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SUMMARY

The problem of combined bending and torsion of cantilever plates
of variable thickness, such as might be considered for solid thin high-
speed alrplane or missile wings, is consldered in this paper. The .
deflections of the plate are assumed to vary linearly across the chord;
minimization of the potential energy by means of the calculus of vari-
ations then leads to two ordinary linear differential equations for the
bending deflectlions and the twist of the plate. Because the cantilever
1s analyzed as a plate rather than as a beam, the effect of constraint
egainst axial warping in torsion is inherently included. The applica-
tion of this method to specific problems involving static deflection,
vibration, and buckling of cantilever plates is presented. In the
static-deflection problems, taper and sweep are considered.

INTRODUCTION

For analysis of thin solid winge of small aspect ratio such as
might be utilized in high-speed airplanes and missiles, beam theory is
no longer adequate. Wings of this type are more nearly plates than
beams and should be analyzed by plate theory. However, solutions to
the partial-differential equation of plate theory are not readily
obtained, especially for plates of arbitrary shape and loading. In the
present paper, therefore, a method is described for obtaining ordinary
differential equations to replace the partial-differential equation.

The method employs the minimm-potential-energy principle in conjunction
with the assumption that the chordwise deflection shape may be repre-
sented by terms of a power series. The analysis of the present paper

1s limited to the first two terms of this series. The first term
represents transverse displacement and the second represents twist.
Together they permit linear chordwise deflection (the assumption usually
made in wing design). Use of the first two terms in the series leads

to two ordinary differential equations that define the spanmwise vari-
ation of the transverse displacement and rotation. If results of
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greater accuracy are required, additional terms in the power series may
be included (that is, quadratic, cubic, etc.) with a corresponding
increase in the number of ordinary differentisl equations obtained.

Solution of the two ordinary differential equations, subject to
boundery conditions which arise naturally in the minimization procedure,
gives the bending defiection and twist at any cross section. The
stresses may be obtained from the deflectlions by using the well-known
equations of plate theory. The order of accuracy of the stresses will
generally be less than that of the deflections. Because ordinary plate
theory is employed, the applicebility of the analysis is limited to
plates in which the order of magnitude of the plan-form dimensions is
greater than ten times the order of magnitude of the thickness. To
extend the applicability of such an analysis to other dimensions, the
effects of transverse shear deformation must be included.

The derivation of the differential equations and boundary condi-
tions is presented and their application is discussed, and then specific
problems involving static deflection, vibrastion, and buckling of canti-
lever plates are solved. In the static-deflection problems, taper and

sweep are considered.

Since completion of the present paper, there has come to the
attention of the authors a recent paper (reference 1) which presents
essentially the same ordinary differential equations that are presented
herein for static-deflection problems. The derivations of these ordinary
differential equations were done by different methods, and different
gspecific problems were solved.

The basic differentisl equations presented herein were obtained in
June 1948 while the first-nemed author was temporarily at the Langley
Laboratory, and the work was continued by correspondence.

SYMBOLS
a, b, 1, J parameters speclfying taper variation
c local chord of plate
h local thickness of plate
A X length of plate measured perpendicular to root
m mass per unit area

P lateral load per unit length
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X, ¥, 2

Cl(X), C2(X)
X
R

M,

M
x
M
pd
M
Xy
Moy

parameter specifying twisting-moment distribution
constant applied twisting moment per unit length
transverse deflection, positive in z;direction
coordinates defined in figure 1

Fh3
local flexural stiffness 5
12(1 - u2)

modulus of elasticity of material
tip shearing force
tip torque

functions of x appearing in assumption
w = W(x) + yo(x)

coefficients in differential equations

functions defining plan form (see fig. 1)

variable obtalned by transformation xl =1 -13%
tip bending moment

higher-order moment of stresses

bendling moment per unit width

externally applied tip bending moment per unit width
twisting moment per unit width

externally applied tip twisting moment per unit width
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Xy’ xz
Subscripts:

StV
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normal force per unit width

constants appearing in normal-force-distribution

equation N, = Nx + EZ le

0 c
shearing force per unit width

externally applied tip shearing force per unit width

modified Bessel functions of order v

aspect-ratio parameter <5W’%'(l - u)>

Poisson's ratio’

frequency of torslonal vibration
angle of sweep
energy

normal stress

shear stresses

according to St. Venant torsion theory

Subscripts x and y on w denote partial differentiation with
respect to x and ¥y, respectively.

Superscripts:

h

pi

homogeneous solutlon

particular integral

Primes denote differentiation with respect to x.
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ANATYSIS

The structure considered in the present paper is a thin, elastic,
isotropic plate of gradually varying thickness and chord, as shown in
figure 1. The loading may consist of dlstributed lateral forces and
torques, spanwise normal forces acting in the midplane of the plate,
and tip shears and torques. In addition, the plate may be undergoing
simple harmonic motion. The potential-energy expression for such a
plate in its deformed position will now be presented. The aforemen-
tloned assumption of linear chordwilse deformation will then be incor-
porated, and finally the potential energy will be minimized by means of

the calculus of variations.

The strain energy of bending is given by the following expression:

1 Z, co(x) ' o
Hstrain = 'é' u/; x,/;l(x) D(X;y') [(Wxx + Wy_y) +
2(1 - u)(wxy2 - wkxyyyi]dx dy (1)

where w 18 the transverse deflection and

Eh3

D(x,y) = Igzzfj—EES

vhere h 1is the local thickness which is a function of x and y.
The potential energy of transverse loads of intensity p is
1 ca(x)
IIp = .-f f p(x,y)w dx &y (2)

0 cl(x)

The potential energy of the middle-plane spanwise forces is

| 1 peo(x) .
, =-%j; fc(x) W 2ax ay (3)
1
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The potential energy of the tip forces, moments, and torques is

e (1) | _ _ _
IItip = d/\ 2 (—wa + Mow, - Mxywy)le dy (k)

cl(l)

If the plate is undergoing simple harmonic motion of circular fre-
quency o, and w(x,y) is the deflection shape at the time of maximum
deflection, the potential energy due to inertis loading is

1 pe(x)
I, = _% f f 2 mA(x,y)m2w2dx dy (5)

0 cl(x)

The total potential energy is defined as the sum of all the energies
Just listed or

IItotal =.IIstrain + IIp + I:Nx +.IItip + I%D

If TILigtey VWere minimized with respect to the deflection w(x,y)

by means of the calculus of variations, the well-known partial-
differential equation of plate theory would result as the necessary
condition the deflection shape must satisfy. However, if first the
deflection w 1is assumed to be of the form

w = W(x) + yo(x) (6)

and the potential energy is minimized with respect to W(x) and 6(x),
two ordinary differential equations are obtained for W and 6. The
latter procedure is followed herein. It should be noticed that the
right-hand side of equation (6) is merely the first two terms of a
pover series in y. If greater accuracy is desired, additional terms

of the series such as y°a(x) and y37(x) may be used. Substitution of
expression (6) in the energy formulas (equations (1) to (5)) gives

1
Hotrain = % f l:alw"z + 28, W"0" + a39"2 +2(1 - u)alexe ax  (7)

IIP = _sz (plW + pee)dx , (8)
0
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1
= _l—_ 12 g1 12
Ioy_ = 2/(; (nlW + 2n'6" + 16 )dx (9)
TTyy, = -PW(1) - T6(1) + MyW' (1) + Mx0'(2) (10)
2 1
I -=-5 fo (51W2 + 28,10 + 5362)dx (11)

where the coefficients a,, p,, n,, P, T, My, and s, are defined
as follows: ’
Ce(x) 1
&n(x) = D(x,y)y*dy

clx

c (%)
pn(x) = f 2 P(X:Y)Yn—ldy

Cl(x)

e (%)
np(x) = f 27w lay
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If the following variational condition is imposed

an:bo_tal = S(Hstrain + :L-'Lp + HNX + H’tip + IIU)) =0

then
A
fo [(alw')" + (a0")" - 2y - @ (oW + 88) + (m")" + (nze')z'aw !
a. 9" "t aQW" -2 - Fl)(&le")l - P2 w2(539 * BE’W) * (n39'>' ¥

1
n2W ' 69 dx - alW")' + (8.29" )' + mW' + neejaw} -
0]

U: 9" ! + W" - 2(1 - p)aq@' + n36' + ngwjae]
[(a__l_W" + 326“)6W']Z + [(339" + azw")aez\ -
0 0

P oW(2) - T 86(1) + My &W'(1) + M, 86'(1) = (12)

|
o

At the root (x = 0), the following clamped-edge conditions are
Imposed:

w(0,y) = w(0,y) =0

Tt follows that

w(o) = w'(0o) =6(0) =6'(0) =0 (13)

and, consequently, the variations of these quantities (sw(o), ow:(o),
etc.) also vanish.

At the tip (x = 1), ©W, &, OW', and B8' are taken to be
arbitrary and, consequently, the tip bounda.ry conditions follow from
equation (12) in the form

[(8‘1 ")' + (aze")' + oW+ nQG] = -P (14)

x=1



NACA TN 2369 9

Ka39") + (agw")' - 2(1 - p)ago’ + ngé' + néWi] , = T (15)
regt) = (16)

(aiw + a0 )x=z My 1
(a39 + ay )x=2 = -M, (17)

The differential equations for W and 6 follow from the vari-
ational equation (12) in the form

(alW")" + (aeef)" - pp - w?(slw + 529) + (niﬂ')' + (nee')' =0 (18)
(a39">" + (aEW">" - 2(1 - w)(e0')" - pp -
o? (850 + s W) + (ng0")" + (aghi")" = o (19)

The problem is to solve equations (18) and (19) subject to the
elght conditions given by equations (13) to (17). Solution of equa-
tions (18) and (19) results in expressions for W(x) and 6(x). The
deflection w of the plate is then given by equation (6).

The stresses may then be calculated by taking appropriate deriv-
atives of the deflections. The order of accuracy of the stresses will
be less than that of the deflections since successive derivatives of
approximate expressions become more and more In error. For this reason
only those stresses are given which are least subject to error resulting
from restrictions placed on the deflection function. From known results
of plate theory

M, =z N.
oy (%,¥,2) = —;—+ = (20)
he h/2 h
T (X}YJZ) ="§Mﬂ—z— (ZL)
Xy 2
h® h/2
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3Q 2
TXZ(X;Y)Z) = ?h}‘c'lg- - <§/Z;>:] (22)
where
My = -D(vyy + Byy) = -D(W" + yo")
My, = (1 - 1)Dwyy, = (1 - p)DE!
QX = %Ii_x _ gb_%’i,[ = -D(Wm + yem) - gi(wn + yen) - (l-— p)a_z_ec

J

(o)1=

The stresses oy and Txy &re mmerically largest when z = %

Tyz 18 numerically largest when 2z = O.

SOLUTIONS OF SPECIFIC PROBLEMS
Outline of Problems Solved
Solutions are presented for a number of problems involving canti-
lever plates of varlous shapes under various loadings. The problems
may be grouped as follows:
(A) Rectangular plate of constant thickness
(1) Tip torque
(2) Uniform distribution of applied twisting moments

(3) Torsional vibrations

(4) Lateral buckling
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(B) Symmetrical-plan-form plate with chord and thickness variation

(1) Symmetric cross section with spanwise variation of chord
and thickness according to a power law

(a) Linearly varying chord; tip torgque and various span-
wise distributions of twisting moments

_ (b) Chord vaeriations other than linear (solution corre-
sponding to arbitrary torque loadings left in a formal state
for a class of chord variations)

(2) Rectangular cross section with comstant chord and expo-
nentisl spanwise variation in thickmessj tip torque

(C) Skewed plate of constant thickness and chord under tip loading
and uniform lateral loading

The problems of group A were selected because they are simple
fundamental problems for which solutions obtained by the present method
can be readily compared with solutions obtained by other methods. Com-
parison with elementary beam theory is shown for these problems. The
problems in group B involve tapered plates and are therefore presented
for their possible application to wing analysis. Problem C was selected
to show the applicability of the method to swept wings.

Generally, the plan forms and loadings in the problems chosen are
those for which the assumption of linear chordwise deflections might be
expected to hold ~ namely, problems involving unswept plates under
torque loading. A single exception is problem C for which the solution
presented must be regarded as only a first approximation.

Rectangular Plate of Constant Thickness

For a rectangular plate of constant thickness, the flexural stiff-
nese D 18 independent of x and y. With the chord of the plate
denoted by ¢ and with the origin of coordinates at the center of the
root, the differential equations (18) and (19) become

pewlV - P, - 2(51W + 329) + (n1W')' + (nee')' =0 (23)

%%; 6TV - 2(1 - p)Deo™ - py - w?(s3e + agh ) + <n3e')' + (néW')' =0 (24)
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and ‘the boundary conditions, from equations (13) to (17), become

w(o) = w'(0) = 6(0) =6'(0) =0 (25)
(DCW'“ + ngW' o+ nee') =P (26)
X=
3

[21‘3_2_9"' -2(1 - p)Dco' + n3@’ + newlm = -T (27)
DcW"(1) = -My (28)

DC3 "
=0"(1) = M, (29)

For each loading condition the differential equations are solved
and solutions that satisfy the boundary conditions are obtained in
closed form.

Tip torque.- For a plate with a torque T appiied at x = 1, the
differential equations (23) and (24) become

pewlV = o (30)

3
]%2"— 6TV - 2(1 - w)pee” =0 (31)

with the following boundary conditions (from equations (25) to (29)):

Ww(0) = W'(0) = 6(0) = 6'(0) =0 (32)
DeW™ (1) = 0 (33)

Dc3
50" (1) - 2(1 - w)pes*(1) = -T (34)
DeW" (1) = 0 (35)
D3 5 (2) = 0 (36)

12
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The differential equations (30) and (31) have the following solutions
which satisfy the boundary conditions:

W=0

lux
ginh ——
6 = T? X _ t_ _ temh LD“(l - cosh &&5) (37)
2(1 - p)de|1 Y oY t/

From this equation it follows that 6' 1s not a constant as in
the St. Venant torsion theory, in which no constraint against axial
wvarping 1s assumed, but is equal to

' = T 1 - cosh Ix + tanh 4\ sinh tox
2(1 - p)bDe 1 1
The twist at the tip (x = 1) is
6(1) = N SN M) (38)
2(1 - u)Dc by

For infinite aspect ratio (A—> ») equation (38) gives the tip twist
corresponding to the St. Venant torsion theory

T1

G(Z)St Ve 2(1 - p1)Dc

A comparison of the tip twist given by the present theory with the
tip twist given by the St. Venant torsion theory 1s presented in
figure 2 and shows that, for aspect ratios lower than 3, the tip twists
glven by the present theory are appreciably lower.

The normal stresses, or so-called bending stresses due to torsion,

are obtained from equation (20) for the value of 6 given by equa-
tion (37). These stresses are

ox(%,5,2) = calhh?)z"l f u(sinh lL_);x_ - tanh 4\ cosh #)
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Figure 3 shows the spanwise distribution of the normal stress as esti-
mated by the present theory for rectangular cantilever plates for values
of the aspect-ratio parameter » of 1, 2, and 4. This figure shows
that the normal stress is O at the tip (1,y,2z) and maximum at the

extreme fiber at the root (O’%’%)' This maximm velue of the normal

g 09—,£>=:§I—I‘— —6-—ta.nh1|-7\.
x( ’2’2 che\zl —u

Uniform spanwise distribution of applied twisting moments.- For a
plate with uniform spanwise distribution of applied twisting moments
(that is, p, = t = Constant), the differential equations (23) and (24)

stress is

become

DeWlV = o (39)

DC3 IV _ - "o
=0 2(1 - p)Deo" =t (40)

The boundary conditions are the same as those for tip torque, equa-
tions (32) to (36), except that equation (3L4) is replaced by

~

%%;e’"(z)-2(l - w)bco'(1) =0 (41)

The differential equations (39) and (40) have the following solu-
tions which satisfy the boundary conditions:

2
9=LE_ - +

o(1 - p)pe|r 212 I

1 1 x .
_— I _ I} A ] ~
by (tanh M I, cosh lm)(cosh 1 ) (¥2)
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At x =1,

2
6(1) = t1 1 tanh U\ 1 [ 1 1
(1 - u)De 2\ 8x2\posh vy

For infinite aspect ratio (A->«) this equation gives the tip twist
corresponding to the St. Venant torsion theory

£12
e(l)St v (1 - p)Dc

A comparison of the tip twist given by the present theory with the
tip twist given by the St. Venant torsion theory is presented in figure 4
and shows that, for aspect ratios lower than 5, the tip twists given by
the present theory are appreciably lower.

The normal stress at any point and the maximum normal stress are,

respectively,
12%1 6 I
o (%,y,2) = 5 %Z‘, sinh == -
. c“h 1-p 1
tanh ll-).+-——l—---— coshhﬁ+—]—'-
b\ cosh b 1 by
and

s (0.c.2 =i°2/i_<tanhm+l__i>
X(’2’2> cn2V1 - o by cosh I

The spanwise variation of the normal stress as estimated by the present
theory for rectangular cantilever plates for values of the aspect-ratio
parameter A of 1, 2, and 4 is shown in figure 5.
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Torsional vibrations.- For a plate undergoing torsional vibration
the differential equation for € (equation (24)) becomes

3 .
%_GIV_ 2(1 - p)DcB" - m,w“— 6 = 0 (43)

with equations (32), (36), and (41) as boundary conditions. The solu-
tion to the differential equation (43) is

9=Al sinhB—;{-+A2coshBTx+A3 sinlz}-[-+A1l_cos%

where
2/ o \2
B2 = 822 [1 + —= +1
1602 \wgy.
2/ o \2
72 =832 1+ = -1 -
16\%\vgy,
and

2 _ 6(1 - p.) JTED.‘

Ot v

242
mpC 1

From the boundary conditions 6(0) = 6'(0) = 0, which are included in
equation (32),

=2
A3 =Tohy

4, = -A2
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From the remaining boundary conditions, eguations (36) and (41), the
following criterion is obtained:

3202 wgt y
7 w

W wgt v

n w

1+ sinh B sin 7 + <? + > cosh B cos 7¥ =0

This equation is solved for the fundamental frequency by finding
the lowest value of the frequency ratio ayﬁgt v that satisfies it for

a given value of the aspect-ratio parameter A. A comparison of the
fundemental frequency of torsional vibration given by the present theory
with that given by the St. Venant torslon theory is presented in

figure 6 and shows that, for aspect ratios lower than 3, the fundamental
frequencies given by the present theory are appreciably higher.

Lateral buckling.- For a cantilever plate loaded by a spauwise
force, ‘

which is a combination of an axial force Nko and a bending force in

the plane of the plate N The differentiul equations for this case

Xl‘
are
TV 1 C2 n l
DcWiV + NXOCW + le-é—e =0 (k)
DC3 T7 1 C3 " 02 1
—0+'-2(1 - )Dcb" + N, =—O6"+ N, =—W' =0 it
12 ( ) *0 12 16 (45)

with the following boundary conditions:

W(o) =w'(0) =6(0) =6'(0) =0 ({l—6a)

2
C -,
DcW™"' + N cW' + N, —@! =0 k6p
( %o X6 >x=Z (k6b)




18 NACA TN 2369

=o' - 2(1 - Dco'! N =g N — W' =0
|:12 ( @)Dco! + %o 15 + x| g W] . (L46¢c)

w'(1) =6"(1) =0 (464)
Integration of each differential equation and use of the boundary
conditions (L46b) and (L46c) lead to

2
DCW™ + N, cW' + N, <-8'=0 L
X0 X1 6 (¥7)

3 3 2
Pi‘ie—e'" - 2(1 - w)DeO’ + Ny 6+ Ny C?w'= 0 (148)
12 ‘

The other boundary conditions are satisfied by taking

W= A(l - cos ———)

[<»]
il

B

R

1—008—2—1—

vhere n is an integer which represents the mumber of spanwise buckles.
Equations (47) and (48) are also satisfied by.these expressions for W
and 6 if the following stability criterion is satisfied:

2\2
. AT N =l i("xﬁ > “o (19)
Ly 72p /\ b 7e 72D 3\ 7D
Equation (49) gives the critical combinations of N and N,

) 1

for a given value of the aspect-ratio parameter A. TFor each value of
A it 18 necessary to use the value of n that gives the lowest value
of Nxo for a gilven value of le, or vice versa. For the present

problem, n =1 always gives the lowest values.
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Timoshenko, 1n reference 2, has presented a solution for the
lateral buckling of a strip bent by two equal and opposite eccentri-
cally applied forces in its plamne. As would be expected, the present
solution differs from that by Timoshenko in that it includes (a) the
effect of constraint against axial warping and (b) the effect of the
uniform exial force in reducing the torsional stiffness of the beam.

Symmetrical Plate with Chord and Thickness Variation
; A class of explicit solutions are presented for torsion of symmet-
rical cantilever plates with chord and thickness variation. With the
origin of coordinates at the center of the root the differential equa-

tions (18) and (19) are independent of each other for a symmetrical
plate in tip torque and distributed twisting moments (a2 = 0). Only

equation (19) need be considered; this equation becomes
AR - _ 1 1 - =
(a39 ) 2(1 u)(ale ) P, 0. (50)

with the boundary conditions

6(0) =6'(0) =6"(2) =0

Ka39")' - 2(1 - u)a19{]x=z = T

where a3, &1, and p, are functions of x defined in the section

entitled "Analysis." Integration of equation (50) for tip torque alone
and use of the bracketed boundary condition lead to

(339")'." 2(1 - u)eB' = -T (51)

For applied twisting moments alone, after integration equation (50)
becomes

(339")' - 2(1 - p)ager = -Jia p,(8)at (52)
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Symmetric cross section with algebraic spanwise variation of chord
and thiclkmess according to a power law.- Equations (51) and (52) can be
solved in closed form when the stiffness D (which is proportional to
the third power of the thickness) and the chord c¢ vary according to
the laws

3
where Dy = M_L, K is a symmetric function of y/c, and <

12(1 - ue) :
is the root chord. - From the definition of a__L and a3

o -afe 1L e

ey o ) [ el

. Setting 7 = % leads to
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By use of
_ bx
xl_l_T
bé
§l=l-T
dae
Q= EEI
=1+ 3]
g=1+]
1 _
Do~ = kpDo
2 12 3
2o =k’~c25(l'”)
0

g
I
£
N
A
2
[T
=

B
1]

equation (51) becomes

d dp\  16np2 12713
o (7o) N
dxl d.xl b D0 y

21

(53)

(54)

(55)
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and equation (52) becomes

3 a 16002 1014 1-b
2 (e 22 1008 e L B T e, (56)
dxl dxl b DO c03b xl

It may be seen that K = kD = kx =1 for a plate of rectangular
cross section. Values of kD and kx are given in the following

table for some typical cross sections:

Cross section kD k%
Rectangular 1 1
Elliptical : 3 2
pLic 35
16
Parabolic-arc 105 3
Diamond L 5
20

For symmetric sections not given in this table, equations (53)
and (54) may be used.

This solution is divided into two cases: (a) linearly varying
chord and (b) chord variations other than linear.

(a) Linearly varying chord; tip torque and various spanwise
distributions of twisting moments: In the special case of linearly
varying chord (j =1 or p = q + 2), the solution to the homogeneous
part of equations (55) and (56) can be expressed in the form

ot = AlxlBl + A2x1B2
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where Al and A2 are arbitrary constants and

q+1 V/16x02 (q + 1>2
ﬂl_-— 4+ +
o b2 2
q+1 1662  fq + 1\2
32_"‘ - > +<
2 b o

The particular solution of equation (55) which applies to tip-torgue
loading is

Pl = . 12713 .1
1e 33 16002 *
DocoP (e + =3 '

b

The complete solution to equation (55) therefore is

B B 12723 -
9= ¢+ Pl = Ayt anxy 2 - v K
161,
D lc 3b3 q +
0 -0 2
b
Since ¢ = 98
dxl
Ay Ap 12723 x1e
= X By+l + xlB +l + A3 -
Bl + 1 82 + 1 16k02 1-g
D 1c 3p3 qg +
0 o0 2
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and Al’ A2, and A3 are determined by use of the boundary conditions

\6(1)=—d?—(l)=i§(l—b)=0

& dx)
The resulting expression for the angle of twist is
16 B B
1 3 0 KP _ 1 _ _. 2
Dyt o <q + . > o(1 - b) B, (1 -b)
_ B1+1 5
a(1 - b)) 1 + Esl(l -b) L+
Bl + 1
Batl _ 4 x93 -1
a(l - b)"‘il -

The particular solutions for equation (56) can be found in a
similar manner when the applied twisting moments p, are known. If

Py has the form

ouls -3
Py = Py 1

where the value assigned to r defines the distribution of applied
twisting moments, then

12P201)+ xlI‘+1—q . (l - b)r+1xl-q
160a°2 1602

0 q + 2o
b2 be

P -

D01c03b1*(r + )z +2)(r+1-4q) -
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As 18 done for tip-torque loading, the angle of twist can be found
to be

I
-12pool / 1 Bo
1 3L Bz By K}l + 7p)Pa(1 - ) -
Dy ¢y b (r + 1)\?2(1 -b) - B8,(1-1)
Bl+l
_ _al X -1
7 (r+ 1 - Q1 - )T 4 g (1 - D) ‘%l——l—— -
By + 1

B -
[(71 AN A CR I R M

Bo+l r+2-q 1l-qg
TS B i ) GV N V. M (57)
2 el 1 2
Bs + 1 r+2-g l-g
where
1
7:
1 16Mg2
(r+2)(r+1-4q) - 5
b
and

(l _ b)r+l
Yo = RPN
161,
+
q b2

Equation (57) can be used for finding the angle of twist due to
distributed twisting moment which varies as the rth power of the local
chord.
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(b) Chord variastions other than linear: The solution to the homo-
geneous part of equations (55) and (56) when p # q + 2 and therefore
JA1 is

)+ (0 9 (o a
9" = "1\}/OL Allv(_xo_ xll/a> + %(ﬂo_ xll/ )

b b

where Iv is the modified Bessel function of the first kind of order v
and Kv is the modified Bessel function of the second kind of order v
and

__1-p _1-31-3j
a-p+2 2(1-3)

l_g-p+2_,
A 5

The next step i1s to find the particular integral @Pi for the
torsion load considered from equation (55) or (56). The complete

expression for ¢ 18 the sum of the homogeneous solution Qh and the

particular integral Qpi. It 1s then necessary to integrate ¢ and to
use the boundary conditions to get the final expression for the twilst 6.

Solution for the twist by means of Bessel functions is straight-
forward for many values of v. Solutions for cases in which J # 1 are
not carried beyond this point since they involve tebular functions and
therefore must be worked out separately for any set of values of the
parsmeters.

Rectangular cross section with constant chord and exponential span-
wise variation in thickness; tip torque.- A case that may be of interest
is the constant-chord cantlilever plate with exponentially decreasing
stiffness (stiffness is proportional to the third power of the thickness)
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and
a = Doce'ax
DOc3 -ax
a, = e
3 12

For a plate subjected to tip torque the differential equation (51) is

2
(e-a.x 9") L 162 e-ax g' = -12T (58)
1 Doc3

The solution of equation (58) is

2
b
6=Alelx+Aeb2x+A +——£§——2em‘
2 3 4D c 8.
where
2
o+ \[a2 + 64
72
by =
2
2
a - a2+6)+l
2
by =
2

For the boundary conditions 6(0) = 6'(0) = 6"(1) = 0, the final
solution is

7 2 bol all/ byx
8 = 371 1 L -b,e 2 + ae e 1 - 1)+
: 32 b22 blZ 2

lmocx b,e - b.e b
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Skewed Uniform Plate with Tip and Lateral Loading

In this section the differential equations for a skewed uniform
plate under tip and lateral loading are solved, and equations are
obtained for the twisting and bending deflections of a cantilever plate
under tip load, tip torque, tip bending moment, and uniform lateral
load.

For a skewed plate of chord c (measured parallel to the rcvot as
shown in fig. 7) and with sweepback angle A

ci(x) = (1 - x) ten A - %

cz(x) (2 - x) tan A + %

and for uniform thickness

a, = Dc(1 - x) tan A
2

ag = Dc i (1 - x)2 tan?A
12

Equations (18) and (19) become

DC{WIV + Bz - x) tan A e'ﬂ'} =p, (59)

1"

Dc [52—+ (1 - x)° ta.n2q9" + [(z - x) tan A W'T_l" - 2(1 - p)e”

I
el
n

12

(60)
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and the corresponding tip boundary conditions from equations (1) to
(17) become

Dc%"' + [(2-x tan A 0" '} ,=F : (61)
X=

1

Dc [93 + (2 - x)2 tan? A}e" + IKZ - X) ta.nAW'j‘ ~2(1 - p)er| =-T
12 :
x=1(62)
De"(2) = M (63)
22 gu(1) = -, (64)
12

Two integrations of equation (59) with respect to x and use of
boundary conditions (61) and (63) give

DCEJ"+(Z-X) ta.nAG"]=fZ fzpl(E)dE,dn+P(Z-x)—M1 (65)
X n ]

Integration of equation (60) with respect to x and use of
boundary condition (62) give

T

2
De E—2-+ (1 - x)2 ‘tanez‘;JG" + (2 - %) tanAw'Z]' -

1
2(1 - p)oe' | = -f p2(§)d§ - T (66)

X
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If W' from equation (65) is substituted into equation (66), the fol-
lowing equation In 6 alone results:

2 1
Dc|:c— om - 2(1 - u)e] = -f p,(€)dt - T -
12

X

Y
tan A (Z-x)[f f p,(8)ag an + P(2 - x) - M, (67)
N

X

The solution of equation (66) for the case of uniform lateral load
Py =DPC, Do = pc(l - x) tan.A)'Which gsatisfies the tip boundary condi-

tion (64) and the root boundary conditions 6(0) = 6'(0) = 0 is

9=A1<°05hm‘_x'l>+A251nhuxx+6p(tanA) (1 -x)3-13 +::3Z}El+
i 1 D(1 - 1 A2

My tan A
P tan A [:Z - x)° - %] + T X + 1 x (68)
oDe(1 - 2Dc(l - 1) 2Dc(1 - u)
where
» ‘
[1oM Pt
Ay = -A, tenh k) - L 2 . an A
16)2cosh th_Dc3 De(l - p)
A__z_pzztanA<1+1> Prtens _ _ T M, ten A
2 .
i |2p(1l - u) % Dc(l - 1) 2Dc(l - u) oDc(1 - 1)

Equation (68) gives the angle of twist 6 of a skewed uniform cantilever
plate under tip load P, tip torque T, tip bending moments My and Mo,
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and uniform lateral load p. (If, for example, bending moments are dis-
tributed symmetrically over the tip of magnitude M, My =M and M, = 0.)

From equation (65) with the rodt boundary conditions W(0) = W'(0) = O, the
corresponding bending deflection W 1is found to be

2 2
W = ~B—[§612x2 - h1x3 + xu><l + 2 tan‘A> 3 tanh sz%] +

olp 1-u 2(1 - p) A2

—2 My x° 2
_P_(3zx2_x3)l+2ta_n_/\ MRl ten®A)  _Ttena o
6be 1-w/ 2D 1-u/ 2De(1 - p)

tan A(1 - x)0 - tan A & Al<sinh o _ hﬂ) + A2<cosh x 1)
o 1 1 1

With W and 6 completely determined, the deflection at any point can
now be found directly from equation (1) and the stresses can be found
from equations (20) to (22). .

CONCLUDING REMARKS

A simplified plate theory applicable to thin cantilever plates of
arbitrary shape and thickness varilation and with arbitrary load has been
presented. The theory, as presented, is based on the assumption of
linear deformations in the chordwise direction. Therefore, it is to be
expected that good results would be obtained for unswept wings in tor-
sion. For pure bending, the deflections obtained in this manner would

be off by a factor of as much ags 1 - ue as a result of the artificial
restraint against anticlastic curvature. For problems involving prin-
cipally bending, therefore, it may be desired to extend the present
theory to give more accurate results by considering a more general
agspunption for the deflection w. The expression

w = W(x) + 6(x)y + a(x)y2

which includes the quadratic term o(x)y2 in addition to the linear
terms would give more accurate results. This more general expression
for w, when used with the energy method, would lead to three linear,
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fourth-order, differential equations for the quantities W, 6, and «
and a complete set of boundary conditionms.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va., March 6, 1951
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Figure 1.~ Coordinate system used in the present analysis for a cantilever
plate of arbitrary shape with arbitrary thickness variation.
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Figure 2.- Comparison of the tip twist given by present théory with that
given by St. Venant torsion theory for a cantilever plate subjected to
tip torque.
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Plgure 3.- Spanwise distribution of the normal stress as estimated by the
present theory for a cantilever plate subjected to tip torque.
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Figure 4.- Comparison of tip twist given by present theory with that
given by St. Venant torsion theory for a cantilever plate with a
uniform distribution of applied twistlng moments.
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Figure 5.- Spanwlse distribution of the normal stress as estimated by the
present theory for a cantilever plate with uniform distribution of
applied twisting moments.
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Figure 6.- Comparison of the fundemental frequency of torsional vibrations
given by the present theory with that given by St. Venant torsion theory

for a cantilever plate.
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Figure 7.~ Skewed uniform cantilever plate considered.
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