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NATIONAL ADVISORY COiITTEE FOR AERONAUT ICS. 

TECHNICP MEMORANDUM NO. 510. 

THEORETICAL INVESTIGATION OF THE EFFECT OF THE 

AILERONS ON THE WING OF AN AIRPLANE.* 

By 0. Wiesels'oerger. 

If an airplane wing is moving in a straight line, and if 

both ailerons are deflected in opposite directions at a given 

instant, a torque is produced about the longitudinal axis of the 

airplane, due to the resulting unsymmetricaJ. lift. As a result 

of the unequal induced drag of the two halves of the wing, a 

moment is simultaneously produced about the vertical axis, which 

we shall call the noment of yaw.0 An accurate knowledge of 

the changed conditions resulting from the deflection of the ail-

erons, especially the knowledge of the absolute magnitude of. 

the resulting moments, is important for airplane constructors 

in two respects. On the one hand, both these moments intimate-

ly .affect the controllability of the airplane. The time re-

quired for the airplane to make a turn de:pends, in a high degree, 

on these moments. The knowledge of their magnitudes therefore 

supplies the basis for determining the turning ability. On the 

other hand, it is known that considerably higher stresses are 

produced in certain evolutions than in normal flight. The ro-

tation of an airplane 3600 about its longitudinal axis (rolling) 

*From Report of the Aeronautical Research Institute, Tokyo Im-
perial University, No. 30, December, 1927, Vol. II, 16. pp.. 421-
446.
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is an example of such a motion. It	 is initiated by the ailer-

ons and increases the stresses in the wing spars. A quantita-

tive knowledge of the torque is indis pensable for a reliable 

strength calculation. 

The present work investigates, on the basis of prandtl's 

wing theory,* the form of.the lift distribution when the ailer-

one are deflected in opposite directions. An ideal fluid and 

a wing with a rectangular plan form are assumed. The moments 

must not cause any rotation of the wing or any deviation from 

the rectilinear motion. We therefore consider these moments 

offset by suitable countermonients, so that the wing constantly 

maintains its original position, despite the deflection of the 

ailerons. After the lift distribution has been determined, the 

torque, additional induced drag and moment of yaw can be calcu-

lated. In Part II the conditions wi il be investigated for the 

case when both ailerons are deflected in the same direction. 

With a normal aileron the trailing edge of the wing is re-

moved and the lift at the wing ends is either increased or re-

duced by the action of the aileron. For a given deflection of 

the aileron, the foreshortened cross section. may be regarded as 

a new wing prcfile whose angle of attack and camber have been 

changed with respect to the original profile. If the aerodynaipic 

characteristics of the new profile are known (especially the in-

*L. prandtl, Tragf1ge1theoT-e," I Mitteilung, Nachr. d. K. Ge-
sellschaft d. Wissensch. zu Gottingen, Math. physik. Kiasse 1918. 
L. prandtl and A. Betz, U Vier Abhandlungen zur Hydrodynamik und 
Aerodynamik," Berlin, 192? (J. Springer, Pub.). 
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clination of the lift curve to the axis of the angle of attack 

and the angle of attack at which the lift vanishes), the fçllow-

ing investigations then apply exactly to actual conditions. A 

knowledge of the lift curve and angle of attack for zero lift 

is also desirable for the profile of the middle portion of' the 

viing.

General Calculation Principles* 

We will let b represent the wing span, x the distance 

of a point from the middle, and replace the coordinate x by 

the angle & with the aid. of the formula 

x = -	 cos&
	

(1) 

s.o that the angle & varies from 0 to ri, as x ' passes from one 

wing tip to the other. On the introduction of the angle	 as 

*The method on which the following calculation is based, is taJcen 
esential1y from E. Trefftz. See E. Trefftz, "Prandtl'sche Tr'a.g-
flachen- und Propeller-Theorie," Z. f. angew. Math. u. Mech. 1921, 
p.206. In a somewhat modified form, it is also found in H. Glau-
ert's 'hook, "The Elements of Aerofoil and Airscrew Theory,H Cam-
bridge, 1926. This calculation method, which is given here with 
a slight supplementation, can be used to advantage for solving a 
series of propeller problems. 

The following articles constitute valuable contributions.t'o 
the questions treated' here, without attempting a direct quanti-
tative solution. 

Max M. Munk, "A New Relation between the Induced. Yawing Mo-
ment and the Rolling Moment of an Airfoil in Straight Motion," 
N.A.C.A. Technical Re port No. 19? (incorporated in Tenth Annual 
Report, 1924). Munk give,s a general relation betweefl the roll-
ing moment and the yawing moment, without determining the lift 
distribution and the magnitude of the moments themselves. 	

U 
F. N. Scheubel, "Quermoment und Kursmoment eines Tragflugels 

im geraden Flug," Z.F.M. 1925, p.152. 
J. B. Scarborough, "Some Problems on the Lift and Rolling 

Moment of Airplane Wings," N.A.C.A. Technical Report No. 200 
(Tenth Mnual Report, 1924).
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a variable, a point in the span is therefore determined not by 

its distance from the center, but by the angle &. If r denotes 

the circulation and v the flight speed, any desired distribu-

tion of the circulation cver the span can be represented by a 

Fourier series of the form 

fl=2'ov

	

	 asinn&	 (2) 
fl=1 

whereby, for a wing of a given shape, the coefficient an must 

be so determined that they accord with the conditions of the 

wing theory. One of these condition requires the geometric 

angle of attack a. to be equivalent, at every point of the span, 

to the sum of the actual angle of attack a and the induced 

angle of attack w/v. w denotes the induced vertical velocity 

at the position of the wing and will henforth be designated 

as the "downflow." We thus obtain: the conditional equation 

a t +=a	 (3) 

The downflow w is also a function of the circulationdistribu-

tion. At any given position. x0 it is expressed by the circu-

lation as follows

l2c11'	 dx 
XX0 

(See L. Prandtl, "Trflgeltheorie' I, p.l.) Byint±oducing 

our new variable & instead of x, the dovmflow at the point 

becomes

w(& ) - .7 fl a cosm d&

0 -	 cos - cos0
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The integration of the expression 

cbs n& 
1 •	 os - cos0 

gives the"main value"
Sjfl fli 

-fl
sin & 

The downflow then becomes

	

= V E n a	
fl&	

(4) 
S1fli90 

This expression is introduced into the conditional equation (3), 

after the effective angle of attabk a' has been replaced by a - 

suitable expression. The angle of attack is always measured 

from that position of the wing at which the lift vanishes. Then 

the lift coefficient c 	 is directly proportional to the ef-




fective angle of attack4

	

C a = 2c a'
	

(5) 

For an infinite span and for the customary profiles, the value 

of the constant c 1 approaches that of. ii (a' in circulaz 

measure), which value will be used in the following calculations. 

The calculations can be made in like manner for any other value 

of c , should it seem desirable (See remark at the end). 

With t as the wing chord, the circulation, on tie basis 

of the Kutta-Joukowsky formula, can be written 

r	 vt 

and by using equation (p5), we obtain
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F


	

a. =	 1 

If we introduce this value of & into the conditional equation 

(3) and simultaneously replace F by its equivalent expression 

in equation (2), aiid the downflow by equation (4) (in which we 

now write simply & instead of &,) we obtain, for further cal-

culations, the fundamental equation 

	

a1 sin n& (n +	 sini) = a sin&	 (6) 

This equation contains no unknown quantities aside from the 

Fourier coefficients an. It must be satisfied at every point 

between & = 0 ai-id ii. Since we must naturally be limited to 

a finite number of coefficients a, this means that the funda-

mental equation can be satisfied at only a finite number of 

points. If we introduce into the fundamental equation, the val-

ues &) &2	 3 •••9i. which i'epresent different points of 

• the span with the angles of attack a 1 , a2 , c ......a, and 

retain the first i terms of the Fourier series, we thus obtain 

i linear equations with i unknowns a 1 , a2 , a3 ......a1 , which 

can be calculated by known methods.. 

In our case, we have a rectangular wing whose angle of at-

tack varies irregularly. We must therefore introduce into our 

system of equations, for points in the middle portion of the 

wing, the angle of attack existing atthose points and, for 

points within the span of the ailerons, the enlarged or reduced 

angle of attack. The conditions at the wing tips require spe-
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cial attention. According to equation (2), the circulation at 

the wing tips (& = 0 and u) assumes the value zero,. If we 

now make up the system of equations for several point's of the 

span, without including the ends, and calculate the distribution 

of the circulation, we find that, in our case, the circulatIon 

at the ends goes through to zero in a very peculiar manner, name-

ly through the negative region and, further, that the induced 

downflow assumes useless values at the ends. These disagree-

ments are removed by also including the ends in the calculation. 

For' this purpose, we must write the fundamental equatiom () for 

the limiting case & = 0 (and ri) 

a sin n& (n +	 sin &) = a sin&] 

This limiting case yields the equation 

En? a= a 

and. consequently, if we write	 = p for short, we arrive 

at the following system of equations for calculating the unknowm. 

coefficients ' a, ,,. ......aj: 

a 1 + 4a 2 + 9a3 + •	 . ... . +1 aj=&0 

ajsin&1 (1+p sin&1 )+a2 sin2&1 (2+p sin&1 )^... .+a1 sin i& (i+p sin&1) 

: 
:	 (7) 

.	 '	 '-	 . 

asin&i(l+p sin&)+a2 siir2&(2+p sin&j)+. ..+a 1 sln i19j (li-p sinij) 

=aj Slfl&j
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With the aid of this system, it is possibl.e to calculate wings 

of any plan form and twist or warping for any lift law, which 

can itself vary from point to point, provided only that the 

"lifting line" is a straight line and is perpendicular to the 

direction of flight. 

Part I. Ailerons Deflected in Opposite Directions 

Calculation of the Circulation Distribution 

In what follows, a denotes the angle of attack of the mid-

die portion of the wing. The angle of attack of the aileron 

portions of the wing are designated by ar for one end and by 

c	 for the other end. The differences. a - ar - and a -	 are 

then distinguished only by the sign, since the ailerons are de .

-flected to the safle degree, but in opposite directions. We shall 

further assume that the forces generated by the ailerons re 

equal and are distinguished only by their signs. The difference 

in the angles of attack is denoted by °q• Hence, 

a -	 = a - a j j = aq. 

This angle aq is not identical with the angle which the wing 

chords form with one another, since, according to our arrange-

ment, the angles of attack must be measured from the position of 

zero lift, and this position is not the same, due to •the dif-

ferent profile shape. The value of the effective angle-of-

aitack difference .czq can be easily determined for a given 

case, when the profile positions of zero angle of attack are



N,A.C'.A. Technical Memorandum No. 510 	 9 

known. 

Our problem can be still further sin'rplified, if we imagine 

the resulting distribution of the circulation to be composed of 

two parts, namely, the cicu1ation for a wing with the constant 

angle of attack a over the whole, span and the circulation for 

a wing with zero angle of attack in its middle portion and an 

angle of attack of +aq or	 in the end portions correspond-

ing to the length of the ailerons. For the first component 

(with a constant angle of attack over the whole span. and a rec-

tangular contour ) we can use the calculations of A. Betz, R. 

Fuchs, and H. Glauert.* Here the distribution of the circulation 

is symmetrical with relation to the middle portion of the wing 

and may be expressed by the odd terms of the Fourier series 

(equation (2) ): 

= 2bv (a 1 sin&+ a3 sin3& + a5 sin 5&+.....) 

The second component which bontains the aileron effect, 

yields a symmetrical distribution of the circulation and is rep-

resented by the even terms 

= 2bv (a2 sin 2&+ a 4sih 4&+ a sin 6&+ ......) 

We can therefore limit ourselves to the calculation of this 

second part and retain: only the even terms in the system of 

S A. Betz, "Beitrge zur Tragfl{geltheori mit 'besonderer Berck-
sichtigung des einfachen rechteckigen Flugels," published in 
Berichte md Abhandlungen der Wissenschaftlichen Gesellschaft fur 
Luftfahrt, 'l920, No. 2. 
R. Fuchs and L. Hopf, "Aerodynmik," Berlin, 1922.
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equations (7). The fundamental equation (6) also contains the 

quantity	 as parameter, and. we must decide for which value 

to make the calculation.	 s regards c 1 we have already deter-




mined the value c = rr. For the aspect ratio bit, we will 

adopt the value 2rr, so that 	 = 4. As regards the angle. of


attack, we have zero for the middle portion and Qq or _aq 

for the ends, though it appears unnecessary to settle in advance 

on any definite value. The coefficients of the Fourier series 

appear as linear functions of eq.. Moreover, since the circula-. 

tion values at corresponding points on the two half-wings are 

distinguished. by the eigns, it is only necessary to make the 

calculation for one-half, i.e., for 	 between 0 and ir/2. 

On the other hand, it must now be determined at what point the 

value of the angle of attack passes . froni c	 to 0. The numer-




ical calculation was carried out for eight points of a .half-wing 

for the values & = 0, 20, 35, 45, 55, 65, 75 and 85°, 

and the corresponding first eight even Fourier coefficients 

a2 , a4 .......alE were retained. The point of the change in 

the angle of attack was then shifted to between two consecutive 

values of this angle in the vicinity of the points 

&	 = 40° 600 70° 90° 

21/b = 0.234 0.5 0.658 1.0

whereby 21/b is the ratio of the aileron length 1 to the half-

sparn b/2. When we have determined the transition point in this 

way, we do not then really have the case of a sudden indefinite 
*A calculation of the distribution for six points of a half-wing 
Was still unsatisfactory. 
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change in the angle of attack, but we have only confined the 

transition .region between two limits. These limits can be made 

as narrow as desired, but this means a refinement of the condi .

-tions and would result in still higher cOefficients of the Four-

ier series having to be acceted Here, howèvêr, we will be con-

tent with the determinatiorr! Of the tranalt±oit point between the 

above-mentioned limits, since 1± is accurate enough for all prac-

tical purposes This method, moreover, ha the mathematical ad-

vantage that the four cases can be calculated wIth like values 

of 3 for ailerons of different lengths, which fact greatly sim-

plifies the numerical calculation. The left sides of the system 

of equation (7), for example, remain unchanged when the transi-

tion point is shifted to between two other values of 5. After 

we have thus solved the system of equations for a given case, 

we can then very easily obtain the solution'. for another position 

of the transition: point by simply calculating anew the right 

sides of the system. This calculatibn is very simple and short, 

while the solution of the whole system requires considerable 

time and effort. The numerical caJ.culatiorr. was made accurately 

to four decimal places. For the four cases with ailerons of 

different lengths, the ratio a3n/aq of the Fourier coefficients 

a2 to the angle of attack aq gave the following values.
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21/b & a2/c a4/aq a6/aq a9/aq 

0.234 40° 0.Q601 0.0461 0.0099 -0.0112 

0.500 600 0.1276 0.0324 -0.0183 0.0035 

0.658 70° 0.1456 0.0035 -0.0046 0.0210 

1.000 90° 0.1715 -0.0292 0.0287 -0.0061 

21/b a10/oq a12/cq a14/ctq a16/aq 

0.234 40° -0.0097 0.0005 0.0046 0.0019 

0.500 60° -0.0010 -0.0098 0.0034 0.0058 

0.658 70° -0.0012 0.0083 0.0012 -0.0072 

1.000 900 0.0193 -0.0036 0.0069 -0.0089 

a 
The sums E 2	 sin 2 n& calculated from these coefficients 

at the adopted points	 are given in the following table. 

21/b &20° 35° 45° 55° 65° 7.5° - 85° 

0.234 0.0859 0.0971 0.035& 0.0163 0.0087 0.0043 0.0005 

0.500 0.1010 0.1388 0.1415 0.1250 0.0448 0.0172 0.0048 

0.658 0.0969 0.1320 0.1477 0.1495 0.1269 0.0396 0.0079 

1.000 0.099? 0.1360 0.1553 0.1615 0.1576 0.1435 0.0912

The calculated circulation distributions for a half-wing 

are represented graphically in Figure 1. The circulation distri-

bution is also plotted (dash line) for arectangular wing with 

the aspect ratio 2rr and with a constant angle of attack aq 
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over the whole span. For this purpose, the results of Glauert's 

calculations were used, which showed. that .the symmetrical dis-

tribution is represented with sufficient accuracy for a simple 

wing by the first four coefficients of the Fourier series. 

Glauert adopted, for his calculation, the following four values 

of &

	

= 22.5°,	 45°,	 67.5°,	 900. 

_______	 a2_1 

	

The coefficients	 and the sums	 sin(2n - 

gave the following results: 

1 3 5 7 

a2_1
0.232 0.0287 0.0057 0.0010 

a2.1	
sin(2n-1)& 0.1210 0.1796	 I 0.2021 0.2080 

___________________________ _____________ _____________ t ______________ ________________

The graphic representation shows that the circulation drops 

off variously toward the middle to zero according to the length 

of the aileron. Even the central portion, with zero angle of 

attaOk, receives some circulation, due to the induced vertical 

veloci..ty.

Moments and Induced Drag 

We can now easily calculate the rolling moment My of the 

wing with the aid of the known distribution of the circulation. 

The lift dA of a wing element has the value 

d.A =p V F dx 
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and the rolling moment of the whole wing is therefore 

b 
+- Pv2 b3 ' 

=	
p v F xdx = - -b- --f > a2 sin 2n3 sin. 2 .3 d& 

2

=-2--ba2 

whereby it is worth noting that only the coefficient a 2 af-

fects the rolling moment. Since a 2 is expressed by the angle 

we riay write

= -	 b3	 cLq	 (8) 

whereby

- 4aq 

and. has the following values for different aileron lengths. 

21/b 0.234 0.500 0.658 1.000 

0.047 0.100 0.114 0.135

In Figure 2 the determining quantities .3 for the rolling 

moment are plotted against the ratio 21/b and connected by a 

curve starting from the origin. With the aid of this diagram, 

we are enabled to calculate the rolling moment for any aileron 

length by introducing the coefficients .3 into equation (B). 

Our next task is to calculate the additional induced drag 

produced by the aileron deflection. The induced drag of the 

wing is increased, because the distribution of the circulation 

is rendered unsyimnetrical by the aileron deflection and there-

fore differs considerably from the best distribution, which is 
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elliptical. If we also imagine the middle of the wing as having 

the angle a, the distribution of the circulation is thenrep-

resented. by both the even and.: odd. terms of the Fourier series. 

The total induced drag W1 then becomes 
b +-. 

W	 0V2	 2 
Wj = f dA -- 2b J Enan slnn&Ean sinn&d& 

=	 21? f (a 1 sin& + 2a2 s1n2& + 3a3 sin3& +...... 

(a 1 sin+ a2 sin2& + a3 sin3& + ......)d& 

If the integrant is then multiplied term by term, it is found. 

that the terms with the mixed coefficients yield no contribution 

to the integral. There remains only 

W=	 21ff (a12 sin 3&+2 a22 sin2 2+3 a32 sin2 3&+.....)d& 

=	 2b2 rr (a 1 2 + 2a2 2 + 3a3 2 + ......) 

or	 2 
= -- b U E n a? 

We can also write this equation in the form 

=	
b2 n ,((2n - 1) a22 	 + E2n an)

and, then 

the odd 

the even 

unsymmet - 

• The addi-

i.e., we add the even and 

add the two partial sums. 

terms comes from the symm 

terms represent that part 

rical distribution, i.e., 

tional induced drag Wj.q

odd coefficients separately 

We now see that the sum of 

trical distribution, while 

of the drag produced by the 

by the aileron deflection. 

is therefore
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Wjq q- b2 Tr E 2n a 2	 (9) 

Since the coefficients	 are proportional to the angle aq, 

it is obvious that the additional drag increases as the square 

of the angle ctq. If we put 

	

ir Z2n (-.)
	 Ti 

we may then also write

Wjq =	 b2 Ti 

whereby the factor r1 of the additional induced drag has the fol-

lowing values for different aileron lengths: 

2L/b 0.234 0.500 0.658 1.00 

Ti 0.0462 0.1114 0.1440 0.1980

In Figure 2, Ti is plotted against 2L/'b, thus enabling us 

also to calculate the additional induced drag for any desired 

aileron length. 

Lastly, we also calculate the indicated moment of yaw M 

about the vertical axis by multiplying the induced drag of a wing 

element by the distance x from the center of the wing and. inte-

grating it over the span: 

+0 
2	 w	 pv2 

M	 x dA = ---- b3 f cos	 n a sin n& Z a sin n& d 

=	 b3J cos& (a 1 sin& + 2a2 sin 2&+ 3a3 sin 3 +......) 

(a 1 sin& + a2 sin 2 + a3 sin 3& +.. ....)d& 
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If we multiply the integrant term by term, we thus obtaiir partial 

integrals of the form 

f am a cos sin. m& sin n& d& 

Between the limits 0 and ri, all the integrals disappear with the 

exception of those having the form 

IT 

f	 a cos silT. (n + 1)	 sin n& d3t 
0 

in which the indices differ only by unity. Their evaluation gives 

pv 2	 Ii• 
M =	 b	 (3a1 a2 + 5a2 a3 + 7a3 a4 + 

or

pv2	 U 
=	 b	 (2n + 1) an an+1 

a1 

b the 

ag al 

cc 

It is obvious that the coefficients 

symmetrical distribution also affec 

a manner analogous to the above, we 

II -

a3 , a5 ......Of the 

moment of yaw. If, in 

n write 

- 

the moment of yaw becomes 

Mz=j—b3	 ccaq .	 (10) 

The calculation yields the following values for the factor 

21/b I	 0.234 0.500 0.658 1.000 

0.0492 0.0895 0.0965 0.1089

These values are also represented graphically in Figure 2. 
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For the case when the coefficients of the symmetrical distri-

bution, with the exception of the coefficients , a 1 , are all put 

at zero, we bbtain the elliptical distribution. 

1' = 2 b v a 1 sin& 

which is known to play an important role in the wing theory. As 

already mentioned, Munk suggested, for this distribution, a rela-

tiom between the moments of roll and yaw, which we can now yen-

fy. In this case the moment of yaw is 

I 0V 2 3


	

Mz b	 3a1a. 

If we calculate the lift for theelliptical distribution, we can 

express the coefficient a 1 by the coefficient of lift Ca. We 

will omit this simple calculation and only. indicate the result 

cF 
-	 a1= 

Consequently the moment of yaw becomes 

pv2 3 3caF 
4b a2 

By using the expression foi the rolling moment (equation (8) ), 

we find the ratio of the two moments 

	

3	 F 

=j Ca 

which accords with Munk 1 s formula.
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Part II. Ailerons Deflected in Same Direction 

Although the case when both ailerons are deflected in the 

same direction is not so important as the one just considered, 

nevertheless aknowledge of the changed relations is sometimes of 

interest. It has been proposed to reduce the landing speed by 

deflecting both ailerons downward, thus increasing both the lift 

and the drag. A quantitative knowledge of these forces is there-

fore desirable for determining the effectiveness of such a device. 

Calculation of the Circulation Distribution 

This calculation was based on the same assumptions as in 

Part I.	 In particular, the same aspect ratio	 b/t = 2r1 and the

aonstant ci = i were adopted. Contrary to Part I, and due to 

the deflection of both ailerons in the same direction, the dis-

tribution of the circulation issymrnetrical with respect to the 

middle of the wing. We must therefore express the circulation 

distribution by the uneven coefficients o± theFourier series 

and write

r = 2bv (a 1 sin& + a3 sin 3& + a5 sin 5& + ...... 

The numerical calculation was repeated for eight points of 

a half-wing and for the same & values as in Part I. The changes 

in the angle of attack were made in the vicinity of the follow-

ing & values: 

	

& = 40°	 60°	 700	 80° 

	

21/b = 0.234	 0.500	 0.658	 0.826 
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a n-1	 f aq	 ° 

in the 

The following values were obtained for the ratio 

the Fourier coefficients a2 _ 1 to the difference aq 

angles of attack. 

21/b & a1/ctq a3/aq a5/aq a7/aq 
0.234 40° 0.0415 0.0589 0.02?? -0.003? 

0.500 60° 0.103? 0.0883 -0.0079 -0.0079 

0.658 70° 0.1407 0.0777 -0.0221 0.0149 

0.826 80° 0.1870 0.0599 -0.0157 0.0177 

21/b a9/ctq a11/aq	 1 a13/ctq a15/aq 
0.234 40° -0.0122

-

-0.0042 0.0037 0.0035 

0.500 60° 0.0084 -0.0067 -0.0040 0.0057 

0.658 70° 0.0035 -0.002? 0.0078 -0.0059 

0.826 80° -0.0124 0.0081 -0.0058 0.0034 

The sums
a21 

aq	 sin (2'n - 1) & 

calculatedwith the aid of these coefficients are given in the 

following table. 

21/b &=20° 350 450 55° 65° 75° 85° 
0.234 0.0861 0.0978 0.0374 0.0183 0.0115 0.0081 0.0070 
0.500 0.1016 0.1402 0.146 0.1311 0.0528 0.0299 0.0238 
0.658 0.1025 0.1429 0.1588 0.1623 0.1448 0.0622 0.0418 
0.826 0.1093 0.1550 0.1718 0.1794 0.1806 0.1634 0.0829
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Figure 3 shows the distribution of the circulation over the half-

span for different aileron lengths, whereby the distribution for 

the rectangular wing, with constant angle °q over the whole 

span, is plotted as a dash line. With deflected ailerons the 

middle portion of the wing with zero angle of attack (due to the 

generated upward current) likewise acquires lift in proportion 

to the length of the ailerons. 

Lift and Drag 

Due to the symmetrical distribution of the circulation, no 

moments are generated and we have to calculate only the lift 

and induced drag. For the wing lift, we have 

+ 

Af pvFdx 
b 
2 

or, if we introduce the angle	 , 

iT 
A = p V 2 b 2 f E a2n_ i sin (2n - 1) sin& d& 

0 

The integration yields

A=_b2 a 1 u	 (11) 

It is seen that the lift .depehds only on the coefficient a1. 

The remaining coefficients affect the form of the lift distribu-

tion, but not the amount of the lift. Equation (11) can also be 

written in the form
pv2 2 - b X aq 

whereby X = it	 and has the following values for different 
q 

aileron lengths.
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21./b 6.234	 0,500 0.658 0.826 1.000 

0.130 0.326 I	 0.442 0.587 0.729 

In Figure 4, ). is plotted as a funotiorn of 21./b. With the aid 

of this curve, we can calculate the lift for any desired aileron 

length. 

For the induced drag, we obtain, similar to equation (9) of 

Part I

Wiq =	 b2 n z (2n - 1)	 n-i 

or with	 ,a
2fl-1 ' - 

i-i z (2n - l	 cLq ,l - 

in which i has the following values: 

21./b 0.234 0.500 0.658 0.826 1.000 

K 0.056 0.116 0.137 0.163 0.178

The value of K as a function of 21/b is also plotted in 

Figure 4. 

Remark.- The above calculations could not be made to apply 

universally, as would be desirable, because we had to limit 

ourselves to certain values for the aspect ratio b/t and for 

the factor c 1 . We adopted b/t = 2rr and c 1 = rr, so that 

2b/c 1 t = 4 in the fundamental equation (6). Since the aspect 

atio and the factor C 1 occur only in this combination in the 

fundamental equation, another value for the factor c 1 can be 
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adopted without affecting the value of the quotient, provided 

the aspect ratio is changed correspondingly at the same time. 

In this case we naturally obtain the same values for the rolling 

moment, induced drag, etc. If, for example, we take c = 2.8, 

we obtain the corresponding aspect ratio 

t = 2c 1 = 5.6. 

This shows that other values for b/t and c 1 yield quite dif-

ferent relations. On the other hand, it would be interesting 

to know what the result would be if the calculation were made 

for another c	 without changing the aspect ratio. With this 

purpose in mind, we have calculated the lift distribution for 

the case b/t = 2w and c = 2.51, so that the quotjient 

2b/c 1 t = 5. Moreover, the deflection of the ailerons in the 

same direction and an aileron length of 21/b = 0.5 were assumed. 

The following values were found for the coefficients X arid K, 

whereby the coefficients for the case c 	 It, as likewise the 

quotients for the corresponding values, are given for comparison: 

ri

c 1 X K 

2.51 0.278 0.0887 

rr 0.326 0.116 

0.8 0.853 0.764

From the quotients in the, last line, we gather the following in-

formation.
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If the factor c1 is reduced 20% without changing the as-

pect ratio, the lift is reduced about 15% and the drag about 

24%. Any accurate calculation requires therefore the solution 

of the system of quations (7) for the given values b/t and c1. 

For a first rough correction, it suffices perhaps in many cases, 

where c 1	 to multiply the factors	 , , ,, X and c, cal-

culated f or the case c 1 = TI, by c1 /rr. In the above case we 

would then have to accept an error of -6% in lift and s% in drag, 

while the errors without this correction would be i?% and 31%, 

respectively. A similar correction can be made, even with a 

changed aspect ratio. The agreement will naturally be so much 

the better, the less the value of c	 differs from ii. 

Summary 

The effect of the ailerons is quantitatively investigated 

on the basis of Prandtl's wing theory. In Part I a simple rec-

tangular wing is assumed, whose angle of attack, corresponding 

to the aileron deflection, is increased at one end and decreased 

by a like axnount at the other end of the wing. The distribution 

of the circulation can be expressed by a Fourier series, whose 

coefficients are determined from a system 0±' linear equations. 

The distribution is calculated for different' aileron lengths. 

The rolling moment, the additional induceddrag and the yawing 

moment can all be determined from the distribution. In Part II,
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the relations are investigated for the case when both ailerons 

are deflected in the same direction, and the lift and induced 

drag are calculated for different aileron lengths. 

Translation by Dwight M. Miner, 
National Advisory Committee 
for Aeronautics.
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