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Summary 

The mutual action of wing and fuselage, which greatly 

fects the construction of airplanes, is dealt with in the 

present report. 

A certain number of systematic wind-tunnel tests were , 

af-

made 

in 9rder to elucidate the question. For example, there will be 

shown what effect the distance between the wing and the nose of 

~ 

the fuselage, measured along the fuselage axiS, has on the posi­

tion of the fuselage with respect to the wing. 

Other tests deal with the transition from fuselage to wing 

root, which, if inadeq~ate on low-wing monoplanes, may become 

dangerous by causing the air flow to separate at the wing root. 

Lastly, reference is made to the mutual interference of 

wing and fuselage for various wing shapes. In this connection, 

tapered wings, rectangular wings and wings with a cutaway in 

the trailing edge are discussed. 

*"Untersuchungen iiber die Beeirrflussung des Tragfl8.gels eines 
Tiefdeckers durch den Rump·f." From Luftfahrtforschung, June 11, \ 
19?8, pp. 33-39. 
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Introduction 

When a fuselage is combined with a given wing, we expect 

the polars of the IIwing-and-fuselage ll group to come nearest to 

the best value, which is usually that of the polar of the wing 

alone. The difference between the polars affords a means of 

estimating the effect of the fuselage on the wing. 

The mutual interference depends chiefly ·ori ·the following 

items: 

1. Fuselage position (high-wing or low-wing monoplane), 

distance between wing and npse· of the fuselage; 

2. Dimensions of fuselage, especially length and width; 

3. Shape of fuselage, e.g. ,. the cross section and the 

shape of the nose. 

The effect of the fuselage on the wing is manifestly the 

least when the fuselage acts the same as the wing portion which 

it replaces. This occurs when the following conditions are 

satisfied: 

a) The air flow at the wing root (the portion of the 

wing close to the fuselage) is not unfavorablY affected 

by the fuselage and does not separate from the surface; 

b). The lift of the fuselage is not smaller than that 

of the wing.portiorr it replaces; 

c) The lift of the fuselage acts at the center of pres­

sure of the wing. 
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An additional induced drag is produced when, owing to an 

unsuitable choice of the above three geometrical values, the 

fuselage lacks the requisite properties. Thus, in the case of 

the approximately elliptic lift distribution over the wing alone, 

a hollow may develop in place of the fuselage and produce an 

additional induced drag, as well as a decrease in the maximum 

lift (Fig. 1.). 

An investigation regarding the effect of the height of the 

fuselage with reference to the wing (high-wing or low-wing mon­

oplane) was published in Report I of the Ergebnisse der Aerody­

namischen Versuchsanstalt zu G8ttingen, p. 118 ff.). The low­

wing arrangement proved less satisfactory than the high-wing . 

. ·The differences are immaterial with normal fuselage shapes, pro­

vided case E of the above reference is disregarded. This case 

deals with a low-wing monoplane of, which the wing is located 

at a distance below the fuselage approximately equal to the 

thickness of the wing sec.tion. 

The increased effect on the polar, when the fuselage is 

located on the upper surface of the wing, must be attributed 

to the great sensitivity of this surface. The air flow, sub­

jected to a great increase in pressure above the rear portion 

of the wing, is easily disturbed by small obstacles, such as 

bumps, roughness, etc., and soon separates at large angles of 

attack. Besides, in the case of the wing alone, the flow be­

gins to separate from the cent~r of the wing at large angles 
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. 
of attack. This tendency can, of course, be easily increased 

by the fuselage. All the following investigations are there­

fore based on the low-wing arrangement, which is considered 

aerodynamically less favorable. 

T est Res u 1 t s 

Series I. 

Wing with a Disk in Place of the Fuselage 

In order to show that a wing polar is unfavorably affected 

even by an "ideal fuselage, II a thin, vertical disk with well­

sharpened edges was placed over the center of the wing (Fig. 2). 

The disk Tepresents only the friction effect of the left and 

right vertical sides of the fuselage. 

The wing was rectangular with a chord of 25 cm, and an 

aspect ratio of 5. The wing section used was a G8ttingen 426. 

The shape of the disK, which was 2 mm thick, is shown in Fig. 2. 

The air speed was v = 30 m/ s. 

In each case the evaluation of the test results was car­

ried out in the usual way. 

A 
c a = q F' Cw = w --, 

q F 

A is the measured lift in kg; 

W, the measured drag in kg; ... 

M 
cm = -q-F-t • 

M, . the moment measured about the IIdatum axis ll in mkg. 

(The "datum axisl! is the transverse axis through the 
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foremo'st point of the chord of the largest wing section·, Also 

see the definition in Report I of the Ergebnisse der Aerodynam­

ischen Versuchsanstalt zu G;ttingen, page 32); 

F, the datum area in m2, i.e." in each case the area of 

the wing alone; . 

t, the maximum wing chord in meters; 

q = ~ v 2
., the dynamic pressure in kg/m 2 ; 

p, 

v, 

the density of the air in kg S2 
in4 

the air speed in m/s; 

ca ' cw, the air-force coefficien~s; 

cm, the moment coefficient. 

The polars (Fig. 3) show an obvfous increase in drag with 

increasing lift and a decrease in the maximum lift after the 

disk is put in place. The flow is retarded by friction against 

. the disk surfaces. This probably occurs especially along the 

line of intersection of the upper surface of the wing and the 

disk, where two boundary layers meet. 

Series II. 

Wing ~t Various Distances from the Nose of the Fuselage 

The magnitude of the additional drag is greatly affected by 

the distance ·between the wing and the nose of the fuselage. The 

model for a corresponding series of tests is shown in Figure 4. 

The reqtangular fuselage (height 12 cm, maximum width 10 cm) 

covers one-tenth of the span of the wing of aspect ratio 5 and 
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section No. 426. The nose of the fuselage forms half an ellipse 

as seen from above and is rectangular as. seen from the side. 

The major half-axis of the ellipse has approximately the length 

of the wing chord and the minor half-axis is equal to one-half 

the fuselage width. The long tapering rear portion of the fuse­

lage, which is symmetrical with respect both to the horizontal 

and to the vertical longitudinal plane, ends in a vertical edge. 

The distance of the leading edge of the wing from .the nose of 

the fuselage, in terms of the wing chord, is 

1.50 in position I, 

II 

II 

" 

II 

II 

II 

II, 

III, 

IV. 

The polars are plotted in Figure 5. Curve 1 characterizes 

the wing alon~ and curve 2, the wing and fuselage for the maxi­

mum; distance of the wing. The maximum' of curve 2 lies above 

that of the wing alone. Hence·the fuselage exerts a greater 

lift than the portion of the wing which. it replaces. 

Curve 2 coincides approximately with curve 3, which corre­

sponds to a distance roughly equal to the wing chord. Both po­

lars compared with that of the wing alone show an increase in 

drag with increasing lift. The moment curves, compared with 

that of the wing alone, are shifted forward. 

There is a definite relation between the shifting of tbe 

moment curves and the increase in drag with increasing lift. 
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The changed position of the center of pressure shows th~t the 

fuselage lift does not apply at the wing portiomreplaced by 

the fuselage and that a depression must have occurred in the 

lift distributiom over the wing. The additional induced drag 

is a result of this depression. 

In the cas~ of curve 4, corresponding to a distance of the 

wing equal to 0.5 of the chcrd, the moment curve agrees fairly 

well with that of the wing alone. Hence, there is no reason 

for an additional induced drag. Except for its upper portion, 

there.is actually only a parallel displacement of polar 4 with 

respect to that of the wing alone, although in its lower por­

tion the additional induced drag exceeds that of the polar for 

the maximum. wing distance. 

At ca = 1.15 the sharp nose of the fuselage causes the 

flow to sepa.rate at the wing root. From this point the polar 

is strongly deflected toward the right. 

CU2''Il8 5 for the smallest distance of the wing coincides 

wi th C.U:t'Vt3 4: for small lift values and hence also has a· very 

substant i'JJ. additional drag. Between ca = 0.3 and ca = 0.95 

the addit:ionhl :i.:r.c.uced drag increases from 0.14 to 0.2. From 

this poirdj th8 nose of the fuselage again causes the flow to 

separate at the TIing root and the curve bends suddenly and 

sharply to the right. 
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Series III. 

RectnnguJ.,ar and Tapered Wings with the Snme Fuselnge 

For the purpose of investigating the influence exerted on 

the flow at the wing root, we will now reverse our method. 

Thus we shalI first fit a rectangular and then a tapered wing 

to the same fuselage, both wings having the same section, area, 

and aspect ratio. 

The rectangular wing is the one used in the second series 

of tests. The tapered wing has a maximum chord of 30 cm, and a 

minimum chord of 10 cm. The shape.and arrangement of the fuse­

lage are shown in Figures 6 and 7. The fuselage has a long, 

well-rounded nose. The rear end of the fuselage is strongly 

tapered. 

The polars are shoWIT in Figure 8. In connection with the 

moment line it should be noted that the moment datum points of 

the rectangular and of the tapered wings are not coincident on 

the model. 

The polars show that the additional drag due to the fuse­

lage is approximately the same for both wings up to ca = O •. !, 

whereas, in the upper portion of the polars the model with rec­

tangular wings is considerably less favorable. The difference of 

the maximum lifts between the polars for the wing alone and for 

the wing and fuselage together is considerably smaller with a 

tapered wing than with a rectangular wing. Hence, aerodynamically, 

the tapered wing is not so unfavorably affected by the fuselage as 
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the rectangular wing. This may be accounted for by the fact 

that, in the case of t'he tapered wing, the fuselage is smaller 

in comparison with the root section of the wing than in the 

case of the rectangular wing. 

Series IV. 

Variation of the Angl,e between the Wing and 

the Side of the Fuselage 

It was stated in the introduction that an unfavorable shape 

of the fuselage may easily cause the flow to separate at the 

wing root. An unsuitable shape of the fuselage nose may pro­

duce this phenomenon when, as already shown in the second series 

of tests, the nose of the fuselage is very close to the leading 

edge of the ~ing. This fact is confirmed by tests which were 

published in Report III of the Ergebnisse dar Aerodynamischen 

Versuchsanstalt zu G8ttingen, page 115. It was then shown that 

blunt-nosed engine nacelles caused the flow to separate prema­

turely and hence to produce 11 high induced drag similarly to 

cutaway portions of the ,leading edge. 

In the, present series of tests it will be shown that simi­

lar phenomena may be produced by altering the angle between the 

wing and the right end left sides of the fuselage. In practice 

there may be an acute angle between the wing and the side of the 

fuselage, when the latter has an elliptic cross sectiom and is 

situated above the wing. 

/' 
/ 
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The rectangular wing, which has been used for the foregoing 

series of tests, Wa~ in turn provided with a square fuselage 

and with a fuselage of triangular section, both of the same 

height, h = 10 cm. The lateral angles between wing and fUGe­

lage were given values of 1200
, 90 0

, 60 0
, and 450 by changing 

the pO$ition of the fuselages which were sharp-e~ged ~nd made 

a longitudinal angle of 00 with the wing (Figs. 9-12). 

The result is shown by Fig. 13. Polar 3 fo~.a fuselage 

with an angle of 90° shows only a small additional induced drag 

as compared with polar 1 (wing alone). The position of polar 

2 for an angle of 1200 is slightly worse, probably on account 

of. the changed position: of the center of pressure, which is 

shifted forward in this case. 

Polar 4 of the model for an angle of 600 resembles the po­

lar of a wing with a very poor aspect ratio. It approache.s the 

maximum value of the wing alone. However, for the same angle 

of attack the lift coefficients steadilY decrease. According 

to streamline investigations th.e flow begins to separate at the 

wing root at an angle of attack of approximately 1.50
.' Th~ flow. 

actually separated along one-fifth of the span at an angl~ of 

attack of 5.,70. 

This phenomenorr is accounted for by the rapid expansiorr!of 

the wedge-like spaces between the .rear portion of the upp~r 

surface of the wing and the sloping sides of the fuselage~ At 

these points the wing and the sides of the fuselage act like 
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diffusers. Figures 9-12 show how the lines of intersection of 

the upper surfaoe of the wing and the sides of the fuselage re-

cede from one another in the rear portion of the wing. 

Hence the flow on the upper surface of the wing has to 

move against an extraordinarily high increase in pressure. The 

kinetic energy of the flow is not sufficient to overcome this 

increase in pressure, especially since, for small angles, the 

same frictional forces act on smaller volumes of air and the 

flow separates. As a result, the lift, otherwise uniforrAly 

distributed over the wing, i$ split up and causes an excessive 

increase of the induced drag. 

Polar 5, angle of 450 , compares still more unfavorablY 

with polar 4, angle of 600
• The expansion of the above-mentioned 

diffuser-like spaces is furth~r augmented by the increasing re­

duction of the angle between the fuselage and the upper surface 

of the wing. Even at the angle of attack of vanishing lift, the 

flow separates at one-fifth of the span. At an angle of attack 

of 20 the vortex at the wing root is so strong that it extends 

over the lateral fuselage edges and likewise causes the flow to 

separate there. Even the flow less affected hy the wing is bro­

ken at the largest angles of attack by the lateral edges of the 

rear portion of the fuselage. This finally leads to a flow 

about the fuselage, S-shaped as seen from the side, which ac­

c.ounts for the surprisingly great additional drag of polar 5. 
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Series V. 

Fuselages Alone from Series IV 

In confirmation of the fact that the high drag values of 

the polars for acute angles were not due to the fuselages alone, 

these were measured separately.. The datum surfaces for the 

evaluation are the cross-sectional areas of the fuselage. The 

area of the square section of 0.01 m2 is the twentieth, and 

that of the triangular fuselage approximately the fortieth part . 
of the datum surface of the "wing-and-fuselage lf model. The mo­

ment axis passes through the nose of the fuselage. The datum 

depth is in each case the height of the fuselage h. In the 

case of the triangular fuselage, the angle of attack a. is neg­

ative when the sloping sides are first struck by the air flow. 

The polars are shown in Figure 14. As was to be expected, 

the polars of the different fuselages differ only slightly, 

when the drag. coefficients are conwerted to the datum area of 

. the complete models. Up to an angle of attack of 100 the drag 

coefficients then agree fairly well. with the additional drags 

which, in the preceding series of tests, constituted the dif­

ference between polar 2 (wing with square fuselage, vertical 

sides) and polar 4 (wing alone). Thus the fuselage alone does 

not account for the great drag of the "wing-and-fuselage" polar. 
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Series VI. 

Models with Various Wing-Root Shapes 

The next step, after determining the separation phenomena 

described in the fourth series of tests, Was to work out a wing­

root shape which, in spite of acute angles, would prevent the 

flow from separating. Two models of the fourth series of tests 

were used for the following tests. A new wing-root shape WaS 

obtained by filling out the diffuser above the rear portion of 

the wing root. This filling-out can be regarded as a rounding 

of the angle between the upper surface of the wing and the side 

of the fuselage, so that the radius of the rounded portion gen­

erally increases toward the rear. 

In the case of the model with an angle of 450 , four polars 

with four different wing-root shapes were plotted. The shapes 

of the wing roots are shown in Figure 15. 

The polars are plotted in Figure 16. The diagram also con­

tains curves, derived from the fourth series of tests, for the 

"wing alone" (curve 1) and for the "wing and square fuselage" 

with vertical sides on the one hand and with vertical diagonals 

on the other hand (curves 2 and 3). Contrary to polar 3, polar 

4 of the model with a "smali rounding" (I in Fig. 15), charac­

terized by a comparatively small radius of the rounded portion 

which increases toward the rear, very closely approached, up to 

approximately ca = 0.85, the polar of the model with vertical 

sides. At c·e..= 0.85 the polar bends sharply to the right as 
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a result of the flow separating at the wing root. Polar 5 of­

the model with a "medium rounding 1t (II) is a further improvement 

ever polar 4, inasmuch as the separation first occurs at 

ca = 1.1. Lastly, on account of its small Cw values, polar 

6 of the model with a "large rounding" (II I) nearly touches 

polar 2 of the model without disturbance of'the flow at a ca 

of about 0.8. There are no sudden deflections, as i~ the case 

of the foregoing polars. 

Polar J. of the model with 1twrong rounding" (IV), character­

ized by a comparatively large radius of the rounding, constant 

over the rear portion of the wing root, bends very strongly to 

the right at ca = 0.75 and soon exceeds the Cw values of 

polar 3 of a model without special root shaping. The "wrong 

rounding 1l is associated with a thickening of the wing-root sec­

tions and hence causes an expansion of the diffuser. This ex­

pansion accounts for the bending of the polar. 

Two polars were plotted for the model with an angle of 60 0 

and various wing-root snapes. The roundings are shown in Figure 

17 and the polars in Figure 18. The diagram also contains po­

lars of the "wing alone" (curve 1) and of the low-wing monoplane 

wi th triangular fuselage plac'ed edge upward (curve 2) and edge 

downward (curve 3). 

Again the polars opviously show the advantage gain~d by 

filling out the diffuser. In the upper portion, of polar 5 the 

Cw values are even smaller than those of the polar with angles 
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of 120°, and the maximum lift is greater. Attention is again 

called to the absence of bends in the polars. 

The 'above wing-root type cnn be used on full-sized airplanes 

to prevent separation. of the air flow, as in the case of stream­

lined engine nacelles on the upper surface of the wing. In this 

connection, however; we wish to point out that a running pro­

peller will probably lessen the separation of the air flow, es­

pecially when the propeller is located behind the diffuser. 

Series VII. 

Models' wi th T~ail·ing-Edge Cutaway 

It might be thought that, in addition to filling in the 

diffuser at the wing root, a cutaway trailing edge of the wing 

would help to prevent the separation of the air flow, since the 

cutaway eliminates the diffuser. 

In order to reach a good agreement with conditions in ac­

tual practice, a fuselage with a circular·cross sectiomand a wing 

with a No. 436 G8ttingen section of medium: thickness were se­

lected for a corresponding series of tests. The aspect ratio 

of the wing was again 5, and the chord 16 cm. The fuselage was 

streamlined. The principal dimensions .'of the model are given 

in Figure 19. The cutaway portiorr of the wing Was successively 

given three different shapes and its angles were semicircularly 

rounded off. The angle between wing and fuselage Was 3.2°. 

The datum area for the. evalu~tion is that of. the wing alone with­

out cutaway. 
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In Figure 20 the polar diagram for the "wing al.one" shows 

the previously mentioned increase in profile drag with increas­

ing size of the cutaway. The "large cutaway" is particularly 

detrimental. Although having a small span, it is very deep and 
. 

reaches nearly to the leading edge of the section. The induced 

drag is greatly affected by this large cutaway. 

There is a sudden, marked bend to the right, for a c~' 9f 

0.55, in the curves for a fuselage and wing with cutaway (Fig. 

21), which shows that the separatiomof the flow has not been 

p~evented. The bend increases as the curves shift to the left, 

i.e., with diminishing cutaways. After the bend, the curves are 

remarkably straight. The same fact was observed for the curves 

of a wing with leading-edge cut away s, as shown on page 93 of 

Report II, of the Ergebnisse der Aerodynamischen Versuchsanstalt 

zu Ggttingen. The lift distribution was again split up by ac­

tion of the fuselage. 

Figure 22 shows the pressure distribution over the wing sec-
" 

tiorr No. 389, which closely resembles section No. 436 •. A simi­

lar curve is obtained for the pressure distributioK over a wing 

with cutaway trailing edge, except that the rear point of the 

pressure' diagram is cut off. Consequently, there is a great in­

crease of pressure above the narrow wing bridge and the turbu­

lent zone 'behind the trailing 'edge of the Clltaway s.ection acts, 

in the case of a wing with fuselage, upon. the whole wing bridge, 

where it causes the flow to separate. 
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In conclusion, it should be said that this article does 

not claim to exhaust the suhject of mutual interference between 

wing and fuselage. It is thought, however, that the most impor­

tant points of the problem, at least in.so far as regards its 

experimental side, have been elucidated. 

Translation by W. L. Koporinde, 
Paris Office, . 
Natiorral Advisory Committee 
for Aeronautics. 
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Fig.l Disturbed lift distribution. 

Fig.2 Wing with fuselage replaced by disk. 
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Fig.7 Fuselage with tapered wings. 
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Fig.14 Fuselage alone. 
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Fig.12 Wing with square fUGcll1ge,angle 450. 
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Fig.15 Angle of 45° with roundings. 
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Fig.16 Angle of 450 with 
roun.dings. 
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Fig.20 i1ing alone with cut~Viay. 
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Fig.21 Fuselage and wing 
wi th cutawajr. 
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___ _ _ _ __ R9unding I I 

FigG,1?,19 & 22 

I Medium rounding 
II Large rounding. 

c1s¢m£ ~II 
Sections A-B & C-D 

Fig.l? Angle of 600 with roundings. 
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I Small roundings. 

II Medium " 
III Large " 

Fig.19 Fuselage and wing .with cutaway. 
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Fig.22 Pressure distribution on profile 389. 
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