
REPORT 956

LINEARIZED COMPRESSIBLE-FLOW THEORY
By

SUMMARY

The partial differential equationfor
potential i8 examined for .free-sh-eam

,

FOR SONIC FLIGHT SPEEDS
MAX. A. HE.WLET, HAFWAEDLOMAX, andJOHN R. SPEEITER

tfie perturbation relocity
Mach n.umbemc[oae to

and equal to one. It & f&cl that, under the assumptions of
linearized theory, solutions can be found cmwistent with the
theory for lifting-surface problenw both in stationary three-
di?mmional $OW and in. unsteady two-dimensional $OW.
Seueral eirampleg are solred including a three-dimensional
swept-back wing and a trodimensional harmonically osct”l-
lating wing, bothfor a free-str~am Mach number equal to one.
Mmnentum relations for the evaluation of wace and vortex
drag are also discussed.

INTRODUCTION

Much of the recent progress in the theoretical a.naIysisof
compressible-flow fields is attributable to the successful
appIicat.ion of Iinearization methods. Although the basic
assumptions med in conventional linearized theory appear
at first glance to be highly restrictive, it has been found that,
just as in the analogous case of thin-airfoil theory for incom-
pressible flow, the methods have many fields of utilization
adequate for most engineering purposes. Since the basic
methods are so vrell knon-n and depend on such relatively
simpIe mathematica.1 tools, it a.ppea~ obvious that. the
range of applicability of the theory should be explored.
Such is the purpose of the present report. -It has been more
or less tacitly presumed in the past that such a.ppIicatiorts
cannoi treat cases for which the flight velocity is near the
speed of sound. In the study of t-wo-dimensions.1steady-
st.ateproblems in airfoti theory, this presumption is certairdy
true. The Pramltl-G1auert and Ackeret rules for va.riatio~
of pressure coefficient with free-stream Mach number in the
subsonic and supersonic regimes, respectively, are clearly
invalid for llach numbers near one., since perturbation
velocities become arbitrarily krge. In this case, Iinearked
theory therefore predicts its inability to treat such problems.
On the other hand, if linear methods are. applied to non-
stationary two-dimensional airfoil and particnkr steady-
state, threedimensionid, lifting-surface problems at sonic
speeds, a consistent. theory results since solutions are found
whkb yield perturbation velocities of the same order of
magnitude as those calculated for free-stream Mach numbers
of, say, 0.6 or 1.5.

~T~ortuna~ely, ~rbit.rmy fichess distributions at sonic
speeds cannot be studied by linear theory in the steady state

since, in general, the theory predicts infinite pressure differ-
ences between the wing surface and infinity. In the particu- -.
lar case of a yawed, symmetrical wing of infinite aspect
ratio, the results are, however, again consistent with the
theory and .yield pressure distributiona which are the same
m those determined by using onIy the component of free-
stream velocity normal to the leading edge. The derivation
of this latter resdt for a free-stream Mach number of one
will be given.

The cliflkuky of not being able to inchde thickness
effects in general, together with the uncertainty of the magn-
itude of the viscous effects, Ieaves the question as to the
Iimita.tionsof such a linear theory in application to practical
wing shapes. Such a question can certainly not be resolved
by mathematical reasoning akme. The extent to which the
fluid medium can be idealized at these speeds is left, for
the time being, unsettIed and it remains for experiment to
determine whether the consistent mathematimd results ob-
tained from the linearized equations provide reasonably
exact predictions. In this connection, it should be mentioned
tha~ the few experimental resuhs available for the total lift
on thin t.rianguhmwings at,Mach numbers near one tend to
confirm the theory. But. e-renif more detaiIed experimental
results indicate that further retlnements are necessary, there
is still lit.tle doubt but that the linear potential solutions ti
provide a va.luablebasis for more exact extensions of theory.

The present report is divided into three parts. In the _
first part.,the Iinearizat.ionof the partial differential equation
for the velocit.y potential is carried out in some detail for
steady-state conditions. A byproduct of this derivation is
the nonlinear form of the equation for two-dimensional fl-~w
used by von Mrmtin (reference 1) to determine his similamty
rules for t.ransonic flow. The equation for unsteady txvo-
dimensions.1flow based on the same ~ssumptions is ako given.
The second part of the report is restricted to two-dimensional
unsteady problems for values of Mach number near one.
The principal contribution of this section is the evaluation .
of the change with t.inieof the pressure distribution over &
airfoil starting suddenly from resi at a speed close to that -
of sound. Such an idealized problem involves a step func-
t.ion in veloc.ity in which the airfoil has zero velocity for alI
negative values and near sonic velocity for U positive values
of time. From these results the initial build-up of lift can be
calculated from kIach numbers near one, although the
eventual value of t-helift cannot be found by linear methods.
Further applicat.ion can ako be made to probIems in flutter
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and gust Ioads. The third part of the report treats the
steady-stato three-dimensional.,problem. Both lifting sur-
faces and symmetrical nordift.ing wings are considered and
it is seen that in the former .cme consistent soIutions are
obtained by particularly simpIe means,...:Th-ese.solutions rep-

.rosent the limiting case of b.o.thsubsonic and supersonic Iift-
ing-surface theory find give, for exampIej the same vaIue of
lift-curve slope at the speed of sound that wiii obtained- for”
the supersonic t.riangulaxwing by Stewart (reference 2)J”

.- ,:
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a.

I—THE LINEARIZEDEQUATIONSOF ,N1OTION ‘ ““
. . STEADY STATE

The nonlinear partial differential equation satisfied by the
velocity potent.ig.l@ of an isent.ropicfiow f?uidcan be expressed . .
in the form

a

where he subscript notat.ionis used to indicate djffgrentidioh ‘
‘and a ii the local speed of sound given by the rclation

In this latter equation Vo and MOare, rospcctively, vcIocity
and Mac-h number of the free streani, Y is the ratio of specific “
heats (for air, 7=1.4), sad V is Iocal velocity.

Introducing the perturbation veIocity potent.iaI #, where

4=–VOX+-* (3) .,

it is possible to exprms equation (1) in terms of the der.h-a- I
tives of. .+-and the parameters MO and Vo. To begin the ‘
linearization of the resuIting equation, the coefficients of tho ‘
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second ordered derivatives of @ are expanded in Maclaurin
series with ascending powers of

~. The convergence is assured provided
&6’ L

or, in a sIightly modified form, provided

(4)

(5)

If the assumption is now made that ~, ~, =&l so that

second and higher powers in the perturbation ve~ocit.iescan
be negIected in comparison with one, the partial dtierent.ial
equation can be simplified to the form

From this equation all the succeeding expressions will be
derived.

TWO- and three-dimensional linear equations, &70#l.—
Since equation (6) is obvioudy nonlinear, additional assump-
tions must be made to reduce it to a linear form. CIea.rPy,
these assumptions must involve the relative maatitudes
of W the terms in order to determine which ones may be
neglected. Perhaps one of the least restrictive set of con-
ditions is that:

(a) The ratios of the perturbation velocities to the free-
strea.m velocity are smalI enough to be negIected when
compared to one.

(b) The nondimensional velocity gradients are ako small
in comparison with one where, in the nondimensiona.lity,
perturbation velocities are measured in terms of free-stream
velocity and the length is measured in terms of a char-
acteristic length of the body.

With the aid of these assumptions, it follows that, to the
order of the approximations made, the perturbation velocity
potential @ satisfies the -well-knownIinear equation

(1—-W) A.+ 4.,+ 4%=0 m

In the case of two-dimensional flow, the equation is inde-
pendent of y end thus may be written in the form

(1–M94ZZ+4Z.=0 (8)

Two- and three-dimensional nonlinear equations, IWO=L-
The study of equation (8) in both subsonic and supersonic
flow has shown that for arbitrary lifting surfaces or symm-
etrical nonlift.ing airfoik the value of the induced velocity
u on the surface of a tied geometric con6guration is pro-
portional to (11–M~\)-~(2. In all airfoil probIems, the value

of u becomes infinit.eIylarge as MO approaches one, either ___
from above or beIow, and the basic assumptions are thus
violated. Such a diEEcuItyled Oswatitsch and lVieghardt
(reference 3) and:Sauer (reference 4) to abandon the restric.
tion of linearity and to seek a more exact equation at M== 1.
Retaining the assumptions underlying equation (6) and
setting VO=a* where a* is the critical speed of sound, it
follows that at fif,=l the perturbation velocity potential
satisfies the equation

(7+1)
~ 4’.41.– 4%?+: 4Z+Z.=0 (9)

Since ~. is much larger than #, as the Mach number ap-
proaches one, equation (9) may be further simplified to

(7+1)
— +.+,.– +=== o

a*
(lo)

If, in tkee dimensions, the perturbation velocities do nok
remain small, equation (6) again supphes the necessary
form of the differential equation at Mo= 1. From the rela-
tion VO=a*, the required expression is

(T’+1)
~ 4.4%-4,,- +..+:* fA?&z+:*A&u=o (11)

Two- and three-dimensional linear equations, MO= L-
Equation (10) has been used by von IMrmfin (reference 1)
to estabIish similarity rules for two-dimensional transonic -”
flow and is the basis for work continuing at the present time.
(See aIso reference 5.) If at MO= 1 the assumptions made
in the linearization process stiIl hold, it follows from either
equation (10) or (8) that the diflerentiaI equation reduces to
the form

@Jzz=o (12)

It is possibIe, however, to predict independently from this
relation that Linearizedmethods cannot be applied to the
calculation of arbitrary airfoiI pressure distributions. The
range of applicability of such an equation is thus ahnost
nonexistent. On the other hand, the linearized form of
equation (11) or (7) at Mo= 1 is

4,,+ 4%.=0 (13)

and from this equation a class of nontrivial solutions can be
obtained for particular boundary conditions. Both equa-
tions are of parabolic form in the number of dimensions for
which they are de.iined. In the present report, formal solu-
t.ionssatisfying the imposed conditions wiU be obtained in
three dimensions for fiat Ming surfaces with swept-back
Ieading edges and for an infinitely long, symmetrical, swept-
back wing.

UNSTEADY STATE

The derivation of the steady-state equations for the veloc-
ity potentiaI was developed in some detail because of the
various resuIts to be obtained. Siar methods can be used
when unsteady conditions are to be considered, the di.Reren-
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tid equation for the velocity potential being now
form

in the

(14)

where t’ represents time. The details of the derivation can,
however, be avoided by refer~ng dire,ctly to the cquatio~~
satisfied by the veIocity potential for the propagation of
sound waves of smaII amplitude. (Se6 reference 6, p. 492.)
h this form of the equation t,hc Cartesian coordinate sys-
tem z, y, z is assumedfixed in the medium so that free-st.rea.m
velocity is zero, while the wing, -whichmoves in the direction
of the negative z axis “withvelocity Vo, generates small pres-
sure disturbances. As a consequence, the veIocity potent.iaI
of the field s~tisfies the well-kno~m wave equation in three
space dimensions:

1
—2 $Z’t’ —4ZZ—%’- 6s=0a. (15)

. .-
JJquat.ion(15) is reducibIe to canonical form by means of

the reIation
t=aot’

and the three-dimensional form of the equation is therefore

du-k-d~,-+z.=o. (16)

whiIe in the two-dimensional case independence with respect
to y yieIds

$It–d%z–db,=o (17)

11—TJVO-DIMENSIONALLINEARPR-O”BLEMSFOR
lMONEARONE

UNSTEADY STATE, ,W021

It was pojntcd out in the derivation of equation (12) that
the linear equation for the velocity potentiaI is not applicable
to airfoil problems in either the su~nic or supersonic
regimes for “340 near one. The pqsslbdit,y still remains,
however, of analyzing unsteady ffows during the period in
which the perturbation velocities remain small. & an ex-
ample of such a problem, consider the case of a flat lifting
surface at a smaII angle of attack a starting from rest at
a velocity V. near the speed. of sound. Tho perturbation
potential for such a motion is equivalent to the change in
potential brought about by an abrupt change a in angle of
attack of an airfoil flying in a steady-state comlit.io~ at ve-
locity equal to Vo. The change in Ioad distribution brought.
about by this maneuver is the so-called indicial load distribu-
tion and a knowIedge of such indicial functions is important
for applications using operational calculus.

Figures 1 (a) and ~ (b) furnish an insight into the nature
of the boundary conditions for airfoils traveling, respectively,
at supersonic and subsonic speeds. The chord is initiaIIy.,.—

i --------- C#7aracbis+i’c h-acea”

It
(a)

,.—

---

t
(b)

(0) SupcrsonjcWing.

(b).sUbsonicwing.

FIGUREL-Boundory condltiomfor t~o-dlrncndondurr8tc&cly-ljftproblcm.

on the x axis with leading edge at the origin and traiIing
edge at .x= co. With increasing time, the wing section
travels in the negative x direction and sweeps out a portion
of the xt plane as shown in the figures (imlic-atcdby shaded
areas). Throughout thk part of tho pla.no tlm boundary
conditions require bat the induced vert.icaI velocity is
—Voa, whik elsewhere on the plane the induced veloc-ities
are continuous functions of z. In figure 2, sketches of the
airfoil h. the supersonic and subsonic c.ascs a.ro shown
together with indications of the manner in -which the dis-
turbance field spreads. These wings are prescnte.d in xvz
space with time as a parameter so that their coordinate
system is not to be confused with that of _figure 1. The
airfoils are traveling from right to left at Llach nurnbcrs of
0.8 in. the subsonic case and 1.2 in the supersonic case, and
for a time corresponding to that require~ for the wing to
traveI a distance of one-third chord length. At t=O c~lin-
drical waves are induced at each disturbance point, that
is, at eac.h””pointof the chord. These waves exp~nd r~dia~y
at the velocity of sound but, because of the velocity of the
wing, the center of the expmding waves moves relative
to the initial disturbance point. At a given instant in time
the entire disturbance region of the airfoiI is contained
within the c.loscd surfaces shown in t.ho figures, tho outer
surfaces corre.spondjng to t.holargest values of time. In the
supersonic. case, the pressure distribution over the wing
reaches a steady-state vaIue as soon as the wing moves. .

—. —

—.

1

1
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PIGmtKZ_Qketeh~howingextentofdfsturlmncefieldstitertrardofone-thirdchordlen@h.

ahead of the expanding cylindrical wave produced at t=O
by the leading edge. In the subsonic case, the wing never
leaves the disturbance fieId of the c~-lindersand, as -iviI1be
seen later, the steady-stat e pressure distribution is
approached asymptotically.

It is apparent from equation (17) that the characteristic
cones have semivertex angIes equaI to 45” and that the
cones with vertices on the zt phrne have traces with sIopes
equal to + I. These cones determine the upstream bound-
ary of the field of influence of the vertex point and their
cross sections in the plane t= constant are the disturbance
regions of the cylindrical waves arising at the vertex. Thus,
perturbations in pressure produced initiaIIy at the leading
eclge of the wing section are coniined at later time, in the
modified coordinate system, to the cone with vertex at the
origin and traces z=+ t.

The solution of equation (17) for boundary values of the
type under discussion has been indicated in reference 7
through consideration of an a.na.logue-probIem in supersonic
lifting-surface theory. Thus, the shaded areas in figures 1
(a) and 1 (b) are thought of ~ swept-forward Iiftirigsurfaces
situated in a stream directed along the positive t a.xieat. a
31ach number JIO= @. The boundwy values remain the
same; that is, ~~= w= —T“oaon the tig and #t, h & me
continuous functions of z elsewhere in the z-t plane. In
lifting-surface terminology, the unsteady case for supersonic
speed becomes a vring with supersonic Ieading edge, while
the case indicated in figure 1 (b) involves a subsonic leading
edge.

The solution for the wing tra-reIing at supersonic- speed
has been given in reference 7 in a form vaIid for all Nkch
numbers greater than or equal to one. The expressions for
load coefficient Ap/q, where

AP PI—P...—
!l ; ~’J702

differ a.naIytically in various regions of the zt plane. These
expressions are:

Region A (between lines x= —ilfot, z= —t)

Ap_ 4cY

r {m-
(18a)

(19a)

Region 33 (between Iines x= —t, z=t, and z=co—.llot)

AP_
[

4CY 1 .J&z+tL ~~
T— 3- ~ arc Cos“x+~fd ‘ iiilfo( )1~+arc sin $

(lSb)

Region C (between Iines z=t, t=O, ancl z=co–illd)

Ap 4a—.—
!l Jfll (18cj

From the pressure distributions it is possible to caIcuIate
the indiciaI Iift coefficient C’~a(t) as a function of lh!~and t.
Since

C.=(t) =&$” ~ dz

the following resuIts are obtained:

First time interval (J<t< ~

CL=(O=*0

.
. .

J% <t< ~jl:_ ~Second tl~e mte;va~ ~+L~Io

(
co—.lfot

)CL=(O=: [*0 ;+~c sin ~ +

1
~~ a“rcCos If+M:o-~u?~~+ #’-(c#Mo)’

(19b)

Third time intervaI & <t

c’=(~) =,/&’ (19C)

These results have been discussed in reference 7 for vaIues
of .3fogreater than one. They still hold, however, for sonic
flight speeds and, in fact, can be reduced to the expressions:

First time interval O<t< ~

~La(t) ‘4 (20a)

Second time interval ~ <t

~La(t)=$ ~+arc ‘in ~ + ~ ~
gl@ 2, /z=z

)
(20b}

The indiciaI lift coefficient is seen to be constant and equaI

to 4LKup to the time t’=% or up to the t~me required to

travel one-half chord. Following this tit time intervaI the ~
indicial function rises monotonically, reaching a-n ir&nitely
large vahe as time increases. The growth of Cz=(i) is, of
course, in agreement with the fact that the steady-state load.
coefficient becomes infinitely Imge in linear theory for Jfo= 1.
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This means that the theory cannot be used to predict the
complete extent of the C~m(t)variation with time but that
during the earlier part of the motion the assump~ionsremain
valid. In figure 3, curves of C~=(t)ar6 plotted as functions

1.6~AKa

FIGURE3.-Tnd1ciaI-liirve slope for Mach numbers between Oend 1.4 shown to time re-
qufrod to travel 12 half-chord Iengths.

Z’uOi for ya.lues of Alo=l as given by equations (20a),of —co “ -.
(20b), and 31.=1.2, MO=l.4 as given’ by equations (19a),
(19b), and (19c). Also included in the figure are variations
of C~a(t) for Mo=O as cidmdated from Wagner’s rcsglts
(reference 8) by R. T. Jones (reference 9) and ako for
kfO=O.8. The derivation of .msults leading to the JIO=O.8
curve wiII be given subsequently in this paper. The value
of CL=(t) at MO=0.4 for a short interval of time is also
drawn. The dashed portions of the curves were not cilcu-
Iated but were drawn to agree with the known asymptotic
value of the lift function.

Application of the indicial” lift funotion at MO= I.—Once
the indicial lift function is known, it. is “possible~o determine
the lift corresponding to a.given variable motion. Consider,
as tm.idealized exa.mpIe,the case where the airfoil experiences
an abrupt rising and sinking motion at~egular thye intervals.
Such a motion involves abrupt PIUSand &us a-nglesof
attack wit.hcmtrotation or pitching so that a(t’) is given by
the meander or square-wave function shown in figure 4 (a.).
In this example the variation of a is such that the curve for
C~(t’) can be calculated etdy. In figure 4 (b), CL(t’) is
shown for the case in which the di:~ontinuit.ies occur at
intervals of time equal to co/1”0 thai is, after each chord
length of travel. The principal point of interest in \his
example is the fact. that such a motion yields no excessive
value of lift or perturbation velocities and the ent&e analysis
is within the frame-work of linear methods.

When the variable motion is more complex in character the
liit coefficient can be expressed by means of Duhamel’s
integral. Corresponding to the angIe-of-attack variation-...

COM&IITTEE FOR .AERONAljTICS
—.

Cc(t ‘)

I
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1
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~
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I
. (b)

(a) Impressed angle of attack. —-

(b) Rcmfting wwfation of lfft..-

.FMUBE4-L~ resultff fmmsquam-wtweongIe.of.attnckmwktion.

a(f) as-a“function of timej t.holift coefficient Cz(t’) is given I
by fihe expression ---. .—

.-

S
CL(t’)=-$ :’CL=(t’–/) cY(T’)fw

–1

In anaIysisrelated to equation (21) it is convtient to employ” ‘
techniques associated with the usc of the Laplace transforma-
tion. (See referegce 10.) Thus, if the LapIacc t.ransforgl
~(s) of the funct.ionj(t) is defined by the relation

-. ?(s)=J=e-’y(t)dt.

then cqtiation (21) can be rewritten in the form —
u.(s) =W7L=(8)6(8) (22)

Consid8r now ~he case of a Iifting flat plate oscillating bar- ,
monicalIj without pitching at a frequency u and maxini-til I
angle of attack equal to a~*X. Setting —

.
a(t) =amaxef”t= Ctmaxei”aot’ (23)

then equation (22) yields . ... . ..- .-—-....-
...— ;% — ..-

CL(8) 4
, (d

—- -
—. —o-— a~*~ 8—’tfd o

~ = +erf ~
Colr&

(24) “

By straightforward manipulation, the inverse transformation ‘“
of equation (24) can be shown to give

.—
.

—-— -.
I
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w-here

u’ is true impressed frequency (a= amuef“~’).
C7(cd-v), S(ut–IJ) are l?resnel’s integrak (reference 11).

f~-l(wt,v), ~~(at, v) are integrals defined in the list of symboIs.

I
4

~ 2-

a

0 4 /0 Wt

-2-

-4

i
FIGURE5.-Lift resultingfromomfne-wa~esngle-ef~ttmk ‘arfation.

If the response to a cosine variation of a is required, ordy
the reaI part of equation (25) is used. Such a response in
the early stages of the maneuver is shown in figure 5. For
very large mdues of time CL as given by equation (25)
approaches the -due

(d&==4ei.t ~ e-f’+- erf &Gv )

from which both the amplitude and phase shift of o= resulting
ftim either an impressed sine or cosine variation of a can be

7
6

1

;-Initial value

*5 /’:2 3 4 5 6 7 8 g%

4 - ---! --~--!--— ‘ ‘ [ 1
[ I I

T&
-----.-----------------

3
i

“’-Fi~l wfue.

-F

FIGUEr 6.—Arnpiitnde of oscilhtory lift resstii from a cmine angle.ef-attmk oseiikation
(without pitching) at.Yfo=L

readdy determined. Figure 6 shows the amplitude of lift
oscillation corresponding to continuous angle-of-attack oscil-
lation, as determined from equation (26), plotted as a func-

tion, of r=%. It is apparent that as ~ app~o?ches zero,
.

W=CJ

FIGUEE7.—Varfatfon of eos m!with t for mrioue mines of w.
.

CL approaches infinity-; that is, as the impressed wave ap-
proaches the “step” function (fig. 7), the lift coefficient ap-
proaches infinity. This result is in agreement with equation
(20b) as t approaches irdinity. As the frequency parameter
v is increased, however, the value of ~L~ax/~~~,is reduced and
reaches a minimum of about, 3.4 for a value of v= 0.9. For
a speed of sound around 1,000 feet per second and a wing
chord of 6 feet, this would correspond to a frequency of 47.7
cycIes per second, a vahle weII within the range of practical
flutter frequencies- It is interesting to note that figure 6
also shows that as the frequency of osciIlat.ionbecomes large
(i. e., v>3) the value of C..~,x/amx approaches the value 4.
This is the same as the value for C.=(t) in the early stages
following a step variation of a.

UXSTEADYSTATE,Afo<l

It has been pointed out that, in the determination of the
indicia.1lift function for a -wingtra-reIingat.subsonic speeds,
the lifting-surface amdogue involves the calculation of load
distribution o~er a swept-forward “wingwith subsonic edges.
This means that.recourse cannot be made in the soIution to
the simple source distribution method used in reference 7.
to trest the 31.>1 case. Since, however, a portion of the
leading edge in the present case is still supersonic., the prob-
Iem is particu]a.rly adapted to lifting-surface methods de-
veIoped by Itvvarcl in reference 12. Figure 8 indicates, as
in figure 1 (b), the geometry associated with the boundary
conditions. In the Evvard analysis the soIutions, as in the
previous case, are calcula.ted for various regions. As an aid
in identifying the different results the sketch denotes these
regions by Roman numera.Is.

The load distributions and indicial lift functions wilI tie
given here for va.Iuesof t up to the.time when the character-
istic from the trailing edge first crosses the leading-edge
trace, that is, for
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~lGUBE &-Regions used in the study of subsonic unsteady lift.
.—.

“This period covers the time in which the wing travels
2M0/(1-MO) half chords and, since the present” analysis is
concerned with values of Mach immber ne.fi onej will--in
some cases extend beyond the raage of the linear t.hcory.

Tho foIIowing results a.raobtained for load co.effic.ient:

Region I (between lines x=t, t=O, and z=cO–t)
.. .

Ap_ 4a.
~–u. -‘“ - (27a)

Region II (betweeu lines. @=.-MOt, z=t, and x=c~–t)

—:.
where

–J- (t–x)
“–@

v=+ (t+x) ~ .—..

F($, k) ‘ .
E(~, k) J Incomplete elliptic integrals

—.
K, E complete elliptic integrals

In figure 9 (a) the grmv~h of pressure distribution with
time is shown at subsonic speed for the period of time
covered by equations (27). For purposes of comparison
pressure changes calculated from equations (18) are shown
in figure 9 (b) for supersonic flight velocities.

Equations (27) mffice to determine the initial growth of
indlcia~ lift coefficient at subsonic speeds. Such restdts
were given in figure 3 at ilIo=0.8 along with the ca.lmdated

(Region III betweem lines X=co—t, x=t, z= — 2C0
‘+=’

(27c)

Region IV- (between lines z=t, X=co—.iliot, find Z=co—t}
.- .-

(27d}

(Region V between lines z= — 2C0
‘+l+MO—j Z=co –.lfot, and

co ;
‘)‘=l–MO

(27e)
where

-.
-.

}

!-01) (1+Mo) —co~ + 2ol[fY(l+Mo) —CflJz—u(l —310) ] &l

!fJ –Cofi+v,(l –MJ][u(l –MO) –O,(l+MJ]

-.

—. —
.“ -.

(a] / (b)

(a) Subsonic.

(b) Supersonic.

FIGURE9,—Pr&ro distributions on wings receiving sudden tmglc-uf-attnck chnngo at 1-0.
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growth for about one chord length of travel at AfO=O.4. The First time interval O<t< &
vtdue of CL=(t)at t= Ois, for d flight speeds, equal to 4/.ikfo.

Expressions for (?~=(fj are as foIlovm: %(t) flJOcO=* [c,–t(l–.Jfo)]

Second time interval —l:!fo “< &

c’.=(t) =~
I
4co–3t(l —.Jfo~)

Irllfoco 1+ .Jf~ ~arc tan~ ~t(l+~l~ –2cO+

“c-aJ+:E%2~’2’(’+’’’o’-2c2c02(o-’(’-Jfo”+

4c0–2t(l +ltf,)
1+Mo arcs’”-

–- Jcof(l+.if,) :7+

()
Ap

where —~a ~ is given by equation (27e).

HI-THRE&DIMENSIONAL LINEARPROBLEMSFOR MO

NEAR ONE

STEADYSTATE

General solutions for arbitrary Mach numbers .—Two
methods of attack are avaiIable for the solution of linearized
problems at sonic speeds. In the firsi place, solutions to
equation (13) can be writien formally and the extent to which
these solutions satisfy the original assumptions can then be
investigated. In the second place, general sohtions of equa-
tion (7) can be stmdied in the limits as 310 approaches 1.
Since this latter method furnishes added information con-
cerning the variation of the variables with hlo, it will be used
first.

In linearized theory the boundary-due problems of wing
theory are concerned with two separate properties of the
wing; the thickness effects and the effects produced by the
twist, camber, and angle of attack. The first is called the
nonhfting case and the second is the lifting case. Solutions
of equation (7) for .31.>1 are given in reference (13) as
follows :

In the nordifting case _

where ~= ~~ and A?J)O=2U10where U’. is the vertical
perturbation velocity on the wing and therefore related
directly to the slope of the wing surface relative to the z axis.
The integration region r is the area on the wing within the
AIach forecone from the point z, y, z.

In the Iifting case

SS@(%Y, 4 =~ “r
192ZA40(ZI,VI)@@L

[(z–zl)’–p’(y–yl) ’–~’]’]’/’ w)

where Ad. is the jump in the value of the velocity potentiaI
in the plane of the wing. The sign I— denotes “finite part”

203

(28a)

(28b)

of the integral and introduces special integration techniques.
(See reference 13.)

Equation (29) expresses t-hevelocity potential for the sym-
metrical wing in terms of an integral invoIving supersonic
source distributions =ivhiIeequation (3o) e.mploys doublett
distributions. In the two cases the distributions are de-
termined from the geometry and the load distribution over
the wing, respectively.

Source and doubIet distribution effectiveness at inflnity.—
ILis weIIknown t.hacthe lift, drag, and pitching moment of a
given wing may be calculated either from direct integration
of the local pressureson the wing or by means of momentum
considerateions where the induced ve.loc.itiesof the wing are
determined at an @finite distance and the desired forces are
related to an integration over a control surface enclosing the
wirig. In the three following sections the latter approach
wiII be considered and the limiting ~a.lue of drag at .31.=1
computed. The initial portion of this theory requires the
evaluation of source and doublet effactiveness at tinity
and the concept of equivalent source position, an idea which
appears to have been given first by W. D. Hayes in reference
14.

Consider, as in figure 10, a point P with coordinates x, y, z
Iying within the induced field of a supersonic wing. The

FIGURE10.-Coordinates used in study of supersonic soum.
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Mach forecone from P is given by the relation
.-

z—xl=BJ(y—y*)*+ (2—z*)~ (31)

where xl, yl, Z1me running coordinates of a point on the
surface of the cone. Introducing polar coordinates

y=r Cos e,2=T sin ()

and rewriting the abscissa.of P in the form
.-

Z=%+pr

it follows that tho trace of the forecone in the Z1=Oplane is,
in the limit as ~ a.pproache.sinfinity,

It is, moreover, possible to ‘show that the effect on the veloc-
ity potential at the point P as T approaches inihity ia the
same for allpoints (X1,yl, O)for which xl—~yl cm 0= constant.
The value of this effect is

.

4
1

‘2m J2pr(zo–xl+/9y1 Cos t’?)““ [33)

and follows from the asymptotic evaluation of the supersonic
source potential

for large values of r. The potgntial at P for, the source “at
(w, y,, O) is thus the same as for the source shifted along the
trace to (Z1—flylcos O,0, O), the intercept of the trace on the
z axis. For Mach numbers near one, equation (33) can be
rewritten

1
4=27rJ2~r(W-x,)

(34]

and is equivalent to the potential at P for the source at
(q, O, O). The induced velocities at P due to a sourc~ at.
(w, yl, O) follow immediately, for arbitrary 340 and for MO
near one, from the gradients of @ in equations (33) and (34).
11 is important to note that. equation (33) is a function of
the azimuthal angle of P so that,in gene.ral, a source does
not have a fixed equivalent position with respect t.o its po-
tential at infinity; equation (34), however, is igdepe.ndent of
the azimuth 0.

The source-sink potential is applicable to the study_ of
symmetrical nonIifting wings.. When lifting surfaces are to
be analyzed, the doublet potential

.-

must be considered and the question of equivalent doublet
position with respect to the potential at infinity a.rises~ In
this case the doublet position can again be shifted parallel
to the trace of the Mach cone from P at inilnity and the
potential at P is given by the expression

“’““““ (35)4=zT[2@r(zo-iKly, cog e)]~ ‘ ‘. - _

and, for Mach numbers near one, . .

i30)

Momentum relations.—The vectorial foi”ce F 011an a~ro-.
‘dynamic body inside a control surface S is given by the
surface integral

---

where vector notation is used and
o subscript indicating free-stream condition
p,p local static pressure and density

? legal perturbation velocity vector

For ~hepurposes of the present report, equation (37) wiIl
be modified according”to the assumptions of linearized theory
and the surface S restricted to a semi-infinite circular cylinder
of radius ~, its axis of symmetry lying along the z axisj ~fid
with one. face im the Z= O plane while the other face is at
x= codiint. (See fig. 11.)

From- the linearized theory,

!-z . —

<
-.

FIGUBE11.—ilurfacesumd In study of momentum. ‘“

The end faces of the cylinder may be denoted, as in the
figure, by I, II, and the curved surface by 111. Then in
supersonic flow, if a dist.ribut.ionof sources is restricted to a
region dovnstrearn of I, the drag D on the body corresponding
to the source distribution is given by the expression.

sl -
.-

D=;pO”
sl-,1, [(JI?–1)u2+v’+w’] dydz–po ~r “uv,rdddx

L
(38)

where V,is the radial component of the perturbation velocity,
No loss in generality restdts, moreover, if the surfaco II is
moved infinitely dist.a.nt“downst.rea.mand the radius of the
cylinde: is made mbitra.rily large, The notat.ions II and
111w~henceforth refer to this particular configuration.

=
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If the drag of a lifting surface is to be calculated, the surface
and its vorticity wake are replaced by doublet distributions”
and in that case the integral over region 11 in equation (38) is
called the cortex drag of the body while region 111 yields the
uwte drag. (k subsonic theory, the vortex drag is custo-
marily referred to as induced drag.) It lia.salso been shown
(see, for example, reference 1’7) that the vortex drag of a
supersonic wing is a function only of its span load distribution
and is equal to the induced drag at subsonic speeds for the
same spa-nlading. If a finite nonlifting body is considered,
each of the velocity component in region 11 is attenuated
in such a manner that its contribution to the vortex drag is
zero. The integration over region III again gives the wave
drag for the nofllfting body.

The combination of the results given in this and the last
section provides a method for finding the wave drag of a.n
mbit.rary body. The first step is the determination of the
source-sink or doublet distribution corresponding to the
body and then, by means of t-he principle of equivalent
positions, the sources or doublet-s are moved to the z axis.
The wave drag is then calculated from equation (38] once
the induced velocities on the control surface are known. In
the next section the wave d.mg will be writ,ten in a diRerent
form and the drag at sonic speeds wiIl b-einvestigated. This
analysis also provides some insight,into the range of validity
of the sonic theory.

Y

FIGCEE lZ.-Sysiem of sxes fn tm=formation equation (39).

Evaluation of wave drag as M. approaches one,—In order
to study the drag of a symmetrical body at zero angle of
attack, it is convenient to consider the general e.spression
for the velocity potential given in equation (29). Introducing
fit the transformation (fig. 12]

where
tan ,u=fl cos 8

equation (29) becomes

THEORY FOR SONIC FLIGHTSPEEDS 205

Since, however, it has been shown that p evaluated in6nite1y
far away from the wing does not change if a source is moved
along the line:= constant, it foIIows t.hakthe source st.rengtha ‘–
can be integrated along these lines. The second integration ‘-
is then along T=0 where, from equation (39), ~=~1 and the
value of the potent.iaIat an infinite distance is

Setting

f(zl, p)= —Cos pf Awcl(xl, ?l)dll

it fol~ovrsthat

(40}

;
and this is the same as the potential for a body of revolution
with source strength per unit length given by ~(zl). The
induced velocities corresponding to the potentiaI in equation
(40) are found to be, after first integrating by parts and
using the notation ~/tIxl~(zl, P)=j’ (q, P) together with the
relation f(O, P)=0,

Asymptotic values of the ~elocity components

(41)

(42)

for large
values of r are readiIy seen to be, after first setting z=zo+&,

and

(43)

(44)

Equations (43) and (44) may be used together with equa-
tion (38) to give for the value of drag the e.xpreesion

Assuming that the body is of finite length so that j’(x)= O
for z>l re-rerealof the order of integration yields the relation

If equation (46) had been derived for a body of revolution,
then f(x) would have been independent of the angle P and
in that case the expression for drag would reduce to the form

This expression was given by von Khm6m in reference 15.
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For the study of the drag of e,lifting surface, consider now
the general expression for the velo~ty potential given by
equation (30). The doublet distribution occupies in this
case both the wing plan form and the wake since the jump
in @ exists ako in the vortex”wake. By use of the transfor-
mations in equation (39), equation (30) becomes

and, exactly as in the case of the source distribution, this
can be reduced to

?etting . .... ...- .. . ....-
. ..-

g(zl, K)=COS.p ~ A~(icl,~) (&

it follows that

~’r sin $ z+r
@(x, 7’,e) =—2yy--

Ir
g(zl, /.4)da

, 0 [(z–x,)’–fw] 3/2

Integrating by parts and using the fact that g(O,~) =0,

“=2=%’- @’)’”

and

where g?(xl; ,u) indicates ~g(zl, p). Setting Z=ZO+Pr and

Ietting r approach infinity, the asymptotic expressions “for
equations (47) and (48) become, if g’ (O,p) =0,

.-

—sin d
4s

~ ~’”9“ (i p) J*, ----_—
‘— Z?r . l—

(49)
\zo —xl

and

(50) ‘

The relations just derived may be used in conjunction
with equation (38) to give the wave drag of a lifting surface.
This rcsult t.a.kcsthe form

In the wake of a lifting wing the functiogg” (xl, y) =0 and if,
moreover,

f
.: g“ (2!1,p)dx,=g’(co, p)–F”(O,p)=0 ““” ““-

—.

COMM~’TEE FOIi AERONAUTICS.,.. — -.

revers~l of integration in equation (5I) yields the simple.r
expression

‘=srsin2’’’JlI’g“ (q, /A)g”(X*,p)lnpl +dxl(fx~
.(52)

It is possible to draw some.general conclusions from cqun-
tions (46) and (52) regardiug the wave drag of wings mid
bodies of revolution without the necessity of detailed applica-
tions to particular configurations. It is nppmmt irnm.c.
mediately from equation (46fi) that the wave drag of a body
of revolution at zero angle of attack is independcmt of J1’ach
number. This conclusion does not apply, however, to t.lm
nordifting wing since the distribution function j (x, ~) in
equation (46) contains the variable p which, in turn, is a :
function of both 6 and ~. As MOapproaches one, the study
of the nonlifting wing is divided most conveniently into two .
parts, depending cm the behaviorofj” (x, p).

Consider first the more general situation in whichf (x, A) “
is not zero; that is, the caso in whkh the number of sources
does not-equal the number of sinks along t.hcline &=const-ant.
This means, when MO is 1, thnt an unequal number of I
sourc~~nd sinks appear in the transverse or yz plane and,
if equation (46) is applied, either a finite or an infinite wduc -
of drag can result. The limiting wdue of drag at sonic.
speed, obtained from integrations of surface pressures, ]tias
g@en by Stewart and Puckctt in reference (16) for several
wing phm forms, all of which had nonvanishing VRIUCSof .
t (z, p). If the pressure distribution is cdculatcd, ho}ycver, ;
the local pressure coefficients am seen to become hllnitcly ,
large a: sonic speed is reached, evgn for the body of revoh~-
tion, so that the assumptions of the linear thcoqy are violated
and the reliability of. the drag predicted by equation (46)
can in .Docase-be assosscd even though the predicted values
remain finite. Equation (43) shows also that when control-
surface,.methods are used to compute drag at MO= 1, the x “
component of induced velocity increases indefinitely -when
f (x, U) is not zero and that tho theory is, therefore, no longcr
consistent.

In the very special second case, that is, when j (z, p)
vanishes for all values of 0, the rmalysisjust presented breaks
down tit equation (40). It is clear, howe~~rj that in this ‘
case there are eqm-dnumbers of sources and sinks in iho E*
constant plane and the behavior of the flow field at infinity is,
thereforo exactly the same as that which would havo been
produced by a distribution of doublots. Equations (49) and
(50) give the velocities in~llced at, infinity by an arbitrary
doubkt-distribution. These inducccl velocity components
are, in terms of f?, onc degree higher than the similar com-
ponents for the nonlifting case. The vahms of both u and V,
can thus be expected to approach zero for all values of .iifo
as r approaches infinity for any flow field generated ent.irely
by doublets or by an equal number of sources and sinks, It
follows..Lhen that the linearized theory for lifting surfnces
(generat.iidentirely by doublets) and for bodies with thiclc-
ness distributions such that j (z,p) vanishes (generated by rm
equal m~ber of sources and sinks in all g= constant planesj
is entirely consistent as .J40approaches one and, in part.icula.~,

I

I
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for MOequal to one. This being true, it follows immediately
from equation (52) that the wave drag of a lifting system is
zero at sonic speed.

Thickness solutions at iMO=1,—A sviept-back wing of con-
stant chord and infinite aspect ratio is an example of a.prac-
t.ioalaerodpamic shape for which m equal number of sources
and sinks occur in every yz plane. (See fig. 13.) ComSder
the case in which the m-ingcross section is diamond shaped
with a slope equal to h in a plane normal to the leading edge.
Then, in a trans~erse plane (section BB of fig. 13), WOequals
+ I-OAC09~, the minus and phs signs a.pplYing~resPecti~elY~
to the left and right of the ridge line. Accordingly, the solu-
tion of the problem can be written in terms of a distribution
of sources, thus

T~ORY FOR SONICFLIGHT
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fon 81 -A sin @
Sccfion B-B

FIGUEE 13.—Yiews of lnflnite swept wing shoring coordinates.

The ~alue of b#/2Mcan immediatdy be found to be

2=(3:3X”{[4%2-J++’] {[+-*)*]++
[[’%-m”} {[’-(G%)J++’

@3)

(54)

from which it is apparent that as r= ~~ becomes infinitely large, b~fbz approaches zero. In the plane of the airfoil
that is, for z= O, ZW@x becomes

and, using the definition for pressure coefficient, CP= —&

this becomes “

[(
1 2

2A Cos+ ~n
~ co

c==– y sin #a—zcos ~)1–1 (55)
T tan ~

Equation (55) can be derived by entirely different methods.
Perhaps the most direct of these alterna.ti~e derivations k
the one introduced by R. T. Jones in reference 18. The gen-
eral statement used in that report is that the component, of
translational -relocity of a cylindrical body in the direction
of its long axis ha-eno eilect on the motion of a filctionless
fluid. Hence, the pressures o-ier the ting shown in figure
13 are the same as those o~er a ring movirg normal to a
free stream -with a -ielocity T’Ocos 4. Using the Prandtl-
Glauert cowection to the thin airfoil solution of a tvro-
dimensional, diamond-shaped, nonlifting section exposed to
a. free stream with velocity 1’0 cm #, one obtains, for
MOCos* <1,

J
C0,2

~=+iji _,&%W.tn.[(z’—z1’)2+ (J?’z)7c&’ (56)

w-herew is the vertical induced ~elocity on the upper side
of the z= O plane, z’ is measured normal to the ledhg
edge, and B’= T~l-.ilf02 co@ $. If this solution is referred
to the axial system of figure 13 by the transformation

Xt=z cos $-y sin 4 “

(y tan &c)2 -J

and the integration is performed after t.akiig the partial
derimiti-re with respect to x, the resultant expression for
pressure coefficient is

At. sonic speed th~ equation reduces immediately to

cp=--$zn[(.‘“)
whkh is ident.iml to equation (55). The result expressed by
the tmo equations is, of course, not ner. The significant
point is that the same variation in pressure coefficient -was
obtained by two widely different a~-enues01 approach and
that the result obtained from the particular methods appli-
cable to sonic speed theo~ is in agreement with that derived
from more conventional analysis.

Iifting-snrface solutions at Mo=l .—It should be men-
tioned at this point that Robinson and l’oung (reference 19)
have shown by means of linearized theory that supersonic
triangular wings and subsonic elliptical wings of the same
aspect ratio have values of lift-curve slope which approach
a common and fiite limit as Jl= 1. The present section
of this report is concerned only with the study of lifting
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surfaces at a fixed sonic velocity but the results to be obtairied ‘
are in agreement with the l.~it.ing vahws of reference 19.

A further applic~tion of the results‘in this.se~tjon can be
made to the case of very low aspect ratio win”gs”M arbitrary
lhfach numbers. This vieiipoint of the theory was first
presented by R. T. Jones in refereqce 20” and appIied to
triangular.wings, while h ggference 2~ @eneio? was wade
to inchlde pointed “wings on sleiderlodics of revoluticm.
This duality, of interpretat.io.n,that is, to all aspect ratios
at sonic speed or low aspmt ratios at all i%lac.hnumbers,
applies to all solutions of three-dimensional problems ob-
tained from equation (13]. In the subsequent analysis,
attention will be confined to sivept-back plan forms of lifting
surfaces with pointed vertices and thus doublet.swill be used
exclusively.

In applicgtion, the two types of boundary conditions to.
be considered are as follows:..

1. Boundary-value problem qf the~rst kind, loading speci-
fieo?.-.t.t is given that Auo=u.u–ul =.0 over the xy plane
Except for the region occupied by the wing where 2u.U=—
2ul=Au0 =j(x,y), the function being dete.r~ned by” the
spccificd lending. Over all of the q plane, the imposed
conditiom are Awo=O. ----

2. B~nda~-~alue problemof the second kind, wwface speci-
fied.-Ovcr the mJplane, the imposed conditions are Aw,=O
everywhere and, except for the region occupied by the wing,
Au. = O. Over the region occupied by the wing WO= WU=
wl=j(z,y) where f(z,y) is determined by known camber,
twist, and angle of incidence. (The delta notation again
indicates the jump in the tial.ueof the variable at the .s=0
pIane. Subscripts u and 1 indicate conditions on the upper
and lower surface, respcc.t.ive~y,of thk ‘plane.)

.

~

FIOURE 14,-Swept-b~ckplrmformwithcurved ttilii edze.

The nature of the d~eren~,ia.1“equation sho~vs that. the--
value of @ is a consequence of boundary conditions ~ong
lateral strips. If, as in figur~ 14, the..t~voIeadingedges .@-e
given by the expressions’y =“bl(z) and y = &@), the velocity
potential is expressible in the form ..- .—...-

If the boundary-value problem is one of the first kind; the
gene.raI expression for ~ follows from a direct integration
after noting that

—

A@O(z, y)=
..s.

; ~ Au&cl, y)dzl (60)
. ..— . .. .. .

where the integration extends from the leading edge to an
, arbitrary point x. Since, moreover, load .coefficicnt Ap/g is
related~toAu. by means of the equation

. - @_2Auo
~ –~

. . .
it follo~Fsthat t,h6velocity potential @ can bo found for &Ly
prescribed load distribution of a given pkm form. Tim
value of vertical induced velocity, evaluated at z= O, then
suffices to calculate the twist and angle of attack of the wii]g”.

If the boundary-value problem is one of the second kind,
the vertical induced velocity is given on the wing and the load I
distribution is to be found. In this case the use of cqu~tion __,
(59) leads to the consideration of an integral equation. Sinco
however, this integral equation is a common one in rtcro-
dynamic theory, certain established methods may be applied ‘
to it.

After noting that A@O(x)y) =0 at the le.adingcdgej integra-
tion by parts and introduction of the relation .

3A(J0--- ,..e?o=~ -.
...-. .=. . .. -.

yields for perturbation potent,ialthe expression

In the Iimit as z approaches zero the derivative of # with
respect to z reducee to the form .-. . ..

;= ’y?w#u ‘wQ=—— _(62)
.. —

For a given distribution of W. over the plan form of the
wing, equation (62) represents an intogral equation to be
solved for AVo(z,y) subject only to the condition that ‘~ho
Kutta-Joukowski condition is satisfied at all subsonic trailing
edges. _Once Au&qy) is determined it follows that

—..

and “

—

(63)

(64)

—

In the present report the solution to the wing plan f&n
s&own in figure 15 will be presented., The value of A@o
which s“atkfieseqtiat.ion (62) is, in rcglon 1, -”

.,

1

-—

,

—,.—
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where E and F are defined in the appendix and where

(67)

(68)

The equation y=al (z) of the t-railingedge for which equation
(66) is valid is given by the formula

k;
‘1 ‘EO—kO’zKO

-which expresses al explicitly as a function”of
(x*8)-

(69)

t
4?

FIGURE15.—Duensions ond regfons need in dEcuwion of swept-bad wings.

This particular choice of trading-edge shape was used to
simplify the analysis. The resulting phm form approaches
a const.a.nt-chordwing as the span increases. The -mriation
of al with z is given in figure 16; and figure 17 shows the
reIation between aspect ratio and span.

The loading coefficient is given in the two regions (defined
in fig. 15) as follows:

ai

ca tan o
.2 .4

1.0‘~
.6 & La

\

L2

\

: }.4- \

\

i.6-
\

\

1.8k
FIG~E KL+%aph ehowfng trsiling-edge position of the ewepMraek wff?gsstudied.

so
co 7km e

FIGCEE17.—ReIstion between ospect ratio and wing wm”span.

(71)

This load distribution is shown in figure 18 for a triangular -
and a,sw~pt-back wing. It is seen that the loading at sonic
speed bears a close resemblance to those found ai higher
31ach numbers. Two similarities of note are the discon-
tinuity in the pressuregradient at the hIach wave originating
from the trailing edge of the root chord and the satisfying
of the Kutta condition only where the trailing edge is sub-
sonic. The lifi and vortex drag coefficients are given,
respectively, by

(72)

FIGURE18.—Pre5suredfstriiutfons for h%ngukm and swept-back wings at .Va=1.

and
c., A ka% Ez’–k82&’

[==- 4 (so/cotan 8)
—— 1 (73)
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These coefficients are plcdtcd a.s a function of A/tan 8 in
figure 19. It is shown that the values of C~O/a’ tan 6 and
C~/a tan 6 for finite aspect r~tio swept-back wings m-eaIways
less than the corresponding values for the triangular wing
(A/tan 6=4). When the span of the swept-back wing

c,
L . . _.

4

~ <- *
2 — — — — — .

.,

0
4.0” 4A. 4.8 - 5.2 5,6 6.0

-A-
FIGURE 19.—VarhtionofM anddrzzwithazpectmtiofora swept-backwfnzat Mo=l.

becomes very large, the slope of the traiIing edge a~proaches
asymptotically the slope of the leading edge. It follows
that for infinitely large aspect ratio thg limiting value “of the
load distribution on the outboard sections should approach
the value given by s@ple sweep theory for an infinitely long
swept-back lifting surface wjth constant chord, ,This rcsult
is, in fact, a consequence of equation (71).
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