar ds both torsion and bending . 

narr ow , rectangul ar fuselage s, which are liked fo r other reasons, 

a r e gener ally not ve ry r esistant to torsion , especially "7hen 

built as slender as shown in Figur e 10 . Thi s ai r plane also ex-

hibited a strong flutte r ing of the ho r izontal empennage . A :nore 

compact, round fuselage, like thet of the Cur tiss r ace r, is 

best for swift airplanes . The eleVato r must n0t be mounted a 

the tip of the fuselage , but somewhat far the r fo r war d whe r e the 

fuselage is thicker , as shown in the pictur e of the Cur ti ss 

1922 racer and of the Shor t ai r plane ( Figs . 11 and 12) . 

From the standpoint of the utilization of the mate r ial , a 

r ound fusel age is the be st, since with the same quantity of ;na-

te r ial , it always has "nOl' e torsional rig idity and adequate bend-

i ng rigi d. i ty. Moreove r, with a r ound fuselage, the cove r ing 

can be ;i1Uch more secur ely appl ied fo r suppor t i ng, t h an with rec-

tangular fuselages with flat sides . Round fuselages cost :11ore, 

however . 

Moreover, excep t when it is necessar y to ',1ake the greatest 

possible reduction in the dr ag, it is advisable to suppo r t t~e 

stabilizer by a V st r ut or some similar dev i ce . Th i s will 

give the stabilizer much gr eater r i gidity, espec ially as regards 

torsion . The t r ansmission of stresses to the fuselage is tjus 

made simpler and sur er . 
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I n light case s , a continuous elevator axis mi litates 

agai nst unsyr!lY,1et r ical flutte r ing, but th i s fails in heavy cases . 

Where either this devi~e or a r i gid coupling of the elevator 

halves CGl be installed vrithout spec i a l diff i culty , it is ad­

v i sable to do so . 

The elevato r itself is better unbQIQnced , o r wi th sooe bal­

ancing device net locat~d in the same plnne . In des i gning the 

elevator , it is L:npo r tant to make all par ts r elilote f r om the axis 

) f rotati n 2cnd f r nrtl the fuselage as light as possible . I f this 

i s done, it will har dly be necess ary to use counten' e i ghts . If , 

however , ~f t e r the t ri al fli ghts, it is found necessar y to re­

sor t to balanc i ng flaps, they should be located as far as possi­

ble froo the fuselage. I t is then accompl i shed with smaller 

we i ghts , s ince the effect is dete r mined by the p r oduct of t~e 

d i stance from the r otati onal axis Elnd the distance f r om the fuse ­

lage . 

Only one reconmendation can be made to the p i lot . Cut off 

t he gas c:nd pull caut i ously on the cont r ol st i ck . I t would be 

a mistake to push the cont r ol stick, in or de r to descend faste r . 

I t is 0. TJD.t te r of cour se that one will and must come do \'m , but 

the s:).fe way is to desGend slowly . 
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COM M E N T 8 

Mr . H&ckna~k .- li The phenomona of flutte r ing of the t2..il 

sur f u.c:e s and osc: i llaticms of the "" i ngs have also o ~ Gurred re­

cently in other Gount r ies . The reason for th i s , i n c on j unction 

'.': i th the cantilev er type of 80nst r ur;t i on l see:-!18 to be' especially 

the increuse in the speed r ange , whi8h has extended the field 

of 0 scillatory impul ses . I n yester day 1 s lectur e, Mr . RumpleI' 

mentioned D.. maximum speed of about 280 km ( 1 74 miles) pe r hour 

fo r a seapl~18 . Since , afte r the r epeal of the t r eo.t y rest r ic­

ti nns , ne can now p r oceed wi th the dev elopr.J.ent of rac i ng ;:1..ir­

planes, we everywher e enGounte r the p r oblem of flutte r in", of the 

cont r ol surf aGe s . Theoretical researches Dnd wind- unnel ex­

pe riments have shown a lack of agr eement simile r to that re­

p f) rt ed by .ir . Helmbol d ·in conneGt i on wi th the expe T i r,1e n t s with 

floats in the Hambur g naval labor ator y . Practical tests are 

the r efo r e indi spensable fo r the solut i on of the p robl em . The 

diffi culties aris i ng i n this connection a r e : 1) The p r obl em of 

safety ; 2) The devel pment of experimental methods . 

Il l) As regar ds the safety p r blem , this can be solved by 

beginning tte exper iments at a sufficient al ti tude and car:cy­

ing a pa..rachute which could be used after the f<:" ilur e of any 

i ndividual par ts of the airplane . 

11 2 ) The exper imental methods compri se di r ect measur ement s 

wi th a vibration indicator and kinetogr aph i c. measur ements of 
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the osci l lations in conjunct ion wi t h t i me measur ements. The 

investigc_t ion of the causes could be fac ilit ated by r endering 

the C',ir flo w visible by meon s of smoke , et~ ., end by k i neto­

g r aph i c photogr aphy of the s ~nle . The pe rfon:l~nce of such ex­

periments c;iJpeo..rs to be of ::s re et impor tance for the fur ther de­

velop:nent of h i gh - speed a irplane s. I t would be vrell fo r them 

to be executed D.t sever n.l p l ace s . The ir cost ~rlould be small 

a s compc!Xed r:i th the ir impor to..nce for the development of avia­

t i on and fo r inc r eas i ng it s s c"fety .1I 

Von De"wit z, Directo r o f the D.V. L.- III nould like to cn-ll 

attent i on to D case vrhich mi gh t occur even v;hen the r e is no 

p ronounced flutte ring . I t has t o do \'i i th t ~le fi r st H8..TISa­

:sr andenburg sea- monop131le, 'llhi ch Was completed tov:a r d the end 

of 1917 . During a st0ep sp i r a l gl i de , violent vib r ations sud­

denly developed in the cont r ol sur faces . Th e vib r at ions suc­

ceeded one ar;.other at inter vals of one- hal f to one c econd. I 

h a d t he tmpre ss i on that t he vi b rat ions V'rould have b e c ome mo re 

f r equent if the corr espondi ng att i tude o f t he 2. irplo.ne had been 

:~aintained longer. This Was not feasible , howeve r , in the int­

e r est of sc~fet y, so that afte r two or thr ee vibr ations the <:Li r­

plckn e ~1o..d to be b r o1J.ght back t o no r mal pos i tion . The vib r o..tions 

we r e so vi olent o..s to g ive one the i mpr ess ion that some support­

ing part of the tail sur faces had g iven \'JaY . Simul tnneously 

the steering whee l swung b ack and fo r th with such violence thc.t 



· A.C . A. Technic c. l 1iemornndum Fo . 498 . 14 

it was imposs ible to hold it . I produced the savne r.onni t ions 

in a.nother flight ~nd had the cont rol surfaces obse r ved from 

the obs e rver 1 8 sect.t . Th is obse r va..tion shovJed that, when the 

al titude cont r ol TIQS pulled in sp ir al glidi ng flight , the el­

evo.to r bent strongly d01,"ffi"li'7n.rd on both sides and then suddenly 

sp:r cmg oo.ck to it s norm"',l pos ition. ( The elev2...to r h[1.d a steel­

tube sho..ft . )" Fig . 1 3 .3h01,7S the she.pe of the horizontQl eiTIpenn:J.ge 

(It that tL'1e . These phenomena ftliled to n.ppeQ.l' a.,f t e r the sides 

of the sto.bilizer h:.ld been cut mvo..y . Fig . 14 shows the £inc.l 

sho..pe of the empen~age . 

"Since the distur bance Vias elL:1in2.ted by this alte r ation, 

no fur ther sear ch 'WC1..S m::.de fo r its co..uses . e c.ssumed th~'.t the 

b::.lc.ncing fli:'..ps of the elevl.'.tor dQltl;'.1cd up the C1..i r wh i ch i n turn 

caused the bendi ng of the elev ato r. I n this posi tion the pres­

sure viJas then suddenly released and the elevator sprang back 

into position (Fig . 15) . I ~~ unable to cert i fy as to the cor­

r e ctne 8S of th i s asslli11pt i on . II 

Hr . Scheubel ( Concluding wor d) . - II I n reply to the co:mnent s , 

I wi sh to make the following remarks . 

"I can only agree with Er . Hack;nack . I also consider it 

very desirable fo r flutteri ng phenomena to be investigated on 

a irplanes in fl i ght . The whole calculation stands o r falls 

with the co rrectness or incor r ectness of the assumpt i ons . The 

air fo r ces on vibrating sur fa.ces, howeve r, are yet so little 
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known that we mu st content our selves with assumpt i ons which nat­

u r ally mE1Y be wr ong . :'~ode l e xperiments i n the Aache r:- Ae r ody­

nam i c I :l.stitute a r e being planned, bu t hav e not yet been be,:sun . 

I t would be ve r y inter es t i ng if s ome par t i cul a r case of flutte r­

i ng could 1::;e i nves tigat ed e xpe r iment al l y on a.c'1 ai l' p l ane in 

f light ~nd simultaneously by calculat i on . Thus we would per haps 

a cquire a clear e r i ns i ght i nto some of the st i l l ve r y obscur e 

p r oblelns . Unfo r tunately su ch e xp er iment s cannot ye t be under ­

taken i :n Aachen , due to l ack of the necessar y funds . 

11 The case of the Han s a- Br andenburg a irplane, nent i on ed by 

Von Dewitz, is ve ry inter e~t ing . I th i nk the f ir s t empennage 

wi t h the balanc i ng f l aps located in the ai r flow f r om the sta­

b i lizer was a' out the wor st that could be made . The later forrll , 

wi th the balancing flap s extendi ng beyorid the stabilize r is de ­

c i dedly better . I n my op i nion the latte r fo r m is the best meth­

od fo r balancing when the balan c ing flaps fo r m an integr al par t 

of the elevator in the p l ane of t!le latter. I r egar d as st i ll 

better, howeve r, a spec i al auxiliar y sur face , l~ing abo ve or 

below the mai n hori zontal empennage and ope r ated i n a su i tabl e 

manne r simultaneously wi th the el evato r . Thus one can avoid the 

d i stur bal ces in the ai r flow on the balanc i ng flaps, wh i ch dis­

tur bances are caused by the flow around the side s of the stabil­

ize r and whiel: axe always possi bl e wi th the othe r fo r m. Care 



N. A. C. A. Technical "-1emo r andum No . 498 16 

must be taken, howev er, that the auxi l iary sur faces , located 

above or below the empennage , can be mo r e or les8 uncovered, 

ar:cording to thei r location, at lar ge or small angles of attatl k . If 

Tran s lation by Dwight I,L Mi ne r, 
Nati onal Adviso ry Committee 
for Aeronaut ics. 
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