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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS. 

TECHNICAL MEMORANDUM NO. 542. 

CONTRIBUTION TO THE AILERON THEORY.* 

By A. Betz and E. Petershn. 

In an attempt to treat theoretically the effect of ailer-

ons, difficulty arises because an aileron may begin at any 

point of the wing. Since the deflection of an aileron has the 

sne effect on the wing as increasing or decreasing the angle 

of attack, a wing with aileron in action behaves like a wing 

with irregularly varying angle of attack. From the wing theory 

it is known, however, that the lift at such a point with irreg-

ularly varying angle of attack does not vary irregularly. Hence 

the question arises as to how the transition f the lift dis-

tri'.ution proceeds at such a point, since the effect of the 

aileron (i.e., the moment generated about the longitudinal axis) 

depends largely on this distribution. 

In order to answer this question regarding the lift clistri-

bution during irregular variations in the angle of attack at 

first independently of other influences, especially those of the 

wing tips, we have taken as the basis of the following theoret-

ical discussion a wing of infinite span and constant chord which 

exhibits at one point an irregular variation in the angle of 

* II Zur Theorie der QuerruderU from Zeitschrift f&r angewandte 
Mathematik und. Mechanik, Volune VIII, 1928, pp. 253-257.
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attack.* As regards the mathematical treatment, we Will first 
consider a wing with priodically recurring irregular angle of 

attack (upper part of Fig. 1). Ultimately we can let the period 

extend to infinity and then obtain the desired. result or an 

infinitely long wing with a single point of irregular variation 

in the angle of attack. The treatment of a periodically varia-

ble wing offers the advantage that the functions involved- can 

be expressed in a Fourier series, which gives especially simple 

relations in thepresent case. 

In order to express the lift distribution, we will seek the 

circulation I' in terms of the distance x from the point of 

disturbance. Between the circulation F and the lift per unit 

length	 , there is known to be the relation 

dx = p v F
	

(1) 

in which p is the air density and v the flight speed. Ac-

cordingly the lift coefficient at the given point is 

*The application of the results to wings of finite span is dis 
cussed by E. Petersohn, "Theoretische und. experimentelle Unter-
suchungen der unter Einwirkung von Querrudern an Tragflugeln auf-
tretenden Momente,u Luftfaiirtforschung, Vol. II, No. 2. 

Another treatment, based on an elliptical wing, was accorded 
the aileron problem by Dr. Mai M. Munk (N.A.c.A. Technical Report 
No,.l9l: t Elements of the Wing Section Theory and of the Wing 
Theory, 1924).	 - 
Thile the present artice was in press, another article, uThe 

oretisdhe Untersuchungen über die Querruderwirkung beirn Trag-
flugel , u by C. Wieselaberger, appeared on this subject (Report 
No. 30 of the Aeronautical Research institute, Tokyo Imperial 
University). In this article the lift d.istribution over a wing 
is approximately represented by a finite series of only eight 
terms.
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C 
=	 dA	 (2) 

a (.v2tcix	 vt 

in which t represents the wing chord. 

The lift coefficient of a wing section or profile in an un-

disturbed two-dimensional flow, can, with sufficient accuracy, be 

assumed to be , a linear function of the angle of attack a . 

C a = C (a. - a0)	 (3). 

- d. Ca 
Thereby	 - 

a characteristic constant of the wing section. For flat plates 

the theoretical value is c 21r ; for thicker wing sections it 

is somewhat greater. The actual values are somewhat smaller 

than the theoretical. 

From equations (2) and (3) we obtain, the relation between 

P anda. vt F = c -- (a - a)	 (5) 

whee a0 is the angle of attack at which 0a = 0. The angle 

of attack of the wing may vary irregularly from a to a 2 (upper 

part of Fig. 1). The circulations corresponding to these angles 

of attack in und.isturbed flow (i.e., for an infinitely long wing 

with constant angle of attack) are then 

	

= c	 (a1 - a)	 (6) 

and

= C :ç: ( a2 - a) (7). 

*Naturally this does not hold true in the vicinity of the but-
ble point or after the flow has separated from the wing.
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For reasons of synmietry a mean circulation 	 will 

prevail at the point of irregularity. The circulation from 

there on will approach asymptotically the value F	 on one side 

and F2 on the other side. We can therefore write 

+1	
(8) 

in which € is a temporarily unknown function of x. Our task 

is to determine the function	 (x). 

The process of calculation is as follows. We develop a. 

in a Fourier series and put F likewise in the form of a Fourier 

series with temporarily unknown coefficients. From this distri-

bution of F we can calculate, by the well-known wing theory 

method, the vertical induced, velocities w on the wing, which 

alter the effective angle of attack by the amount

•	 (9) 
V 

so that the effective angle of attack is 

w a. =a.-. 

The circulation at every point x of the wing is calculated 

from this effective angle of attack according to equation (5). 

Since all functions are represented- in the form of Fourier series, 

the circulation distribution thus calculated is in the form of 

a Fourier series. The still undetermined coefficients of this 

series can be found by comparing the calculated- circulation dis-

tribution with that originally assumed.

/
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The series for an irregularly varying angle of attack is 

a +a2	 01t2 4. ( .	 21Tx +	 -, 211x	 1	
211X + •) a. =	 +	

2	 sin ----	
..) -- + - 

	

It	 (10) 
(Cf. Hutte, 25th edition, Volume I, p.169.) For the dis-

tribution of r we wrie 

	

= F1	 + i	 2rrx	 2rrx	 2rrx 

2 (a
1 sin -i--- ± a3 sin3 -i-- + a5 sin5	 + ...) 

(ii). 

From the distribution of F and according to the well-known cal-

pulation method. of the wing theory the induced velocity w be-

comes
-f-p	

i 
w= j-f	 ±- ____ dx	 (12) 

4i1-bD	 XX-X1 

at a point on the wing x 1 distant from the point of disturb-

ance. The summation of F according to equation (ii)* gives 

w =
	 - F2 

(2n + 1)	 (2n + 1) sin (2n	 i)	 (13) 

Since this calculation naturally holds good for any distance x1 

and not simply for a certain fixed distance, the subscript 1 

may be omitted and equalion (13) would then represent in general 

the relation between the induced velocity w and the distance 

x from the point of disturbance. 

We may express the effective angle of attack a 1 = a - w/v 

as a function of x and from it calculate the circulation F 

*L. Prandil, "Traglugeltheorie Part I, Vier Abhandlungen zur 
Hydrodynamik und Aerodynamik, Gôttingen, 1927, published by J. 
Springer, Berlin. _Under No. 14 it is shown that a circulation 
distribution F = F ,cos p. x gives an induced velocity 

w=Fcosp.x=I'.
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F = c	 (a - a0 -)=
	

[a1	
- 

4	 1 

	

2	
2n +1 sin (2n + 1) 

c	
r - -	 ____	 •j (2n + 1) sin (2n + 1) i4 (14) 

If we consider that, according to equations (6) and (7), 

___	
F+F2	 vt a1 —a2	 F1 _F2 

2\2	 1	 2	
andc-	

2	 =	 2' 

we obtain, by comparing the last equation with the original 

equation for F (equation 11), the following relation 

_____	
2rrx F2	

a(2n+l) sin (2n + 1) 

	

2	 •0 

rL pr	 4	 ct 

	

-	 ____ a 
-	 2	 0 L U (2n + i) -	 (2n+1)	

(2n+l)j sin(2n+l)	 (15). 

Since the coefficients of the corresponding terms of the two 

Fourier series must be the same, we obtain, for the coefficients 

a (3 fl+l) of the original summation for F , the expression 

4	 ctu 
a( 2+1 ) =	

(2n + 1. ) - 41 a(2n+l) (2n + 1), 

4	 1 
a(2n+l) 

= IT (2n + 1) 1 +	 (2n ± i) 

For the desired function c in equation (8) we therefore obtain 

	

4	 2nx 
= E	 Sifl (2n + 1)	 l7j. 

	

0 U (2n + 1) 1 +	 (2n + .i)

(16)



1. -.	 .	 ..	 ..	 .	 . .
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Thus we have solved the roblem for periodical alternations 

in the angle of attack. In order to adapt the results to the 

case of a single point of disturbance, we must let the period 

1. extend to infinity. For very large values f 7. and siaall 

values of x all the terms in the above series having small 

values of n approach zero as a limit. For large values of n, 

however, since n and n + 1 differ but little, we can replace 

by an integral by introducing a uniformly varying quantity 

X in place of the whole numbers n, so that 2n + 1 = 2 X. 

The series (equation 17) then becomes 

4 7	 sin 2 X	 (18) 
U	 2 X (1 + 2 u 

where, for brevity, we put

2Ux	 (19) 

and
ctTT 0 41 

This integral can be reduced 'to the well—known functions* sine 

integral 

and cosine integral

Si	 f	 SiflZ dz 	 (ai) 

Ci=(	 COSZdZ	 (22) 

By partial fractional resolution the integral of eqtiation 

(18) can be transformed into 
*E. Jahnke and F. Emde, Funktionentafeln mit Formeln und Kurven,U 

Leipzig, B. G. Teubner, 1923.

<A
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f	 S1fl2X .i 

	

22.(1+2i?)	 2X	 l+2u?. 

By the introduction of 2 . i = z the first integral of the 

right-hand member of the above equation becomes 

* 
I j SLfl Z dz - ± 
2	 z	 4'. 

and by the introduction of	 (1 + 2 i X) =y the second inte-

gi'al becomes 

1 1 (cos	 sin y - sin	 cos y'	 = 1 cos E (±	 - Si	 + 
2 pp	 ,j y	 2	 u	 2 

+ 1 sin - Ci - .* 
2 

By the further introduction of - = --	 (equations 19 and 20) 

we obtain 

c = ? [±	 - cos -- ± cos	 S.i	 — sin	 Ci 

=	 1. -	 sin .ft2c Ci	 - cos	 (± :1: —	 Si 
\	 it	 ct	 ctj	 ct'\	 U	 Ct.1 

The behavior of the function 	 for positive values of x is 

shown in Figure 2. Negative values of x give the same curve 

but with the opposite sign. For 1arg values of x the function 

(x) can be represented by the semiconvergent series 
** 

	

0	 /	 9t	 Lt! 
c 

	

-	 TtZ\	 Z	 Z	 I 

into which z =	 has been introduced for . brevity. For small 

values of x the function is represented by the expression 	 - 

*The positive sign corresponds to positive 	 and x; the nega-

tive sign to negative 	 and. x. 
**The series can be used only so lcng as the terms decrease.
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= . (1 - a - in z) z 

(for z	 i), in which C is the Euler constant = 0.5??. 

Translation by 
National Advisory Committee 
for Aeronautics.
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