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I. INTRODUCTION 

The plane stationary potential flows of compressible 
gases which move in every point of the flow field with a 
velocity larger than the local sound velocity can he treated 
in a simple was by using the approximate method of Prandtl 
and .Busemann'. The corresponding three-dimensional 
axial.]	 ynmietrical problem is of practical significance 
for the construction of rotationally symmetrical nozzles 
and for the examination of the flow around missiles; so 
far, however, it has been. solved only in special cases or 
under simrlifying asurnptions. The axial, flow around a 
cone was treated. indoendently, by A. Busemann2, 
BourquaTd 3 , and G. I. Taylor - J. W. Iviecoli; Th. v. 
Kdrmar - M. B. ivIoore Ej did examine the axial flow of 
arbitrary slender bodies of revolution, but in linearized 
aoercximation only: C. errariC sugpeated n the dis- 
cussion at the 'Jolta-congress 1935 an acçrcximation 
method for the axial. flow of bodies of revolution in 
which Mecht s curves were re p laced by parabolas. 

The uresent reort contains a general nonlinoarized 
aooroxima:tion methocm for the ehree-dimensional. exia]..i.y 
symretrical prohleni which, oartiy by r7, raphical repre-
sentation, p artly bycalculation, cives ti-i.e flow under 
orescribed initial eonditicns by a rapidly converging 
process of iteration. In the examles that were calcu-
lated so far, tke accuracy is practically fully sufficient 
'.\.Busemann, CTasdrnemtk, Rendbuch den Ørirnentaiphysik 

Jb/, 1, S. 211431, Leipzig. 1931, Akrademische 
Verlagsgesellscb. 

2',j. Buseniann, Druckeaixf Kepelformige S itzen bei 
BeWepUng nit Uherschallgeschwindikeit. Z,Angew. 
1Vtath.u.ech.Bd.9 (1929), S.L96/!9. 

3 M.P. Bourauard, Ondes 3a1istiouea Planes Obliques et 
Coniques, Cormotes Rendus Paris, Pd. 19)4 (1932) 

. C. 

revlon and J. 7. /1accol1, The Air Pressure on a 
Cone Moving at Bihpeeds, Proc. Roy.Soc.A, Bd. 139 
(1933) S.276/311 

5 Th.v.I;rman and N.B.Moore, Resistance of Plender 3od.ies 
l'oving with Pup arsonic Velocities with $oecial efer-
ence to Projectiles, Trans.Amer,Soc.1ve ch. Lng., June 1932. 

G C . Ferrari, Discussion Oommenb, Vol ta-)ongres Rome 
Rerorts 1936, P.362/366.



NACA TM No. 11 

after one or two iterations, and is accomp lished with 
oroportionately little loss of time. 

Mathematically the method, like the approximate 
method of Prandti and Busemann, is based on. the charac- 
teristics theory of the hy perbolic differential equations. 
In the plane problem, based on a Legendrnsformation, 
the construction can be achieved by means •o1 a fixed 
(that is, independent of the initial conditions) net of 
characteristics of the field of velocity (epicycloid 
net in the case of ideal gases); in the three-dimensional 
axiall y symmetrical problem, however, an analogous 
simp lification is not p ossible. Rather, both the net 
of characteristics of the, flow field ( = net of Mach's 
curves) and the corresponding net of ci.. aracteristics of 
the field of velocity vary with the initial conditions 
of the flow. 

In part II the method is developed theoretically 
and its practical execution discussed Eenerally. In 
part III the method. is applied to the construction of 
rotationally symmetrical nozzles. No compression shocks 
occur; the changes of state may be assured to be isentropic 
throughout. There will be a later report on applications 
of the method with the addition of compression shocks 
(axial flow of missiles, axially symmetrical free outflow 
with excess pressure). 

II. DEVELOPMENT AND DESCRIPTION OF THE METHOD 

1. Potential Equation of the Three-Dimensional 

Axially Symmetrical Supersonic Flow 

The flow is assumed to he stationary, free of 
friction and vortices, and moreover axially symmetrical 
in relation to the x-axis. All changes of state are 
adiabatic, the 
function 'p(p) 
flow velocity 
velocity. 

Because of the absence of vortices the vector of 
velocity MD may be derived from é p otentidl, therefore 

MD	 grad. cp 

(Note: MD vas substituted for i'60 in the German report.) 

pressure p is a unique monotonc 
of the density' p,	 e also assume the 

at every point to exceed the local sound-.
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Due to axial symmetry, for an introduction of the 
cylindrical-coordinates .x, r, , the vector MD will only 
depend. on x, r, but not on 	 , and will always lie in 
a plane through the x-axis. Conseuently the flow is 
the same in all planes through the x-axis and needs, 
therefore, to be examined only in one fixed x, r nlane. 
(See fig. 1.) The velocity components u, v and the 
potential function c are function of x and r. 

The equation of continuity 

	

div (p MD)	 0 

Is s pecialized, because of the axial symmetry, to 

67 (rpu) +	 (rpv)	 0	 (2) 

From this results, after execution of the differ-
entiations and division.-by pr, 

On the other hand, there result from Bernoulli's 
equation 

and. from the equation for the velocity of sound. 

= L-
dp 

the relations 

6U 
+	

V = -	 = -	 à.2 = - 
'Tr	 Sr	 P or	 p dp àr	 p

(3a) 

u 

u	 + v 
cu	 làp_ ldnp_ c2p 
--	 - - -	 - -	 - - - - 
cX	 ox	 p 0X	 dp UX	 P ax

(2a) 

(
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By inserting (3a) into (2a), and after introducing 
cp according to i) there reslts the potential equation 

	

• r ( 21 	 r 

	

V) J	 ____	 2	 p 1 p 

	

I
c2j	 'c21 

This equation differs from the potential equation 
of the plane problem only be the addition of the last 
term; naturally it is of hyperbolic type like the last 
mentioned equation. The last term, however, prevents 
the Legendra -trans formatiofl

Ox 

or 

= ux + yr - cp 

of the different:ta equation (5) from leading to a net 
of characteris;ica independent of the initial conditions 
and. fixed once and for all in the u, v - plane. 

2. Transformation of the Potential Equation 

We start from Mach's net of curves covering the 
field of flow and assume in each point F of that field 
an oblique-anjnler system of coordinates	 , Ti adjusted
to Mach's net of curves. (See fig. 2.) The tangents of 
Mach's curves in P are the axes of the system of 
coordinates and the positive axis directions include with 
the flow-vector MD in P the acute Mach angle 

a. = arc sin	 <	 (w2	 u2 + 2)	 ( 6)

(5) 

•	 The potential equation (5) assumes a very simple
form when transformed to Mach's net of curves.. that is, if
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in the first three terms on the left side of (5) the 
differentiations with respect to .x end r are replaced 
by differentiations in the system of coordinates 	 , T. 

which is variable from point to 'point. One now obtains 
the ci,fferential equation.

1 
2	 - sin2 a 60

(7) r 

ucon which further examinations are based. 

Derive t i o n s from (7): 
First, (5) is transfcrmeci, into a rectangular system 

of coordinates x' , y 	 in which the lines bisectin the 
srstem are the axes.	 (see f,i:. 3.) , Since (5) 

after elimination of the lest term is specialized to the 
octentia],, equation of the Liane flow, in the transition 1.
from one rectangular system of coordinates to another 
rectsnul.sr OflE the form of the left side of (5) does 
not chenee, exce p t for the last term. 

Therefore, frori (5) there results immediately 

L+
	 2	

(2	
2	 2	

+ I	 (P) 
" Ox' 2	 ày'2	 c2	 c2OxOy I Ox' Oy 	 rO

Because of the coincidence of the velocity vector MD 
with the x' axis at the point P the equations 

0.
= xi 

ocp - 
T 71 

are valid.	 quaticn (3), by ¶akinF. ( 6 ) into ons:tderation, 
at the point P is therefore simplified to 

cot , a	 'T_ -
	

=	 (9) ,2	 ,2	 rOr Ox	 uy
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The transition from the x', y' system to the 	 , i-
system is made by means of the transformation equations 
easily derived from figure . 

	

= 1 ( x'	 (x' sin a - y' cos a) 
2 \CO5 a	 sin a)	 sn 2a 

1 
cos a -	

- sin 2a x sin a ± y t cos a) 

and the resulting rules of differentiation 

tsina  -

 

-+sna —-	 -j------+— 
ox'	 sin 2a	 C-1 t,	 2cos a  

	

/	 (10) 
_______ /	 a	 a	 1	 1' a	 a 

- -cos a	 + cos a -	 (-- + 
cy 	 sin 2a	 O	 UT);	 2sin a \ C)c,	 UT), 

13y. applying (lG) twice one Fets 

= 

ox'2	 )4CO5 a	 ,2 

OCP 1	 (ç2C,1
Q• 

+

2 
2 

6y'2 Lsin2 a

and by insertion of thoe terms (9) will become (7), 
the relation to be oroved. 

It should he noted that the general theory of the 
three-dimensional axially symmetrical supersonic flows 
as well as the linearized. ar ro.Liation theory can be 
based. on the potential equatioT7). In the first case, 
a and the	 ,r, system of coordinates are variable from 
point to point; in the second case a constant mean value 
is inserted and the	 , r system of coordinates is 
assumed fixed for the whole region cons idered. 

3. Differential Tqu.etions of the Components of Velocity 

From the potential equation (7) differential enuations 
for the vector of velocity are derived. To this end the 
vector MI) of the point P is split up into the 
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components w,	 parallel and oer p endicular to 
the	 axis hd	 to the comp onents w, w, parallel 
and perpendicular to the 	 axis,resrectivey, (fig. 4);
naturally,

w,p = w1p 

W ;
 
fl - Wy)fl 

The changes of the component w p , w	 that take 
place when the point P is displaced while the 
system is retained are denoted by the differential 
quotients

_ia 	 W
i'

,O	 6w
 

àfl.	 à,	 cTj 

Then there results from (7) 

O'fl
	 p = $iria	 (ii) 

where v, as n figure 1, signifies the velocity comcnent 
perrendiculor to the axis of symmetry. 

• Derivation
First, any

1) system Of
are considered.
vectors MD', lvi
coordinate axes

from (ii): 
two points .P, P11 on the axes of the 
coordinates p ertinent to the point P 
For the components of the velocity 

DII of these points : .srallel to the 
(fig. 5) one has 

= 

rp =	 x'Ptt

cos a - sin a OY(l) PI 

(Ely

 
cos a +	 in a 

Pu
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and, taking (10) into consideration, 

WI	
= () Pt 

\jptt 

By moving, the points P', P" towards P there results 
for the differential quotients taken at P 

rO

=
WT,` .0 

and by differentiating again,

= w1p 

OTI 

By inserting these terms, equation (7) changes to the 
equation that had to he proved, (11). 

)., Geometrical intei'oretation 

In order to interoret the iCfer&ntia1 eouations (ii) 
in a graphical	 we replace thorn by the difference 
equations

sin2a
AW,

 
=	 v_\Ti 

r
-)	 (12 

sin'-a 
= r 

In words, they can be described as follows: (See fig. 6.) 

In order to transfer from the velocity vector MD 
of a point P to the velocity vector MD' of an adjacent 
point P' on Mach's line of the first group ( axis),
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the vector Aw	 which can he calculated from (12) must
Pip 

he added to the vector ME) in the direction of Mach's 
line of the second grcup (r; axis). Moreover, another 
vector Awrn is added perpendicular to 	 The 

length of this vector, however, is not determined by the 
differential equations (12). 

The analogous relations are valid foi' the transition 
from MD to the vector of velocity MD" of gn adjacent 
point F" on Mach's line of the second group (r axis). 

At a great distance (r) from the axis of syivrnetry the 

last term 1	 of the potential equation (5) is negligible. 

The three-dimensional axially symmetrical problem is then 
specialized to the plane problem and the equations (12) 
are replaced by the sim1.er equations 

=	 0rp 

They express the following well known stato of piano 
suoersonic flows.	 (See fir.. 7.) 

The difference vecor MD'	 MD is perpendicular to 
the Mach line of the second group (fl a'is) which goes 
through	 ; the difference vector MD" - MD is perpendicu- 
jar to the Mech ] inc of the first group ( axis). 

5. Reciprocal Nets ('Streckenzugnetze 1') of the

Flow Field and the Velocity Field 

F.ere also, as in the method of Prandtl end Busemann, 
the continous net of Mch's curves will he replaced by a 
net of discrete lines which will be called, ehbreviately,. 
Mach's net. Constant velocity of flow is sssumed in each 
mesh of Mach's net. To each mesh of Mach's net there 
corresponds, therefore, a certain cint of the field of 
velocity that is the end point of the vector of velocity 
MD drawn from a fixed zero point 0. By this corre-
spondence a second net of linesis related in the field 
of velocity to Mach's net of the field of flow. (See 
fig. ,) This second net will be called the velocity 
net.
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While in the plane problem corresponding lines of 
the two nets are always perpendicular to each other, in 
the three-dimensional axially symnietrical case the relation 
between the two nets is determined by the difference 
equations (12). For every three quadrangles of Mach's 
net 1,2,3 having a common corner P and their corre-
sponding points 1,2,3 ifl the field of velocity there exists 
the relation shown in figure 9 based on these equations. 

If one draws the linesAw	 and 6w. , respec-

tively, at the end points 1.2 o the vectors MD1, '2 
parallel to the common sides of the quadrangles 1.3 
and 2.3, respectively, the perpendicular lines erected 
at the end points of these lines will intersect the end 
point 3 pf the vector MD3. 

In the determinative equations (12) for Aw	 Aw 

the following terms will have the following meanings: 

a 1/2. of the angle of the quadrangle 3 at the corner P 

r distance of the center of the sides M 1 or N	 from 
the axis of sjmmetry	 2	 23 

ND, + MD 
v	 comoonent of the mean velocity vector 	 .	 L or 

ND- + MD	 2 
-) eroendicu1ar to the axis of svmnietrv 

2 

2 3 S2 , 33 = intersections of the diagonals 
S1LTJ = of the quadrangles 1,2,3 

The signs of	 , Ar, and of i\w, Aw	 must he chosen 
according to the stipulation established in paragraph 2 
with regard to the positive direction on. the	 and r 
axes

6. Principle of the Approdmaticn Method 

The problem of finding a three-dimensional axially 
symmetrical supersonic flow with given initial conditions 
is replaced by the task of ascertaining two nets of 
reciprocally related lines in the way described in 
paragraph 5.
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The nets of lines in question can be constructed to 
sny degree of accuracy by the following method of iteration. 

(s) First approximation (Mi), (C 1 ).- A rough first 

approximation is obtained by determining the flow either 
for the whole field of flow or in linearized approximation 
by zones. One then obtains a net of parallelograms formed 
by two groups of p 9rallel. straight lines as a first 
approximation of Mach's net (M 1 ). The first approximation 

of the net of velocity (C 1 ) results from the equations (12) 

with Mach's constant . angle a with the	 , rj system of
coordinates remaining constant. For the execution in 
detail comp are eragrsph 8(a) 

(b) Second a proximatidn of Mach's net (M11 ).- Mach's 

directions are drawn at the intersections of diagonals 
of the quadrangles of M9chts net of the first approxima- 
tion (Mv).	 (See f1.. 10.) These directions result from 
the vectors 140 of the corresponding points of the first 
approximation of the velocity net (CI). They are obtained 

by means of the subsidiary ellipse explained ih paragraph 7. 
The first aoroximation of Mach's net is corrected by 
interpolation between the new Mach directions, end. a second 
net of lines is obtained as the second aoproximetion of 
Mach's net (M-1-1). 

(c) Second aoproximation of the velocity net . (G11 ).-

The increments i -i,	 and .Wrp are cicuiated with the 

aid of the equations (12). The lengths	 , Ar, and r 
are taken from the second eooroImation of Mach's net 
(M11 ) according to paragraph 5. d.oa v and sin2 a rosu3t 
from the first a pDroimation for the velocity net (0i) When 
v is the comoonent of the mean vectors of velocity 
MD- + i'D	 MD + MD

, etc. (fig. 9) ' p erpendicular, to 
2	 2	 -.	 + MD 

the axis of symmetry; sI.n2 a of the vectors 
MD2 + MDo

etc. is determined by means ofenomogram 
2	 V 

according to paragraPh 7. Starting from the given initial 
conditions, the seQond sproximation of the velocity net 
( Gu) can then be built up stec by step from the calculated 
lengths Aw,-0.9 iWrn: to any two vectors, MD 1 , MD2 the 

additional vector M.L7 is constructed according to 
figure 9.
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(d) Third and hi gher sonroximations.-. Third 
anoroximations may he derived in e way as the 
second a pproximations were obtained from the first 
approximations, etc. The construction is discontinued 
as soon as Mach's net of the lest aproilmetion conforms 
to Mach's net of the following approximation within the 
limits of accuracy of construction and interpolation. 

The rule of construction is made clear in section :iii 
by examples of application which. demonstrate the rapid 
convergence of the method. The construction ends with 
sufficient accuracy after a few iterations which involve 
only a moderate loss of time. 

The necessary calculations consist of multi p lica-
tions and divisions only; the accuracy of an ordinary 
sliderule is amole, 

7. Nomogram for a and sin2 a as a Function of MD 

Ns usual, a. subsidiary ellise traced out on 
trans p arent na p er or celluloid (fig. ii) is used to 
ascertain. Mach's angle, under the assumption of the 
isentrop ic equation of the ideal gases. On the scale 
chosen for the velocity net the small half-axis of the 
ellipse corresponds to the critical velocity c'" and 
the lar ge half-axis to the maximal s p eed w	 ; there 
exists the Known relato in	 max

max - \'k + 1 

with k	 %/c (c, c	 specific heats at constant 
pressure and volume, respectively). 

If the subsidiary ellipse is adjusted to a velocity 
vector (two solutions) the large axis indicates the 
direction of the one coordinated Mach direction: the 
corresponding value of sin2 a may he read from a circular 
scale rigidly connected to the ellipse. 

The ellipse is used for drawing in the corrected 
Mach directions into Mach's net accordnrto paragra ph 6b 
(adjustment of the vectors MD1 , MD0 , etc. of the 
velocity net); it is also used for definition of sin 2 a
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according to paragraph 6(c) (adjusti;ient of tho vectors 
TD1 + iVT)3 

Y 

IVID2 +D	 ate). 
2 

III. dPFLICATION OF TIIE METHOD TO THE CONSTRUCTION 

OF ROTATIONALLY •SYMMFTRICAL NOZZLES 

(1) The aiaiiy symmetrical source flow in a conical 
nozzle,

(2) The correction of. the conical nozzle for parallel 
outflowwi].l be treatede. s examples of application. 

The axially symmetrical source flow was chcsen for 
the reason tht it can also he determined by exoct 
calculation so that both results can be compared. 

In the case of the nozzle corrected for parallel 
outflow the course of flow cannot he compared in detail 
with an exact solution. There is, however, an effective 
control supplied by the diameter of the exit cross section 
which can easily be calculated from the condition of 
continuity.

S. Source Flow in Conical Nozzle 

The conical nozzle is to have the half angle 
w = arc tan 1/8; its meridian sectL n i.e shown in 
figure 12. The cone vertex is assumed to lie at the 
initial point of the x, r system of coordinates. 

Th,e following initial conditions are prescribed: 

The initial velocity along the arc circling, the cone 
vertex which goes through the meridian point A (x = Lo cm, 
r = 5 cm) is given by the Mach number Ma = wa/ca V: 1.41; 
then along this arc there is in addition 

a	 45 0 , Mac'= 
Wa 

-7,	 1 ,o$ ( c * = critical .veloctiy)
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The direction of the critical velocit y is presumed to be 
purely radial, that is coming from the cone vertex. 

(a)First approximation.- in a first approximation 
the flow is determineacccrdjne to the linearized 
theory that is under the assumption of a Mach angle 
constant for the whole region a = a. 

Mach's net (M 1 ) (fig. 12) 
limited, by p arallel straight 1 
±aa = ±450 toward the x-axis, 
p arallelo grams adjacent to the 
the meridian line, or the axis 
fiure 12.

consists of parallelograms 
ines with the inclination 

Only half of the 
initial arc of circle, 
of symmetry are drawn in 

The vector of velocity for the meshes of the net on 
the initial arc (1,2) is given by the initial conditions 
and can be transferred into the velocity net (G e,) or (G1), 
resnectively. (see fir. 12.) The vector of velocity for 
the rest of the meshes is constructed section by section 
from	 Aw; as a boundary condition, the fact has 
to be coidere!d. that for the meshes of the net adjacent 
to the contour (5,9) and. to the axis of symmetry, resoec-
tively, (l,4 ,3,12) the direction of velocity is giv en by 
the contour and the axis of symmetry, respectively. 

	

The calculation, of 	 and Aw	 according to (12) 
is nerformed in a roximatib in table 1. 

In column 1 the numbers of the two a.dacont meshes 
of Mach's not ere given for WhiCh	 and AwrD, 
respectively, are to he calculeted. The values of r 
and Ark , A. in the second and third column are taken 
from (M1 ) according to paragraph s... In the fourth 

column we find values crudely estimated v(o);
SP 

and Awr 	 In the fifth column are calduieted from 
these v1ues by	 the slid.erule, based on the 

	

sin aa	 sin2a relations	
=	 r	

VY) =	 Ar;, LWy)p 
=	 r 

V

The net of velocity (G0 ) in figure 1? is constructed 
from the rough arjproximation values	 o) and Aw0(o)
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of column 5 . From this net of velocity (G0 ) corrected 

values	 (1) are inserted into the sixth column. And 

corrected values £w (1) and	 (l) are calculated 

from	 (1) in column 7. These values supp 
rected net of velocity (G 1 ) in figure 12 which

 supply the cor- 
 will be 

used as a starting net for the generl nonlinear 
approximation method. 

(b) Second approximation of Mach's net.- Corrected 
Mach directions are deterned from the velocity net (G1) 
(fig. 12) according to oaragra ph6(b). A subsidiary 
ellipse is used. The corrected directions are drawn in 
the Mach. net (M 1 ). (See fig. 12.) By interpolation 
between these corrected Mach directions there results 
the secnd aoroximation of Machs net (NT1). (See 
fi (g. 13.)

(c) Second a pproximation of the velocity net.- The 
corrected velocityThe€1 GI' ) (fig. 13) instead of (G1) 
will be used for the first iteration in order to accelerate 
the convergence. (G1t) is constructed point by point by 

transferring the diagonal intersectcns of the meshes of 
the net (N 1--1 ) to	 i); the corresponding vectors of 

velocity are then ascertained from (G1 ) by interpolation. 

are calculated from (M-) and (GT') 

according to table 2; the corrected velocity net (G 11 ) is 

then constructed from the lengths calculated In this way. 
(See fig. 13.) 

(r3) Third approximation.- Newly corrected Mach, 
directions are drawn in (N 11 ) in the net iteration step 
according to (G1T). By inter polaticn there results the 
third approximation of Mach's net (N 111 ). (See fig. 11.) 
In table 3 the lengths	 are calculated again, 

based on CM111 ) and (G); hereby the 	 third approximationTI
 of the velocity net (G1 ) is sui:plied. (See fig. 14.) 

The corrected Mach directions obtained from (GIlT) 
conform so well with the net (N 111 ) that no further 
iteration is necessary.
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TABL7 2 

FLOW INA CONICkL NOZZLE 

. 800roximsticn; compare figure. 

1 

No.

2 

r

3 4 5 6

P 

1/5 0.8 2.0 0J45 0,02 0.022 
2,13 2.0 .1.9 .L5 .06 .025 
3,	 i. . 5 L-3 . 

•f
• u c . U)4.6 

5/ 5.9 1.5 .13 .022 
2/6 2.9 1.5 .LjJ4. .10 .022 
6/7 .O 2.2 .3L .11 .026 
3/7 .8 1.8 .35 .08 .029 
7/8 1.6 2.5 .27 .C8 .035 

.6 .2)4 .03 .O2) 
.21 .02 01 C7 

5/10 ).7 . 1.3 .Lo .16 .ci8 
10 /'L .B 1.6 .32 .18 .019 
6/n 7 . 0. 1.4 4 .15 .c18 

11 1112 3.9 2J.	 . .27 .17	 : :029 
7/12 2.8 1.6 .2. .13 .021 

12/13 2.5 2.8 .22 .i1 .O3i. 
8/13 i.6 .2. .0 .21 .09 .02 

i/iL. 1.6 2.7 .18 .09 .027 
9/1J. .6 2.5 .i8 .0	 • r, .028 

11,/i5 .5 3.2 .1
 

.0 .038 
11/16 L9 1.8 .2; .19 .020 
16/17 5.1 .2-7 1.25 .19 .030 
12/17 3.8. 2.1 .2L .17 .023 
1 7/18 3.0 .	 .20 .i6 .027 
1/18 j	 2.6 2.2	 . .19 .13 .020 
18/19 2,7 3.0 .17 .12 .02i 
1L/19 i.6 2.5

. 
.i6 oB .020 

19/20 1.5 3.5 .15 .07 .02 
l 15/20 .6 2.8 .ili .02 .01 

20/21 .5 .3.2 .13 .02 .01

Formula: Aw. = sin2a 

Scales: as in table 1. 
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TABLE 3 

FLOW IN A CONICAL NCZZLE 

ao?roximtion; comp are figure 

2 3 
r ---- 1--- 

14 5'
- 

6 
No r

- 

sin2, v

-

Aw
p 

1/4. 0.6 2.1 0.146 0.02 0.032 
1.7 .L7 .C9 .026 

1/5 1.8. 1.6 .147 .06 .026 
1.7 2.1 .142 .06 .032 

14/6 .6 1.8 .14o .02 .023 
. 5 2.2 .35 .01 .015 

3/8 )..6 1 .14 .147 .15 .021 
2/2 3.8 1.3. .147 .12 .020 
8/9 5.') 1.8 .2 .13 .025 
5/9 
9/10

2.5 
2.7

1.5 
2.3

.142 

.37
.10 
.09'

.022 

.028 
6/lo 1.6 i.6 .36 .c:6 .022 

10/3-1 1.5 2.2 .32 .05 .0214 
7/11. . 5 1 . 7 . 32 . 01 . 017 

].1/12 '.30 .C1 .013 
14.8 1.5 .142 .12 .015 

1 3/iLl. 9/114 14.9 
3.8

1.9 
i.6

.38 

.39
.17 
.i14

.025 

.022 
16/1 5 3.7 2.5 .14 '.13 .030 
10/15 2.6 ]..7 .33 , .10 .022 
15/16 2.5 2.14 .30 .09 .026 
11/m6 1.5 1.9 .30 .06 .023 
16/17 1.5 2.1 .27 .05 .019 
12 1117 
17 /1

5 
.

1.9 
2.1

.27 

.25
.01 
.02

.009 

.021 
114/19 14.9 2.3 .314 .17 .022 
19/20 5.1 2.7 .30 .17. .027 
15/20 3.6 2 .14 .30 13 .026 
20/21 3.9 2.7 .27 .12 .022 
16/21 2.5 2.7 .27	 . .c8 .025 
21/22 2.9 2.1 .25 .09 .01 
17/22 1.5 2.2 .25 .06 
22/23 2.0 2.3 .23 .05 .0114 
18/2 .5 2.9 .23 .01 .0114 

- 23/2L 1.0 3.8 .22 .03 .027

Fcruia:	
s in table 2. Scales:
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9 . Compsrison with the Exact Solution 

The flow in a conical nozzle -j::tich was deter--mined by 
aoproximstion in p 9rsgraph e is a three-diiensional 
source flow and can also be found by exact calculation. 
If	 P	 denotes the distance from the cone vertex there 
results from the continuity equation

(pw) + 2	 0 

and the pw relation of the ideal gases 

2	 2k

Pn = k- I
1	 ( \ kl1 
LThP0.e' 

(00 , p 0 = static values k = Cp/C ) after a short 

calculation 

	

R = C x 
/v,1,2	 - k -. 1 (12(k-l) 

tc I	 k + :t %C ")J 
with the integration constant C. In our example 
C	 30.31 cm and 1': = l.Lt.c5 (air) are to be used.. 

	

comparison of the solution obtained by our 	 - 
aroximntion method with the exact analytical solution 
shows almost comp lete conformity  within the limits of 
accuracy of construction. 

In figure 1.1 the third apnroimation of the velocity 
net (G111 ) is contrasted with the exact velocity net 

(theor)• The inaccuracy of the ap pro::imations (G1), 

(IT) (G111 ) can be seen in the following table where 
the velocities again are referred to the critical 
velocity c	 as a unit. 
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TABLE L. 

First 
approximation

Second 
approximation

Third 
approximation 

O. WG1 Wtheor L1 wGII [ Wtheor No. WGT Wtheor 

16 1.58 T.)48 T i.)6 i.L8 19 1.53 1.54 
17 
18

1.66 1 .55 17 1.52 1.55 20 1.59 1.5 
1.6 1.61 18 1.52 i.6i 21 i.6L 1.6 

19 1.3 1.67 19 1.62 1.67 22 1.6 1.6 
20 
21

1.39 
1.93

1.73 
1.7 8_-

20 
21

1.67 
1.'1

1 .73 
1.78

2 
2L

1.72 
1.78

1.72 
1.(8

It is especially remarkable that the method converges 
rapidly in spite of the very crude first approximation. 
it is, therefore, not necessary to waste much time on 
finding the first ap oro.ximation; itis sufficient to 
determine it by a rough estimate. 

10. Correction of the Conical Nozzle for Parallel Outflow 

The conical nozzle is now corrected for oarailel out-
flow; the velocity of the p arallel exhaust is to be given 
by the Mach number IV = 2.12 which had been obtained at 
the axis point i8• of the conical nozzle in conformity 
with the third approximation (M 111 ),	 (See fig. 14-) 

The correctec nozzle results from adjoining a new 
Mach net (w) to the Mach net (Mui) of the conical 
nozzle retained unchanged uo to mesh 12 inclusive. 
(Compare figs. 15 and 16.) The net (M) is determined 
according to our a pproimatio-i by the new boundary 
conditions; these letter stipulate that in the meshes 
lL - 18 of the net (M 111 ) the velocity shall remain 
unchanged and that in the newly added meshes, denoted 18, 
the same velocity shall prevail as in mesh 18 of the net 

(a) The first approximation (M1 ) of Mach's net 
(fig. 15) is roughly estimated; the common sides of the 
quadrangles ]J, 15, 16, 17, 12 ware prolonged rectum-
earily from(i 111 ). (M1*) is not a net of parallelograms. 
The first aopro*imation is, therefore, not linearized. 
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Based on (J:1T)	 L\w 
d	 d f, s, n2 	 an	 v always snd' 

meshes given in column 1. From 

net (G1*) can be constructed. 
greater clearness (GT) is draw] 
another.

are calculated in table 5; 
te first of the two 

Awr 	 the velocity 
:seeig. i5.) For 
in 3 parts over one 

(b) (c) In tJ-e same way as (i'TT) and (Gii) were 
derived by iteration  from (M 1 ) anG1 ') in Daragraph 2, 
here the corrected nets ( iI*) and (G) (fir, 16) are 
obtained from (Mf ) and ((1 1*). The pertinent calculation 
of	 is given in table 6. 

CORRLCT ION OF TfE'TI COMICAL i0ZZLE FOR F RALLFL OUTFLOW 

lrst aproximation (not linearized); compare figure 1 

5 -j 6 

io. r
A

sin2a v 

18/19 2.0 -2.3 0.00 O.0 -0.000 
17/19 1.5 2.8 .25 .üL .020 

20 2.9 -2.2 .23 .oL -.007 
16/20 
20/21

2.5 
3.9

2.7 
-2.7

.27 

.25
.07 
.0

.022 
•- .011t 

15/21 3.6 2. .30 .10 .020 
21/22 
1L/22

3.1 
L.8

-2.9 .27 .i 
'.lfL

-.020 
2.3 .35 .023. 

18/23 
19/23

3.9 
3.L.

-2.3 
3.6

.00 

.23
.00 
.oL

-.000 
.oii 

2 3/2 !i 4.8 -2.3 .23 .03 -.003 
20/2)L L..2 3.5 .25

0
.019 

2L/25 5.7 2;9 .24. (-; .7 .009 
21/25 5.3 •3. .27 13 .023 
18/26 5.8 -2,L .00 .C.0 -.000 
2)/2b .3 3.7 .d3 
26/27 6.6 -2Ji .22 .02 -.002 
2L/27 6.2 •3, .21 .07 .011

Formu1a:	
as in table 2. Scales:
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TABLE 6 

CORRECTION OF THE CONICAL NOZZLE FOR P!iRALLEM OUTFLOW 

iecond ap proximation; compare figure 

1 2 3  5 6 

No, r sin2a v 

18/19 2.0 -2.1 O.12 0.02 -0.00)' 
17/19 1.6 2.7 .2L.. .0 
19120 2.9 -2.2 .2L. .Oh -.011 
16/20 2.6 2.6 .25 .08. .021 
20/21 3.9 -2.6 .26 .10 -.018 
15/21 3.7 2.5 .29 .11 .022 
21/22 
1L,/22

5.3 -2.7 
2.L

.30 .15. -.022 
4.9 .16 .16 

18/23 3.7 -2.2 .23 .c:1 -.001 
19/23 
23/2L

.2 

.7
3.6 

-2.1k
.23 
.23

.03 

.05
.007 

-.005 
20/2Lj L.3 3.0 .25 .07 .oiL 
24/25 5.8 -3.0 .25 .08 -.009 
21/25 5.5 3.3 .26 .12 .020 
18/26 5.5 -2.3 .22 .01 -.001 
23/26 5.1 3.8 .22 .02 .00L. 
26/27 6.6 -2.6 .23 .03 -.003 
24/27 6.2 3.7 .21 .o6 .011

Formula :1
as in table 2. Scales: j 

The Mach directions corrected according to ('TT*") 
conform so well with ( M r ,*) that the iteration with-(M TI 
can be discontinued. 

The re quired meridian section of the nozzle cor-
rected for parallel outflow is found by drawing straight 
lines in the meshes 22, 25, 24, 27, 26 of the net (M1T*); 
these lines run in the direction of the velocity 
vectors that correspond to these meshes as inferred 
from (Gi1*). 
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For control, the diameter of the exhaust cross 
section ,can be calculated exactly from the condition of 
continuity. There results nearly complete agreement: 

r graDhically = 6.55 cm; r theoretically = 6.49 cm 

In figure 17 the rotationally Symiuetrical nozzle 
corrected for parallel outflow which was found, in figure 16 
is contrasted with the corresponding plane nozzle. In 
both cases the flow starts under the same geometric 
initial conditions as a source flow with Ma	 A/2 Z i.!.i
and ends In a parallel outflow with ihe same Mach number 
II = 2.12.

IV. SUiI1'IARY 

The potential equation was transformed into a 
system of coordinates adjusted to Mach t s net of curves 
and variable from point to point; there resulted a 
Partly graphical, partly analytical method of iteration 
for dete,rminin- three-dimensional axially siimetrical 
supersonic flows. This method wa applied to the 
examination of the flow in a conical nozzle and to the 
correction of a conical nozzle for a parallel outflow. 
It will take about an hour to determine the first 
approximation of the flow in the conical nozzle and 1 
to 2 hours to determine all the higher approximations; 
the correction of the nozzle for parallel outflow also 
is easily accomplished in I to 2 hours. The accuracy 
of the approxiindti.on method was tested by comparing the 
results with the exact thépretical. ones; there -resulted 
within,, the.. accuracy of construction nearly , complete 
agreement. 

Translated by Mary L. Mahler 
National Advisory Committee 
for Aeronautics
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Fig. 1,2 

Figure 1. Explanation of the notations. 

Figure 2.	 ,	 system of cQordinates of Mach's net of curves.
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'7 
3"	 / 

Figure 3. Transformation of coordinates. 

•	 11 
/ 

1117 

Figure 4. Components of velocity parallel and perpendicular 
to they axis and the axis.
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Fig. 5 

/P. 

Off 

 

/• 

Figure 5. Differeniation of the velocity with respect to 
9.and7/.
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Fig. 6,7
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// 

Figure 6. Change of the velocities along Mach's lines in the 
three-dimensional problem. 

/7. 

/.fr 
/ 

fo

P1 

Figure 7. Change of the velocities along Mach's lines in the 
plane problem.
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Fig. 8,9 

Figure 8. Mach's net and velocity net. 

Figure 9. Distribution of velocity for three adjacent meshes 
of Mach's net.
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Fig. 10
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Figure 10. Fxplanation of the construction of the second approximation 
of Mach's net.



NACA TM No. 1133
	

Fig. 11 

Figure 11. Monogram for 0. and sin2 as a function of MD.
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'I

V CM 

Figure 12. First approximation for source flow in conical nozzle. 

10cm	 1]	

IV 

 

11 11.1  

IV	 At	 17 

 4	 "9 .; 

Figure 13. Second approximation for source flow in conical nozzle.
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Fig. 14 

(OA,.) 

0 

I-	 ticin-

0	 1	 c 

Figure 14. Third approximation for source flow in conical nozzle.
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dffl 

fly

..,,

Figure 15. First approximation for correction of the conical 
nozzle for parallel outflow. 

_.._.	 VIC  

2i-..O5 

—J	
zoo:4 

van

 ffo 

Figure 16. Second approximation for correction of the conical 
nozzle for parallel outflow.



3
0

 

I I 

I

S
-i b

o
 

O
 

(s
-I ..-1

 

C
)cI) 

0
0
 

C
.) C

.) 

n
o

.) 
a) - 

O
+

. 

(
)
D

 C1) 
0 c O

S
-i 

E
-
 o

 

N
 

'-4 

i-
N

 
-
 

e
	

N 

-
 
C

 

U 
-
 

C
 

C
 
o
 
-
 

V

0
 

C
. 

O
N


N


—

I 0
 

.—
1
 a) 

L
4

 CO

r

N
A

C
A

 T
M

 N
o. 1133
	

F
ig. 17 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37



