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THE ANALYSIS OF AIRCRAFT STRUCTURES AS SPACE FRAMEWORKS.
METHOD BASED ON THE FORCES IN THE LONGITUDINAL MEMBERS.*

By Herbert Wagner.

Part I. Introduction

The following eiamples do not take up the discussion of
viewpoints to be heeded in determining the design of a frame-
work for given external conditions. Rather they are methods
for determining the forces in alirplane fuselages and wings,
though similar considerations are applied to certain simple
cases of a different kind. The object of this treatise 1is to
summarize and amplify thesé considerations from definite view-
points. |

The static construction of fuselages and wings leads mostly
to the use of frameworks Which are to be regarded as space
framewoiks, but which are often reﬁdered statically indetermi-
nate by supplementary space diagonéls. Almost all these air-
plane frameworks exhibit sti1ll another characteristic, which
considerably simplifies their calculation under certaim: condi-
tions, namely, the transverse ffames are. usually parallel. What

follows will contaim a method for the calculation of such stat-

*'Jeber rAumliche Flugzeugfachwerke. Die Langsstabkraftmethode "
From Zeitschrift fdr Flugtechnik und Motorluftschiffahrt, August
14, 1928, pp. 337-347.
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ically determinate space frameworks, A few principles will also
be indicated for the'calculétion of statically indeterminate
frameworks. |

In order to make the subsequent illustrations easy to under-

stand, the general principles of statics are repeated in Part II.

Part II. General Principles of Statically Determinate

Space Frameworks
1. Number of Members

Between the number of members s and the number of joints
k in a staticélly determinate space framework, there is the
relation s = 3k - 6. This condition is not absolute, since
there may exist/§o~calied exceptional case, which will not hap—

pen, however, in what follows. The required number of members

is also not necessary. In Figure 2a, for example, the fact that

the points III and IV have no directly connecting member does
not matter, provided the member connecting the points II and V
through III has the requisite buckling strength. From here on

wé will speak of such frameworks also as statically determinate.
3. Law of Superposition

If we know, in a framework, the forces §8,, which are pro-
duced in the members By a balanced group P, of external forces,

and -also the forces § produced by a second group of forces

2

P,, the forces §, produced by the simultaneous action of both
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groups P, and B,, then equal § + S,.
. 3. ESimple" and "Complex" Frameworks

Simple frameworks are those whose forces can be determined
directly by beginning with a joint where three members meet and
by then continuing the determination with a second joiﬁt where
only three more forces are unknown, and so on until all the
forces are determined. The applicability of this method depends
on the assumption of a certain "simple" type of framework (ngpl,
"Graphische Statik" pages 15 and 178).

The framework shown in Figure la is "complex." Since more
than three members meet at each joiﬁt, one cannot begin the de-
termination at any one of the joints. In the framework shown
in Figure 1b, the forces can indeed be first determined in the
members represented by light lines (first taking joint I and
then joinmt II), but the above-mentioned difficulties are encoun-
tered, in attempting to determine the forces in the remaining
members, represented by the heavy lines, which constituté the
so-called "base figure" of the framework.

The later examples concern the determinatien of the forces
in such base figures. In this connection we shall make no use

of the Henneberg method (FOppl, "Graphische Statik," p. 185).
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4, Space Frameworks

Ever& surfade framework consisting of triangles and enclos-
ihg 4 simple continuous.space generally yields, if the edges
aie regarded as members and the coTners as joints, a statically
determinate framework which is called a space framework. No
member passes through the interidr of a space framework.

If many of the members of a space framework are joined in
sne plane, this plane framewofk, composed of nothing but trian-
gles, is alwayé statically determinate, when all the junctions
are 6n the edges; |

5+ Changing the Diagonals

In the statically detefminafe framework subjected to the
external fofces P, as shown in Figure 2a, there are, for ex-
ample, sevefal membérs in its front surface which form a static-’
ally deéerminate plane framework in one planei In such a case
Wé distingﬁish between the édge members (1 to 6) of this suf—
face and the diagomal members (7 to 9) or simply "diagonals."

The framework shown in Figure 2b is subjected to the same
external forces and differs from the framework in Figure 2a
only in the different (statically determinate) arrangement of
the diagonals in the front'field. It can then be shown that,
despite the changed diasgonals in this one plane, the same forces
prevail in both frameworks in all the members not in this plane.

'If, for example, we have calculated the forces in the frame-
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work 3b, we can find the still unknown forces in the front .
field of the framework 2a by adding the forces in &c to the
forces in the front field of the framework 23b., ‘Here D rTep-

resents the diagonal force in the framework 2b.
6. Additional Forces

We shall often make use of the following line of reasoning.
A statically determinate framework is subjected to a group of
balanced external forces (the foioes P in Figure‘B). Several
of these forces are supposed to lie in one plane of the frame-
work (e.g., the forces P, ). We now apply in this plane the
additional forces Z, and indeed at each joint always a pair
of equal and opposite forces, so that the framework is subjected
to no load due to these additional forces, and consequently the
"forces in its longitudinal members are not affected. These ad-
ditional forces are so chosen that some of them balance the ex-
ternal forces lying in this plane. Thus, for example, the once-—
crossed additional forces 2 balance the once-crossed forces
P, . Since the equilibrium of the whole framework remains un-
changed, the remaining twice-crossed additional forces Z must
of necessity balance the reﬁaining twice—crossed external forces
P,. - The once-crossed forces are therefore in eQuilibrium of them-
selves, as likewise the twice-crossed forces, and we can deter-
mine the forces for each group separately. The final forces

are found by means of the law of superposition (Section 2).
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7. Six-Sided Frameworks

Befqre passing to the method which is the special subject
of this treatise, I would like to indicate briefly the usual
method of determining the forces in a space framework, all the
members of which lie in six planes (Fig. 4a). Such a framework
is generelly comﬁlex. In order to calculate the forces, the .
diagonals have to be changed to simple ones., In fact, they must
be arranged so they will radiate from only four joints (Fig. 4b).
We thus obtain a simple framework, in which the forces can be
determined directly. It is necessary, however, to proceed
with the determination only until one diagonal force is known.
In the field of this diagoﬁal force, the forces in the actual
diagonals are then determined according to Section 5, After
these forceé are known in one field, the forces in all the other
members can be determined by the usual method of the resolution
of forces.

8. Forces Exerted on the Middle Joint of the Framework

Let the force P, (Fig. 5) be one of the forces to which
the framework is subjected. It lies, e.g., in the plane of the
right front surface. Hence the diagonéls cannot be changed di-
rectly according to Section 7, since, in using this method, the_
joint to which P, 1is applied would be suppressed (Fig. 4b).
Additional forces Z are therefore applied to any two joinﬁs

on the front surface, which are also corner points of the frame-
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work, in such a way that two of them (namely, the once—crosséd
‘ones in Fig. 5) balance the force P,. We now determine the
forces in the members separately, first for the twioe—crossed
forces (e.g., according to Section 7), and secondly, for the
once-crossed forces, to which only the members in the front sur-
face of the framework are subjected. The final forces in the

members are obtained by the superposition of the two forces in

tHe members,

© 9. Quasi Statically Determinate SpacelFrameworks'“

The five members of the right front surface of the space
framework (Fig. 6) form, as always, a statically determinate
plane framework. The space framework is subjected to the exter-
nal forcesg ‘P. Letvthe member forces be determined. If the fwo
oppositely directed forces Q 1in the front plane of the frame-
work are added, only the members lying in this plane receive an
additional load through these two forces, while the forces in all
members not in'this plane remainAhnchanged, ﬁowever great may be
the force Q and the deformation produced by it. These forces
Q, however, may come just as well from a second diagonal mem-
ber in the front plane. Thereby the front field would indeed
become statically indeterminate'and,the forces in these members
would change. The members mot lying in this plane, however, would
‘remain unchanged. |

Attention should be called, however, to the fact that it



is mot a question here of diagonals which, in the double diagonal
bracing of the field, consist of purely tensile members under no
or only a very little ihitial tension. One of the diagonals is
then without tension and has mo effect on the member forces.

On the other hand, it should be noted that every diagonal
force passing through the inside of a space frameworkr(e.g., from
I to II in Fig. 6) streéses all the members (aside from excep-
tional cases) and that, therefore, such a diagonal would then
transform the framework into a statically indeterminate space
framework in the full sense of the term. This reasoning can be

carried further -and be expressed in the following theorem.

Theorem.- If, in a space framework bounded by plane sur-
faces, further members are ,addéd in these surf_acés, so that
‘these surfaces form sfatically iﬁdeterminate plane frameworks;
we then obtain a quasi stétically determinate space framework,
in which we can calculate all members not lying in these planes
just the same as in the original statically determinate frame—
work, the static indeterminateness affecting only the above-
mehtioned surfaces. |

It should be pointed out that statically indeterminate sur-
faces, which have no common edge members, do not affect one an-
other, i.e.; each can be calculated by itself as statically in-
determinate. If, on the contrary, they have edge members in
common, théy then mutually affect one another, i.e., changing

the dimensions of one member in one of these surfaces also af-
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féots the forces in the members in the other surfaces.

The following considerationé (as well as the ones in Sec-
tiom: 7), for the determinatiom of the forces in the members in
statically determinate space framework, can also be applied
directly to quasi statically determined space frameworks, in so
far as it concerns the determination of the forces in members
which do not lie in statically indeterminate surfaces. The
forces in the members even in the statically indeterminate por-

tions of the framework can then be easily determined.

Part III. Method of Analysis Based on the Forces in
the Longitudinal Members of a Space Framework

with Straight Members

All the examples in Parts III and IV refer to complex air-
plane space frameworks with parallel transverse frames. In con-
trast with the method given in Section 7, the following method
is also appliqable to frameworks with more than six faces. Its
application requires some practice, but in many cases it gives
simple numerical results. It also gives, from the beginning,

a good idea of the course of the forces.

In complex frameworks it is always necessary to deterniine
the force in at least one member. The next task then consists
in finding the forces in the other members. Sections 11, 13
and 14 show how the diégonal forces are found.in the transverse
frames, while Section 13 gives the method for finding the forces

in the other members.
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10. Notation

External forces are designated by P and Q, their sige
and location being indicated by subscripts. Only such trans-
verse frames as have diagonals are called frames in the follow-
ing and they are designated by a, b, etc. The frame members,
their 1éngths and also the other frame dimensions are designated
by the frame letters and a subscript: the edge members, for ex-
ample, by a,, by, etc.; the frame diagonals, for example, by
ag, ae, the general designations for frame members being ay,
bp. . Forces in frame members are designated by A and B and
the subscript number or letter of the corresponding member, for
example, Aj. The perpendicular distance between two frames

is designated by 1lgp, lpc, etce

All members of the structure which do not belong to the
frames are called envelope members. The envelope members which
connect the transverse frames and form the edges of the space.
framework are called chord members or spars, the other members
- forming the envelope bracing. Bracing members extending around
fhe framework in a single pléne form an intermediate transverse
frame. The other membefs.of the enveiope bracing are called
envelope diagonals. The intermediate frames are not necessarily
parallel to the main frames. Their position does not affect

the following discussion.
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The envelope members and their lengths are designated by
s and the member number as the subscript, for example, s,,
or in general by sp. The forces in the envelope memnbers are
designated by S .With subscript. Projections of members,

forces, etc., are designated by an accent, for example, §8,'.
1l. Torsion, General Case

4A11 the external forces acting on the space framework are
considered to lie in the plane of the two transverse-frame sur-
facess It follows fiom the consideration of the balancing of
the externsl forces, that this is possible only when these ex-
ternal forces, as resultants (naturally opposite on both sur-
faces), produce a like moment. This'torsional moment is desig-
nated by M.

In the general case the two parallel frames may take the
form of any desired polygonms (Fig. 7a). Then all the envelope
members in Figure 7a are chord members or spars, theré being no
envelope bracing members'represenﬁed. If there were any such
bracing members, their forces would obviously all be zero, pro-
vided the middle joint of the envelope were not éubjected to
any external force (Section 8).

Since, for example, the external force acting on the joint
I lies, by assumption, in the plane of the frame a, it follows
from the equilibiium.of the components perpendicular to this

plane that the force of the only envelope member proceeding
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¢

from this joint is zero., Hence we can consider as omitted this
and all other envelope members which meet a corner of a trans-
verse frame singly.

Of the remaining envelope members, therefore, therc will
always be two which meet in a frame corner, and which connect
the two frames in a zigzag. If we form at a joint the sum of
the components perpendicular to the'plane of the transverse
frame, we find that these components must.be equal and opposite
in the two members. However, since the remaining envelope mem-
bers form a zigzag, we find that the values of the components
of the forces in the envelope members perpendicular to the plane
of the frame are equal in'all_the members, one member being
ﬁnder tension, the next under compression, etcs This component,
which is constant for all envelope members,_is termed the longi-
tudinal component of force in.the envelope members or "longifud—
inal member force" for short. It is designated by Lgpe.

The line connecting the end points of the two forces in the
envelope members radiating from a joint (Fig. 7a) is parallel
to the plane of the transverse frame. It follows that this tri-
angle of forces is geometrically similar to the triangle III-
I1I-IV, which consists of both envelope members and the line
bgs connecting the joints of the other transverse frame Db,
from which these envelope members proceed. The ratio of the
forces to the corresponding lengths of the members is

Lab : lgpe. This ratio, which will.often be used, is designated
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by HB,p and is termed the p-value. Hence, if we know the lon-
gitudinal member force, we can calculate the forces in the en-
velope members from the lengths of the members with the aid of

the formula, for example,

S, = Mpp 8, oOT, in general, Sn = Mab Sn.

The resultant force Apg of the two envelope forces S, and

1
S,, acting on the frame a, 1lies in the plane of the frame a.
It is parallel to the line by connecting the end points III
and IV of the other freme b and (as follows from the simi-
larity of the triangle of forces to the triangle of members)

proportion,l to the length of this connecting line, that is,

for exanple,
Apg = pgb ba 0T, in general, Apy = Mab P

Very'similar relations naturally obtain for the corner

forces acting on the frame b
Bam = Hab am.

These "corner forces" are the forces exerted by the envelope on
" the ttansverse frame at the corners of the frames. The result-
ant of all the corner forces acting on a frame must balance the
torsional moment.

We now project the whole framework in Figure 7a on a plane
parallel to the transverse frames (Fig. 7b), omitting the un-

stressed envelope members., The projection 8Sn' of the forces
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in the envelope members also is to the length sp' of the'pro;
jection of the corresponding members as Lgp ¢ lgp = Hgbe We
now calculate the moment of all the forces in the envelope mem-
bers about any point 0 and, with the deésignations of Figure
7b, obtainm

n

: - n L L
M= Tp 8! = & rp 20

Zab g v = Zab gy
Tab 0 = Jgp - @b

Here Fgp 1is the hatched area in Figure 7b, which is enclosed
in the projection of the envelope members. From this equation

we obtaim the P value

M
“ab = ZEgp

If we have to calculate the torsion of such a'space frame-
work, we must first determine the value Fyp of the hatched
area. From this equation we then calculate Wy, and finally

obtainathe desired forces in the members:

i

Lab = dgb lab Sn = Hab en

Aom = Hab Pm Bam = Hab am

We now obtaim the forces in the members of both traﬁsverse
frames from a Oreémona plane, by applying to the frame, as shown
in Figure 7c for frame a, the external forces and also the
corner forces (paraliel to the'members or, as the case may be,

1 to the geometric diagonals of the other frame). Since the mag-
nitude of the hatched area is independent of theidistance be-

tween the two frames, the corner forces and the torsional forces
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;n the members of the frame are also independent of the distance
Lap Dbetween the frames. The following theorem can be easily
demonstréted.

Theorem.— The hatched area and hence also the forces in the
members of the parallel transverse frames of a framewcrk under
~torsion, do not change when the two transverse frames are moved
relatively to each other,bbut not rotated. If, for example, the
torsional moments act in like manner on a right prism_and on an
oblique prism which have like transverse frames, the forces in

the members of the frames are the same in both cases.

13. Determination of the Forces in the Envelope MembeTs

In a space framework (Fig. 8a) under torsion, let the four
envelope surfaces be flat. In order to analyze this framework,
we imagine the surface bracing transformed into simple diagonals,
as indicated in one field in FPigure 8a. This does not-change
the diagonal forces in the transverse frames (Section 5), In
determining F,p (Fig. 8b), these imaginary envélope diagonals,
directly connecting the transverse frames must, of course, be
drawn. The transverse-frame diagonais (indicated in Fig. 8c.
for the frame a) are then calculated according to Section 11
with the aid of the corner forces. | |
| Various methods may be employed to.determine fhe remaining

forces in the members, one or the other being preferred accord-

ing to circumstances. For example, we can determine these forces
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from joint to joint as in a simple framework, since ‘we already
know the forces in two members, namely, the transverse-—frame
diagonals. Or we can actually determine all the forces in the
members of the imaginary simple envelope bracing, according to
Section 11, and then determine, according to Section 5, the
forces in the members with changed envelobe bracing.

The followihg»method is genernally the simplest. We deter-
mine for both frames (Fig. 8c) not only the forces in the diag-
“onals of the frame, but also all the other forces in the members
of the frame (Cremona planes). We then draw all envelope sur-
faces (Fig. 8d) as plane frameworks. (If the lateral envelope
surfaces are not inclined.greatly toward the vertical ones, we
can generally employ without great errof the lateral outline of
the space framework for this purpose.) The forces exerted by
the transverse frames on these plane frameworks are now ﬁhe al-
ready known corner forces Apm and Bgm. They mﬁst now be ap-
plied, however in the opposite direction and to the same joints
to which they were applied in Figure 86. In order to obtain
external equilibrium of the forces for the individual envelope
surfaces, we must apply, e.g., additional forces at the joints
I to IV in the direction of the spars. The additional force
211 fepresents, for example, the forces exerted at the joints
VI and VII by the front envelope surface on the upper envelope
surface (and vice versa). These additional forces, which bal-

ance the corner forces on every envelope surface, must be of
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like magnitude at the corresponding corner points of every en-
velope surface (e.g., 217 at the point II on the lateral
surface and -Z77 on the upper surface). Cremona planes are
now drawn also for the envelope surfaces. The forces thus ob-
tained in the bracing members are final. The final forces in
the spars are obtained by superposition of the correspbnding
forces in the members of both force planes in which they occur.

Likewise we obtaim the final forces in the edge members
of the transverse fr@nes through superposition of the forces
producéd in the fbrce plane of tlhie transverse frame‘and of the
"envelope surface (whereby one of the two is generally zero or
the final force in tﬁe member is zeroy.

iIf, e.g., the members a, and b, are not-exaotiy parallel,
so that the envelope surface is distorted and the envelope men--
bers of this surface ﬁo longer lie in one plane, the bracing
cannot be-changed and the method of Section 11 cannot be used
(no more than the method of Section ?). Nevertheless, if the
distortion of the surfaces is only slight, the error resulting
from altering the bracing in the calculation of the forces in

the frame diagonals is then so small that it can be disregarded.
13. Torsion, Special Cases

1. Trapezoidal frames.—- Let the transverse-frame edge mem-

bers 'in the same envelope surface be parallel, so that the four

envelope surfaces.are plane (Fig. 9a). For the hatched surface
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we obtain the simple expressiom:

-ZFab=_ahb,+ba,=

ol
23 - ‘o =

= an b, bh a,.

o

This hatched surface does not change, of course, when the envel-
ope diagonals showm in Figure 9avare-replaced by others. If
both transverse‘frames,are rectangular, ﬁé obtaim, with the hp—
tation of Figure 9b | )

8 Fap = a, by + ay b,.

- 3. Space framework having the form of the frustium of a

pyramid with bases or transverse frames of any shape.— In this

case the perimeters of the two frames are geometricélly éimilar.
Let the ratio of the corresponding sides be by : ap = A If

we designate the area of the frame a by F it is easy to

a’
. show that

3 Fgp =8 MNF,.

For the corner forces acting on the frame a, we obtaim

_ M .U I S
Kom = zpp ™0 T B, M T aE, n

In this case the corner fbrces are independent of the size of
the other frame and are proportional to the length of the side
o} the transverse frame on which they act and whose direction
they have.

In particular we obtain for the. frustrum: of a pyramid with

rectangular bases and with the sides . a,, a,, and b,, Dba,
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for example, for frame a,

so that the moment of the two forces Ap, (Fig. 9b) becomes
Ap, aa = %, likewise the moment of the two forces bp,. In a
space framework having the form of the frustrum of a pyranid
‘With rectangular bases, the torsional moment is distributed
equally between thé two opposite enveiope faces. It should be

noted, however, that this applies only to geometrically similar

transverse frames or bases.
14, Longitudinal and Transverse Forces

In what follows, we shall not understand by longitudinal
forces the forces in the longitudinal members, but external
forces acting pérpendicularly to the transverse frames. By a
few simple examples we will now show how, with the aid of addi-
tional forces, the action of longitudinal and transverse forces
is reduced to the actiom of a‘fofsidnél moment.

If, for example, four mutually balanced longitudinal forces
(P, and B, ) act on the space framework at the transverse frame
b (Fig. 10), the diagonal force A3 in the opposite frame a
is very easily calculated. We apply to‘the frame a four addi-
tional forces Z, of the.magnitude _

- Pé tﬁ - Pl -blv

2 .
' 2'ab z'a,b
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Likewise we imagine additiona; forces applied to the frame Db
inside its plane in.such manner that, for example, the forces
%_,' together with a portion of these additional forces, balance
the 6nce~crossed Z, on the upper envelope surface and likewise
the forces P, with their additional forces balance the force
Z, ornrthe lower envelope surface. Tne two groups of forces
act only on the upper and lower envelope surfaces, so that no
account needsAto be taken of them in calculating the desired
diagonal force in frame a. |

The remaining additionél forces in frame b must then bal-
ance the tﬁo remaining uncrossed additional forces Z, 1im the
frame a, which prbduce a torsional moment, Hence we need not
calculate the magnitude and location of the additiomal forces
in the frame b, but only the forces 2, in the frame a and
the loading of the desired diagonals due to the torsional mo-
ment Z, ap of the uncrossed forces 1Z,, corresponding to the
statements in the preceding sections. The remaining forces in
the members can then be determined according to Section 12,
whereby the corner forces for the rear frame in this case are
setermined from the equilibrium of the forces on the'plane en-
velope frame%orks (Fig. 8d).

If, for example, the transverse frame a (Fig. 1la) is
acted on by a transverse force Q, which is balanced in the
frame b by the transverse forces P and the 1ongitudiﬁal

forces Pp, and if, in particular, the longitudinal forces act

¢
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in the samc envelope surfaces as the transvérse force Q, it
is easily seen that only the members of the upper enveiope sur-
face and of the frame b are stressed. All the other members
are free frém stress, in particular, the diagonél ad. |

if, hoﬁever, the longitudinal forces P (Fig. 11b) also
‘act on the lower side of the frame b, we then apply to bhe
upper side of the frame b additional longitudinal forces g,
of such magnitude.fhat two of them are in exfernal equilibrium

with the longitudinal forces on the lower side.

The oncé—crossedAforces in Figure 11b do ﬁot now act on the un-
known diagonal ag of the frame >a,. the loading of this diag-
onal by the twice-crossed 1ongitudiﬁal forces being calculated
as already described. The loading of the diagonel in frame a,
due to the transverse force acting on this transverse frame,
‘therefore depends only on the way the balancing longitudinal
forées act on the other frame b. It does not depend on‘the
Way the transverse forces act on thé frame Dbe All other mem-
bers in Figures 10 and 11 can be calculated according to Section
12, - |

For subsequent uses in trapezoidal frames with plane envel-
ope surfaces and in the case of longitudinal forces~oécurring
singly (Fig. 10), both the frame diagohal forces are given in

.

analytical form, using the notatiom of Figures Sa and 10.
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ag bh b,

\ = <+ P’ —— ———— 1
A ' lap 4Fab F )
ag %%"fﬂ)bl~%\ .

Bg==-P — (1 = + \ bt

Bg depends therefqre'on the‘relative positions of the trans-
verse frames (that is, on fap)e In order to avoid misunder-
standing, special attention is called to the fact that fab,
in the piojection perpendicular to the frames, indicates the
height of the member a_, above ﬁhe member by,

In particular, if the transverse frames are rectangular,
we obtain, with the notation: of Figure 9b (F, and Fp, Dbeing the

frame areas), the simple expressions

| ag Fyp
= —— 1
Ag =+ P 7 57 (1a)
bg Fa
Bl = =« P e (1 e & 2
d 1 lab ( 2F3b> (3a)

These equations for A4 and Bg hold good only for positions of
the frame diagonals indicated in Figure 10. If a diagonal lies
between the other frame corner points, then-the sign is simply

changed in the equation for the corresponding diagonal force,
15. A Few Applications

In the following illustrations all‘plane surfaces are to
be considered as statically determinately braced. Nevertheless,
only such bracing members are represented as are of especial

intexest.
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Example l.- The space framework in Figure 12, which repre-
sents the central portion;of an airplane-fuselégé, is acted on
at the top by the longitudinal forces P, of'the wing and at
the bottom by the longitudinal forces P, of the fuselagé pro-
duced by the ruddér loading. The two pentagonal surfaces (lying
in the side walls of the fﬁselage) are here considered as trans-
verse—frame surfaces and the others as envelope surfaces. To°

the upper envelope surface we apply the additionmal fcrces

- The once—crosséd forces acf only on the upper envelope surface,
while the uncrossed forces‘lie in the plane of the tfansverse
frames and exert a torsional moment on the framéwork. The
forces in the members are calculated according to Section 13,
case 3.‘ For the upper envelope surface fhe forces in the mem-

bers are found ?y the law of superpositiomn.

Example 3.~ On the cend section of a fluselage (Fig. 13)
subjected to the transverse force @, equilibrium is main-
tqihed in the transverse frame by the external longitudinal
forces P; and a number of forces P lying iﬁ the piane of
this frame. Ip order to calculate the diagonal forces in the
frame a, a&ditional transverse forces Zgy = Q ére applied.-
The diagonal forces im the frame a are then subjected only to
the torsional moment Q x of the once-crossed forces. They

can be calculated according to Section 11l.
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None of the other forces acts on these diagonals. The
twice—c;ossed force . ZQ can e resolved into two components in
the planes of the adjoining envelope surfaces, and it then bal-
ances both moments of the 1ongitudinal forces Py and Z;, where-

- by, along with the prevailing transverse forces, we must imagine

additional forces applied to the frame b.

IV. Method of Analysis Based on Forces in the
Longitudinal Members of a Statically Determinate Space FramewoTrk

. with Bent Chord Membefs

16. Forces in the Direction of an Imeginary Dicgonal

in the Middle Transverse Frame

By way of‘exception, we will also call the middle bross
sectiom b (Fig. 14) a tronsverse frame, although it has no
diagonal braces, and will designate its members accordingly.

The illustrations in Section 17 represent primarily the
fuselages of paséenger airplanes in which, for a long distance,
there is no transverse frame with diagonals (in order to leave
the spéce as free as possible for the cabin) and in which, under
certain conditions, account must be téken'oflfhe variations of
the forces in the members, as compared with their values accord-
ing to_the previous sections, due to the bendiﬁg of the chord
members or spars. Instead of the-actﬁal gradual curvatura of

these spars, we can assume a sharp bend at a suitably chosen
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p}dce (Fig. 14) and recgard the spars as otherwise straight.;‘The
ansiderations'énumcrated in this section furnish the foundaxfbn
for those in Section 17.

The exomples in this section can also be used for calculat—
ing the forces in the'mémbers of o statically indeterminate air-
plane fromework (e.g., fuselage or wing) when the diagonal of
the middle frome passing through the space inside the framework
is choscn os a redundant member, the remaining statically deter-
minate main framework corresponding in general to Figure.l4.

In order to calculate the statically indeterminate framework
according to Maxwell—ﬁohr, we must first determine the_effeof of
a force in the redundant member .on thé main’framework, forlwhich
purpose the considerations of this,séction can be uvused. Such
statically indeterminate frameworks can be calculated more easi-
ly, however, according to the method described in Sections 18-20.
- The framework in Figure 14 ié»separated in Figures 15a
and 15Db info a right and a 1éft part. In these two frameworks
the frame b has no diagonals. These frameworks are therefore
geometrically under-determinate. If we cause additional forces

Ba to act on the framework 15a in the direction of the missing

a
diagonal of frame b, the framework cannot then absorb these
forces. Only when we simultaneously apply to frame b the lon-
gitudinal forces P, and P, of given magnitude, can the frame-
woTk members Teceive the load Bi,. The magnitude of the forces

P, 1is found from equation (3) in Section 15, if we substitute
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By, for By and designate the length of. the imaginary diagonal
by- bg.

In framework 15b the forces Bdo are applied in the direc-
tion of the missing diagonal of the frame D, In fact, Bdc
1s made just great enough so that the added forces P, and B,
(which are calculated according to equation (2) in Section 15
by substituting .¢ for a) are equal and opposite to the cor— -
responding forces in Figure 15a. |
| If we now fit the frameworks 15a and 15b together so as to
- form the framework in Figure 14, we can eliminate the longitudi-
nal forces P, and P,. The external ioadingA Bg of the frame-
work is the sum of gd& and Bdc' The longitudinal forces P,

are found from the equation

P = + ; .
1 B Bg.
dg , “do

P, P

1

The force in the'diagonal of the frame a 1s now found from
equationz(l) in Section 16. For rectangular frames we can write

the resultant diagonal force

_ 4 Fy.-
= N oF
_ = ag ab
Ad = + Ba 5~ i 1 F ‘
d(l»— a4 ab 1 - c \
BFab/  lbe 8Fpc/

The negative sign applies to the case when the diagonal in the
frame a passes out from the same spars as the imaginary diag-
onal in frame b. Otherwise the positive sign is used. The

other forces in the members are now found according to Seetion 14.
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17 T or sion

I o torsional moment M acts on the end frames of such a
framework (Fig. 16a), the forces in the members are determined
as follows. Two pairs of equal and opposite additional forces
are applied to the middle unbraced frame b in the_direction
of an imoginary diagonél. In accordance with the preceding
sections, we will designate these forces as + Bg. Their mag-—
nitude is such that, with the simultaneous action of the tor-
sional moment and the additional forces - By, the force in
the longitudinal member between the frames a /agd_is‘a constant
L,p, and likewise the foree in the longitudinal member between
the frames b and ¢ is a constant Lbc‘ The magnitude of - By
is found, therefore, by applying to the frame b (Fig. 16b),

. according to Section 11, the corner forces Bgm = Mgp anm pPIO—
duced by the forces in the envelope member between frame a and
b, and also the corner forces Bgp = Mpc Cm produced by the
forces in the envelope member between freme b and c.'

The forces in the frame diagonals Aq and Cq are first
determined from the superposition of the actiom of the once-
crossed forces (by applying, according to Section 11, thé cor-
ner forces Apy = Mgp Oy to the frame a and likewise to the
frame c¢) and of the uncrossed forces (e.g., for rectangular
frames according to equation (2), Section 16). The forces in
all the other members can now be determined écco;ding to Section

123.
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V. Method of Analysis Based on Forces in the

Longitudinal Members of a Statically Indeterminate Space Framewprk

A1l the following examples concern statically indeterminate

airplane frameworks with parallel traonsverse frames.

18, Torsion. Assumption of a Constant Longitudinal

Component of Force in the Members

The determination of the forces in the membefs‘of a static—
aliy,indeterminate fTramework résolves‘itself into two parts,
namely, the calculation: of the actual forces in the members for
- the preliminary design of the members and the statically inde-
terminate calculation. If the forces in the members are poorly
estimated, the calculations have to be repéated until a satis—
factory agreement is obtdined betWeen the dimensions and stresses,.
The calculation requires great skill, especially when, as in air-
.plane construcfion, the_framewdrk has to be dcsigned for differ-
ent cases of loading.

In airplane frameworks subjected to torsional mbments‘(fuse-
lage and wings), it is advantageous to-prooeed_as follows. The
forces in all‘frame diagonals dre regarded as forces to be esti;
mateds It is assumed at first that the frame-diagonal forces
- correspond to constant longitudinal components of forces in all

.envelope members between every two transverse frames (whereby
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diagonals running from frame to frame are to be assumed as en-
velbpe bracing, even when the actual envelope bracing is differ-
ent).* Corner forces, as abové indicated, are therefore applied
to every frame in additiom to the external forces acting on it,
€ege, to frame b, which lies between the frames a and c, the
corner forces Bgm = Hgp ay and Bgy = Mpe Cp (Fig. 16b).  For
these balancing forces, we calculate all frame—diagonal forces
and then also all other forces of the framework. With envelope
diagonals running from frame to frame, we find the forces in the
envelope members as Sn = Mab Sp, etc. Otherwise, we find

them as representéd in Figure 8d.-

The forces thus obtained now represent mostly very good
approximations of the forces actually occurring in the members
of the statioélly indeterminate framework, so that they form a
very good basis for provisional'design, or may often be regarded,.
even without any statically indeterminate calculation, as the
final forces in the members;.

If we wish to make an exact statically indeterminate calcu-
lation, we select, for example, in the framework of Figure 17,
as redundant members, the diagonals'of an end frame and those of
the next frame (e.g., the diagonals of the frames c¢ and d), so
that there Temains, as the main framework, the framework which
~embraces all the envelope members, the edge members of all the

frames and the diagonal members of two neighboring frames. This

*This represents the extension of an assumption, which was made
long ago by L. Staiger for simple cases.
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main framework is not a simple space framework, though the base
figure (consisting of the members of both frames ,a.and b and
the intervening envelope members) has straight spars and can
therefore be easily calculated with the aid of the methods de-
scribed in Sections 11 and 14.=*

The usual procedure invmaking a statically indeterminate
calculctionr is first to calculate the forces T in the membeTs
resulting from the action of the external forces, whereby the
forces are assumed to be zero in all redundant members, and
then %o determine the various forces wuy 1in the members pro-
duced by the action. of the forces 1 in the redundant members
X. By this method the forces T im the members of the frame-
works considered here are very large, and we obtain, according
to the Maxwell-Mohr method, the final forces in the members
as the difference between two very large members and must there—
fore ca}culate to many decimal places in order to attain suffi-
cient accuracye.

The following method is ﬁreferaﬁlé. We determine the
forces T on the members under the actiom of the external loads
with the simultaneous action of the forces in the redundant diag-

onals, as they were calculated under the assumption of constant

*Other diagonals might also be regarded as redundant members.
They must be so situated, however, that the base figure of the
main framework embraces the diagonals of two neighboring trans-
verse frames. If, on the contrary, all the space diagonals of
the intermediate frames were to be regarded as redundant mem-
bers, the forces in the members would have to pe found with the
aid of the complicated method of Section 18. With many redun-
dant members and with frequently bent spars, we would not attain
our goal without still more complicated methods.
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longitudinal forces for the initial design of the membersi The
forces uy 1in the members and then also the final forces in the
- members are¢ determined in the usual manner.* It is not then nec-
essary to recalculate the forces T in the members, because

they are already known from the initial design. Moreover the
forces T already closely approximate the final forces in the
members which, according to the additional forces obtained by

the Maxwell-Mohr methbd, are only small, and we can thefefore.

be satisfied with considerably fewer decimal places.,
19. Basis and Field of Application

No generally applicable proof for the approximate correct-
ness of the assumption of constant longitudinal force can, of
course,.be given., Hence I will only briefly describe the basis
and call attention to the following line of reasoning., **

Under the assumption of'constant longitudinal member forces
in the envelope meﬁbers between every two transverse frames, the
torsional momentlin each framework member is transmitted just

the same as though only this member were present. We now consid-

*Whereby it must, of course, be noted that, contrary to the us-
ual method of calculation, the forees T differ from zero_in
the redundant members.

**As the basis we can also consider the work of deformatlon of
the framework. We thken proceed from the fact that correct forces
in the members correspond to the minimum of the total work of
deformation of the framework. Since the envelope members absorb
most of the work of deformation, their work of deformation must
be as small as possible, It can then be shown that this is the
case only when the longitudinal member force in all members be-
tween two transverse frames does not differ too much from a con-
stant. This rather complicated basis, which is naturally not
very exact, I would like to pass over in the interest of brev-
ity..
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er the framework resolved into separate statically determinate
space frameworks, consisting of the membé:s of the two neighbor-
ing transverse frames and the enveiope members lying between _
them, so that all'frames, with the exception of the end frames,
naturally occur twice. We then let the corresponding torsional
moment act on each of these space frameworks. Among other things,
a displacewment of the joints perpendicular to the plane of the
transverse frame is connected with this torsional 1pading. The
less these displacements of the joints of one and the saﬁe frame
differ in two neighboring framéworks, the less will be the in-
fluence of both these framework parts in the actual statically
indeterminate framework, and the mbre accurate will be the as~
sumption of a-constant 1ongitudinal member force.

This consideration enébles the deduction of the following
viewpointse. The assumption of a_constant longitudinal member
force is more accurate: the greater the distance between the
-frames; the more uniform the distances between frames; the-more
similar the shape of the neighboring frames; the more uniform
_ the'action of the external torsional moment on the individual
frames; and the more uniform the change in the dimensions of the
individual spais and envelope diagonais. The dimensions of the
frame members and especially of the frame diagona.ls.has but lit‘—
tle effect on the magnitude of the freme-diagomal forces.

In airplane construction the ieiations in the central sec-

tion of the fuselage and wings is generally so favoTable that
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the error is very small in the members of the envelope surfaces

including the‘edge members of the frames, the numerical calcula-.

[

[l

ons giving errors for the most part considerably less than 10%.
If individual frame diagonals are only very lightly loaded and
especlally- if no external torsiongl momeﬁt acts on a frame,
the relative error for these members is naturally greater. Such
+1ightly loaded mémbers are being continually madé weaker (if not
entirely eliminated). |

On the other hand, the error in the estimate in the vicini-
ty of the frames which are éuddenly exposed to vefy great tor-
sional mdmenté,.especially when the direction of the torsional
moment is changed and the transverse frames deviate greatly
from the square shape, is very large, often as much as 50%.
This is the case, e.g., ét the junction of the fuselage and wing
and in braced wings'at the ends of the struts. Even in fuselage
frameworks in which the envelope bracing is wanting in one field
due to the removal of a portion of the upper envelope over the
pilotis seat, great deviations from the estimate occur in this
vicinity., In such cases an estimate on the basis of careful
considerations and also a statically indeterminate Célculation
are necessary. Even here the étatically indeterminate calcula-
tiom for the Whoie wing framework can generally be dispensed
with. It generally‘suffices to consider as cut away the portion
of the framework between the two transverse frames which lie on

both sides of the frame in which the disturbance occurs (i.e.,
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three frames in all énd the envelope members lying between them);
to apply the forces in the members outwardly adjoining this por-.
tion of the framework (according to the above-indicated estimate)
and the other forces as external loading; and to make the static-
ally indeterminate calculation for this portion. The disturb-
ance produced by the sudden change in the moment disappears rap-
idly when the frames are not too near together., If it is sus-
pected, however, that the effect of this disturbance extends
further, the statically indeterminate calculation 1s extended
to the portion of the framework which lies between the next two
frames, that is, to five frames in all (thrice statically inde-
terminate). | |

0f course in every individual case it must be left to the
judgment and experience of the designer as to how far he trusts
such an estiméte'and what other viewpoints he shall employ for

the calculation or final design.
20. Torsion and Bending

Airpiane frameworks are generally subjected simultaneously
to torsional ana bending stresses. The forces in the members
will then be calculated as independently as possible for bending
and torsiong so that various cases of loading can then be deter-
rined by the iaw of superposition. The separate calculatiom of
the forces in the members for torsiom and bending is always

quite possible in wing frameworks, where, after finding the
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center of shear of the separate cross sections, the external
loading can be resolved into shearing forces, passing through
the center of shear énd into the residual torsional moment.
There are difficulties, however, especially in estimating
the forces produced in the members by horizontal trans#erse
forces in the fuselage (rudder loading), since the course of
these transverse forces and of the corresponding bending moments
depends largely on the manner of their tronsmission to the wing.
| In small airplanes this calculation is made more.difficult by
the irregularities produced by the cutaway for the pilot*s seat.
It is difficult to generalize concerning the course of these
forces, because the number of different possibilities is very
large, but the statically.indeterminate calculation correspond-
ing to the examples in Sections 18 and 12 present no difficul-

ties.

Translation by Dwight M. Miner,
National Advisory Committee
for Aeronautics .
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