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ERRATA NO. 1

NACA REPORT 1028
EFFECT OF ASPECT RATIO ON THE AIR FORCES AND
MOMENTS OF HARMONICALLY OSCILLATING THIN
RECTANGULAR WINGS IN SUPERSONIC

POTENTIAL FLOW
By Charles E. Watkins

1951

Page T, colum 1l: In equation (38a), the last bracketed expression
should be corrected as follows:

|:532 +6 - hxy(2+ ;32)__1

Page 7, column 2: In equation (38b), the last bracketed expression
should be corrected as follows:

[(82 + )4 - 5x0)]

Page 8, column 2: In equation (43a) the last term should be corrected
as follows:

Page 9, column 2: In equation (45c), the factor 2 preceding the second
parenthesis should be deleted; that is, the second term within the
bracket should read

-(1-2x0)§1+51>

Page 9, column 2: Equation (46a) should be corrected to read as follows:

— - 2 _ -
Ml = - —h—El - 2){0) Fl + §l> + Ex—o(2B—2+—l—)<f2 + 62>
px B
RELELE: A 53] ¢ 2(2 - 3xg)
B2 3p°

It is pointed out that the foregoing errors have been corrected in a
subsequent NACA publication (NACA TN 3076 by Nelson, Rainey, and Watkins).

NACA-Langley - 5-10-54 - 1550
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BUCKLING OF THIN-WALLED CYLINDER UNDER AXIAL COMPRESSION
AND INTERNAL PRESSURE'!

By Hsu Lo, HaroLp CraTE, and Epwarp B. ScuwarTtz

SUMMARY

An investigation was made of a thin-walled cyclinder under
arial compression and various internal pressures to study the
effect of the internal pressure on the compressive buckling stress of
the cylinder. A theoretical analysis based on a large-deflection
theory was also made. The theoretically predicted increase of
compressive buckling stress due to internal pressure agrees
fairly well with the experimental results.

INTRODUCTION

The buckling of thin-walled cylinders under axial compres-
sion and lateral pressure has been investigated by Fliigge
(reference 1) who found that the effect of the internal pres-
sure on the buckling load is negligible. Fliugge’s conclusion
is in contradiction to the results of a series of tests, made at
the Langley Aeronautical Laboratory of the NACA, of two
curved panels under axial compression and various lateral
pressures. These test results, reported in reference 2, showed
an appreciable strengthening effect of the lateral pressure
on the buckling load of the curved panels. The apparent
discrepancy between these experimental results and the
prediction by Fliigge's theory made it desirable to investi-
gate this problem further. Consequently, additional tests
were made of a cvlinder under axial compression and various
internal pressures for which results are presented herein.
A theoretical analysis of this problem is also presented
which differs from that of Fliigge in that the present analysis
is based on large-, rather than small-, deflection theory.

APPARATUS AND PROCEDURES

Test specimen.-—The specimen used for the tests was a
evlinder, 32 inches long with & 15-inch inside radius, made
of 24S-T aluminum alloy sheet of 0.0249-inch average
thickness. It was closely riveted around two heavy stecl
rings, one at cach end. The butt joint of the two longi-
tudinal edges was covered both inside and outside by straps,
0.032 inch thick and 1% inches wide, along the total length
of the cylinder. (See fig. 1.)

The two heavy steel rings were made of %- by 4-inch steel
bar stock rolled to the diameter of the cylinder. Two ¥%-
by 2-inch spreader bars were used to reinforce the ring as
shown in figure 1. A ring with a flange, machined flat, was
fastened to the %- by 4-inch steel ring to provide an ceven
bearing surface on which a steel cover plate was fitted.

~---Spreader bors
——

Stee/ cover p/afe-._\

Ny

=--Stee/ flonged

.0249" 245-F-

T$%0.032"
strgp, 24S-T

v Longrtudinal strain qoges
X Circumferential stramr gages

Fi6UuRE 1.—Test specimen and strain-gage positions.

Three steel blocks were placed on top of the plate. The
applied compressive load was transmitted from the machine
head through the three steel blocks to the cover plate
The joint between the cylinder and the cover plates was
sealed.

Equally spaced along the inside circumference of the cylin.
der at midlength were 16 strain gages, and directly opposit«
to them on the outside were 16 morc gages. These gages
were placed to measure strains in the longitudinal direction
Six more gages, three inside and three outside, were placec
to measure the circumferential strains.

Test procedures.—The specimen was subjected to com:-
pressive load in the 1,200,000-pound universal testing ma-
chine of the Langley Structures Research Laboratory.  Com:-
pressed air was used to produce internal pressure. whick
could be mai-‘ained at any desired constant value. The
pressure was measured by a manometer. The strains werc
recorded by standard clectric strain-gage equipment anc
the end-shortening was measured by dial gages.

The cvlinder was preloaded and the strain-gage readings
were taken. The three steel blocks were so adjusted that
all longitudinal strain-gage readings around the cireumfer
enee of the eyvlinder were equal.

| Supersedes NAC A TN 2021, “Buckling of Thin-Walled Cylinder under Axial Compression and [uternul Pressure’” by Hsu Lo, Harold Crate, and Edward B. Sebwariz, 193,
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The compressed air was then let into the cylinder until
he desired internal pressure was reached. The axial com-
wressive load was increased in increments until buckling was
bserved. At each load increment, all gage readings werc
ecorded. The load was then decreased until the buckles
lisappeared and increased a second time to check the reading
)btained the first time. During all these steps the internal
Jressure was maintained constant.

The axial load was then reduced and the internal pressure
was changed to another value. For each value of internal
pressure the same procedure was repeated.

EXPERIMENTAL RESULTS

A typical experimental result is shown in figures 2(a)
and 2(b) for the case in which the internal pressure was 1
psi. In figure 2(a) the compressive load is plotted against
the strain-gage readings for four different pairs of gages,
within the range where the load-strain relation is linear. In
figure 2(b) the strain-gage reading is plotted for all strain
gages at three compressive loadings close to the buckling
load. Figure 2(b) indicates that buckling occurs at a com-
pressive load of 12,700 pounds between strain gages 22 and
23. (Note the intersection of the curves at two consecutive
loadings.) A buckle at this location was observed during the
test. The compressive load at which this phenomenon
occurs is considered the buckling load.

Since the buckling occurs locally and not simultaneously at
all the gages, the local buckling strain is obtained by dividing
the buckling load by the slope of the linear portion of the
load-strain curve corresponding to the gage at which the
buckling occurs. The corresponding stress is the buckling
stress. The buckling stresses for various internal pressures
were determined in this same way.

The results are tabulated in table 1 and plotted in figure 3
in terms of the two nondimensional parameters

— %4, R
= 1

5= 2 (BY
=E ( t)
where o,  is the buckling stress, p is the internal pressure,
R is the radius of the cylinder, ¢ is the wall thickness, and
E is Young’s modulus. Except for the first test correspond-
ing to $=0.1028 in which the cylinder had undergone no

previous buckling, all the tests were carried out on the cylin-
der with possible permanent set.

THEORETICAL RESULTS

A theoretical analysis for calculating the buckling stress
of a cylindrical shell under axial compression and internal
pressure was obtained by a ‘large-deflection” theory for
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(a) Linear part of load-strain curve for four typical puirs of strain gages.
FiGURE 2.—Typical experlmental result. Internal pressure, 113 psi.
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(b) Close to buckling load.
Ficure 2,—Concluded,

which details are given in the appendix.  The large-deflectis
theory was first advanced by Von Karman amd Tsie
(reference 3) in the study of buckling stress of eylindrie
shells under axial compression (but without internal pre
sure). This theory was s' iequently improved by Legge
and Jones (reference 4). In reference 3 the buckling stre
was shown to depend on whether the load was applied by
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TABLE 1
BUCKLING STRESSES FOR VARIOUS INTERNAL PRESSURES
| Exjperimental Theoretical
7 k7 Az, | P T aG,,
0 0. 1936 0 0 0.376 | 0
.01715 .252 . 058 .02 L444 P . 088
03425 .57 . 083 .04 . 480 i . 104
L0514 . 309 118 .06 . 506 . 130
. 0685 . 350 . 156 08 . 528 . 152
. 08356 . 363 .170 .10 . A7 L171
.1028 407 .213 12 , 365 . 189
| 14 . 581 . 205
.7
.6
//
5 —

&l Y
=]
S
" o
'bb .3 -
2
/ Colculated results
) ®  Lxperimental result, first test
© Experimentol results, subsequent tests
g 10 &

- R\2
57
FicrrE 3.—Comparison of theoretical and experimental results of the buckling stress at
various internal pressures.

rigid loading machine or by a dead-weight machine. In
the present analysis, the loading machine is assumed to be
rigid.

The existing procedures for computation of the buckling
stress by large-deflection theory involve the solution of four
simultaneous nonlinear equations for each pressure loading.
The numerical work is quite lengthy. The method used in
the present study introduces a fifth equation which governs
the conditions at which the buckling occurs. The fifth
equation is based on consideration of conservation of energy,
which is an extension of Tsien’s buckling criterion given in
reference 5. Although a solution of five simultaneous equa-
tions is now necessary, the numerical work is actually

.3
e | —
’% 2 . /
[ /
)
v o 4+
1S <]
IQ" /
"
|
e ./ —— Theoretical results
< ° o E(xperimentol result, first test
A O Expermmentgl results subsequent,
tests
o] 10 .20

FI16URE 4.—Theoretical and experimental results showing the increment of backling stress
due to internal pressure,

reduced to a small fraction of that required if the existing
procedures were used. This reduction in labor is made
possible through a proper choice of the parameters in the
equations and the process of the computations. The results
calculated by the present method are presented in table 1
and are represented by the solid-line curve in figure 3. The
curve is cut off at a value of 7.,=0.605, corresponding to
Pp=~0.169. This constant valuc of 7,,=0.605 for 7>>0.169
is the same as that obtained by the classical theory.

DISCUSSION AND CONCLUSIONS

From the theoretical and experimental results shown in
figure 3, the internal pressure is seen to have an appreciable
strengthening effect on the cylinder. Although the two
curves obtained from theoretical and experimental results
do not coincide, both show the same trends as regards the
effect of internal pressure on the buckling stresses. If the
increment of the buckling stress Ag,, due to the presence of
internal pressure (that is, the difference between the buckling
stress with the pressure 7., and that without the pressure
(;c,);_o) is plotted against the internal pressure, as shown
in figure 4, & good agrcement is obtained between the theo-
retical and experimental results. These data indicate that.
although further improvement of the theory is necessary
for the determination of the magnitude of the compressive
buckling stress, the theory gives a fairly good prediction of
the increase of buckling compressive stress that may be
expected as a result of internal pressure. The discrepancy
between the theorctical curve and the experimental curve
of figure 3 is believed to be caused by such factors as manu-
facturing imperfections in the specimens, material irregulari-
ties, and energy absorbed by the loading machine, which
have not been included in the theory.

LANGLEY AERONAUTICAL LABORATORY,
Narions- Apvisory COMMITTEE FOR AERONAUTICS,
LancLEY Fieup, Va., October 12, 1949.



APPENDIX

THEORETICAL ANALYSIS OF BUCKLING LOAD OF CYLINDRICAL SHELLS UNDER AXIAL COMPRESSION AND INTERNAL
PRESSURE BY LARGE-DEFLECTION THEORY

BACKGROUND OF THEORY

The use of large-deflection theory for shells under axial
compression was first advanced by Von Karmdn and Tsien
(reference 3) in an attempt to explain the discrepancies
between the buckling loads predicted by classical theory and
those obtained from experimental results.  (See, for instance,
reference 6.) The results of reference 3 indicated that
eylindrical shells can be maintained in equilibrium in the
buckled state by a compressive load considerably lower than
that predicted by classical theory. A plausible explanation
of this result is that, before the classical buckling load is
reached during a test, the cylindrical shell “jumps’ from an
equilibrium unbuckled state to an equilibrium buckled state.
The physical phenomena of the jump were further examined
in reference 5 by Tsien.

The treatment of Von Kdrmén and Tsien in reference 3
was left incomplete, however, in that the equilibrium posi-
tions at the buckled state were determined by differentiating
the total potential energy with respect to some but not all of
the physical parameters involved. The resulting equations
gave a relation between the average compressive stress ¢ and
the end-shortening e in terms of the remaining parameters.
A set of curves of o against ¢ were thus obtained for various
combinations of the remaining parameters.

Improvement of the theory of Von Kérmén and Tsien was
made by Leggett and Jones (reference 4), who took the
derivatives of the energy with respect to all the parameters
and thus obtained a single curve between ¢ and ¢, represent-
ing all equilibrium positions of the cylindrical shell in the
buckled state. The same result was obtained by Michielsen
(reference 7) in a similar process. Such a curve is shown
by BC of figure 5.

Theoretically, when the cylinder is compressed, the relation
between o and e follows the straight line ODA which repre-
sents the unbuckled state and will reach the point A if
evervthing is perfect; the cylinder then buckles and the
relationship follows the curve ABC which represents the
buckled state. Before point A is reached, however, some
external disturbance may possibly cause the cylinder to jump
from the unbuckled state represented by the point D to the
buckled state represented by the point E. The positions
of D and E on the respective curves depend on the actual
physical conditions of the jump.

If the physical condition which governs the jump is known
or defined, the buckling stress corresponding to the point D
can be obtained dircetly without going through the labor of
finding the curve ABC.  This procedure can greatly reduce
the amount of numerical work.

4

A
D
D/ d¢
c

I AN
Xl
g i
7|
By
E

o €

FIGURE 5.—Relation between the average compressive stress o and the end-shortening e,

In reference 5, Tsien introduced a criterion which governs
the jump DE for the condition of loading obtained in a
rigid testing machine; namely, that the strain energy remains
the same before and after the jump and that the jump occurs
at constant end-shortening. According to this criterion
the line DE must be vertical and must cut the curve ABC
in such a way that the two shaded areas ADG and GBE
are equal. In fact, the area ADG represents the additional
energy that is needed to assist the cylinder in jumping from a
condition represented by D to that represented by G and
the area GBE represents the energy that is given up by the
cvlinder when it arrives at the lower energy level, point E.
The energy represented by the area ADG is very small,
and therefore a slight disturbance from the surrounding air
might assist the cvlinder to jump from the unbuckled state
to the buckled state at a compressive stress well below the
classical buckling stress corresponding to point A.

Since the external disturbance is required to assist the
eylinder to jump from the state corresponding to I to that
corresponding to G, a slightly larger external disturbance
can well cause the cylinder to make the transition from
the state represented by D’ to that represented by B,
except that in the case in which the cylinder jumps from
D’ to B the evlinder absorbs the encrgy of the external
disturbance and does not re-emit it.  The buckling stress
can be then as low as point D’. This fact was pointed
out, by Tsien in reference 8.
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In addition to the two criterions just mentioned, there
are still others that might be used. In view of the fact
that the choice of the buckling criterion is a much less
important factor in the determination of buckling stress
than are such other factors as, for example, the initial
imperfections, Tsien’s criterion of reference 35, as represented
by the line DE, is as reasonable as any other, and the
cboice of this criterion greatly simplifies the numerical work.

Tsien’s criterion of reference 5 cannot be applied directly
to the present analysis, however, because with the presence
of the internal pressure the strain energy is no longer the
same before and after the jump. In addition, the criterion
is applied herein in quite a different manner from that of
veference 5. In reference 3, a series of values of wave num-
ber # and aspeet ratio 8 were chosen and the criterion was
applied to each pair of values of n and 8; the pair of values
of n and 8 which gave the minimum value of buckling load
was considered to correspond to the buckling condition.
In the present analysis, since the variation of ¢ with € can
be plotted only as a single curve, this criterion need be
applied only once for each internal pressure. The results
correspond to the minimum-potential-energy condition.

In the derivation of the present analysis, the basic equa-
tions in reference 3 are first extended to include the effect
of internal pressure, Tsien’s criterion governing the jump
for rigid machine loading (reference 5) is modified, and the
buckling stress is finally obtained.

SYMBOLS

A list of symbols follows. Most of the symbols used in the
present report are the same as those in reference 3 ; exceptions
are the use of u for Poisson's ratio, A for wave length, and g
for aspect ratio of the buckled waves.

s half wave length in longitudinal
direction

s half wave length in circumferential
direction

Joo f1y fa parameters used in deflection function

m number of waves in longitudinal

direction within length equal to
circumference of cylinder
number of waves in circumference

n
P internal pressure

t thickness of cylinder wall

z, Y coordinates measured in longitu-

dinal and cireumferential dircctions,
respectively

u component of displacement of a point
on median surface of shell in
z-direction

w component of displacement of a point
on median surface of shell in radial
direction

« measure of average circumferential
stress per wave length in longitudinal
direction

€ end-shortening of cylinder

a average compressive stress

5=1;:- aspect ratio of buckled waves

“ Poisson’s ratio

¢ total potential energy

E Young’s modulus

¥ strain energy

B,B,...B . )

B’ B/, ... ByS certain functions of 8

D,D, ...D certain functions of p and g8

(D),=92 (D represents the functions I}, D,

Jp _
... Dy)
oD .
(D)s=8 FY) (D represents the functions D,, D,,
... Dy

y 4 radius of cylinder

W, elastic extensional energy

W, bending energy

W, work done by applied compressive load

W, work done by internal pressure

Nondimensional parameters:

_h

P fl

R

¢=h 7

n=n’ ILB

s F

’TE

5P E)’

p_t(t

= (W,, W, W, and W, are defined in the
1
3 Etnox same manner,)
o=1—2
3 Eth,),
V=
5 Et\)y

- B

€E—¢ t

- — 1 _ D

a :(U—EE pInih

Subseripts:

0 pertaining to buckling condition

u unbuckled state just prior to buckling

cr buckling condition
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DERIVATION OF BASIC EQUATIONS

Three basic equations are derived in the following analysis to include the effect of internal pressure.

They are the ex-

pression for the total potential energy, the expression for the strain energy, and the relation between the end-shortening and

the average compressive stress.

In order to calculate the total potential energy, the work done by the internal pressure should be included in addition
to the energies Wy, W5, and W7, which are given by equations (25), (26), and (27) of reference 3 as:

W 2 1 .
e =4[“'“’>(%>+"*(g%;ff+ﬁf1f2+%ff)+
5 Etal
1 2 3 1
(‘f°+1f‘> —2n? (EZ f‘2+'1_6 flf2+Tlg f22> (f0+:11"fl>]+
A Bgt, gDt | BG* _B_E__] |
[8+ s taTar 0BT OFa T 16078 ()
’—I}i——'—‘—l 't— y : l l Loy g2l ;
Lpa, 004 (R> d if‘l [8 (148543 (HB‘)]*”(I +89 S St (LB F2 (2)
2 alrd
. . |
a0 () e e (s s )2 (5 5)] "
72— ahd

where a, b, », and v have been changed to A, \,, 8, and g,
respectively, to agree with the notation of the present
report and where

C=%f1n2(%fl+f2>—%fl
D=1 fnt(3 51+ 7:)

=1 (3 1+ 12)
and

H=n’ (% fit f2>2

The work done by the internal pressure is, for a complete
wave panel,

LAY
W",=—4f J wpdz dy
0 0

The negative sign is introducec - >cause the radial deflection
w is considered positive inward.

If the same deflection function given in equation (16) of
reference 3 is used, that is,

4 1 2 1 2
%:(j(]+{1‘)+% (cos lnﬁx— cos %-}—Z cos ——ng +7 cos -Zl)-l—

Lo os 2 Lo 2
Z(u)s 7 +cos—p (4)

the work done by the internal pressure becomes
“v,,: —41)R)\ﬂ)\b(fg+j£ (-_))

If the total potential energy
=W+ W,—W,—W,

is differentiated with respect to f, and the derivative is set
equal to zero, the following expression is obtained:

1 ,/3 ;
fo+'%=ignz(zf|2+flfz+f22>—u%—£§ (6)

Substitute this expression into equations (1), (2), (3), and

(6) for Wy, W, W3, and W, respectively, and the following
equations are obtained:

() e (DB T

%Et)\ax,
n4<Blfl4+ B, fi® fot B fy* f2* + B f fi*+ %fl‘)—
(2 Bty S+ (4Bt 55) 700 |+
[(QB4+3L2>f12+%f1f2+%f22:| (7
u’ t ’ 4 .
%Et;,x,,:(R) (Bufi*+ Bufifut Bufim (8
w : R
LG

% (%:) n*g? (Z f\2+flf.»+f22)] (9
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== [() +5 (7) (B

Et)\ Ay

]

2
PR\ 1 /3
n? (%7) = (Zf12+f1fz +ff>:|
where
_ 1 [Li4p, 17 8 B
Bl_64_ § T (1+32)2+(1+962)2 (9+ 87
——1— "g BA ﬁ‘ BQ
B2_16 2 (1+p8%° (1+9ﬂ’)2+(9+ﬁz)2]
_L "ll 64 64 64
B=15| = (1+6")2+(1+96)’+(9+62)2]
_t B
B‘_8(1+62)’-’

1Tt ey 1 \
3526‘(1*;_—“2) |:§(1+52) +Z (1+8 )]

Bi= s (1489

(10)

Equations (7) to (10) may be expressed in terms of the
nondimensional parameters 7, p, p, n, {, and W as

W,=89*4+8uz p+on{iD,

—— N

Wi=8usp+80°—— Pni*D,
where

—58°(G+o+07)

Dy=Bi+Bap +Bio™+ Bio*+% Bip*

Da=<23¢+§1‘1‘) (1 +2P)

D4=(2B‘+§)+% (p+ p?)

Ds=Bs+Bs(P+P2)

Wi=4(@+2uo p+P)+ 0?0 Dyt n 03— D)+ 2D, (11)

(12)
(13)

(14)

The nondimensional total-potential-energy parameter ¢ is

$:W1+W2_W3_Wp

=—4(7*+ 2ua p+p)— (a——p> D+

025 Dy —n D3+ D+ 122D,
The nondimensional strain-energy parameter
V=Wi+W,
=4(c* +2ue p+ P+ ' Dy —
n D+ D0 0D,

is

(16)

The relation between the end-shortening € and the average
compressive stress can be determined from equation (23) of
reference 3 by integrating; thus,

1 ou
A Jo Ox

~(gtup)tigne (Greeriens.)

where a/E, as determined from equation (24) of reference 3,
together with equation (6) herein is

dr

e=—

a_ pR
ETEt

Therefore, the relation between ¢ and 7 in nondimensional
form becomes
- R

E=€‘Z

- -, 1 -
=6+#P+§n§“[)l (17)
Equations (15), (16}, and (17) are for cylinders in the buckled
state. For cylinders in the unbuckled state, the correspotd-
ing cquations are

b= —4(F. 42475+ 7 (18)

7. =4G.2 4 247, 5+ (1)

Eu=;u+ﬂ'ﬁ (20)

EQUILIBRIUM POSITIONS OF CYLINDERS IN BUCKLED STATE

The equilibrium positions of cylinders in the buckled state
can be obtained by differentiating the total potential energy
of equation (15) with respect to each of the parameters n,
¢, p, and B and by setting the derivatives equal to zero,
Four simultaneous, nonlinear equations are thus obtained:

- , ‘ .
g—:= =—[(F—éﬁ)n[),—2(71{)21)21'_(,,;)17 GWDJCT)
g? —[(7""5127') 0Dy —2(n ¢V Ds+ 1.5(n ) Dy —
—’720.1] (z9)
sz z_[("‘" D0, — Doy~ ) D)= [
(04)9—’1”(05),] e
I:("_“‘ 21(DVs— (0 D a)s~ (W Dy)s —
(Dl)ﬂ_"l( m)ﬁ'*’B ])'qD1 [3 J
(21)
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where
1
(D=7 B1+20)
(Dz)p': B2+ 2B3P+ BB4P2+ 2B¢p3
1
(Da)p=2 (B*+a‘)
(D=5 (1+20)
(D9),=Bi(1+20)
D= (3 p0*)=2D;
(Dz)a=Bl'+Bz'p+Bs'p2+B4’p’+% B/ p*
(DJs=2B/(1+2p)
(D)s=2B/
(D5)5= B5'+ By (p + Pg)
and

, 1rp 17 B B g B
B, ‘16[8* T DN TER T (9+ﬁ’)“]

,_1[9 _ 8 B g B
B/=4 [2 arEytasesy (9+ﬁ’)]

, 1 g B Bt
B/=;| 5 qapyp T aromy (9+a2)3]
, 1 g

B/=3 g+ @y

B;_____l__l 2 2
=5 g F+ 38

;o 4
B, —(i(l—u’)'34

;'=(?—%7;) 2D,

The four simultaneous equations (21) become
7 =(n 02 D) — (1) Dat+20°Ds
?;=(n 02Dy —(ni)(1.6 D)+ Dyt 7°D;s

Let

(22a)
(22b)

?'=[(nr)’(Dz)a—(nr)(Ds)p+(D4)a+n’(Ds)p](—l% 22)

5 [ D=5 X Do+ (DOt 1 DRy —gn Dy (22)

Theoretically these four simultancous equations can be
solved for 1, ¢, p, and 8 in terms of 7 fora given pressure. It
they are substituted into equation (17}, a relation between
end-shortening € and the compressive stress @ is obtained
which represents all equilibrium positions at the buckled
state. In fact, this solution is essentially that obtained by
Leggett and Jones (reference 4) and Michielsen (reference 7)
for cylinders with axial compression but no internal pressure.

Practically, however, the solution of the four simultaneous
equations (22) requires & long and tedious numerical process.
If only the buckling stress is required, calculation of only one
point on the curve of 7 against € rather than the whole curve
is necessary. This solution can be obtained by the intro-
duction of one more equation which governs the eondition
at buckling.

BUCKLING CRITERION

In reference 5, Tsien gave the following criterion which
governs the condition at buckling: That the strain-energy
of the buckled cylinder is the same as the strain energy of
the unbuckled cylinder when the cylinder is tested in the
rigid testing machine so that the end-shortening does not
change during buckling. This criterion is apparently
cstablished from considerations of conservation of energy.
Although other physical criterions can be used (for instance.
see reference 8), the criterion of reference 5 was chosen and
extended to include the case for which the internal pressurt
is present. The choice of this criterion simplifies the numer
ical work.

When internal pressure is present in the cylinder, work 1
done by the pressure during buckling. The strain energy i1
the buckled state is no longer equal to that in the unbuckle:
state, but

v=v.+aW, (23

where AW, is the work done by the pressure during buckling

or
—_— N2 Ao "N
AW,,=’1———— (L;) [——[; JO ’ plw—w,)dx 4[_?/]_

1
3 Etxh
=W,—(W,. (2
Equation (14) can be rearranged as follows:
-_ _ = 1 -
W,,=8(p'+pdﬁ)——6—zpn§"pl (2

Therefore, for the unbuckled state, the last term is eliminat
and

(W,).=8(p*+ uauP) (:
Then, from equations (24), (25), and (26)

- —_— — 1 - ., .
-\W,=8#p(6—du)-—gf_) Pn Dy ¢
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The buckling criterion becomes (equations (23) and (27))

- = —_ = 1
v=y, +8up(c —au)—ﬁ pni*D,
or, from equations (16) and (19),
4(o?+2u0 P+ + 0t Dy—n D3+ 12D+ 121 ?D;s
=A@ I )+ 8GE—T Mg PrsDe (28)
Since the end-shortening remains unchanged during buckling,

that is, €=%,, the following relation is obtained from equa-
tions (17) and (20):

Fu=7+g 15D, (29)

If this relation is substituted in equation (28) and if the
relation ?’z(?—l—al—z p> 7D, is used, the buckling criterion

becomes

7' =1 (D=1 D)~ )Ds+ Dt n?Ds (30)

The solution of the five equations (22a), (22b), (22¢), (22d),
and (30) gives the buckling stress for a given internal pres-
sure. The following section presents a very simple method
for the solution of these five simultaneous equations.

METHOD OF SOLUTION

From equations (22b) and (30) and equations (22a) and
(22b), the following equations are obtained:

Dy

ne=—— (31)
2 (Dg+l—16 Dl’)
1
Di—3 Di(ap)
772="* D, (32)

for a preassigned value of 8, assume various values of p and
ompute n¢ and #? from equations (31) and (32). Substitute
hese values in equations (22a) and (22¢) to obtain (¢’), and
@), respectivelv. Plot both (¢’), and (3’). against p.

The intersection of these two curves determines a pair of
values ¢’ and p which are called ¢/, and p,. The correspond-
ing values of (n¢), and (9*), are computed and substituted in
equation (22d) from which the pressure p can be calcu-
lated. For each assigned value of 8, there are obtained cor-
responding values of ¢/, and . A curve of ¢’, against p
can thus be determined. If the following relations are used.

?,o=("7 Dl)o (;o—'ﬂl_g i)
;crz(;u)a:?n+% ("l ngl)o

the relation between 7., and 7 is obtained as shown in figure 3.

CUT-OFF BUCKLING STRESS

When equation (31) is derived from equations (22b) and
(30), a factor (9¢)=0 is also obtained. If this relation is
used instead of equation (31), it can be shown that the
buckling stress 7., can never exceed the classical buckling
stress 0.605 which is independent of pressure.
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