
w I

F
a
c
a

TORSION

FOR AERONAUTICS

TECHNICAL NOTE 2369

AND TRANSVERSE OF CANTILEVER PLATES

By Eric Reissner and Manuel Stein

Langley Aeronautical Laboratory
Lamgley Field, Va.

. .. . . . . . . . . . -T . . ..- .- .- —.. .-. — .-. — —. .



TECHLIBRARYKAFB,NM

1

,
NKTIONAL ADVISORY C@MITTEE FOR AERONAUTICS

!RZCHNICALI’JOTH2369

00 b5L31

TORSION AND TRANSVERSE BENDING OF CANTILEVER PLATES

By Eric Reissner and Manuel Stein

SUMMARY

The problem of combined bending and torsion of cantilever plates
of variable thickness, such as might be considered for solid thin high-
speed airplane or missile wings, is considered in this paper. The
deflections of the plate are assumed to vary linearly across the chord;
minimization of the potential ener~ by means of the calculus of vari-
ations then leads to two ordinary linear differential equations for the
bending deflections and the twist of the plate. Because the cantilever
is analyzed as a plate rather than as a beam, the effect of constraint
agaimt axial warping in torsion is inherently included. The applica-
tion of this method to specific problems involving static deflection,
vibration, and buckling of cantilever plates is presented. In the
static-deflectionproblems, taper md sweep are considered.

INTRODUCTION

For analysis of thin solid kbgs of small aspect ratio such as
might be utilized in high-speed airplanes ad missiles, beam theory is
no longer adequate. Wings of this type are more nearly plates than .
besms and should be smilyzed by plate theory. However, solutions to
the partial-differential equation of plate theory are not readily
obtained, especially for plates of arbitrary shape and loading. In the
present paper, therefore, a method is described for obtaining ordinary
differential equations to replace the partial-differential equation.
The method employs the minimum-potential-ener~ principle in conjunction
with the assumption that the chordwise deflection”shape ~ be repre-
sented by terms of a power series. The analysis of the present paper
is Mmited to the first two terms of this series. The first term
represents transverse displacement and the second represents twist.
Together they permit linem chordwise deflection (the assumption umally
made in wing design). Use of the first two terms in the series leads
to two ordinary differential equations that define the spanwise vari-
ation of the transverse displacement and rotation. If results of

_—-_————.— ——



2 NACA TN 2369

greater accuracy are required, additional terms in the power series may
be included (that is, quadratic, cubic, etc.) with a corresponding
increase in the number of ordinary differential equations obtained.

Solution of the two ordinary differential equations, mibject to
boundary conditions which arise naturally in the mitigation procedure,
gives the bending deflection and twist at any cross section. The
stresses may be obtained from the deflections by using the weK1-lmown
equations of plate theory. The order of accuracy of the stresses will
generally be less than that of the deflections. Because ordx plate
theory is employed, the applicability of the analysis is limited to
plates in which the order of magnitude of the plan-form ctlmensionsis
greater than ten tties the order of magnitude of the thickness. To
extend the applicability of such an analysis to other dimensions, the
effects of transverse shear deformation must be included.

The derivation of the differential equations and boundary condi-
tions is presented and their application is discussed, and then specific .
problems involving static deflection, vibration, and buckling of canti-
lever plates are solved. In the static-deflectionproblems, taper and
sweep are considered.

Since completion of the present paper, there has come to the
attention of the authors a recent paper (reference 1) which presents
essentially the same ordinsry differential equations that ace presented
herein for static-deflectionproblems.

r,
The derivations of these ordinary

differential equations were done by different methods, and different
specific problas were solved.

The basic differential equations presented herein were obtained in
June 1948 while the first-named author was temporarily at the Langley
Laboratory, and the work was continued by correspondence.

SYMBOLS

a, b, i, j

c

h

2.

‘A

P

parameters speci~img taper variation

local chord of plate

local thicbess of plate

length of plate measured perpendicular to root

mass yer unit area

lateral load per unit length

,.,
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t

w

XY Y) z

D

E

P

T

w, e

c~(x)J cr2(x)

parameter specifying twisting-moment

constant applied twisting moment per

distribution

unit length

transverse deflection, positive b z-direction

coordinates defined in figure 1

local flexural stiffness

()“* - V2

modulus of elasticity of material

tip shearing

tip torque

functions of
w = w(x) +

coefficients

force

appearing in assumption
y;(x)

in differential equations

functions defining plan form (see fig. 1)

3

variable obtained by transformation ~=1-b$

tip bending moment

higher-order moment of stresses

bending moment per unit width

externally applied tip bending moment per unit width

twisting moment per unit width

externally applied tip twisting moment per unit width

——.. —
;
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#

Nx

Nx>
o ‘xl

%

%

normal force per unit width ~

constsats appearing in normal-force-distribution

equation Nx = Nx + ~ N
o c%

shearing force per unit width

externally applied tip shearing force per unit width

modified Bessel functions of order v

aspect-ratio parameter

Poisson’s ratio”

(m=)

0) frequency of torsional vibration

A angle of sweep

n ener~

*x normal stress

“T
W ‘n

shear stresses

Subscripts:

Stv according to St. Venant torsion theory

Subscripts x and y on w denote partial differentiation with
respect to x and y, respectively.

Superscripts:

h homogeneous solution

pi particulsx integral

Primes denote differentiation with

.

respect to x.

d

-.,
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ANALYSIS

The structure considered in the present paper is a thin, elastic,
isotropic plate of gradually varying thiclmess and chord, as shown in
figure 1. The loading may consist of distributed lateral forces and
torques, spanwise normal forces acting in the midplsm of the plate,
and tip shears and torques. In.addition, the plate maybe undergoing
simple harmonic motion. The potential-energy expression for such a
plate in its defomed position will nowbe presented. The aforemen-
tioned assumption of linesr chordwise deformation will thenbe incor-
porated, and finally the potential ener~ willbe minimized by means of
the calculus of variations.

The strain energy of bending is givenby the following expression:

H1 2. C2(X)

[(

2+
~strati = Z ~ D(x,y) W= + Ww

)
cl(x)

2(1 -
(

v) WW2
g- ‘Xxwyy dxdy

where w is the tramverse deflection and

D(x,y) =
Eh3

4 - ~2)

where h is the local thickness which is a function of x and y.

The potential ener~ of transverse loads of intensi~ p is

2

H
C2( x)

Ilp =<_ p(xjy)w dx dy

o Cl(x)

The potentisl ener~ of the middle-plane spanwise forces is

H12 44
‘Nx = ‘~ NXWX213X dy

o C1( x)

(1)

(2)

(3)

—. — .-.——————— .— .—



6 NACATN 2369

The potential ener~ of the tip forces, moments, and torqueg is

(4)

If the plate is undergoing simple hsrmonic motion of circulsr fre-
quency u, and w(x,y) is the deflection shape at the time of maXhmm!
deflection, the potential ener~ due to inertia loading is

2

JV

C2(X)
q=_;

‘A(xyyhvti dy

o Cl(x)

(5)

The total
Just listed or

potential ener~ is defined as the sum of all the energies

%otal ‘restrain ‘np+%x+%ip+%

lf %Otal were minimized with respect to the deflection w(x,y)

by means of the cslculus of variations, the well-bown partial,-
differential equation of plate theory would result as the necesssry
condition the deflection shape must satisfy.. However, if first the
deflection w is assumed to be of the form

w =W(x) +ye(x) (6)

and the potential energy is mintmized with respect to W(x) and 13(x),
two ordinary differential equations me obtained for W and 13. The
latter procedure is followed here@. It should be noticed that the
right-hand side of equation (6) is merely the first two terms of a
power series in y. If greater accuracy is desired, additional terms

of the series such as
expression (6) in the

II J12=—
strain 2

0

#a(x) and Y37(x) maybe used. Substitution of
energy formulas (equations (1) to (5)) gives

[ 1%W”2 + 2a2w”e” + a3e”2 “ 2(1 - %e’2 m (y)

(8)

,.

,.

. — ..— _ . . . . . .— .—. —
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,.

2~.
nNx . + J( nlW

)
‘2 + ~W’ol + n36’2 dx (9)

o

%ip = -PW(2) - TG(Z) +MIW’ (Z) +M#’(z) (lo)

-L
IIm =-~+ J( )S1W2 + 2s2we + s3e2 dx

o
(U)

where the coefficients ~, Pn~ ~~ ‘, T, ~, and an are defined

as follows:

JC2(x)
an(x) = D(XjY)~-l@

Cl(x)

J
C2(x)

pn(x) = P(x,Y)#-ldY
Cl(x)

.

*

.

, C2(X)
nn(x) =

J
N#-l dy

Cl(x)

J’C2(z)
P= aJY

CJ 7)

J@d
an(x) = ‘A(x)y)d-l@

C-Jx)

.

.—. .. . . ______ -. — ——
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If the following variational condition
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0
is imposed

~%otal (
= 5 IIst~* + q + %?x +%ip+%)=o

then “

JZ{[(IW)” + (@),r - PI - C02(s~W+ s2,) + (n~w,), + (n2,t)~5W +

~3:')''+(~w'')'' -2`1-~'(ale')' -p2-02(s3e+s2w) +(n3e')'+

(@’)’1~]- - [[a’w”)’ + (we”)’ + ‘lW’ +4’WI:-
[~3eJi +(~w)f - 2(1 - Vlqet + n3Gf + n&jb~j +

[ 1[~W’t + a2e”)5W’ z + s )]

2
a 13°+ a2W” 5.9’ -

0 0
(

P 5W(Z) - The(z) +M15W’ (Z) +M.& ’(z) “=0 (12)
,

At the root (x = 0), the following clamped-edge conditions are
imposed:

W(OYY) = WX(0)Y) = o

It”followSthat

and, consequently,
etc.) also vanish.

w(o) = w’(o) =e(o) eel(o) =0 (13)

the variations of these quantities (bW(O), 5W’(0),

At the tip (x z), bw, M, w’, and be’ are twen to be

arbitrsry and, cons;quentl.y,the tip boundary conditions follow from
equation (12) in the form

~a~wt,)t+ (@l)t + n~w + ~e~x=z = -p (14)

— —— .. . .
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&3’”) ’+(%~)’ -2(l-~)a1’’ +n3+wwjx=2=2 T-T ’15)

(
alW” + a.@”

)
= -Ml (16)

x=2

(
a O“ +3 VW”) = -!2 (17)
\-

The differential equations for
ational equation (12) in the form

x= L

W and 13 follow from the vari-

(qw’,)”+ (a@y - pl - #(slW+s2e)+(n1W’)’ +(n@’)’ =0 (18)

(a3G,t)”+ (a2Wrt)”- 2(1 - p)(al~,)’ - p2 -

&(s3e+s2W) +(n3f3’)’ +(r12W’)’ =0 (19)

The probla is to solve equations (18) and (19) mibject to the
eight conditions givenby equations (13) to (17). Solution of equa-
tions (18) and (19) results in expressions for W(x) ad 13(x). The -
deflection w of the plate is then givenby equation (6).

The stresses may thenbe calculated by taking appropriate deriv-
atives of the deflections. The order of accuracy of the stresses will
be less than that of the deflections since successive derivatives of
approxhate expressions become more and more in error. For this reason
only those stresses are given which are least subject to error resulting
from restrictions
of plate theory

placed on the deflection function. From lmown results

6MX z Nx
q%yjz) = — —+—

h2 h/2 h

TW(X,Y, Z) =-~~

h2 h/2

(20)

(21)

.- —.-—— .— —-—. — ——- ———
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[()_3Qxl z z
TM(x,y, z) = — - —

2h h/2

where

(22)

~ = -D(wm + VWH) = -D(W” + @“)

~ = (1 - W)DWW = (1 - LL)Df3’

aMx aMW
Qx=~- aD(w” + ye”)

?Y

= _D(W’”+ @’”) - ~ - (l-- ~)$e’

The stresses Ux and TW
+hare numerically largest when z = -~;

T= is numerically largest when z = O.

SOLUTIONS OF SPECIFIC PROBLEMS

Outline of Problems Solved

Solutions are presented for a number of problems involv5mg canti-
lever plates of variouE shapes under various loadings. The problems
may be grouped as follows:

(A) Rectangular plate of constant thickness

(1)

(2)

(3)

(4)

Tip torque

Uniform distribution of applied twisting moments

Torsional.vibrations

Lateral buclding

— ——. . ——— ---———— ——-— -.–
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Symmetrical-plan-formplate with chord and thickness variation

(1) Symmetric cross section with spanwise variation of chord
thiclmess according to a power law

(a) Linearly varying chord; tip torque and various span-
wise distributions of twisting moments

(b) Chord variations other than linear (solution corre-
&ponding to arbitr~ torque loadings left in a formal state
for a class of chord variations)

(2) Rectangular cross section with constant chord and expo-
nential spanwise variation in thiclmessj tip torque

(C) Skewed plate of constant thickness snd chord under tip loading
and uniform lateral loading

The problems of group A were selected because they are simple
fundamental problems for which solutions obtained by the present method
can be readily compared with solutions obtained by other-methods. Com-
parison with elementary besm theory is shown for these problems. The
problems in group B involve tapered plates and are therefore presented
for their possible application to wing analysis. Problem C was selected
to show the applicability of the method to swept wings.

Generallyj the plan forms ad loadings in the problems chosen are
those for which the assumption of linear chordwise deflections might be
expected to hold - namely, problems involving unswept plates under
torque loading. A single exception is probla C for which the solution
presented must be regarded as only a first a~roximation.

Rectangular Plate of Constant Thiclmess

For a rectangular plate of constant thickness, the flexural stiff-
ness D is tidependent of x and y. With the chord of the plate
denoted by c and with the origin of coordinates at the center of the
root, the differential equations (18) and (19) become

DcWN - pl - 02(Slw + 82,) + (n#l)’ + (n@’ =0 (25)

&)~_2(l-
12

Y)DcG” - p2 - U.)2
(
S3EI+ S2W) + (n36’)’ + (%WI)’ = o (24)

.
.

. —.. ...— —
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and the boundary conditions, from equations (13) to (17), become

w(o) = w’(o) = e(o) = e’(o) = o (25)

(DcW’” +nlW’ +n@’)x=Z =-P (26)

[
Dcse!tl _2(l - K)Dc9 1-‘+n3e’ +~W’ ~_Z = -T (27)
T

DcW’’(Z)= -Ml (28)

ge’’(z) = -~ (a)

For each loading condition the differential equations are solved
and solutions that satis~ the boundary conditions are obtained in
closed form.

Tip torque.- For a plate with a
differential equations (23) and (24)

DcWm

torque T applied at x = Z, the
become

= o (30)

v)Dce” = O (31)

with the following boundary conditions (from equations (25) to (29)):

w(o) =W’(o) =6(0) =e’(o) =0 (32)

DcW’’’(Z)= O (33)

Dc3
~0’’’(z)- 2(1 - w)Dc8’(Z) = -T (34)

DCW’’(2)=0 (35)

l)c3
~e’’(2) = o (36)

.
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The differential equations (30) and (31) have the following solutions
which satisfy the bound~ conditions:

W=o
.

TZ

[

Sinh +
x ( j-tanhhl_sh~e= (37)

2(1- ‘- 4LP)DC Z 4X 2

From this equation it follows that 9‘ is not a
the St. Venant torsion theory, in which no constraint
warping is assumed, but is equal to

-1

constat as in
against axial

The twist at the tip (x = Z) is

(e(Z) = ‘2 I - ‘7X4X) (38)
2(1 - V)DC

For infinite aspect ratio (k+ ~) equation (38) gives the tip twist
corresponding to the St. Vens@ torsion theory

e(2)
Tl

St V = 2(1 - ~)Dc

A comparison of the tip twist given by the present theory with the
tip twist given by the St. Venant torsion theory is presented in
figure 2 and shows that, for aspect ratios lower than 3, the tip twists
given by the present theory are appreciably lower.

The normal stresses, or so-caIled bending stresses due to torsion,
are obtained from equation (20) for the value of 9 given by equa-
tion (37). These stresses are

qxyYyz) =

.

.. . ..-. — ——.— ——— ————
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Figure 3 shows the spanwise distribution of the normal stress as esti-
mated by the present theory for rectangular cantilever plates for values
of the aspect-ratioparameter k of 1, 2, and 4. This figure shows
that the normal stress is O at the tip (Z~Y~z) ~ ~ at the

()
extreme fiber at the root O ~~ . !l!hismaximum value of the normal

‘2’2
stress is

Uniform spanwise distribution of applied twistin$tmoments.- For a
plate ~th uniform spanwise distribution of applied twisting moments
(that is, p2 = t = Constant), the differential equations (23) and (24)

become

DcWN = O (39)

DC3eN _ 2(1 -
F

v)Dce” = t (40)

The bound~ conditions me the same as those for tip torque, equa-
tions (32) to (36), except that equation (34) is replaced by

‘ DC3
~e’’’(z) -2(1 -V)DCet(Z) =0 (41)

The differential equations (39) and (@) have the following solu-
tions which satisfy the boundary conditions:

W=o

e=
t~2

2(1 - V)DC

x X2
am+

+

L

(1tmh4x+
1 )( ]cosh * -1

E 4L cosh 4A z
(42)

———- ———— - -.— ———-— -——
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.

At x=2,.

e(2) =
[

*Z2 ~

4(1 - W)DC -

.

For infinite aspect ratio (k+@)

15

‘:’’-&(co:,.-l] “
this equation gives the tip twist

corresponding to the St. Venant torsion theory

e(z)
t22

St v ‘k(l - P)DC

tip
“ and
the

A comparison of the tip twist givenby the present theory with the
twist givenby the St. Vensmt torsion theory is presented in figure 4
shows that, for aspect ratios lower than 5, the tip twists given by—
present theo~ are appreciably lower. -

The normal
respectively,

stress at any point and the maximum normal stress

(tanh 4X + 1
4A cosh 4X)

cosh ~ + &
z

sxe,

The spanwise variation of the normal stress as estimated by the present
theory for rectangular cantilever plates for values of the aspect-ratio
parsmeter A of 1, 2, and 4 is shown in figure 5.

.

— ——— —-——— —— . .
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Torsional vibrations.- For a plate undergoing torsional vibration
the differential equation for 0 (equation (24)) becomes

DC361V Z(l
3

mi--- I.L)IM” - mAm2~f3 = O (43)

.

tith equations (32), (36), @ (41) as bo~d~ conditio~ o me SOIU-
tion to the differential equation (43) is

where

‘2=8’21F=E5+1
L -1

r -1

and

z _ 6(1 - V)JC2D:

%V - mAc222

From the bo&dary conditions f3(O) = e‘(O) = O,
equation (32),

J

which sre included in

A3 -$= -—
y ‘1

A4 = -%

t

,!

.

“

_——.—. .—. —— .
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From the remaining boundary conditions, equations (36) and (41), the
following criterion is obtained:

This equation is solved for the fundamental frequencyby finding
the lowest value of the frequency ratio /‘%tv that satisfies it for

a given value of the aspect-ratio parameter A. A comparison of the
fundamental frequency of torsional vibration given by the present theory
with that givenby the St. Venant torsion theory is presented in
figure 6 and shows that, for aspect ratios lower than 3, the fundamental
frequencies givenby the present theory are appreciably higher.

Lateral buckling.- For a cantilever plate
force,

which is a combination of an axial force N
%

the plane of the plate N The differential
‘1“

are

loaded by a spanwise

and a bending

equatiorm for

DcWN + N cw”+ IV
~2

‘o
xl-@”= 0

with the following boundary

C2 IIw)Dc@’ + Nx &’+Nx —W = O
0 12 16

conditions:

w(o) SW’(o) =

(DcW’” + N cw’
‘o

e(o) =0’(0) =0

force in

this case

(44)

(45)

(46a)
.

(Ml)

..-—.———— —— — -————— —— . .— — ——
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~ [-

DC3e I,I_
12

Integration
conditions (46b)

2(1 - LL)13cG’+ Nx @.f31+N

1

C2 ,

()12 %7W ~=.’o

W“(2) = e“(z) = o

(46C)

(46d)

of each differential e“quationand use of the boundary
ad ( k6c) lead to -

~ef . 0Jjcw’” + Ii%c W + ‘xl 6

DC3 <e, + ~CJ!tl_ 2(1 -
12

p)Dce’ + N
%3 la

5P= o
‘1 6

The other boundary conditions are satisfied

( )
W= A1-cos~

( )
e= B1-cos~

by taking

where n ie an integer which represents the number of spsawise
Equations (47) d (~) are also satisfied by.these expressions
and e if the following stability criterion is satisfied:

Equation (49) gives the critical.combinations of

= o

Ny and
-o

(47)

(48).

buckles.
for W

(49)

Nx
1
.L

for a given value of the aspect-ratio parameter X. For each value of
X it is necessary to use the value of n that gives the lowest value
of Nx for a given value of N~, or tice versa. For the present

o
problem, n = 1 alwsys gives the lowest values.

,,

,,

—.— .. —_—. ———— ——. ..—
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Ttioshenko, in reference 2,
lateral buckling of a strip bent

has presented a solution for the
by two equal and opposite eccentri-

cally applied forces in its plane. As would be expected, the present

19

solution differs from that by Timoshenko in that it includes (a) the
effect of constraint against axial warping and (b) the effect of the
uniform axial force in reducing the torsional stiffness of the beam.

Symmetrical Plate with Chord and Thickness Variation

A class of explicit solutions are presented for torsion of symmet-
rical cantilever plates with chord and thiclmess variation. With the
origin of coordinates at the center of the root the differential equa-
tions (18) and (19) sre independent of each other for a symmetrical
plate in tip torque and distributed twisting moments (~ = O). Only

equation (19) need be considered; this equation becomes

(y’)” - 2(I- - id(~ef)’ - P2 = o

with the boundary conditions

e(o) eel(o) =e’’(2) GO

(50)

Da 9“ ‘ -
3

2(1 -
1

u)~e’ = -T
x=z

where a3, al~ ad P2 are functions of x defined in the section

entitled “Analysis.” Integration of equation (50) for tip torque alone
and use “ofthe bracketed boundary condition lead to

(a3e’’)’- 2(1 - Oy’ = -T

For applied twisting moments alone, after integration equation (50)
becomes

(51)

(52)

.—-— —. —. . ___ ..— —
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Symmetric cross section with algebraic spanwise vsriation of chord
and thickness according to a power law.- Equations (51) and (52) can be
solved in closed form when the stiffness D (which is proportional to
the third power of the thicl.mess)and the chord c vary according to
the laws

() bx jC=c O1-y

where Do = a, K is a symmetric function of y/c, and co

W(1 -1.L2)
is the root chord. From the definition of ~ and a3

—— .—— .— ——-—-—--——.–- ————— ——
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By use of

‘=%
p=i+3j

q=i+j

DO1 = k$O

equation (51) becomes

() ~16~2
+lp%-—

12T23
Xlqql= —

% % b2 D01CO%3

(53)

(55)

. ——— ———. —
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and equation becomes
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(56)

It may be seen that K = ~=~=1 foraplate of rectangular

cross section. Values of & W ~ are given in the following

table for some typical cross”sections~

For
and (54)

Cross section ‘D kk

Rectangular 1 1

Elliptical .
%

2

Parabolic-arc
~6
m 3

Dismond
1
m

5

symmetric sections not given in this table, equations (53)
may be used.

This solution is divided into two cases: (a) linearly varying
chord and (b) chord variations other than linear.

(a) Linearly varying chord; tip torque and various spanwise
distributions of twisting moments: In the specisl case of linearly
varying chord (j=l orp=q +2), the solution to the homogeneous
part of equations (55) ud (%) canbe expressed in the form

.

— -- — —. —.—
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where Al and ~ are arbitrary constants and

q+l
pl ..— +

2

The particular solution of equation (55) which applies to tip-torque
loading is

@’i 12T23=-

()

.lc%3q+xg
00

xl-q

The complete solution to’equation (55) therefore is

.

12T23

()16%2
D01CO%3 q + —

b2

xl-q

Since q = @-,
dxl

—. ... ——..— —.——
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and ~, ~,and ~ aredeterminedbyuee of the boundsry conditions

‘d%
e(l) = %1) = -(1 - b) = O

k d&2L -L

The resulting expression for the angle of twist is

e WTZ3 1(f {[@+= PJ1 -
16A02

2(1 - b)P1
$2

D01CO%3 q + —
b2

- 191(1-b)

1
1- pl+l

q(l -b)-q ‘1
[

$1
+ PI(l -b) +

pl+l

1
xl

1)

pa+l - ~ X1l-q - ~

q(l -b)-q
j32+l - l-q

The particular solutions for equation (56) canbe found in a
similar manner when the applied twisting moments p2 ae knOWn. If

.

P2 has the form
.

‘2= d -?)r
where the value assigned to r defines the distribution of applied
twisting moments, then

12p2024

[

Xlr+1-q
p .

1

(1 - b)N1xl-q
+

16A02 16x02
D03co%4(r + 1) (r + 2)(r + 1 - q) - —

b2 ‘+ b2
..

.

———.. —.— — -— ——.-- ——-– —. .— . . .
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As is done for tip-torque loading, the angle of twist can be found
to be

-12p20z4

(’

1
e=

134
Docob(r+l)P2(l-b)2 - ~1(1 - b) 1$ {[

@+ 7’2~~2(1- b)P2 -

1

p~+l _ ~
r+l-q xl

yl(r+l - q)(l -b) + y2q(l - b)-q
pl+l

Ii) PI r+l-q
71+y2~l(l -b) -Yl(r+l - q)(l-b) +

L

B2+1 _ ~uxl
r+2-q - ~

xl

)

l-q _ ~
xl

y2q(l -b)-q - 71 - 72 (57)
p+l r+2-q l-q

where

1
‘1 = 16L02

(r+2)(r+l-q)-~

and

72 =
(1 - b)r+l

16L02
q+—

~2

Equation (57) csnbe used for finding the angle of twist due to
distributed twisting moment which varies as the rth yower of the local
chord.

—._——
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(b) Chord variations other than linear: The solution t.othe homo-
geneo&-prt of equations (55) and
j+l is

v/a
qh=xl

L-

(56) when p ~ q + 2 and therefore

iv(%%’’a)+%%(+%q“
where Iv is the modified Bessel function of the first kind of order v

and 1$ ‘is the modified Bessel function of the second kind of order v

l-p l-i - 3Jv =
q -p+2 = 2(1 - j)

1 q-p +2=1—=
a 2 -j

The next step is to find the particular integral @i for the
torsion load considered from equation (55) or (56). The complete -

expression fdr cp is the sum of the homogeneous solution @ and the

particular integral pi. It is then necessary to integrate q) and to
use the boundary conditions to get the final expression for the twist 0.

Solution for the twist by means of Bessel functions is straight-
forward for many values of v. Solutions for cases in which j # 1 are
not carried beyond this point since they involve tabular functions and
therefore must be worked out separately for ~ set of values of the
parameters.

Rectangular cross section with constant chord and exponential span-
wise variation in thickness; tip torque.- A case that msy be of interest
is the constant-chord cantilever plate with exponentially decreasing
stiffness (stiffness is proportional to the third power of the thickness)

D = DOe-u

.

. —.—.——..—- —- ——————— -——-—— ——.
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and

DOC3 _u

a3=Te

27

.

al = Dote-m

For a plate m.ibjectedto tip torque the differential

The solution of equation (x) is

* eblx + * eb2x
01 +A +

3TZ2 ax
=

2 3 4Do~3~2 e

equation (51) is

where

(x)

For the boudary conditions e(o) =e’(0) =0’’(2) =0, the final.
solution is

f

_._ —— —.- .——-— .——
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.

Skewed Uniform Plate with Tip and Lateral Loading

In this section the differential equations for a skewed uniform
c

plate under tip and lateral loadimg are solved, and equations are
obtained for the twisting and bending deflections of a cantilever plate
under tip load, tip torque, tip bending moment, sad uniform lateral
load.

For a skewed plate of chord c (measured parallel to the root as
shown in fig. 7) and with sweepback angle A

cl(x) =(Z-x) tan A- :

c2(x)=(Z-x) tan A+;

sad for uniform thiclmess

al = Dc

a2
=Dc(l - x) tan A

.

[

C2
a3=Dc~+ (Z-x)

1

2 tan2A

Equations (18) and (19) become

{[ 1}DcWN+ (Z-x) tan AO° “ =P1 “ (59)

([[
It

C2
Dc +(z-

Z
1}

~X)2 tan2A e“ + Z -

)

x) t~A w~” - 2(1 - v)6” = P2

(60)

.

—. —————. . ..—
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. .

sad the corresponding tip boundary conditions from equations (14) to
(17) become

e

.

(61)

,

([[
1

2

1}

DC ~+(2-x)2tm2Ae” + K

)

z -x) tan~w’~’ =2(1 -P)e’ ‘-T
12

‘=1(62)

DCW’’(2)= -+$ (63)

Two integrations of equation (59)”with respect to x and use of
boundary conditions (61) and (63) give

Integration of equation (6o) with respect to x and use of
boundary condition (62) give

K
r

C2
Dc +(2-

1]
X)2 tan2A e“

G
+ ~7-x)t~AW~’ - “

)

J

z
2(1 - P)e’ = - p2(~)d~ - T

x

(66)

.— —-—
_.__ —.—_—
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(65) is mibstituted into equation (66), the fol-
alone results:

[

2

~J

z
w ~el!l - 2(1 - 14)e’= -

12
p2(~)d~ - T -

x

The solution of equation (66) for the case of uniform lateral load

(PI = Pcj P2 =pc(z -
)

x) tan A which satisfies the tip boundary condi-

tion (64) and the root boundary conditions @O) = e‘(O) = O is

CO*, * -%( ) 41.x +
e = 1 +A2sinh —

[ 1

PtEm A(z-x)3_z3+~+

z z 6D(1 - W)

[ 1‘ta A (’_ x)2+2 +
ilc(l - p)

T Ml tan A
x+ x (68)

2DC(1 - l-l) 2DC(1 - W)

where

A1=-~tmh4h -

r

‘2 2

16k2cosh 4X Dc3
L

+ Ptan A

1Dc(l - W)

z ()
Ml tan A

p’2tan A ~ + ~ + PZ”tan A T

’27—
,

4L 2D(1 - v) 8L2 Dc(l - P) 2DC(1 - v) 2DC(1 - I.1)
L —

Equation (68) gives the angle of twist e of a skewed uniform cantilever
.

plate under tip load P, tip torque T) tip bendfw moments Ml ~d %)

——..——————- .—. : ———
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e

.

.

.

and uniform lateral load p. (If, for example, bending moments are dis-
tributed symmetrically over the tip of magnitude M, M1=M and ~= 0.)

From equation (65) with the root boundary conditions W(0) = W’(0) = 0, the
corresponding bending deflection W is found to be

~ )( )W.* #-#-k@+x4 l+2tm2A+
1

3 tan2A 1~ ~
24D 1 -v 2(1 -~) L2

tanA(2-x)&-tanA1
[( )( ]
A@nh~-~+~cosh@-l

2A 2 1 z

With W and @ completely determined, the deflection at any point can
now be found directly from equation (1) and the stresses can be found
from equations (20) to (22).

CONCLUDING REMAN@

A shplif ied plate theory applicable to thin cantilever plates of
arbitrary shape and thickness variation and with arbitrary load has been
presented. The theory, as presented, is based on the assumption of
linear deformations in the chordwise direction. Therefore, it is to be
expected that good results would be obtained for unswept wings in tor-
sion. For pure bending, the deflections obtained in this manner would

be off by a factor of as much as 1 - W2 as a result of the artificial
restraint against anticlastic curvature. For ?roblems involving prin-
cipally bending, therefore, it msy be desired to etiend the present
theo~ to give more accurate results by considering a more general
assumption for the deflection w. The expression

w= w(x) + e(x)y + a(x)y=’

which includes the quadratic term CL(X)y2 in addition to the linesr
terms would give more accuxate results. This more general expression
for w, when used with the ener~ method, would lead to three linear,

—— . —-— —.— —.——— —
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fourth-order, differential equations for the quantities W, e, and a
and a complete set of “bound- cond.itiorm.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics

Langley Fieid, Va., March 6,,1951
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Figure l.- Coordinate system used in the present analysis for a cantilever
plate of arbitrary shape with arbitrary thickness variation.
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Figure 2.- Comparison of the tip twist given by present theory with that
given by St. Venant torsion theory for a cantilever plate subjected to
tip torque.
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I?igure4.- Comparison of tip twist given by present theory with that
given by St. Venant torsion theory for a cantilever plate with a
uniform distribution of applied twisting moments.

6

.

,

.

.

.———— -—- ----——



37

,4

.

.

,.

,8

.6

Cdx,y,z ) .4

Figure 5.-
present
applied

,2

0

-.2
,2

.

Spanwise distribution of the normal stress
theory for a cantilever plate with uniform
twisting moments.

,8

.

as estimated
distribution

1,0

by the
of

_—————- - ..—.-.———— -— -.



NACA TN 2369

2.(

I.f

I.C

●

,

1 2 3 4 5 6
A

Figure 6.- Comparison of the fundamental frequency of torsional vibrations
given by the present theory with that given by St. Venant torsion theory
for a cantilever plate.
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Figure 7.- Skewed uniform cantilever plate considered.
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