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LIFT AND DRAG OF THIN TRIANGULAR WINGS AT SUPERSONIC SPEEDS
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SUMMARY

.4method ie derired. for calculating the lift and the drag due
to lift oj point-.orward-tria ngu[a.r un=ngs a~ a. restricted ;erie8
of swt?ptback wings at wpersonic ~peeds. The elementa~ or
“supersonic source~y 8olution of the lineam”zed eguation of mo-
tkm is used to jind the potential function of a line of doublets.
The jlow about the triangular $at plate is then obtuined by a
su~ace disti”bution of these doublet line8. The lijt-cume 810pe
of triangular w“ng8 is found to be a function of the ratio of tb
tangent of the apex angle to the tangent of the Mach angle. Ae
the apex angle approache~ and be-com68 greater than the Mach
angle, the li~ coej’i~<ent of the hv”angular wing become8 equal to
that of a two-dimensional auper80nic airfoil at the ~ame Mach
number.

The drag coe~~ent due to li$ of triangular wing8 m“th
leading edges welldehind the Mach cone is shown to be clo8e to
~hat of elliptically loaded wing8 of the 8ame a8pect ratw in
subsonic $ight. The rewltant jorce on un”ng8 un”th leading
edge8 outside the Jiach cone, hau?ecer, ic 8hown to act normal
to the surface and thu8 an induced drag equal to the lijl time8
the angle oj attack is obtained.

INTRODUCTION

In reference 1, Jones calculated the lift of thin point-
forward tri@ar wings for the cases in which the apex angle
of the wing was very small. It was pointed out that the
results obtained should be applicable in both supersonic and
subsonic fight, the critaion for the case of supersonic
flight being that the apex angle be small as compared with
the Mach angle of the flow. The present paper, making
use of less restricted theory, extends Jones’ work to the case
of triangular wings having large apex angles and traveling
at supersonic speeds. A recent paper was published by
H. J. Stewart (reference 2) in which the lift” of triangular
wings hus been computed, but the method used appears to
be entirely dillerent..

In the present theory, the linearized equation of motion
was used and the results must therefore be restricted to
small angles of attack and moderate supersonic Mach
numbers. The solution which has been found should hold
good for large values of the apex angle up to and coincident
with the hlach angle. Jones (reference 3) and Puckett
(reference 4) have found solutions for the drag of triangular
wings of small thickness at zero angle of attack. The
solutions are applicable to wings having the leading edgee
either in or ouk of the Mach cone springing from the apex
of the wing. Puckett has pointed out that, for the case
where the leading edge is tihead of the Mach cone, these

solutions can also be used to calculate the lift; thus, with the
present solution, the lift for the whole range of apex angles
at supersonic speeds may be obtained. The pressure dis-
tributions and lift-curve slopes obtained in the present
paper can be used to obtain the lift and drag characteristics
of a limited series of s-iveptback wings. The drag due to
lift of the triangular wing has been calculated and a suction
force has been found to exist on the leading edge. In order
to use the suction force, however, it appears necessary to
provide an airfoil section with a rounded leading edge. The
author is indebted to Mr. Arthur Kantrowitz of the Langley
Memorial Aeronautical Laboratory for suggesting the method
used to calculate the induced drag.

SYMBOLS

(2 angle of attack

A
&

()aspect ratio ~

b maximum span of wing

—1

tangent of apex angle

c.

CD,

()lift coeflkient ~

()
drag coefficient clue to lift .$

drag force due to lift
source strength
apex angle of wing measured from flight direction
doublet-distribution function
suetion force on wing Ieading edge

.

I

J
c

x=
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P

strength of line doublet

length of wing or root chord
lift force

/3’2— — tanll-ll/l –f?V da
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Mach number

‘iachangle(sin-’*)
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lifting pressure

dynamic pressure
()

;PV2

distance along leading edge from wing apex
density of the fluid
wing area
distance normal tb leading edge “

()
&velocity increment in zdirection —iilz

()
velocity increment normal to.leading edge #

n

ad
()

velocity increment in y-direction —
*

flight velocity

()
alj

velocity in zdirection ~

resultant velocity in zdirection created by the
doublet distribution

coordinates of an arbitrary field point
coordinates of a source or doublet
disturbance-potential function
potential of a supersonic source
potential of a line of supersonic smrces
potential of a line of supersonic doublets

Subscripts:
n normal to leading edge
A triangular-wing condition
w infinite-span or twodimensional wing condition

THEORY FOR LIFTINGTRIANGLE

The Linearizedequation of motion of a ‘nonviscous com-
pressible fluid may be written

(1)

where ~ is the potential function assumed to represent the
effect of a and disturbance set up by the body being con-
sidered. The body in this case is a trianguhtr flat plate
having its vertex at the centei of the coordinate system and
lying in the ~-plane (fig. 1). The problem is to fmd a
solut,ionof equation (1) that will satisfy the known boundm~
conditions which are: (1)that the flow be quiescent ahead
of the Mach cone and (2) that the flow at the surface of the
plate be tangent to that surface. Because of the hnear
character of the differential equation (1), more general
potentiala can be built up from simple well-known eolutions
such as the one for a single source,

w

E’)

where 19=~~2— 1. The potential of E Iine of sources with
strength proportional to x can be found as follows:

where u=~, 7=~, and x’ is the ~alue of ZI for which the

z

.- Mad cone
,’

v

o
/

FmuR~1.–Coordlnntesystem.

denominator of the integrand iszero. Physically interpreted,
the range of integration is from the origin to the lust
source point which can influence the field poinb. Perform-
ing the intqyat ion yields

+,= 4_J?–/9’(y’+ 2’)
l—gw-gw ““

(4)

If two such source lines of opposite strength are brought
together from the z-direction at the zy-piano while tho
product of source strength and the. angle between them is
kept constant, the potential of a line of doublets in the
~-plane at an angle tann% from the z-axis is obttiinod. Thus
differentiating with respcot to r and setting ~=0 gives

(
t— —ctnh-lr#2=(1 z;:$/2 +1 )

where

r=
X—p%y

~2?-p’(#+#)1

and 1 is_the doublet strength. Differentiating

(5)

the poLentid
function with respect to z gives thtivertical velocity-w:
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It wiil be noticed that the line doublet creates a conical
field m the velocity is onIy a function of z~z and y/z. Since
the triangdar flat plate is a conical body which creates a
conical field, an attexnpt will be made to build up the flo-iv
about the lifting triahgle by a suitable distribution of Ike
doublets inasmuch as the addition of two or more conical
fickle having the same vertex always creates another conical
fieId. The distribution of line doublets must satisfy the
boundary conditions at the body surface which may be
written:

n’= T’ra (7)
z-o

where W is the resultant.vertical velocity of the linedoublet
distribution. If the distribution of line doublets is f(u)

in which tan-W= t, the angle of the leading edge. The
distribution function f(u) can be found in a rather simple
way by analogy vv-iththe solution for incompressible two-
dimensional flow about a flat plate. Difkentiating equation
(8) with respect to y/x and setting z=O gives

=,g-c f(”+’’(:)zdr=o(,,f-m

od; –c ()#! 8
x

z -o

which is of the same form as the integral equation obt~ined
when the incompressible flow normal to a two-dimensional
flat plate is constructed by a doublet, distribution. The
expression j(u) for the incompr=ible case would be

j(a)= J?7=7 (lo)

That. this expression is a solution of equation (8) must be
verified by substitution in equrdion (8), inasmuch as equation
(9) is a divergent integral. This proof is carried out in ap-
pendi. A. The value of tho velocity in the xdirection u can
now be obtained

u= Jcf(u) ~ du
-c

(11)

The integration indicated in equation (11)ispresented in
appendi~ B. The expression obtained from equation (11) on
the lifting surface (z= O) gives

(12)

the sign of the expression being opposite for the tvvosides of
the plate. The result in equation (12) shows that the shape
of the pressure distribution is independent of aspect ratio.

The lift for the isosceles triangle with root ‘chord c, is

L=JAPdS=J:CPVUCWU ‘ “~13)

and substituting equation (12) in equation (13) and inte-
grating gi-i’e3

L= p J’IC’%W (14)
and

(15)

The value of the constant 1 must be obtained by solving
equation (8).

The value of the nornd velocity at the plate and hence
the angle of attack maybe found by integration of equation
(8) and letting z=O. The integration is involved and the
method of integration is given in appendix A. The resulting
expression for W is obtained as

(s‘n’=r r+ c fw )tmh-’,h –13?#da (16)
z-o –c ,t~$,il —/3V

From this equation the vaIue of I may be calculated. If
the numerator and denominator of the integrand are multi-
plied by P the rwdting integral can be seen to be dependent
upon only the quantity PC or tan e/tan p. The value of
the integral may be obtained easily by making the substitu-
tion (3%9—F?#=n2 and plott.ing the resultant expression.
This procedure has been followed for vahma of PC betwem
O and 1 and the result is given in figure 2. The value of 1
~ found to be

(17)

where k is the integral term of equation (16). The lift-
curve slope is now

c. 2#c—— (18);—K+A

As PC approaches zero, k also approaches zero and the lift-
curve elope from equation (18) approaches Jones’ value.
(See reference 1.) Equation (18) shows that the lift-curve
eIope is a function of only the apex angle and the parameter
tan cjtan p. It is interesting to note that mathematically
there is a tite lift-curve slop’e at the Mach number 1.0.
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The theory is not valid, however, near ill= 1 because of the
original assumptions used in obtaining equation (1). The
lift-curve slopes of two triangular wing are plotted in figure
3 against Mach number. ,.
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Rewriting equation (18) in a convenient form gives

(19)

Now, according to Ackeret’s result ~eference 5) the lift-
curve slope of a twodimensional flat plate is

(20)

A single curve for all Mach numbers can therefore be plot-
ted if the ratio tan e/tan ~ is used for the abscissa and
(C~/~)A .
—— M ‘used as the ordinate. This curve is shown in(c./a) _
figure 4.

It can be seen that as the apex angle approaches the
Mach angle the triangular wing provides the same lift co-
efficient as a twodimensional wing at the same Mach number.

The case of the triangular wing having the leading edge
ahead of the Mach cone from the apex has been treated in
reference 4. It was found that the lift coefficient obtained
is the same as that of a two-dimensional airfoil flying at the
same Ma.&. number. The curve shown in figure 4 therefore

becomes flat at values of&> 1. A typical pressure dis-

~>1 is shown in figure 5.tribution over a wing having tan ~

DRAG DUE TO LIFT

The thin-airfoil theory used herein gives the result that
the resultant force is directed normal to the plate, a result

FIGUBE4.-Lift-curve slopeof trknguk+rwfugs.
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quite like that obtained from the thin-airfoil theory at sub-
sonic speeds. In the edut,ion for subsonic speeds, however,
a simple extension des&ibed in refercncc o permits ctJculat-
ing the force due to the suction on the leading qclge. It is
reasonable to suppose that the snme method is fensiblo for
the triangular wing, as the preesuredistribution in the u@h-
borhood of the leading edge is identical in the limit with
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& the velocities normal to the leading edge are in the form

u=+ (21)
8.+ \s%

-where s. is the distance measured normal to the edge and
# is a constant. According to reference 6 the force normal
to the edge in the direction of the velocity is

F=pr ilz (22)

Equationa (21)and (22) are, however, based on incompreasible
flow relations and must be corrected for compressibility.
A simple extension is found if the well-known concepts of
the PrandtI-Glauert rule are applied. For the twodimen-
siona] case it is found that the effect of compressibility on a
flow having a given vorticity distribution in a plane k to
reduce the velocities normal to the surface by the factor
~=’ where 31’ is the Mach number of the flow. There-
fore, if the strength of each vortex eIement is increased by a

factor ,/& 7the resultant velocities normal to the surface

will again be equal to those of the incompressible flow. In
this case, however, the trmgential velocities at the surface
and therefore the forces on the surface are increased by the

,
ratio ~—.\ 1-&z This concept is well knovm in thin-airfoil

theory where it gives the result that the lift-curve slopes of
1

thin airfoils are increased by ~lm2” As the total resiat-

tmce for M< 1 is still zero, this result indicates that the
leading-edge suction force has been increased over that of

1
the incompressible flow by the ratio ,l~z.

It appears that the incompressible equations governing
the leading-edge suction force (equations (21) and (22)] must
be corrected as folIovrs:

The leading-edge suction force on a two-dimensional plate
will be

(23)

when the -rorticity distribution 7 at the leading edge or the
tangential velocities are given by the folloviing relations:

or

The value of the velocity in the ydirection on the triangular
wiug has been calculated to be

&
v=

/ ()

——
p:’

Combining this expression with equation (12) gives

‘%=7%
(25)

where R=x~l + @ and ill’ ia the component of tie light
Lfach number normrd to the leading edge. The norrnaI
force on a smaU element dR of leading edge from equation
(23) becomes

(26)

and the force on one edge of t-heisosceles triangle with root
chord C,is:

F =pl?r2cJ=m “’~GRdR

x 2 s0
(27)

and the force in the flight direction from two edges becomes

F= 2~, sin c

pn-2c2Jq770 c:P~T=lW.
2 (28)

Substituting from equation (14)

‘%(’~+r)‘2’)
where b is the maximum span of the triangular wing. The
induced drag or, more exactly, the drag resulting from the
lift may be written

Di=LCY-F

Writing the identity

.lm=+’j--

equation (3o) becomes

(30)
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It will be noticed that this result is identical with Jones’
result (reference 1) in the limiting case of C’=0. The in-
duced drag coefiicicnt is found to be

CD+w+:)-”-l
(33)

where A is the aspect ratio. Equation (33) indicates that
the triangular wings can obtain a considerable suction force
at the leading edge and that the drag coefficient due to lift
of slenderwings is very C1OSOto that ohtaiged from elliptictd
wings of the same aspect ratio at subsonic speeds. It shouId
be pointed out, however, that as soon as the wing leading edge
passes through the Mach cone, the possibility of obtaining
a leading-edge suction is gone and the resultant -force must
become normal to the plate surface. This trrmsltlon corre-
sponds quite similarly to the case of a two-d imensiomd air-
foil passing through the speed of sound.

DISCUSSIONAND CONCLUSIONS

The lift at supersonic speeds of triangular wings having
@raight trailing edgea has been shown to approach the lift
of a two-dimensional airfoil as the leading edge approaches
the Mac-h cone springing from the apex of the triangle. For
the case where the triangular wing liea behind the Mach
cone, a suction has been found to exist on the leading edge.
In order b utilize this suction force in practice it would
appear necessary, as in subsonic flow, to provide an airfoil

section with a rounded leading edge. Triangular wings
should be capable of higher lift-drag ratios than unswept
wingg atsupemonic speeds when operating with their leading
edges not too far behind the Mach cone; the improvement
should be due to both reduced wave drag and rcducccl
induced drag.

The lift and drag of a series of limited swepthack wings
may also be calculated with the method chxclopwl. It wdl
be noted that the pressure distribution over the triangular
wing cam.ot be changed if the trailing edge is cut off from t.hc.
tip to the center line along an angle dsvays greater than
the Mach angle. This fact arises from the nature of tho
supersonic flow in which disturbances cannot propngrde any
farther forward than the hlach cone from the origin of the
diitwrbance.. The aforementioned procedure produces there-
fore a series of tapered sweptback wings having pointed tips.
A new series can also be constructed by cu~ing off the tips
aIong lines having angles greater than W 31’ach angle.
In each case the pressures over the remaining portions of
the wing will be the same as though the cutb~cks had no~
been made.

LANGLES MEMORIAL AERONAUTICAL LABORATORY,

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS,

LAXGLEY FIELD, J7A., Nocember 2?9,19.@.



APPENDIX A’

CALCULATION OF VERTICAL VELOCITY ~NCREMENT

The value of V’ is, from equations (6) and (8),

JTr=I:=\/c’–o-’{ “ “ [~~ ct’~-’~–& 1

(x–f%y)~@-P’(Y’+a
’222‘a[c?(x’-pz2)–22yu+y’+z’]’ 1

(Al)

Integrating by parts gives

The integration of the term under the indefinite integral can be performed by parts to obtain the result

u Lr—— ) [ 1

_ 41’—/9q+2*)*) O-2@’—2/!?’y2-pW) +fl’y(yz+ 22) x
Ill —/g2# a_ 1 Ctnh-lf

(Z’-&) U–zy
&Y~–W) #(Z’-f?’Z’) –2xycr+y2+ z’ +72 ‘an-’ z~~

Substituting in equation (A2) and rearranging terms gives:

[

c O-2p ( ) r b’–i?2(y’+&) c 0’–~d. + 1 (Jy-p2d)
.

J [
2[&–@(y’+ 2’)]ux-y(&p”&-2&)

JJ=~c _= ,/1—p’@>m ctfi-’~ ~z– 1 J
— — da (A3)–c ,I(y— # [u2(x’-@’s2) –Zxyfr+y’+ a

It will be noticed in the preceding operation that all the terms containing the singularity of the form I/z cancel. If
z is made to approach zero and terms are coIlected, equation (A3) becomes

Completing the integration of the second terms gives

‘&g -c’nh-’[~=;~H-=If:c,,~_p2#l/P&2

(A4)

(A5)

Differentiating. expression (A5) with respect to y/x and performing the integration gives

the vertical velocity is therefore constant over the plate surface
of equation (8). It is po=ible that this solution is not unique;
physically impossible conditions.

and the expression ~(u) = ~~ is truly a solution
however, other solutions would ,undoubtedly lead to
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APPENDIX B

CALCULATION OF AXIAL VELOCITY INCREMENT—.

The value of the z-component of velocity may be written from equation (11)

u= 2z14z~—/32(&+ 22)J.’ ~-> [d(z+sy:r;,z:y’+zy ‘u
This integral can be broken up into two separate integrals, as follows:

The first integral appearing in equation (B2) can be integrated by parts to give, for the first complete term, f,heintcgrcd

Evaluation of this integral, which maybe found in reference 7, equation (228), gives finally

Ixyu

[

xy-i2J3%/l?y&+z2) “--““ ‘– q/+~4$–@( a+fl

* 2~ @_ –iz~d—py~+ )
l?-p%~+@=$Pd ““

(B4}

the sign of the expression being opposite for the two sides of the plate. The second integral term of equation (132)can
be integrated by breaking the integmnd up into four partial fractions, WIfollows: .. .

The expressions (B5) may now be integrated (reference 7, equation (207)) giving the expression for the complete
second term of equation (B2)

+
Wz+.+-p(y’+$) [J” “T”q–{2,k&197y’+ 2?y+i2.@-&(#+Zf”

2(&–@)2
c2_

[

X&-h If---FGr~ (’”
Combining equations (B4) and (B6) and setting z= O yields for u~on the surface

‘=’*” ““
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