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THE EFFECT OF INT:SRHAL PRESSURE ON THE BUCKLING STRESS 

OF THIN-WALLED CIRCULAR CYLINP:;RS UND::::R TORS I ON 

By Harold Crate , S . B . Batdorf , and George W. Baab· 

SUMMARY 

The r esult s of a gerie 8 of tests to determine t he 
effect of internal pressur e on t h e buckling load of a 
thin c y linde r unde r an applied torque indi cated that 
internal p re ssure rai 8es the shear buckling s tress . 
The experimental results were analyzed with t he aid of 
p reviously de veloped theory and a simple in.teractlon 
formula was derived. 

The curved metal skin of a modern airp lane in 
flight is subject to stresse::: that may cause the skin 
to buck le, and proper design o f airplane structures 
require s a knowl edge of the 8t r ess c onditions under 
which buc k ling will occ u r . The abi lity t o estimate the 
buckling po int under c ombine d loading conditions is of 
particular i mportance . 

In order to det ermine the effect that no rmal p r es ­
sure, o r air loads, might have on the critical stress 
f o r curved sheet, two pre liminary test~ were made (ref ­
ences 1 and 2) . A pronounced increase in critical 
stress with increa~e in normal pressure waq found , and 
the subsequent interest shown b y t he ai rcraft industry 
in this subject i nd i ca te d the des irabil i ty of further 
study . 

No well - established t heories for buckling of curved­
sheet panels either in torsion or under hydrostatic 
p ressure are available; however, satiffactory theories 
for buckling of complete cyl inders unde r these loadings 
have been advanced (references 3 and 4). In order t o 
effect some c o rr e l ation be tween theory and experiment, 
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t _ erefore , an inve~tt~ation wa~ made of the influence of 
internal pressure on the critical stre~ses of thin 
cylinders in torsion . Experiments were conducted to 
determine the critical shear stre sses for four cylinder 
lengths at a number of different internal pressures . 
The theories and the experimental data were used in con­
junction to determine an interaction formu.la for the 
buckling of cylinders of moderate lenn:th under the CO Yll ­
bined action of torsion and internal pressure . 
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Young's modulus of elasticity, psi 

~hear modulus of elas ticity , psi 

leng th of cylinder without rings, inches 

length of cylinder between ri ngs , inches 

thickness of cylinder wall , inches 

diame ter of cylinder , inches 

radius of cylinder , inches 

internal pressure of c y linder, considered 
positive ~hen it produces tensjle stresses 
in cylinder wall s , psi 

critiCal pres~ure in the absence of torsion 
(ne ga tive according to sign convention 
adopted for p ) , psi 

shear stress in cylinder ralls due to applied 
t orque , psi 

value of shear stress w).len cylinder is a t the 
po i nt of elastic instability, ps i 

critical shear stross in the absence of 
internal pressure , p si 

pressure ratio ( p) ) 
( PC I' T= O 
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shear - stress ratio f.(;,T C~_\ 
~ T cr) p=o} 

exponent of Rs in tle interaction form la 

rotation of free end of cylinder , radians 

coefficient used in Ltmdquist's empirical 
forMula (appe~dlx A) 

differences in strain gage readings 

Poisson's ratio 
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Diagrams of the test - cylinder construction and 
ring systems used are ~iven in figure 1 . The cylinder 
was made from O. 032 - inch 24S- T alwninUM- alloy sheet 
closely riveted around t 0 heavy steel rings , one at 
each end . The sheet was joined along an element of t h e 
cylinder with a butt joint covered with a single strap 
on the outside . Rings made of 24S - T alQ~inum alloy 
were added to this cylinder and divided it into shorter 
cylinders , the lene-ths of '!hich were equal to the ring 
spacings . 

Figure 2 is a photograph of the apparatus used to 
test the cylinder . The ends of the c~linder were 
closed by heavy flat steel plates in order that air 
could be Maintained under pressure inside the c;linder . 
The eights of the steel plate and test rine at the 
free end of the cylinder were neutralized by an upward 
load on one of the torque arms . Rotations of tre free 
end of the cylinder relative to the floor vere neasured 
by a pair of dial gages . 

Observed bucklinr; 10ads at zero and at low internal 
pre s sure were deterr.1ined as the loads at which t. _ere 
was a sudden snap of the cylinder to the buckled state. 
This snap action was in many cases preceded by a slow 
growth of visible Irinkles in the cylinder wall~ as the 
load increased and a ~reatly increased rate of growth 
of the vrinkles at close proximity to the snap - buckling 
load . ~ith increases in the internal pres8ure, the 
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snap decreased in violence until it wa , n o longer 
observable . In these cases the bucklinr load was e ~ ti ­
mated , on the basis of visual 0 servations , to be t ha t 
load at which the rate of g r owth of vrinkleR wi th load 
was c ompar ab le with the rate o f growth of wrinkles just 
prior to buckling in tho se c ases in wh ~ch snap buck l ing 
d i d o ce u r . 

The Southwell Fiethod of deter:r.:in1ns t he cri tical 
stress of spec i~ens with i nitial eccentricit i es was 
a ssQmed to be app licable to cylinders subjected to 
t orsion and was used as a check on the visual de t ermi ­
nation . Two electrical strain gages we r e mOlmted on 
opposite side s of the cyl i n _er wall at t~e crest of a 
buckle , the location of which 'as determined bv Beans of 
a p reli minary buckling test . The difference y in 
readings of the strain ~ages on oppos i te sides of the 
cyl i nder wal] ~ r ov ided a nmnE; rical IT.'.easure of the dis ­
tortion as the wrin;-.::les rrew . The Southv/ell TIiethod was 
app l ied by plotting ( y ~ Yl)~(T - Tl ) against y - Yl 

whe re Yl and Tl were arbitrarily c~osen initial 

values of each quantity (reference 5) . The inverse 
slope of the stralrht line formed in this r.anner is 
T - T where T i s the desired critical stress . cr 1 cr 

DISCUSS!ON OF R~~DLTS 

I n figure 3 the shear stress calculated from the 
ex t ernal load on the cylinder is plot ted against the 
correspondi ng r o tation of the free end for various 
valles of ring s pacing and interDal presqure . The 
s o li d line s g ive ro ta tions cor'lputed by the formula 

in '-'bich G "Was ass~1ed t o be 3 , 970 , 000 ps i. 

Prio r t o buckling, the stiffness of the cyl i nder in 
torsion (slop e of the curves) is es sentj.ally unaffe c ted 
by the internal pres~ure o r by the ring spacing . Tte 
rotations measured were s lig~t ly ~reater than those 
predic t ed by the formula . Thi~ result may be attr':'buted 
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to the method of neasureY"lent , which considered as rota­
tions many other small effects , such as bending of the 
column SUPI)Orting the cylinder , dis tortion of rivets and 
rivet holes, and taking up slack in the bolt holes in 
the end plates . 

The experimental buckling stress in torsion without 
pressure is compared with the predictions of Donnell 
(reference 3) and Lundquist (reference 6) in tl':e fol ­
lowing tab le~ 

I Critical shear c:tress , ksi 

Lid ~-

Experimental Lu.."ldquis t Donnell 

0 .18 5.8 6 . 0 7 . 9 
. 36 3 . 9 

I 
4 . 2 4 . 9 

. 72 3 . 0 I 3 . 0 3 . 3 
1.43 2.3 

I 
2 . 3 2 . 3 

Lundquist ' s forTl1ula was derived for stress at failure . 
Except for very short c J-linders , ~owever , the sr..ear 
buckling stres and the tres at failure are essen­
tially the same. Donnell ' s theoretical curve (solid 
curve of fi g . 4) and Lundq uis t ' s 81;lpiri cal fornula are 
discussed TIore fully in appendix A. 

In figure 5 the buckling stresees under torsion 
are p lotted against the internal pressure for each 
cylinder; this figure indi ca tes that the buc1:ling 
s tre s ses increase as pre ss ure increa2es . The re s111 ts 
were es sential ly the sar'1e wllether tre visual or the 
Southwell met od of det8r~ininp buckling loads was 
used , although t~e ~outhwell method usually ~ave 
slightly higher loads than the visua] . . 

The buckled cylinder could be returned to the 
unbuckled state either by decreasiI1[ tho torque or by 
increasing the pressure . The loads at vlhicb the b'lckle s 
disappeared vere deteroined visually for cylinders 1 , 
2 , and 3a , and are also shown in figure 5 . These loads 
were not recorded, however , for t~e remaininr cylinders 
because of a large scatter in the readings . This 
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scatter i s attributable to the fact that, as the cylin­
ders ~ecame shorter , t~e disappearance of the buckles 
be came I":ore graduP.I and the visual se ec tien of a 
" point of diE:appe&rance lt became difficult . In the case 
of cylinder 2, in which the readings are relatively 
definite , the location of the curve indicating disap ­
pearance of buckles was the same for e:!.ther an increase 
of pressure or a reduction of torsion . 

The method used to find the interaction formula 
best repres entine the eyperimental data is g iven in 
appendix A. The analys is leads to a formula of the 
type 

Esq + Rp = I 

where the value of the exponent 
assumptions made for (p ) 

cr T=O 

q 
and 

depends upon the 

( T 1" ) . For c p=o 
cylinders of moderate lengb~ , which according to 
Donnell ' s analysis satisfy the inequality 

the exponent q is eq~lal to 1 .. 89 to 2 using Tcr 

derived fro~ Donnell ' s theoretical curve, t he exact 
value depending on the value of L2/td concerned . 
~'ihen T cr derived from lundquist I s empirical forrmla 

is used, q = 2 . 17 . 

In figure 6 , c urv es representinr the exponents 
1 . 89 ~ 2 , and 2 . 17 are dra.v"ln t:Lro _lgh t1J.e experimental 
data of fi gure 5 replo t ted by a method explained in 
a ppendix A. The three curves lie close together and , 
so far as fit of data is concerned , little basi s exists 
f o r a cho ice amonr, then . Simplicity and proximity to 
the average value , h')wever , reco''irilend U8e of q = 2 . 
The equation then becon s 

2 
Rs + Rp = 1 
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The parameter L2/td , which according to theory 
determines buckling behavior, may be varied by changing 
the length , thickness, diameter, or any corlbination of 
dimensions . For this reason, the restriction of the 
tests to one thickne ss and one diamete r probably does 
not constitute a significant loss in generality . 

The question of the applicability of the formula to 
curved panels is discussed briefly in appendix B . 

CONCLUS I 01T 

The critical stress of a cyJ.inder in to rsion 
incre a ses as the int e r na l pressure increases . The fol­
lowing interaction fornula was found to represent 
approximately the buckling of a cylinder of mode rate 
l ength under the combine d effects of torsion and internal 
pressure: 

RS 2 + Rp = 1 

where R"l is the ratio of criti cal shear stress with 
'-' 

internal pressure to critical shear stress without 
internal pressure and Rp is the ratio of internal 
pres sure to the critical pressure in the ab8ence of 
torsion . 

Lang ley Memorial Aeronautical Laboratory , 
National Advisory Commi ttee for Aeronautics , 

Lang ley Field, Va . 
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APPENDIX A 

DERIVATION OF I IJTERACTICN FORMULA 

Introductory DiscIssion 

Any attempt to determine wl11ch 0 f the conventional 
types of interaction fo r mulas best fits the experimental 
data presented in this pape:.'" is co:m.plicated by the 
questi on of which valuGc, to 1..1.se .(or (p)' and 

cr T::=O 

(Tcr)p=:o · 
obtained~ 

(pc r )T::=O 

Experinental values for (T) were cr p::=O 
but the correfponding experinental vallep of 
were not investigated bscause of the destruc -

tive effe c ts on the cyl_nder involved in such a test . 
A simple experimental result Ir.akes possible a derivation 
of an :lnterac tion formula wl thout neces;:d ta t:'ng as sump­
tions concerning stress ratios o. the type of formula 
to be used . 

The experimental data appear to indicate that the 
interaction curves for the four cylinders tested are 
identical , differinr, only in position . (See fig . 5 . ) 
~he effect of a change of l ength appears to be a shift 
of the curve parallel to the pressure axis. In fig ­
ure 6 this effect is made clearer by plotting a ll the 
da ta to a c O:P.1mon p - in tercept . 'l'hc curve for ~ = 1. 43 

is shifted paral l e l to the p-axis a distance equal to 
-(pc r)r::=o (a s g iven by equation (5) which fol l ows ) in 

orde r to make the p-interc ept zero . E ch of the other 
curves l s then shj.fted the p!'oper distance for best 
superposition . The relatively slight scatter sho~s 
that the experimental curves are nearly superposable e 

If -it is assumed that t e interaction curves fo r 
different lengthQ of cylinder are for practical pur ­
p08es identical, a computation of t he equation for the 
curves f rom theory is possible . A~ong the pints on 
the curve of figure 6 are four, indicated by modified 
symbols , represent ing the special case p::= 0 for the 
four values of the length . Because the curve of figure 7 
r epresents Tcr lotted against p ·~( Pcr) T=O' these four 
points represent (T cr) plotted a ,ainst -(pc ) p=o , r T::= O 
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for various values of the length . The formula for this 
curve can therefore be obtained by elininating the 
length fron the equations expressing (T ) and cr p=O 
( Pcr) T=O in terms of L, d , and t . The interaction 

curve for a cylinder of given dimensions can then be 
obtained by shifting the origin to ma ke the p - intercept 
equal to ( Pc r ) T=O for that c y linder . The int e raction 

formula may then be 
sions for ( Tcr ) p=o 

derived by findinG simplified expres ­
and ( Pcr) T=O' eliminating L , 

a nd transforming to g ive the final fOY'!'1ula . 

Simp lified Lxpre ssions for / T ) \ cr p=O 

T~o SiMplified expressions for (T ) are 
cr p=O 

derived, the first based on Donnell ' s curve (reference 3) 
and the other on Lundqui st ' s formula (referenc e 6) . 

Dorillell ' s theo retical result for the shear buckling 
stress of thin- walled cylinders vith simply supported 
ends subjected to torsion is g iven by the solid curve of 
figure 4 . For cylinder s of moderate length , t he curve 
is nearly a straigh t line g iven by the equation 

(la ) 

while for extremely large values of L2/td a bett e r 
fit is g iven by the equation of the asynptote 

(lb) 

This essentially trairht portion of the curve is 
included between the limi ts 

(2) 

- ----, 
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At the lower limit of inequality (2), equat ion (1a) ip 
in error b y about 15 percent and equation (lb) J by about 
20 p erc ent. (Fo r the lpper li~it see reference 3 .) 

Lundquist ' s fo r mula is 

(r) = K E(E)-1. 35 
cr p=o s t 

where va l ues o f I\" are given in refer.ence 6 for various 
~. 

values o f L/r . In order to deterr:1ine a forJ11ula for 

t he value s of Ks were plotted against L/r on loga -
rithmic paper. ( See .c> • 7 • ) if~len Llr '-. 0 . 5 , .1 J. f- • , 

K - 1 9'7 -(
T )-0.46 

s - . ...., r 

At Llr = 0 . 35 ( approxirrate l y the low e r Jimi t of 
i ne quali t y ( 2 ) f or the c yl i nder tested), the error in 
thi~ forrrula js about 7 pe rcent . - se of this v alue of 
Ks l eads to the formula 

Ks ' 

r cr 
( .,.",(L)' -v. Ll6( d\-1. 35 = 2 . 36£!... -d- --) 

p=O \ l tj 
( 3 ) 

Simplified Exp ress ion for ( Pcr)r=O 

A formula based on work by von Mises and develoDed 
at the David Tayl or ~del Bas:n ( equat i on (10 ) of re~er­
ence 7) for th~ buckl i ng of a clo s ed cylinder unde r 
hydrostatic preesure may be written 

d(t)2 . 5 
2 . 60~ d 

1 
_ d(t \ 0 . 5 

0 . 45fd: } 
I 

( 4) 

If, as in the inequality (2) , 

30~ < (~t 
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tbe denominator of equation (4) remains within 10 percent 
of 1.Lnity, so that , to tbis degree of approximation, 

C
' ) = 2. 60E9:

L
(-dt )2. 5 - Pcr T=O (5) 

Tbe negative sign appears because in the present paper 
i nternal pressure 1s considered positive . 

The Interaction Formula 

For the sake of generality and , at the same time , 
of simplicity in tbe c.erivation of tbe interaction 
formula, equations (1) and (5) r.1ay be written 

(6) 

(7 ) 

wbere Kl and K2 are a~bitrary consta~t s , m a~d n 
are arbitrary exponents, and fl and f2 are arbitrary 

functions of diameter and tbic:mess . EliMination of L 
gives 

I(T ) -J
m/n 

I cr _ 
- K f p-O 

-(Pcr)7=0 - 1 1 1- 1; f' L ~ -2 - 2 

This equation is the formula for tbe curve of fig ­
ure 6 , wbich is a plot of Tcr against P - ( Pcr)T=O 

and tberefore, when p = 0 , a plot of (T) a gainst 
cr p=O 

( P ) In order to find tbe interaction formula , - cr T=O· 
substitute p (p) - cr T=O 
T cr in place of (T ) cr/p=O 
expression . Thus, 

in place of -(Pcr )T =O and 

and simplify the resulting 

J 
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Dividing through by -(P ) and using equations ( 6) 
cr T=O 

and (7) yields 

p + 1 

A rearrangement of terns gives 

If Donnell's equation (la) is used with equation (5) , 

m _ 
n 

1 
0 . 53 == 1.89 

or if D~nnell ' s equati0n (l b) and equation (5) are used , 

m = 1 = 2 
n 0 . 5 

Use of Lundquist ' s equation (3) with equation (c) y i elds 

2 . 17 

For purposes of simplification, let 

Rs - Tcr 
-

( T cr ) p=o 

Rp - P -
( Pcr )T=O 

J 
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and 

m 
q = n 

Then , the final fornula may be written 

Rsq + Rp = 1 

_J 
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APPENi)IX B 

P.PPIICATJON OF IWrERACTIO. rom.ITJLA ~;O CU~VTD Pf~NELS 

The tbeore t:!. cal anal ysi s of the buckli ng of a 
curve d panel is much more (1.1.ffioul t then tbe treat 'nent 
of coqplete cylinders . In the case of buckling under 
torsion alone , the boundary conditions required for 
panels greatly co~plic~te t~e th eo r eti cal analysis . It 
nay be presumed , howev~r , t~at the adce~ restraints 
make the cri tical stress hi.g:ber tban that of a complete 
cylinc1er of the same length , thtckness , and curvatu:re . 
'J'he relation betV'Teen the pressure and the direct stresses 
produced in the sheet Is also much more complicated than 
in the case of a com:;?lete c;;'"linder . '2:'he axial stresses 
depend on the areo. of the ene. bulkhead and on t}:}e areas 
of cross s ection of sheet aid spar elements . It is 
diffi cult to draw conclusions r8f,ardlng the relation of 
pressure to circumferential stresses . It is therefore 
not to be expe c ted that an j.nteraction formula established 
for complete cylinders will nececsarily apply to curved 
sbeet also . 

In order to eeterr.1ine Jhetr:er the interaction 
formula deri ved in a~pendi. x A may be usee to gai n a rough 
idea of the strengthening effect of internal pressure in 
thE; case of curved panels , the formula 1s applied to the 
test points of the two specimens of roference 2 . Figure 
8 is a sketch of the two specimens tested . In fig -
ure 9 the experimental stear buckling stresses are 
plotted against the internal pressure . 

Curves representing the intoraction for~ula are 
also plotted in figul"e 9 . In order to apply the for'nula , 
the experimentally determinee values of (Tcr ) p=o were 

uSEd; (p ) is aS8urr!ed to be the salle as f')r a COl'll-- cr T=O 
plete cylinder of identical lsngth , thickness, and 
c1)rvatnr-e , ana is found by applying equation (4 ) of 
a}Jpendix A. Fair agreement 'as obtained between the 
curve s and the tes t po:1. n ts and the agreement IT'i gh t be 
conside r ably improved by a r.lore precise method of 
de termi ni ng ( pc r )r=O. 
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