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LINEARIZED COMPRESSIBLE-FLOY THEORY FOR SONIC FLIGHT SPEEDS

By Max. A. Heaswer, Hanvarp Louax, and Jorx R. SPREITER

SUMMARY

The partial differential equation for the perturbation velocily
potential is examined for free-siream Mach numbers close to
and equal fo one.

theory for lifting-surface problems both in stationary three-
dimensional flow and in wunsteady two-dimensional flow.
Several examples are solved including a three-dimensional
swept-back wing and a two-dimensional harmonically oscil-
lating wing, both for a free-strcam Mach number equal fo one.
Momentum relations for the evaluation of wave and vortex
drag are also discussed.

INTRODUCTION

Much of the recent progress in the theoretical analysis of
compressible-flow fields is attributable to the successful
application of linearization methods. Although the basic
assumptions used in conventional linearized theory appear
at first glance to be highly restrictive, it has been found that,
just as in the analogous case of thin-airfoil theory for incom-
pressible flow, the methods have many fields of utilization
adequate for most engineering purposes. Since the basic
methods are so well known and depend on such relatively
simple mathematical tools, it appears obvious that the
range of applicability of the theory should be explored.
Such is the purpose of the present report. ‘It has been more
or less tacitly presumed in the past that such applications
cannot treat cases for which the flight velocity is near the
speed of sound. In the study of two-dimensional steady-
state problems in airfoil theory, this presumption is certainly
true. The Prandtl-Glauert and Ackerét rules for variation
of pressure coefficient with free-stream Mach number in the
subsonic and supersonic regimes, respectively, are clearly
invelid for Mach numbers near one, since perturbation
velocities become arbitrarily large. In this case, linearized
theory therefore predicts its inability to treat such problems.
On the other hand, if linear methods are applied to non-
stationary two-dimensional sairfoil and particular steady-
state, three-dimensional, lifting-surface problems at sonic
speeds, & consistent theory results since solutions are found
which yield perturbation velocities of the same order of
magnitude as those calculated for free-stream Mach numbers
of, say, 0.6 or 1.5.

Unfortunately, arbitrary thickness distributions at sonic
speeds cannot be studied by linear theory in the steady state

It is found that, under the assumptions of -
linearized theory, solutions can be found consistent with the

since, in general, the theory predicts infinite pressure differ-

ences between the wing surface and infinity. In the particu-

lar case of & yawed, symmetrical wing of infinite aspect
ratio, the results are, however, again consistent with the
theory and yield pressure distributions which are the same
as those determined by using only the component of free-
stream velocity normal to the leading edge. The derivation
of this latter result for a free-stream Mlach number of one
will be given.

The difficulty of not being able to include thickness
effects in general, together with the uncertainty of the mag-
nitude of the viseous effects, leaves the question as to the
limitations of such a linear theory in application to practical
wing shapes. Such a question can certainly not be resolved
by mathematical reasoning alone. The extent to which the
fuid medium can be idealized at these speeds is left, for

the time being, unsettled and it remains for experiment to

determine whether the consistent mathematical results ob-
tained from the linearized equations provide reasonably
exact predictions. In this connection, it should be mentioned
that the few experimental results available for the total lift

on thin triangular wings at Mach numbers near one tend to =
confirm the theory. But even if more detailed experimental

results indicate that further refinements are necessary, there
is still little doubt but that the linear potential solutions will
provide a valuable basis for more exact extensions of theory.

The present report is divided into three parts. In the
first part, the linearization of the partial differential equation
for the velocity potential is carried out in some detail for
steady-state conditions. A byproduct of this derivation is
the nonlinear form of the equation for two-dimensional flow
used by von Karmén (reference 1) to determine his similarity
rules for transonic flow. The equation for unsteady two-
dimensional flow based on the same assumptions is also given.
The second part of the report is restricted to two-dimensional
unsteady problems for values of Mach number near one.
The principal contribution of this section is the evaluation
of the change with time of the pressure distribution over an
airfoil starting suddenly from rest at a speed close to that
of sound. Such an idealized problem involves a step fune-
tion in velocity in which the airfoil has zero velocity for all
negative values and near sonic velocity for all positive values
of time. From these results the initial build-up of lift can be
calculated from Mach numbers near one, although the
eventual value of the lift cannot be found by linear methods.
Further application ean also be made to problems in flutter
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and gust loads. The third part of the report treats the | 7,6 polar co9rdinate.s in yz plane (y=r cos 4,
steady-state three-dimensiong! problem. Both lifting sur- - . 2=rsmn 9)
fac.es and symn%etrical nonlifting wings are conside'red .and S T “Fresnel’s sine integral ( f sm T o d.z)
it is seen that in the former case consistent solutions are ' o _
obtained by particularly simple means, - These solutions rép- | 8 - oper ational equivalent of ¢
.resent the limiting case of bogh subsonic and supersonic lift- | 8 o “.rmg semispan
ing-surface theory and give, for example, the same value of | ¢’ * time
lift-curve slope at the speed of sound that wés obtained for' t : aot’ _ _ '
the supersonic triangular wing by Stewart (reference 2). | t ' -maximum distance measured parallel to y
o L e ml B ~ axis from z axis to trailing edge (ﬁg 15)
LIST OF IMPORTANT SYMBOLS °,v,W perturbation velocity componentsin z, y, z
a y coordinate of trailing edge, y=a,(x) ;o ] dllrectllons, resp ectwely oL _
ao free-stream speed of sound ! . Jocal velocity . .
a local speed of sound Va _ fres-stream velocity -
ot . critical speed of sound vy radial component of perturbation velocity
) (span)? - e | zy,e — - Cartesian coordinates
A aspect ratio m:l a angle of attack in radians
. \ 18 ' V1=
Clu) Bresnel s cosine Integla.l (f cos 5 T d’a:) v - ratio of specific heats, for air y=1.4
C wing root chord . _ _ Ao, Ay, AW, discontinuity in component in 2=0 plane
lif g 7 “semivertex angle of swept-back wing
C lift coefficient | ———t .
z g(wing area) ) N w0y B
Ly da T ‘ T T e fo frec-stream density.
Cp (@) indicial lift coefﬁment - ® 2 total velocity potential .
“ o perturbation velocity potential
Cp, " vortex drag coefficient [_'—_q(wmg a.rea.)] o’ impressed frequency (refelence to true
D drag time)
D, vortex drag S | w - ::— =
—a2 ’ ¢ ’
erf(x) error function of ( \/—fz dx ) - . .
I—THE LINEARIZED EQUATIONS OF MOTION
EW.. k) elliptic integral of second kind : ) _ _ )
(f‘b"w/ e ceee .- STEADY STATE _
1—Fk,? sin’ ) . . . .
d) ¢ : g The nonlinear partial differential equation satisfied by the
. T velocity potent.ig.l ® of an isentropic flow ﬁeld can be expressed
E, E (2 ) : in the form
Fgn, k) elliptic mtegrai of ﬁrst kmd '. ' - ( K2 ) Y (1——2') + <I>,, (1___ _
. (f V1 I 2 sm% ' -9 9 9 R
%, F(5k) | RnampeAsLeaam =0 ()
I};{“ B fnﬂcigfxlﬁ ;n:fe illﬁlst:::;ﬁnrgg gzil ks .- . .| where the subscript notation is used to indicate differentiation
" - - s -2 21 ‘and a iS the local speed of sound given by the relation
IC’,,_ ‘\/T T - _ __ / - e =
lengtl — . 2 _ 2
l ength of body - (_% =2_%{1_('y - 1) My I:(TT;_’) _1]} @ .
M, free-stream Mach number (—) LN o o et
ey "> | In this latter equation V, and Af, are, respectively, velocity
it 2 —xf) — 2 2 - LY .
Niat,?) f N [cos ? O(wt ‘Ez) sin.@ S(wt e )] dx -1 and Mach number of the free stream, v is the ratio of specific
Vel ; | heats (for air, y=1.4), and V is local velocity.
N(ut, v) f [cos 2*S (et — z) +sm :L'”C‘(wt—x"’) ] d‘” Introducing the perturbation velocity potential ¢, where
Ap loading coefficient (pressure on lower sur- : y .
g face minus pressure on upper surface : ¢=—Viz+2 ®3)
divided by free-stream dynamic L y T
pressure) .., _ it is possible to express equation (1) in terms of the deriva-

tives of ¢ and the parameters A, and V,. To begin the
linearization of the resulting equation, the coefficients of the

q free-stream dynamlc pressure (2 puVo )
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second ordered derivatives of & are expanded in Maclaurin
series with ascending powers of

* 0

T % The convergence is assured provided

2 2
‘(—r DJ,IU 2u u—[—Tz}’;I—w)<1 @)
or, in a slightly modified form, provided
2 2
V2=V < =5ad® (5)

If the assumption is now made that %, {__’:: %«1 so that
[} Q Q

second and higher powers in the perturbation velocities can
be neglected in comparison with one, the partial differential
equation can be simplified to the form

[ 2u ®%
¢;_-_.-,{ 1 —anz [1 +‘“v‘+ (’Y_ 1)-3-'[02 _r]} + ¢w+ bz
¥a _ Vo
2,0 v MP—2¢sy = MPF=0 )
T Vo

From this equation all the suceceeding expressions will be
derived.

Two- and three-dimensional linear equations, My»<1.—
Since equation (6) is obviously nonlinear, additional assump-
tions must be made to reduce it to a linear form. Clearly,
these assumptions must involve the relative magnitudes
of all the terms in order to determine which ones may be
neglected. Perhaps one of the least restrictive set of con-
ditions is that:

(a) The ratios of the perturbation velocities to the free-
stream velocity are small enough to be neglected when
compared to one.

(b) The nondimensional velocity gradients are also small
in comparison with one where, in the nondimensionality,
perturbation velocities are measured in terms of free-stream
velocity and the length is measured in terms of a char-
scteristic length of the body.

With the aid of these assumptions, it follows that, to the
order of the approximations made, the perturbation velocity
potential ¢ satisfies the well-known linear equation

(.]- _ﬂ-{uz) quz_!_ Pyy + ¢ =0 (7)

In the case of two-dimensionsl flow, the equation is inde-
pendent of ¥ and thus may be written in the form

(1 _ﬂ’-[uz) b2zt b2 =0 (8)

Two- and three-dimensional nonlinear equations, My=1.—
The study of equation (8) in both subsonic and supersonic
flow has shown that for arbitrary lifting surfaces or sym-
metrical nonlifting airfoils the value of the induced velocit,y
u on the surface of a fixed geometric configuration is pro-
portional to ((1—3£F)~2. In all airfoil problems, the value
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of u becomes infinitely large as Af, approaches one, either
from above or below, and the basic assumptions are thus

violated. Such a difficulty led Oswatitsch and Wieghardt
(reference 3) and Sauer (reference 4) to abandon the restric-
tion of linearity and to seek a more exact equation at Afy=1.
Retaining the assumptions underlying equation (6) and
setting Vo=a* where a* is the critical speed of sound, it
follows that at Afy=1 the perturbation velocity potential
satisfies the equation :

(‘YT 1) Prrz— ‘Pu'l_a,* 6:$z2=0 . (9)

Since ¢, is much larger than ¢, as the Mach number ap-
proaches one, equation (9) may be further simplified to

(7+ 1)

Prdrr— b= 0 (1 O)

If, in three dimensions, the perturbation velocities do not
remain small, equation (6) again supplies the necessary
form of the differential equation at Afy=1. From the rela-
tion Vy=a*, the required expression is

('H— )

Sute—bu— buk & buburt s Bib=0 (11

Two- and three-dimensional linear equations, My=1.—
Equation (10) has been used by von Karmén (reference 1)
to establish similarity rules for two-dimensional transonic
flow and is the basis for work continuing at the present time.
{See also reference 5.) If at J1f;=1 the assumptions made
in the linearization process still hold, it follows from either
equation (10} or (8) that the differential equation reduces to
the form

¢2:=0 (12)
It is possible, however, to predict independently from this
relation that linearized methods cannot be applied to the
calculation of arbitrary airfoil pressure distributions. The
range of applicability of such an equation is thus almost
nonexistent. On the other hand, the Hnearized form of
equation (11) or (7} at My=11is
byy 'I‘ b= 0 (13)
and from this equation a class of nontrivial solutions can be
obtained for particular boundary conditions. Both equa-
tions are of parabolic form in the number of dimensions for
which they are defined. In the present report, formal solu-

tions satisfying the imposed conditions will be obtained in

three dimensions for flat lifting surfaces with swepi-back
leading edges and for an infinitely long, symmetrical, swept-
back wing.

UNSTEADY STATE

The derivation of the steady-state equations for the veloe-
ity potential was developed in some detail because of the
various results to be obtained. Similar methods can be used
when unsteady conditions are to be considered, the differen-



198

tial cquation for the velocity potential being now in the
form . . & __ e

1
— g BrrT28:P0r +20, B0 +28,200) +

@, TP, 32 o
q’xr (1 '_‘d—g'>+éw (1 j'.'ag_)'l‘@u (1 —'F)'—‘
‘)

2 2
Bys By By g Bux B, Dy — 25 D3y B2 By =0

: ag)
where ¢’ represents time. The details of the derivation can,
however, be avoided by referring directly to the equation
satisfied by the velocity potential for the propagation of
sound waves of small amplitude. (See reference 6, p. 492.)
In this form of the equation the Cartesian coordinate sys-
tem z, ¥, 2 is assumed fixed in the medium so that free-stream
velocity is zero, while the wing, which moves in the direction
of the negative z axis with velocity V;, generates small pres-
sure disturbances. As a consequence, the velocity potential
of the field satisfies the well-known wave equation in three
space dimensions: -

1.
G—qé G _<f’zz_.¢m_t— ¢u__—:q (15)

Equation (15) is reducible to canonical form by means of

the relation o o
t=aotl
and the three-dimensional form of the equation is therefore
(16)
while in the two-dimensional case independence with respect
toy yields . . .
h . ¢tt_¢zz_¢z¢=0
II—TWO-DIMENSIONAL LINEAR PROBLEMS FOR
M; NEAR ONE
UNSTEADY STATE, M2 1

b1i— Prr— ¢W ""_‘Isz:_: 0

an

It was pointed out in the derivation of equation (12) that
the linear equation for the velocity potential is not applicable
to airfoil problems in either the subsonic or supersonic
regimes for A, near one.. The possibility still remains,
however, of analyzing unsteady flows during the period in
which the perturbation velocities remain small. As an ex-
ample of such & problem, consider the case of a flat lifting
surface at a small angle of attack a« starting from rest at
a velocity V), near the speed of sound. The perturbation
potential for such a motion is equivalent to the change in
potential brought about by an abrupt change « in angle of
attack of an airfoil flying in a steady-state conditiop at ve-
locity equal to V. 'The change in load distribution brought
about by this maneuver is the so-called indicial load distribu-
tion and a knowledge of such indicial functions is important
for applications using operational calculus. .

Figures 1 (a) and 1 (b) furnish an insight inlo the nature
of the boundary conditions for airfoils traveling, respectively,
at supersonic and subsonic speeds. The chord is initially
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reaches a steady-state value as soon as the wing moves

(a) R

{b)

(a) Supersonic wing.
(b) Subsonie wing.

Figure I.—Boundary conditions for two-dimensionel unsteady-lift problem,

on the z axis with leading edge at the origin and trailing
edge at w=co. With increasing time, the wing section
travels in the negative z direction and sweeps out a portion
of the 2 plane as shown in the figures (indicated by shaded
areas). Throughout this part of the plane the boundary
conditions require that the induced vertical velocity is
—Vea, while elsewhere on the plane the induced velocitics
are continuous functions of z. In figure 2, sketches of the
airfoil in the supersonic and subsonic cases are shown
together with indications of the manner in which the dis-
turbance field spreads. These wings are presented in zys
space with time as a parameter so that their coordinate
system is not to be confused with that of figure 1. The
airfoils are traveling from right to left at Mach numbers of
0.8 in_the subsonic case and 1.2 in the supersonic case, and
for a time corresponding to that required for the wing to
travel & distance of one-third chord length. At ¢=0 cylin-
drical waves are induced at each disturbance point, that
is, at each point of the chord. These waves expand radially
at the velocity of sound but, because of the velocity of the
wing, the center of the expanding waves moves relative
to the initial disturbance point. At a given instant in time
the entire disturbance region of the airfoil is contained
within the closed surfaces shown in the figures, the outer
surfaces corresponding to the largest values of time. In the
supersonic case, the pressure distribution over the wing
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Subsonic

Supersonic ,,
FIGTRE 2.—Sketeh showing extent of disturbence fields after travel of one-third chord length.

shead of the expanding cylindrical wave produced at {=0
by the leading edge. In the subsonic case, the wing never
leaves the disturbance field of the cylinders and, as will be
seen later, the steady-state pressure distribution is
approached asymptotically.

It is apparent from equation (17) that the characteristic
cones have semivertex angles equal to 45° and that the
cones with vertices on the 2f plane have traces with slopes
equal to +1. These cones determine the upstream bound-
ary of the field of influence of the vertex point and their
cross sections in the plane {=constant are the disturbance
regions of the cylindrical waves arising at the vertex. Thus,
perturbations in pressure produced initially at the leading
edge of the wing section are confined at later time, in the
modified coordinate system, to the cone with vertex at the
origin and fraces x=tt.

The solution of equation (17) for boundary values of the
type under discussion has been indicated in reference 7
through consideration of an analogue problem in supersonic
lifting-surface theory. Thus, the shaded sreas in figures 1
(a) and 1 (b) are thought of as swept-forward lifting surfaces
situated in & stream directed along the positive { axis at a
Mach number 3f,=+2. The boundary values remain the
same; that is, $,=w=— 1" on the ng and ¢;, ¢,, 9. are
continuous functmns of z elsewhere in the 2t plane. In
lifting-surface terminology, the unsteady case for supersonic
speed becomes a wing with supersonic leading edge, while
the case indicated in figure 1 (b) involves a subsonic leading
edge.

The solution for the wing traveling at supersonic speed
has been given in reference 7 in a form valid for all Mach
numbers greater than or equal to one. The expressions for
load coefficient Apfq, where

_A_p, =P —Px
1
1 §PoV02
differ analytically in various regions of the zt plane. These
expressions are:
Region A (between lines 2= — M, 2=—1%)
Ap 4o (182)

¢ JBAE—1

Region B (between lines x=—t¢, #=t, and z=c,— 1)

I (f+arcsin?)]

Ap ta [1 Mg+t | J3F—1

VA= L= S o g T g
(18b)
Region C (between lines z=t¢, t=0, and z=¢,— M)
Ap  4da \
?— 3 -{0 (180)

From the pressure distributions it is possible to calculate .
the indicial Iift coefficient Cp_ () as a function of M, and &
Since

1 (aAp
Ce, (t)— o)o ga dz

the following results are obtained:

First time interval 0<t< I -H\ A

Ce,® =f_fo (192)

. . o Co
Second time interval ; A <i<73 T—1

— A
0}.’. (t) ELI (2 Ca tl gt)_[_
iAo —EdE, 1
‘\/A—'Iﬁ are ¢os s occ(:’ L M ’\,‘tz—(f.‘g—ﬁri 0)’:[
(19b)
Third time interval ——— M—i I <t
Co () = (19¢)

These results have been discussed in reference 7 for values
of Af, greater than one. They still hold, however, for sonic
flight speeds and, in fact, can be reduced to the expressions:

First time interval 0<i< %

C. =4 (20a)
Second time interval% <t
Cp @ == (2 +are s c.,) (20b)

The indicial lift coefficient is seen to be constant and equal
to 4 up to the time ¢ =§- or up to the time required to
0 L}

travel one-half chord. Following this first time interval the
indicial function rises monotonically, reaching an infinitely
large value as time increases. The growth of Cy (¥) is, of
course, in agreement with the fact that the steady-state load.
coefficient becomes infinitely large in linear theory for Af,=1.
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This means that the theory cannot be used to predict the
complete extent of the Cy (f) variation with time but that
during the earlier part of the motion the assumptions remain
valid. In figure 3, curves of Cp (f) are plotted as functions

TEBMyt
Ca

(00]
Croft)h
8/
2
0/
47

FiGurE 3.—Indiciallift-curve slope for Mach numbers between 0 and 1.4 shown to time re-

quired to travel 12 half-chord lengths.

of 20
Co
(20b), and A=1.2, IL[U—I 4 as given by equa.tlons (198,)

(19b), and (19¢). AJso included in the figure are variations

of Cp () for My=0 as calculated from Wagner’s results

(reference 8) by R. T. Jones (reference 9) and also for

My=0.8. The derivation of results leading to the AM,=0.8
curve will be given subsequently in this paper. The value

of Cy (f) at AMy=0.4 for a short interval of time is also

drawn. The dashed portions of the curves were nof, calcu-

lated but were drawn to agree with the known asvmptotlc

value of the lift funetion.

Application of the indicial lift funotion at Mo=1 -—Once

the indicial lift function is known, it is possible to determine
the lift corresponding to a given variable motion. Consider,
as an idealized example, the case where the airfoil experiences
an abrupt rising and sinking motion at regular time intervals.
Sueh & motion involves abrupt plus and minus angles of
attack without rotation or pitching so that «(t’) is given by
the meander or square-wave function shown in figure 4 (a).
In this example the variation of « is such that the curve for
Co(t') can be calculated easily. In figure 4 (b), Cp(t') is
shown for the case in which the discontinuities occur at
intervals of time equal to co/T 0 that i is, after each chord
length of travel. The principal point of interest in this
example is the fact that such a motion yields no excessive
value of lift or perturbation velocities and the entire analysis
is within the frame-work of linear methods.

‘When the variable motion is more complex in character the
lift coefficient can be expressed by means of Duhamel’s
integral.
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for values of My=1 as given by equationé ('203).,”

Corresponding to the angle-of-attack variation |

aft’) _
-t
(a)
Ci(t)) _ .
__/ _E\_/’: E\_/
- i ! 1 .
S KN S S S
N

(@) Impreesed angle of attack.
(b) Resulting variation of lift.

F:ounn 4.—Lift resulting from square-wave angla-of-attack variation.

a(t') as a functmn of time, the lift coefficient O (') is given
by the expression -

T Gt =% f Coo ) (21)
In analysis related to equation (21) it is convenient to emﬁlo;y -
techniques associated with the use of the Laplace transforma-

tion. (See reference 10} Thus, if the Laplace transform
F(s) of the function F@it) is deﬁned by the relation

R OF W OF

then equation (21) can be rewritten in the form

CGo=sC.@a0 2

Consider now the case of 2 lifting flat plate oscﬂla.tmg har-

monically without pitching at a frequency « and maximum

angle of attack equal to apgy. Settmg o
' gt (28)

a(t) _amnxeiw = Olm

then equation (22} yields

| _j “ %_" —W (Jcoﬂ' 1/:-|—erf_\/-c_ﬁg) | (2_4_)

| By straightforward manipulation, the inverse tmnsformatlon
L of equatlon (24) can be shown to give

O

Cmax

—-46"‘" 1 -{- »J— e [C(wt——u) —1 S(wt—v)]— - —

\/_le(wt ”)— 2{1\7,@; ,,) ——arctan\/%—'c"

o
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where

o’ is true impressed frequency (a=; Cmazt™™").
Clwt—v), S(wt—») are Fresnel’s integrals (reference 11).

Ny(wt, v), Ny(wt, ») are integrals defined in the list of symbols.

wi

FIGURE 5.~Lift resulting from cosine-wave angle-of-attack variation.

If the response to a cosine variation of « is required, only
the real part of equation (25) is used. Such a response in
the early stages of the maneuver is shown in figure 5. For

very large values of time (, as given by equation (25)

approaches the value

GL =—=Adplut _]'- —iy _{ fo e
amx—4e ( poll —.—erf\w)

from which both the amplitude and phase shift of Cy, resulting
from either an impressed sine or cosine variation of « can be

(26)

e=inifial value

“-Final volue.

FicurE 6.—Amplitude of oseillatory lift resulting from a ecosine angle-of-<ittack oscillation
{without pitching) at Mo=1.

readily determined. Figure 6 shows the amplitude of lift
oscillation corresponding to continuous angle-of-attack oscil-
lation, as determined from equation (26), plotted as a func-

tion. of v=ch°- It is apparent that as « approaches zero,
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w=0

cos wi

FIGURE 7.—Variation of cos of with £ for various valnes of &.

C. approaches infinity; that is, as the impressed wave ap-
proaches the “step” function (fig. 7), the lift coefficient ap-
proaches infinity. This result is in agreement with equation
(20b) as ¢ approaches infinity. As the frequency parameter
v is increased, however, the value of (7, fer  _isreduced and

max

reaches & minimum of about 3.4 for & value of »=0.9. For
a speed of sound around 1,000 feet per second and a wing
chord of 6 feet, this would correspond to a frequency of 47.7
cycles per second, a value well within the range of practical
flutter frequencies. It is interesting to note that figure 6
also shows that as the frequency of oscillation becomes large
(i. e., »>3) the value of (%, fo  _approaches the value 4.
This is the same as the value for (7 (f) in the early stages
following a step variation of a. '
UNSTEADY —STATE. Afy<l

It has been pointed out that, in the determination of the
indicial lift function for a wing traveling at subsonic speeds,
the lifting-surface analogue involves the calculation of load
distribution over a swept-forward wing with subsonic edges.
This means that recourse cannot be made in the solution to

the simple source distribution method used in reference 7

to treat the Jfy=1 case. Since, however, a portion of the
leading edge in the present case is still supersonie, the prob-
lem is particularly adapted to lifting-surface methods de-
veloped by Evvard in reference 12. Figure 8 indicates, as
in figure 1 (b), the geometry associated with the boundary
conditions. In the Evvard analysis the solutions, as in the
previous case, are calculated for various regions. As an aid
in identifying the different results the sketch denotes these
regions by Roman numerals.

The load distributions and indicial lift functions will be -

given here for values of £ up to the time when the character-
istic from the trailing edge first crosses the leading-edge
trace, that is, for

Co

0t =17, .

or

r Co
<t'<
- 0=t = a (1 Z‘_.zu)
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s

oSeeer

FIGURE 8.—Regions used in the study of subsonic unsteady hft

This period covers the time in which the wing travels

2M,/(1-24y) half chords and, since the present analyszs is

concerned with values of M'a.ch number near one, will in

some cases extend beyond the range of the linear theory.
The following results are obtained for load coefficient:

Region I (between lines x=¢, {=0, and z—co—-t)

A 4 .
2 Z R e -(27&)
Region II (between lines __(;n;_—llfct, z=%, and zx=c,—t)

‘A__p_ 8a A[g
—71' [g 1+ﬂ[ﬂ

“t—z

]
p—

Ilfot+x+a‘m tan \/ﬂf"t-l_x) (27b).
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Region III (between lines z=c,~t, z2=t, m=—t+1—_f_2-2'{—r
shlg
Co .
and t'—-l_ﬂfo)
Ap - 8a i—z

Ap - =z 2r—t{1—Afy)
@ w0+ V x—l—M’ut-I_ [“m sin. T+ Mgt S+

2(co—2a) —t(1+-A1)
Ct(1—Ady)

are sin (27¢c)

Regmn Iv_ (between lines z= t :r—co—ﬂfut &nd :r,—co—t)
__= r— CQ'{"A[qt
—1—- arc sin \/ T0—1)

Region" v (between lines = _t+1_—|2-ci7’ z=c,— Mg, and
0 .

(27d}

__©Co
=1=%)
Ap_ 16a -z , ,
7 ﬂzr1+M.,) PNV 3 EFch \—KE@ )+ K Ic’)]—
. z . 2o—t(1—My) | 320K
mmcsm +m are sin =T + UL

Co—s—Mf __ 2 TEBIA
EL—M‘—_)(#Q =M, B¢ SIHW.L'E'N:;

: (276}
where L.

P =y1-I*
2¢
R o

Y=are sin

[W]X {

3"
Ns =ﬂ_2' ﬁ TO' o
where

u=—\71—§ (t—x) o

'U‘_'——' (t_[_w) " "_.'i.' "_ T

ggp' kg; incomplete elliptic integrals .

K, E complete elliptic integrals

In figure 9 (a) the growth of pressure distribution with

time is shown at subsonic speed for the period of time
covered by equations (27).
pressure changes calculated from equations (18) are shown
in figure 9 (b) for supersonic flight velocities.

Equations (27) suffice to determine the initial growth of
indicial lift coefficient at subsonic speeds. Such results
were given in figure 3 at A£,==0.8 along with the calculated

For purposes of comparison,

-1 (’U'+UL) (1—Mg) [(v—w) (1 +ﬂ-’[o) —CM/_ 2]+ 2u0[v(14-34) —c ‘\/2 '—'u(l '—'ﬂfo)]}
[v (1434, —0‘01/—+1’1(1 ﬂfo)][u(l -‘-MO) —Ul(l‘i‘ﬂfu)]

(2) Subsonic

(h) Supersomc

FIGURE 9.—Pr'essure distributions on wings receiving sudden angle-of-attack change at £=0.
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growth for about one chord length of travel at Af,=0.4. The
value of Cy_(¢) at =0 is, for all flight speeds, equal to 4/3,.
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First time interval 0<i< ﬁ
2klg

4 (28s) |

Expressions for C;_(f) are as follows: Cr,O=7 I feo—£(1—2)]
Second time intervel ; _:‘h A <t 1_6031 T, | )
e, @ == ﬂj{n o { ) _13 i(il};ﬂ[“i) are tan\/ %ﬁ%—%-}-
™ (t e T +éﬁ{}3’z VREA T3y —2a]Re—t(1— D]+
[2¢,—t(1+31p)] arc tan \/ iﬁ}a)—%} +§—0f1_:‘i (QAE) L4z (28b)

ApN . . . .
where (g_a)v is given by equation (27e).

II—THREE-DIMENSIONAL LINEAR PROBLEMS FOR 31,
NEAR ONE

STEADY STATE

General solutions for arbitrary Mach numbers.—Two
methods of attack are available for the solution of linearized
problems at sonic speeds. In the first place, solutions to
equation (13) can be written formally and the extent to which
these solutions satisfy the original assumptions can then be
investigated. In the second place, general solutions of equa-
tion (7) can be studied in the limits as 3}, approaches 1.
Since this latter method furnishes added information con-
cerning the variation of the variables with M,, it will be used
first.

In linearized theory the boundary-value problems of wing
theory are concerned with two separate properties of the
wing; the thickness effects and the effects produced by the
twist, camber, and angle of attack. The first is called the
nonlifting case and the second is the lifting case. Solutions
of equation (7) for Jf;=1 are given in reference (13) as
follows:

In the nonlifting case

__1 Awo (@1, Y0 dridy:
qS(:c, Y, Z) - o9 ﬁ J‘_vl(z_xl)s_ﬁz(y_yl)i_ﬁzzz (29)

where f=+AM>—1 and Aw,=2w, where w, is the vertical
perturbation velocity on the wing and therefore related
directly to the slope of the wing surface relative to the r axis.
The integration region = is the area on the wing within the
Mach forecone from the point z, ¥, z.

In the lifting case

. BPzAdo(z, 'yl) dx,dy:
|, f e 5

where Ag, is the jump in the value of the velocity potential
in the plane of the wing. Thesign|[  denotes “finite part”

E0)

1
¢($s Y, 2) =%

itA

of the integral and introduces special integration techniques.
(See reference 13.)

Equation (29) expresses the velocity potential for the sym-
metrical wing in terms of an integral involving supersonic
source distributions while equation (30) employs doublet
distributions. In the two cases the distributions are de-
termined from the geometry and the load distribution over
the wing, respectively. '

Source and doublet distribution effectiveness at infinity.—
It is well known that the lift, drag, and pitching moment of a
given wing may be calculated either from direct integration
of the local pressures on the wing or by means of momentum
considerations where the induced velocities of the wing are
determined at an infinite distance and the desired forces are
related to an integration over a control surface enclosing the
wing. In the three following sections the latter approach
will be considered and the limiting value of drag at Jfy=1
computed. The initial portion of this theory requires the
evaluation of source and doublet effectiveness at infinity
and the concept of equivalent source position, an idea which
appears to have been given first by W. D. Hayes in reference
14.

Consider, as in figure 10, a point P with coordinates z, ¥, 2
lying within the induced field of a supersonic wing. The

zk z A

Bz, y,z)

- -

YR
v

Ar

g~

Fi1GURE 10.—~Coordinates used in siudy of supersonic source.
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Mach forecone from P is gwen by the relatlon o

—xl—ﬁw/(.!—?h)’-l- (z—2p)?

where 21, %1, 2; are running coordinates of a point on the
surface of the cone. Introducing polar coordinates

 y=r cos 6§, 2=rsin §
and rewriting the absecissa of P in the form
r=xo}-Br

it follows that the trace of the forecone in the z,=0 plane is,
in the limit as r approaches infinity,

%y=Py cos 6+, | (32)

It is, moreover, possible to show that the effect on the veloc-

ity potential at the point P as r approaches infinity is the
same for all points (z;, ¥, 0) for which 2, — By, cos #=constant.
The value of this effect is : —

1 o .
27287 (xo—xl“l'ﬁyl cos )

and follows from the asymptotic evaluatlon of the superaomc
source potential

o=

. 1 o
21 @—21) — B (y—y.) — B2

¢

for large values of r.
(%1, 11, 0) is thus the same as for the source shifted along the
trace to (z;—PBy; cos 6, 0, 0), the intercept of the trace on the
x axis. For Mach numbers near one, equa,tmn (33) can. be
rewritten . L
=2 V26r m—a)

and is equivalent to the potential at P for the source at
(21, 0, 0). The induced velocities at P due to a source at
(%, 71, 0) follow immediately, for arbitrary M, and for Af,
near one, from the gradients of ¢ in equations (33) and (34).
It is important to note that equation (38) is a function of
the azimuthal angle of P so that, in general, a source does
not have a fixed equivalent position with respect to its po-
tential at infinity; equation (34), however, is mdependent of
the azimuth 4.

The source-sink potentml is applicable to the study of
symmetrical nonlifting wings. When lifting surfaces are to
be analyzed, the doublet potential

34

Bz -

T

must be considered and the question of equivalent doublet

position with respect to the potential at infinity arises. In

this case the doublet position can again be shifted parallel
to the trace of the Mach cone from P at infinity and the
potential at P is given by the expression.

o " Btz : L
= 27"[237”(%—31"]'5% cos 49)]3’ia o
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o

: (3‘3) '

The potential at P for the source at

and, for Mach numbers near one,

L -, oo - ; -t .
Momentum relations.—The vectorial force F' on an acro-,

dynamic body inside a control surface § is given by the
surface mtegrel

F=-], f@—po)ds— f fpV[(T +V) dS]

where vector notation is used and
0 sitbseript indicating free-stream condition
Pp,p  local static pressure and density

(37

v local perturbation velocity vector

For b_he purposes of the present report, equation (37) will

be modified according to the assumptions of lincarized theory

and the surface Stestricted to a semi-infinite circular cylmdex
of radius 7, its axis of symmetry lying along the z axis, and
with one. face in_the =0 plane while the other face is at
z=constant. (See fig. 11.)

From. the linearized theory, S

"
- .. po

and . : :

p—po——p| Vg Gibot ) [+t

— }L-[uﬂ%‘f’;

0

= L

s "

Y. - ~

FIGURE 11.—Surfaces used in study of momentum.

The end faces of the cylinder may be denoted, as in the
figure, by I, II, and the curved surface by III. Then in
supersonic flow, if a distribution of sources is restricted to a
region downstream of I, the drag D on the body corresponding
to the source distribution is given by the expression.

D=z pgf f (Mo —1)u’+v‘+w2} dydz——pof uv,rd&dm
(38)

where v, is the radial component of the perturbation velocity.
No loss in generality results, moreover, if the surface II is
moved infinitely distant downstream and the radius of the
cylinder is made arbitrarily large. The notations II and

III w111 henceforth refer to this particular configuration.

, 3 - ﬁzz . e m—
¢—21r[23rixo—x1i]m (36)

"
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If the drag of a lifting surface is to be calculated, the surface

and its vorticity wake are replaced by doublet distributions

and in that case the integral over region II in equation (38) is
called the vorter drag of the body while region III yields the
wave drag. (In subsonic theory, the vortex drag is custo-
marily referred to as induced drag.) It khas also been shown
{see, for example, reference 17) that the vortex drag of a
supersonic wing is & function only of its span load distribution
and is equal to the induced drag at subsonic speeds for the
seme span lading. If a finite nonlifting body is considered,
each of the velocity components in region II is attenuated
in such a manner that its contribution to the vortex drag is
zero. The integration over region III agein gives the wave
drag for the nonlifting body.

The combination of the results given in this and the last
section provides & method for finding the wave drag of an
arbitrary body. The first step is the determination of the
source-sink or doublet distribution corresponding to the
body and then, by means of the principle of equivalent
positions, the sources or doublets are moved to the x axis.
The wave drag is then calculated from equation (38) once
the induced velocities on the control surface are known. In
the next section the wave drag will be written in a different
form and the drag at sonic speeds will be investigated. This
analysis also provides some insight into the range of validity
of the sonic theory.

e

Y

X 7

FieurE 12.—System of axes in {ransformation equation (39).

Evaluation of wave drag as M, approaches one.—In order
to study the drag of a symmetrical body at zero angle of
attack, it is convenient to consider the general expression
for the velocity potential given in equation (29). Introducing
first the transformation (fig. 12)

f=—y tan F'Hﬁ}

1=y, sec u

@9

where _ )
tan p=g cos 8

equation (29) becomes

cos p Awo (§,m)dEdy
"rf f Ve—x)—Bly—y)—p2

o(x,y,2)=
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Since, however, it has been shown that o evaluated infinitely
far away from the wing does not change if a source is moved

along the line £=constant, it follows that the source strengths

can be integrated along these lines. The second integration
is then along 7=0 where, from equation (39), £=x, and the
value of the potential at an infinite distance is

cos p dz;

e, 7, =5z
i 2z} ¥@—a)— By — B2
Setting '

f o (21, n)dn

Ty, ) =—cos p S Aw, (1, n)dy
it follows that

r—fr

_ S, p)dz,

Ve—wr—pm O

45(3-'": r, ) =§;
and this is the same as the potential for & body of revolution
with source strength per unit length given by f(z;). The
induced velocities corresponding to the potential in equation
{40) are found to be, after first integrating by parts and

using the notation 0/dz, f(z;, p)=f (2, &) together with the

relation f(0, g}=0,
_0¢_ 1 (A f(x, pdn

N (D)
wnd (e, )
L 00 —1(=F @—x)f (@, wdn
YT  Ja—z)r—pr )

Asymptotic values of the velocity components for large
values of r are readily seen to be, after first setting 2=, 8r,

f f’ (3?1, wdx
21?‘\ —II

i B i

Equations (43) and (44) may be used together with equa-
tion (38) to give for the value of drag the expression

-l e e

Assuming that the bo&y is of finite length so that f/(z) =
for 2>>1 reversal of the order of integration yields the relation

(43)

and

(44)

——& [T an [ [ @ 0 @ winle—sldades 40

0

If equation (46) had been derived for a body of revolution,
then f(x) would have been independent of the angle x and
in that case the expression for drag would reduce to the form

D= _-p_of f fl (xl)f’ (xa) ln'a:f —-xa[d-rxdl’z (46a)

This expression was given by von Karmén in reference 15.
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For the study of the drag of a lifting surface, consider now
the general expression for the velocity potential given by
equation (30).
case both the wing plan form and the wake since the jump
in ¢ exists also in the vortex wake. By use of the transfor-
mations in equation (39), equation (30) becomes

cos u A¢(E, n)dédy

¢@ Y, A= G2 —F G~ P

and, exactly as in the case of the source dlstubutmn tlus

can be reduced to

cos p dx;

f[(x_xl)z — P ___322213/2fA¢($1;ﬂ) dn

¢(x; Y, 2) _'2,“.

Setting - ——el L T
X :

g(aél, ® '%cosfu S Ad@,mdn
it follows that

o(a,r,0=E7 S 0

fx-ﬁr gz, 1) d2y
Jo [@—z) 2.___ ﬁzrzl 3/3

Integrating by parts and using the fact that g(0, u)=0,

_0¢_sin 8| (=-6r B3¢’ (1, p) da
) e e
and
=0¢_ 51119{ 1 f a~br (£—21)g’ (&1, ) dzy_
“or 2xr tr 1/(2':;351)3—,821"’
s—tr (@—a,) Birg’ (1) e
J: [(w—lmx)"—ﬁ;r’] | (48)

g(s:l,u) Setting z=z-}+pr and

letting r approach mﬁmty, the asymptotlc expressions for
equations (47) and (48) become ifg (0, p) 0

where ¢’ (x,, ) indicates

~sin 6 /B f’fu 9"’ (1, 1) d:cl o
= e R Rkt 49
2'"' ) ‘)r '\/xﬂ_xl ( )
and -
sm sin 4 J %0 g'! (@1, ) day dz, .
pp= (50
B 21" \/30—271 (50)

The relations just derived may be used in conjunction
with equation (38) to give the wave drag of a hftmg surface.
This result takes the form

.ﬁl’_‘? sin? gf dxofn 9 (@, wdz, (= g (2, p)dxs (51)
S VEo—a:__Jo 1/330—-'272 o

In the wake of a lifting wing the function g’’ (2,, #)=0 and 1f _

moreover,

[ 9@, wie= e g0, =0

The doublet distribution occupies in this
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reversal of integration in equation (51) yields the simplor
expression

1t
D—‘0 of* sm’e dsﬁﬁ g (@1, w)g" (@2, p)in[e,—as|deidr,

(52)

It is possible to draw some general conclusions from equa-
tions (46) and (52) regarding the wave drag of wings and
bodies of revolution without the necessity of detailed applica-
tions to particular configurations. It is apparent imme-
mediately from equation (46a) that the wave drag of 2 body
of revolution at zero angle of attack is independent of Mach
number. This conclusion does not apply, however, to the
nonlifting wing since the distribution funetion f (x, p) in
equation (46) contains the variable g which, in turn, is a
function of both 8 and 8. As Af, approaches one, the study
of the nonlifting wing is divided most conveniently into two
parts, depending on the behavior.of f (z, u).

Consider first the more general situation in which f (z, )
is not zero; that is, the case in which the number of sources
does not-equal the number of sinks along the line f==constant.
This means, when Af, is 1, that an unequal number of
sources and sinks appear in the transverse or yz plane and,
if equation (46) is applied, either a finite or an infinite value -
of drag can result. The limiting value of drag at sonic -
speed obtained from 1ntegrat10ns of surface pressures, was
gwen by Stewart and Puckett in reference (18) for several
wing plan forms, all of which had nonvanishing values of
J (=, p). If the pressure distribution is caleulated, however,
the local pressure coefficients are scen to become infinitely
large as sonic speed is reached, even for the body of revolu-
tion, so that the assumptions of the linear theory are violated
and the reliability of the drag predicted by cquation (46)
can in ho case be assessed even though the predicted values
remain finite. Equation (43) shows also that when control-
surface. methods are used to compute drag at Afy=1, the z
component of induced velocity increases indefinitely when
f (z, p) is not zero and that the theory is, thelefore, no longer
consistent.

In the very special second case, that is, when f (z, u)
vanishes for all values of 4, the analysis just presented breaks
down at equation (40). It is clear, however, that in this
case there are equal numbers of sources and sinks in the 2=
constarit plane and the behavior of the flow field at infinity is,
therefore exactly the same as that which would have been
produced by a distribution of doublets. Equations (49) and
(50) give the velocities induced at infinity by an arbitrary
doublet—distribution. These induced velocity components
are, in terms of 8, one degree higher than the similar com-
ponents for the nonlifting case. The values of both % and »,
can. thus be expected to approach zero for all values of Af;
as r approaches infinity for any flow field generated entirely
by doublets or by an equal number of sources and sinks. It
follows._then that the linearized theory for lifting surfaces
(generated entirely by doublets) and for bodics with thick-
ness distributions such that f (z,z) vanishes (generated by an
equal number of sources and sinks in all {=constant planes)

 isentirely consistent as M, approaches one and, in particular,
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for Af, equal to one. This being true, it follows immediately
from equation (52) that the wave drag of a lifting system is
zero at sonic speed.

Thickness solutions at My=1.—A swept-back wing of con- |

stant chord and infinite aspect ratio is an example of a prac-
tical aerodynamic shape for which an equal number of sources
and sinks occur in every yz plane. (See fig. 13.) Consider
the case in which the wing cross section is diamond shaped
with a slope equal to A in a plane normal to the leading edge.
Then, in a transverse plane (section BB of fig. 13), w, equals
=4 17\ cos ¢, the minus and plus signs applying, respectively,
to the left and right of the ridge line. Accordingly, the solu-
tion of the problem can be written in terms of a distribution
of sources, thus '

®

'z cot

3
( 2005V col ¥

The value of d¢/0r can immediately be found to be

7oA cos ¥ In[(y—y)2- zz]dy1+

(IT2 cos 111) fan J } {[y_(x
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e
~y et gagloot ¥
84 DNoysx cot Y

Tosy
cos

fon 6,=A cos Y
Section A—A

. Yl goagloot ¥ -

(__<:1>- g

co
siny

forr 6, =A sin Y

Secfion 5-8

FicvRE 13.—Views of infinite swept wing showing coordinates.

(:+2 o5 2 y) cot ¢

ToA cos ¢ In[(y—y)?+2%1dy {33)

~reay) ) T4

0¢ [ Vehcosy {[y
3z z-rtanlp)Xl

that is, for 2=0, 0¢/0x becomes

5[ (’tan 1;)] 2 r —(ﬁ@]}zz} J (54)

from which it is apparent that as r= 49?4 2® becomes infinitely large, 94/0x approaches zero.

In the plane of the airfoil

(y tan -,b—:c-—% € sec 10) (y tan ‘l’_z'l'% Go BeC #’)

(bqb 1(,)\cosgb [_
= rtannp

and, using the definition for pressure coefficient, C,=—%—;—L:
0

1 2
5%
In |:(y sin y—zx cos 'gb) _I:I (55)

Equation (55) can be derived by entirely different methods.
Perhaps the most direct of these alternative derivations is
the one introduced by R. T. Jones in reference 18. The gen-
eral statement used in that report is that the component of
translational velocity of a c¢ylindrical body in the direction
of its long axis has no effect on the motion of a frictionless
fluid. Hence, the pressures over the wing shown in figure
13 are the same as those over a wing moving normal to a
free stream with a velocity T cos ¢. Using the Prandil-
(Glauert correciion to the thin airfoil solution of a two-
dimensional, diamond-shaped, nonlifting section exposed to
a free stream with velocity ¥, cos ¢, one obtains, for
My cos ¥ <1,

this becomes *

2\ cos ¢
7 tan ¢

Cy=—

4’:’2%57‘{-6::, wlnll' —n)*+@'2)0dr  (56)

where uy is the vertical induced velocity on the upper side
of the z=0 plane, 2’ is measured normal to the leading
edge, and g'=+1—14" cos®¢. If this solution is referred

to the axial system of figure 13 by the transformation

2=z cos y—y sin ¢

(y tan y—z)* :I

and the integration is performed after taking the partial
derivative with respect to 2, the resultant expression for

pressure cocfficient iz

1 2
___ 2costy ':( 3% )_:I .
Co= 71— MZcos ¢ In| \zeos Yy—ysiny ! 67

At sonic speed this equation reduces immediately to

1 2
__ 2rcosy, 2% ) :l 58
Cp=— rtany In ,:(a: cosy—ysny/) 1 8

which is identical to equation (55). The result expressed by
the two equations is, of course, not new. The significant
point is that the same variation in pressure coefficient was
obtained by two widely different avenues of approach and
that the result obtained from the particular methods appli-
cable to sonic speed theory is in agreement with that derived
from more conventional analysis.

Lifting-surface solutions at My=1.—It should be men-
tioned at this point that Robinson and Young (reference 19)
have shown by means of linearized theory that supersonic
triangular wings and subsonic elliptical wings of the same
aspect ratio have values of lift-curve slope which approach
a common and finite imit as Af=1. The present section
of this report is concerned only with the study of lifting
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surfaces at a fixed sonic velocity but the results to be obtained -

are in agrcement with the limiting values of reference 19.

A further application of the results in this section can be
made to the case of very low aspect ratio wings at arbitrary
Mach numbers. This viewpoint of the theory was first
presented by R. T. Jones in reference 20 and applied to
triangular wings, while in reference 21 extension was made
to include pointed ‘wings on slender_bodies of revolution.
This duality of interpretation, that is, to all aspect ratios
at sonic speed or low aspect ratios at all Mach numbers,

applies to all solutions of three-dimensional problems ob-

tained from equation (13). In the subsequent analysis,
attention will be confined to $Wwept-back plan forms of lifting
surfeces with pointed vertices and thus doublets will be used
exclusively.

In application, the two types of boundaly conditions to_

be considercd are as follows:

1. Boundary-value problem of the ﬁrst kind, loadmg spect-
fied—It is given that Awy=wu,—u;=0 over the zy plane
except for the region occupied by the wing where 2u,=
Qur=Au,=#(z,y), the function being determined by the

specified loading. Over all of the :gy plane, the ::mposed

conditions are Awy=0.

2. Boundary-value problem of the second lcmd’ surface spect-
fed. —Over the zy plane, the 1mposed cond1t10ns are Awn—O
%=0. Over the reglon occupmd by the wing wy=1w,=
w;—f(w,y) where f(z,y) is determined by known camber,
twist, and angle of incidence. (The delta notation again
indicates the jump in the value of the variable at the 2=0
plane. Subscripts u and [ indicate conditions on the upper

and lower surface, respectively, of this plane.)
- Y

Y= balx}

Yx
F1oURE 14.—Swept-back plan form with curved trailing edge.

The nature of the differential _e{jual,-ion shows that. the

value of ¢ is & consequence of boundary conditions along
lateral strips. If, as in figure 14, the two leading edges are

given by the expressions y= bl(z) and y= bg(ﬂ'}), the veloc1ty "

potential js expressible in the form - U

ba A¢o (35 yl) dy:
v =y

oz, ¥, 2) 27..

If the boundmy—value problem is ope of the ﬁrst lund the
general expression for ¢ follows from a dlrecf, mtegratmn

after noting that

. arbitrary point z.

——— S (59)
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Ago(z, ) =ﬂE_ Aug (2, y) i

(60)

where the integration extends from the leading edge to an
Since, moreover, load coefficient Apfq is
related_to Au, by means of the equation

- Bp_28u,
_ q Vo

it follows that the velocity potential ¢ can be found for any

prescribed load distribution of a given plan form. The
value of vertical induced velocity, evaluated at z=0, then
suffices to calculate the twist and angle of attack of the wing.

If the boundary-value problem is one of the second kind,
the vertical induced velocity is given on the wing and the load
distribution is to be found. In this case the use of equation
(59) leads to the consideration of an integral equation. Since
however, this integral equation is & common one in aero-

dynamic theory, certain established methods may be apphed _

toit.
After noting that A¢e(z, ¥)=0 at the leading edge, mtegra-
tion by parts and mtroductlon of the rela,tmn

yields for perturba,tmn potentlal the e\pressmn

. ¢=2 Avo (x, 1) arc tan y_g__ dy 61)

In the limit as 2 approaches zero the derivative of ¢ with
respect to z reduces to the form

— I"’z Ao, y)dyy

oy ©)

For a given distribution of w, over the plan form of the
wing, equation (62) represents an integral equation to be

solved for Am(z,y) subject only to the condition that the

Kutta-Joukowski condition is satisfied at all subsonic trailing

edges. Once Aw(z,y) is determined it follows that
o ' Aqm——'—ﬁ: Ao (,31) din (63)
and '
Ap 2 DA :
23 o o

In the present report the solution to the wing plan form
shown in figure 15 will be presented The value of Ady
which satisfies equation (62) is, in reglon 1,

Ago=—2usy /27 tan? = ' ~(65)

and mreg10n2 S . o T

A= —2uz tan 0 [E(ok) —k " Fiuk)]  (86)
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where E and F are defined in the appendix and where

_ . [2% tan? 6—97 -
Po=arc sm\ 2 tan? §—a (67)
by == VT (68)

The equation y=a;(z} of the trailing edge for which equation
{66) is valid is given by the formula

= ko
"Bk E, 9

251

which expresses a, explicitly as a function of stand)

Regil‘bns /B\ - T . -
26 I‘

-y =x tan 8
.‘\\
y=a, (2)--‘*
G—to
Sa

' ’(-m—hq—— -

'

>
Ficure 15.—Dimensions and regions used in discussion of swept-back wings.

This particular choice of trailing-edge shape was used to
simplify the analysis. The resulting plan form approaches
& constant-chord wing as the span increases. The variation
of @, with z is given in figure 16; and figure 17 shows the
relation betiween aspect ratio and span.

The loading coefficient is given in the two regions (defined
in fig. 15) as follows:

a1

Cg fan 8
g 2 4 N-] .8 La
LG
™~
N
Lé
™
2, N

6 AN

AN

[X-]
Fiovre 18.~—CGraph showing trailing-edge position of the swept-back witlgs studied.
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fon 86 L/
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4
.o .4 1.8 ‘a2 28
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FIGCRE 17.—Relation between aspect ratio and wing semispan.
Region 1.
Ap _ 4z tan®$
e~ V7 tan 0—7 (70)
Region 2.
92 _ 2 Y f v'—a® _ Ey
qa—4 tan e[E(‘xbﬂrkO) +$ tap 8V 22 tan? 6_y2 EF(‘pO:kO)
(71)

This load distribution is shown in figure 18 for a trisngular -
and a swept-back wing. It is seen that the loading at sonic
speed bears a close resemblance to those found af higher
Mach numbers. Two similarities of note are the discon-
tinuity in the pressure gradient at the Mach wave originating
from the trailing edge of the root chord and the satisfying
of the Kutta condition only where the trailing edge is sub-
sonic. The lift and vortex drag coefficients are given,
respectively, by
0[, _T A t02
atan§ 2tang\ &

(72)

FIGURE 18.—Pressure distributions for trisngular and swept-back wings st Afe=1I.

and
OD, A k 327:‘

Ztand tan bl 4

B — kK

(8o/c, tan 6) (73)



ka'=:'—z=-1/1“ 5"

These coefficients are ploited as a function of Aftan 8 in
figure 19. It is shown that the values of Cp [o? tan ¢ and

Cz/a tan 6 for finite aspect ratio swept-back wings are alwa.ys
less than the corresponding values for the triangular wmg

(Aftan 6=4). When the. span of the swept-back wing
8 .
(2%
& b - ’,’H-N fan E
“ .
SN - -
[ Cp
Pe— T
> \__: ot fan
g - - —L.
40 = a4 - 48 . 5.2 5.6 6.0
farr 8

FIGURE 19.—Variation of Jiff and drag with aspect rotio for a swept-back wing at My=1.

becomes very large, the slope of the trailing edge a,pproaches

agymptotically the slope of the leading edge. It follows

that for infinitely large aspect ratio the limiting value of the °

load distribution on the outboard sections should approach
the value given by simple sweep theory for an infinitely long
swept-back lifting surface with constant chord. 'This result
is, in fact, a consequence of equation (71).
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