A NUMERICAL METHOD FOR THE STRESS ANALYSIS OF STIFFENED-SHELL STRUCTURES UNDER NONUNIFORM TEMPERATURE DISTRIBUTIONS

By RICHARD R. HELDENFELS

SUMMARY

A numerical method is presented for the stress analysis of stiffened-shell structures of arbitrary cross section under nonuniform temperature distributions. The method is based on a previously published procedure that is extended to include temperature effects and multicell construction. The application of the method to practical problems is discussed, and an illustrative analysis is presented of a two-cell box beam under the combined action of vertical loads and a nonuniform temperature distribution.

INTRODUCTION

The effects of nonuniform temperature distributions, such as those produced by aerodynamic heating, are becoming of greater concern in the design of modern high-speed aircraft. The structural effects of temperature changes and the results of some analyses of a simplified structure under nonuniform distributions of temperature have been discussed in reference 1. The analytical methods considered in reference 1 were found, however, to yield inaccurate values for the secondary stresses in complicated structures, and in such cases some type of numerical approach is desirable. Numerical methods, however, usually require extensive and tedious calculations and they should be used only when satisfactory results cannot be obtained from a simplified analysis.

Several numerical methods of stress analysis have been presented in the literature, but none contains provisions for temperature changes. In the present report, one such method, the numerical procedure of reference 2, has been extended to include the effects of a nonuniform distribution of temperature. In addition, the equations developed permit the analysis of a stiffened-shell structure of arbitrary cross section with any number of internal cells. The application of the method is discussed and illustrated by analysis of a two-cell box beam under the combined action of vertical loads and a nonuniform temperature distribution.

DESCRIPTION OF THE NUMERICAL METHOD

BASIC THEORY

The structure analyzed is an idealized representation of a multicell stiffened-shell structure (see fig. 1) and has the following characteristics:

(1) The basic unit is a rectangular panel bounded on two parallel sides by extensionally flexible stringers and on the other two sides by rigid bulkheads.

(2) The panels consist of sheet material and are assumed to carry shear stress only. The shear stress is constant within a given panel.

(3) The stringers run parallel to the direction of the primary stresses and carry axial load only.

(4) The bulkheads lie perpendicular to the stringers and are rigid in their own plane but offer no resistance to warping out of their plane.

(5) The structure is loaded only at the bulkheads.

(6) Material properties, cross-sectional dimensions, and temperature distribution do not vary along the length of a given bay.

With these assumptions about the basic elements of the structure, any type of stiffened shell can be analyzed, provided taper is excluded. The state of stress in such a structure can then be defined by suitable stress-strain relations and two types of displacements:

(1) Stringer displacements, which are displacements, at the end of a bay, of each flexible stringer in a direction parallel to the stringer

(2) Bay displacements, which are translations and rotations of the plane of each cross section defined by the rigid bulkheads.

FIGURE 1.—Typical multicell, stiffened-shell wing structure.

Once the stress-strain relations are established for the components of the idealized structure, equations of equilibrium can be used to obtain relationships between the displacements. The equilibrium equation for the forces on an individual stringer yields an expression for the stringer displacement of any panel point in terms of the surrounding stringer displacements and the displacements of the two adjacent bays. From this general expression, equations equal in number to the unknown stringer displacements are obtained. The additional equations required for the determination of the bay displacements are obtained from the equations of equilibrium of the shear forces on the cross sections. These equations then completely define the displacements of the structure. In most cases the number of equations is so large that a direct solution would be impractical and it has been found expedient to solve them by the recommended iteration procedure described in the next section. The required equations are derived in detail in the appendix.

SOLUTION OF EQUATIONS BY ITERATION

Matrix iteration often provides the easiest and quickest solution to the equations, and the procedure recommended is as follows:

The equations to be solved can be written in matrix notation as

\[[B] \{d\} = \{c\} \] \hspace{1cm} (1)

For purposes of iteration, these equations are rearranged to give

\[\{d\} = [C]\{d\} + \{c\} \] \hspace{1cm} (2)

where

- \([C]\) square matrix of coefficients of general equations with diagonal terms reduced to unity
- \([B]\) unit matrix
- \([d]\) column matrix of stringer and bay displacements
- \([c]\) column matrix of constant terms in general equation; these terms arise from applied load and thermal expansion

Initial approximate values of stringer and bay displacements \(\{d_0\}\) are then selected. These values may be determined in any convenient manner; however, subsequent operations can be simplified, as explained in the appendix, if these values are chosen to correspond to elementary theory. Next, the initial displacement values are substituted into the righthand side of equation (2) to obtain a second approximation \(\{d_1\}\) to the displacements

\[\{d_1\} = [C]\{d_0\} + \{c\} \] \hspace{1cm} (3)

and the differences between the second and initial approximate displacement values are computed from the equation

\[\{\Delta d_1\} = \{d_1\} - \{d_0\} \] \hspace{1cm} (4)

The iteration process is then begun by using these displacement differences. The nth difference is defined as

\[\{\Delta d_n\} = \{d_n\} - \{d_0\} \] \hspace{1cm} (5)

and it can be easily verified that the use of these differences leads to the following matrix equation:

\[\{\Delta d_n\} = [C]\{\Delta d_{n-1}\} + \{\Delta c\} \] \hspace{1cm} (6)

The iteration process consists of a series of solutions of equation (6), each successive solution yielding a better approximation to the displacement differences than the previous one. The process is continued until successive solutions of equation (6) yield the same result, that is, until

\[\{\Delta d_n\} = \{\Delta d_{n-1}\} \] \hspace{1cm} (7)

The final displacements are then determined from the final differences by using equation (5) and the initial values.

When equation (6) is being iterated, improved values should be used as soon as they are obtained; that is, each individual difference \(\Delta d_n\) should be substituted into the \(\{\Delta d_{n-1}\}\) matrix immediately after calculation rather than at the end of the cycle. In this manner, each new value determined receives the benefit of all previous work and convergence is speeded.

The iteration of differences reduces the work required to obtain a solution because smaller numbers are involved. However, it is essential that no errors be made in the determination of the first differences \(\{\Delta d_1\}\) since a single significant error will render the whole solution useless.

CONVERGENCE OF THE ITERATION PROCESS

In order to obtain more rapid convergence of the iteration process, bay displacements and loads are referred to the principal shear axes of each bay. The use of these axes greatly simplifies the equations for bay displacements by making each bay displacement independent of all other bay displacements and thus a function of the stringer displacements only. In addition, a special correction cycle is periodically introduced to bring the stringer forces on each cross section into equilibrium with the applied loads. Mathematically, the correction cycle is a special cycle that uses a certain combination of the basic equations. Its success in the particular case of the numerical method of stress analysis is a result of its physical significance, and in that respect it is similar to Southwell's "group relaxations" (reference 3).

The optimum frequency of application of the correction cycle depends largely on the characteristics of each individual problem and must be determined on a basis of experience with the method. If this frequency cannot be determined from previous experience, it can be approximated satisfactorily by one that permits the disturbances to spread their significant effect over the structure between correction cycles.
The application of the correction cycle begins at a station where the displacements are known and then proceeds outboard. The corrections required to bring the first bay into equilibrium are determined, and the stringer displacements at its outboard end are changed accordingly before the corrections required by the second bay are calculated.

EFFECT OF INTRODUCING NONUNIFORM TEMPERATURE DISTRIBUTIONS

The preceding method is applicable to any type of stress problem. Nonuniform temperature distributions do not affect the general procedure but merely change the details. These effects are of two types: A change in the effective structure due to changes in elastic properties of the material with temperature and thermal stresses resulting from restrained thermal expansion. The changes in elastic properties are easily handled if the moduli are treated as variables during the derivation of the equations. Their effect is analogous to that of variations in stringer area and panel thickness. The presence of thermal expansion requires modification of the stress-strain relationships for the stringers but does not affect those for the panels. The equations for stringer displacements contain thermal-expansion terms that are analogous to the applied-load terms. Bay-displacement equations are unaffected by thermal expansion, but thermal-expansion terms appear in the equations used for the correction cycle. If a difference solution is iterated, the elementary solution should include the distributions of thermal strain associated with the primary thermal stresses, which may be obtained from the equations derived in the appendix.

DISCUSSION OF THE NUMERICAL METHOD

The application of a method, such as that just described, always poses a number of questions; for example, what are some of the limitations of the method, would it be advantageous to use some other method of analysis, and how should the structure be idealized? Some of the factors requiring consideration, other than those mentioned in the previous section, are therefore now discussed.

VALIDITY OF BASIC ASSUMPTIONS

The assumptions upon which the method is based are commonly accepted in the analysis of stiffened shells. Comparison of theoretical and experimental results has established the fact that these assumptions will yield good results in most cases. Two important assumptions—that the bulkheads are rigid in their own plane and that the shear stress is constant in a given panel—may, however, introduce significant errors into the analysis in some cases. These assumptions are therefore examined in detail.

The assumption of rigid bulkheads is satisfactory as long as the primary stresses run perpendicular to the bulkheads, but, as demonstrated in reference 1, this assumption may not be good when dealing with problems involving thermal stress. Large temperature gradients along the length of the structure or across the depth of a bulkhead distort the real bulkhead and make the assumption of rigidity inapplicable. In many cases, however, these effects are small and the assumption yields satisfactory results.

The numerical method could be extended to include the effects of bulkhead flexibility. Such an analysis, however, is very cumbersome and tedious and, if the equations are solved by iteration, the process is often very slowly convergent. Therefore, these extensions are not considered herein.

The assumption of constant shear stress in a given panel simplifies the development of the equations, and it yields satisfactory results if the bulkheads are reasonably close together. Cases arise, however, in which the assumption will lead to unreasonable results because the assumed constant shear stress is a poor approximation to a shear stress which should be changing rapidly in the spanwise direction. This situation is usually accompanied by slow convergence of the iteration process. This difficulty, however, can be minimized by reducing the bulkhead spacing of the idealized structure since it occurs only when the total shear stiffness of the panels joined to a stringer exceeds the extensional stiffness of that stringer.

IDEALIZATION OF AN ACTUAL STRUCTURE

The idealization process described in reference 2 is straightforward. However, it provides an opportunity for the stress analyst to exercise his engineering judgment and thus to simplify the analysis. By restricting the analysis to only a part of the structure or by using a comparatively simple idealized structure, the time required for the analysis can be substantially reduced. Such simplifications, however, can reduce the value of the results, and a compromise between speed and exactness is required.

The number and location of the idealized stringers completely define the stress-distribution shapes obtainable from the analysis. (For example, in an idealized shell of \(n \) stringers, there are \(n \) possible types of independent normal-stress distributions; three of which can be determined from elementary theory, the remaining \(n-3 \) being statically indeterminate.) Stringer location is thus an important part of the idealization process and in conventional problems the locations should be selected after consideration of the characteristics of the actual structure, the nature of the expected results, and the time available for the analysis. When nonuniform temperature distributions are involved, the shape of the temperature distribution should also be considered because the thermal-stress and temperature distributions will have similar shapes and the analysis will yield good results only if the idealized structure permits a stress distribution of that shape.

The bulkhead spacing usually is the same in the idealized and actual structures, but the idealized spacing should never be so large that trouble is caused by the assumption of
of temperature increase shown in figure 3. The temperature is highest at the tip and along the front web and decreases in both spanwise and chordwise directions, but it is constant across the depth of the beam. The beam is assumed to be constructed of 7055-T6 aluminum alloy which has the variation of elastic properties with temperature increase shown in figure 4. These data are the same as those used in reference 1.

It is assumed that no thermal stresses were present at 60°F. Since the method of analysis involves the assumption that no changes in temperature distribution occur over each element, the temperature used in the calculations was the temperature at the center of the element concerned.

APPLICATION OF THE NUMERICAL METHOD
DESCRIPTION OF THE PROBLEM

The application of the numerical method is illustrated by an analysis of the idealized two-cell box beam shown in figure 2. The cross section is symmetrical about the horizontal center line and the beam is untapered; however, the stringer areas and sheet thicknesses vary from bay to bay.

The box beam is loaded by four concentrated vertical loads applied at the bulkhead stations along the inner web; in addition, it is subjected to the arbitrarily selected distribution
Since the structure and the temperature distribution are symmetrical about the horizontal center line, the analysis can be restricted to one cover. Two solutions are required however, to determine the total stress since the thermal-stress system is symmetrical about the horizontal center line, but the load-stress system is antisymmetrical. In this way, the analysis requires the solution of two sets of equations (one of 20, the other of 24) which can be solved more easily than the set of 44 needed for a single analysis of the complete box.

The computations required are given in tabular form with most tables containing two parts—one related to the load stresses and the other related to the thermal stresses. The final solution is obtained by the superposition of these two solutions. The rectangular cross section and its symmetry permit several simplifications of the general equations. In each case the equations used are listed. The notation is described in the appendix. Methods used to check the calculations are also given in the tables. The checking methods used were determined from mathematical relationships existing between the coefficients of the equations and from equilibrium of forces.

Tables I and II present the physical characteristics and stiffness parameters of the individual stringers and panels. Table III gives the location of the principal shear axes of each bay and the coefficients of the bay-displacement equations. The location of the principal inertia axes of each bay, the coefficients used in the correction cycle, and the initial stringer displacements are given in table IV. The coefficients of the stringer-displacement equations are tabulated in table V. Table VI contains the [C] matrices used for the iteration. The rows and columns have been interchanged in order that the matrix multiplications required will consist of the cumulative multiplication of the adjacent numbers in two columns. Table VII is a similar arrangement of data required for the correction cycle and also lists each correction determined. The displacements obtained from each cycle of iteration are given in table VIII and the correction cycles are indicated. Table IX contains the calculation of each type of stress and the superposition required to obtain the total stresses.

The numerical calculations in this example were done by a computer who had previous experience with the method. The following times were required:

- Setting up the equations (table I to table VII) 3 days
- Solving the equations (table VIII) 4 days
- Computing stresses (table IX) .. 1 day

In this example, the displacements were computed to six decimal places (five or six significant figures) in order that the stress would be accurate to 1 psi and thus would provide accurate equilibrium checks. Most practical problems will not require such numerical accuracy and a smaller number of decimal places should be used in order to speed the solution. It is estimated that the time required to solve this example could have been reduced by one-half if the number of decimal places had been reduced from six to four. This reduction would have given stresses accurate to 100 psi or about 1 percent of the maximum stress.

The results of the calculation are shown graphically in figure 5 by spanwise and chordwise plots of the stringer stresses in the top and bottom covers and a spanwise plot of shear stresses in the webs. The spanwise plots have a jagged appearance because stringer areas and sheet thicknesses are assumed constant in each bay with an abrupt change at the bulkheads. The dashed lines in the plots of stringer stresses are the values obtained from an elementary analysis.

CONCLUDING REMARKS

A numerical method for the stress analysis of stiffened-shell structures under nonuniform temperature distributions has been presented. The method is not applicable to the solution of all structural problems involving temperature effects because it requires extensive and tedious calculations and because the basic assumptions of bulkheads rigid in their own plane and constant shear stress in a given panel occasionally lead to unsatisfactory results. It is, however, a powerful tool for the solution of many structural problems because:

1. It is a means for accurately determining all types of secondary stresses in complicated structures that cannot be satisfactorily analyzed by simplified methods.
2. It is sufficiently flexible to cope with a wide variety of structural problems involving nonuniform temperature distributions.
3. It involves only simple arithmetic that can be handled by automatic computing machinery.

LANGLEY AERONAUTICAL LABORATORY,
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS,
LANGLEY FIELD, VA., September 12, 1960.
APPENDIX

DERIVATION OF GENERAL EQUATIONS

The general equations required for the numerical analysis of a stiffened shell of arbitrary cross section with any number of internal cells and under a nonuniform temperature distribution are developed. The basic assumptions and a general description of the method have been given previously and are not repeated.

SYMBOLS

- A cross-sectional area of stringer, square inches
- b width of panel on k grid line, inches
- E modulus of elasticity, psi
- F applied force, pounds
- G modulus of rigidity, psi
- h width of panel on j grid line, inches
- I moment of inertia, inches4
- J shear stiffness parameters
- l, m coordinates of a special set of axes
- L length of bay, inches
- M applied moment, inch-pounds
- P axial load in stringer, positive for tensile load, pounds
- Q area moment, inches3
- r normal distance to panel on k grid line, positive in positive z-direction, inches
- T temperature increment, measured from temperature of zero thermal stress which is 60° F in the example presented, degrees Fahrenheit
- t panel thickness, inches
- u, v, w displacements in x-, y-, and z-directions, respectively, inches
- x, y, z rectangular coordinate axes
- α coefficient of thermal expansion, inches per inch per degree Fahrenheit
- β angular rotation used in correction cycle, radians
- γ shear strain, radians
- δ, Δ increment
normal strain, inches per inch
\(e \)

angular rotation about z-axis, radians
\(\theta \)

rotation of special set of axes, degrees or radians
\(\lambda \)

normal distance to panel on \(j \) grid line, positive in
positive y-direction, inches
\(\rho \)

shear stress, positive for tensile stress, psi
\(\tau \)

normal stress, positive for tensile stress, psi
\(\sigma \)

shear stress, positive in direction of associated co-
dordinate axis when tensile stress on cross section
is in positive x-direction, psi
\(\tau \)

angle between normal line \(r \) and z-axis, degrees or
radians
\(\phi \)

angle between normal line \(r \) and y-axis, degrees or
radians
\(\psi \)

Subscripts:

\(i, j, k \) grid system
\(x, y, z \) coordinate axes
\(v, w, \theta \) bay displacements
\(0 \) initial value
\(n \) cycle of iteration

A prime refers to the principal shear axes and two primes refer
to the principal inertia axes. A bar over a symbol
indicates an average value at the center of a bay.

NOTATION

The notation employed is illustrated in figure 6. The
system adopted for designating parts of the structure is as
follows:

Bulkheads divide the length of the structure into a number
of bays. The subscript \(i \) is used to designate a given bulk-
head or the bay between the \(i-1 \) and \(i \)th bulkheads.

The stringers and panels in a given cross section form the
basis of a grid work which can be used to designate these
elements. These grid lines are not necessarily straight,
parallel, or perpendicular but follow the panels. Those grid
lines that are approximately parallel to the z-axis are desig-
nated by the subscript \(j \); those approximately parallel to the
y-axis are designated by the subscript \(k \).

With this system, points and stringers can be uniquely
located as follows:

The point on the \(i \)th bulkhead at the intersection of the

\(j \)th and \(k \)th grid lines is designated by the subscripts \(i,j,k \).

The stringer in the \(i \)th bay at the intersection of the \(j \)th
and \(k \)th grid lines is designated by the subscripts \(i,j,k \).

In order to locate a panel, the grid line on which it lies
must be known. This notation consists of underlining the
appropriate subscript; for example:

The panel in the \(i \)th bay on the \(j \)th grid line and between
the \(k-1 \) and \(k \)th grid lines is designated by the subscripts
\(i,j,k \).

The panel in the \(i \)th bay on the \(k \)th grid line and between
the \(j-1 \) and \(j \)th grid lines is designated by the subscripts
\(i,j,k \).

The grid lines and bulkheads are numbered such that the
numbers increase in the directions of the positive coordinate
axes.

STRESS-STRAIN RELATIONSHIPS

The shear strain in a given panel is constant and is
defined by the following relationships which depend upon
the location of the panel:

\[
\gamma_{i,j,k} = \left(\frac{\tau}{\sigma} \right)_{i,j,k}
\]

\[
= \frac{1}{2b_{i,k}} (u_{i,j,k} + u_{i-1,j,k} - u_{i,j-1,k} - u_{i-1,j-1,k})
\]

\[
+ \frac{\Delta e_i}{L_i} \cos \phi_{j,k} + \frac{\Delta \theta_i}{L_i} \sin \phi_{j,k} - \frac{\Delta \psi_i}{L_i} r_{j,k}
\]

\((A1a) \)

\[
\gamma_{i,j,k} = \left(\frac{\tau}{\sigma} \right)_{i,j,k}
\]

\[
= \frac{1}{2h_{j,k}} (u_{i,j,k} + u_{i,j-1,k} - u_{i,j,k-1} - u_{i-1,j,k-1})
\]

\[
+ \frac{\Delta e_j}{L_j} \sin \phi_{j,k} + \frac{\Delta \theta_j}{L_j} \cos \phi_{j,k} - \frac{\Delta \psi_j}{L_j} \rho_{j,k}
\]

\((A1b) \)

When the shear strains are being computed, the normal
distances \(r \) and \(\rho \) must be given their proper signs.

The constant shear stress produces a linearly varying
strain in the stringer and its average value at the center of
the bay is

\[
\bar{e}_{i,j,k} = u_{i,j,k} - u_{i-1,j,k} = \left(\frac{\bar{P}}{AP} + \alpha P \right)_{i,j,k}
\]

\((A2) \)

Note that the thermal expansion is included in the relation-
ship between stringer stress and strain.

EQUILIBRIUM OF INDIVIDUAL STRINGERS

If a half-bay length of stringer on each side of point \((i, j, k)\)
is isolated, the force system of figure 7 is obtained, and the
following equilibrium equation can be written:

\[
- \left(\frac{\tau L}{2} \right)_{i,j,k} + \left(\frac{\tau L}{2} \right)_{i,j+1,k} - \left(\frac{\tau L}{2} \right)_{i+1,j,k} + \left(\frac{\tau L}{2} \right)_{i+1,j+1,k}
\]

\[
- \left(\frac{\tau L}{2} \right)_{i-1,j,k} + \left(\frac{\tau L}{2} \right)_{i-1,j+1,k} - \left(\frac{\tau L}{2} \right)_{i,j,k+1} + \left(\frac{\tau L}{2} \right)_{i,j+1,k+1}
\]

\[
\bar{F}_{i,j,k} - \bar{F}_{i,j,k} + \left(F_d \right)_{i,j,k} = 0
\]

\((A3) \)
Substituting equations (A1) and (A2) into equation (A3) yields the following equation for the stringer displacement of point \((i, j, k)\) in terms of the displacements of the adjacent bays and stringers:

\[
\begin{align*}
\Delta u_{i,j,k} &= \frac{1}{\sum S_{i,j,k}} \left(u_{i-1,j-1,k} \left(\frac{Gt}{4b} \right) + u_{i-1,j,k} \left(\frac{Gt}{4h} \right) + u_{i,j,k-1} \left(\frac{Gt}{4b} \right) + u_{i,j,k+1} \left(\frac{Gt}{4h} \right) + \right. \\
&\quad \left. + u_{i+1,j-1,k} \left(\frac{Gt}{4b} \right) + u_{i+1,j,k} \left(\frac{Gt}{4h} \right) + u_{i,j+1,k} \left(\frac{Gt}{4b} \right) + u_{i,j,k+1} \left(\frac{Gt}{4h} \right) \right) \\
&\quad - u_{i,j,k} \left(\frac{AE}{L} \right) - \left(\frac{Gt}{4b} \right) - \left(\frac{Gt}{4h} \right) = 0 \\
\end{align*}
\]
cross section

\[(F_y)_{t} = \sum_j \sum_k [(r r b \cos \phi)(x, z) - (r r b \sin \phi)(y, z)] = 0 \]
\[(F_z)_{t} = \sum_j \sum_k [(r r b \sin \phi)(x, z) + (n r b \cos \phi)(y, z)] = 0 \]
\[(M_{t})_{t} + \sum_k \sum_j [(r r b r)(x, z) - (r r b \rho)(y, z)] = 0 \]

Substitution of equations (A1) for the shear stresses in equations (A5) results in

\[(J_{s+x})_t + (J_{s+y})_t - (J_{s-z})_t = \sum_j \sum_k (u_{t, x} + u_{t, y} + u_{t, z, k}) \]

\[\left\{ \left(\frac{G(r \cos \phi)}{2} \right)_{t, t, t} - \left(\frac{G(r \cos \phi)}{2} \right)_{t, t, z} \right\} \]

\[\left\{ \left(\frac{G(r \sin \phi)}{2} \right)_{t, t, z} + \left(\frac{G(r \sin \phi)}{2} \right)_{t, z, z} \right\} \]

\[\sum_j \sum_k \sum_j \sum_k [(u_{t, x} + u_{t, y} + u_{t, z, k}) \left(\frac{G(r \cos \phi)}{2} \right)_{t, t, t} - \left(\frac{G(r \cos \phi)}{2} \right)_{t, t, z} \]

\[\sum_j \sum_k \sum_j \sum_k [(u_{t, x} + u_{t, y} + u_{t, z, k}) \left(\frac{G(r \sin \phi)}{2} \right)_{t, t, z} + \left(\frac{G(r \sin \phi)}{2} \right)_{t, z, z} \]

where

\[(J_{s+x})_t = \sum_j \sum_k \left[\left(G(r \cos \phi) \frac{L}{2} \right)_{t, t, t} + \left(G(r \sin \phi) \frac{L}{2} \right)_{t, t, z} \right] \]

\[(J_{s+y})_t = \sum_j \sum_k \left[\left(G(r \cos \phi) \frac{L}{2} \right)_{t, t, t} - \left(G(r \sin \phi) \frac{L}{2} \right)_{t, t, z} \right] \]

Equations (A6) can be simplified by eliminating the coupling terms if the axes used in the computations are the principal shear axes of the cross section. These axes are defined such that

\[J_{s+x} = J_{s+y} = J_{s-z} = 0 \]

The relationship between the location and orientation of points and panels in two systems of coordinates, arbitrary axes \((x, y, z)\) and the principal shear axes \((x', y', z')\), is shown in figure 8 and given by the following equations:

\[\gamma' = (z-m') \cos \lambda' + (y-l') \sin \lambda' \]

\[\lambda' = \lambda - \phi' \]

\[\lambda' = \lambda \]

\[\psi' = \psi \]

\[\tau' = \phi' \sin \psi' - m' \cos \phi' \]

\[\rho' = \rho - l' \cos \psi' - m' \sin \psi' \]

Then the location of the principal shear axes is

\[\tan 2\lambda' = \frac{2J_{uw}}{J_{uw} - J_{uw}} \]

\[\lambda' = \frac{J_{uw} J_{uw} - J_{uw} J_{uw}}{J_{uw} J_{uw} - J_{uw} J_{uw}} \]

\[m' = \frac{J_{uw} J_{uw} - J_{uw} J_{uw}}{J_{uw} J_{uw} - J_{uw} J_{uw}} \]

and, with respect to these axes,

\[J_{s+x}' = J_{s+x} \cos^2 \lambda' + J_{uw} \sin^2 \lambda' + 2J_{uw} \sin \lambda' \cos \lambda' \]

\[J_{s+y}' = J_{s+y} \sin^2 \lambda' + J_{uw} \cos^2 \lambda' - 2J_{uw} \sin \lambda' \cos \lambda' \]

\[J_{s-z}' = J_{s-z} + J_{uw} \sin \lambda' - m' \lambda' \]

\[F_y' = F_y \sin \lambda' + F_y \cos \lambda' \]
When referred to the principal shear axes, the equations for the bay displacements become

$$\Delta \psi'_t = \left(\frac{1}{J_{zz}} \right) \left(\frac{F_y'}{2} \right)_{t,1,1} + \sum_j \left(\frac{G_{t \cos \psi'}}{2} \right)_{t,1,1} - \left(\frac{G_{t \sin \psi'}}{2} \right)_{t,1,1} + \left(\frac{G_{t \sin \psi'}}{2} \right)_{t,1,1}$$

$$\Delta \psi'_t = \left(\frac{1}{J_{zz}} \right) \left(\frac{F_y'}{2} \right)_{t,1,1} - \left(\frac{G_{t \cos \psi'}}{2} \right)_{t,1,1} - \left(\frac{G_{t \sin \psi'}}{2} \right)_{t,1,1}$$

$$\Delta \psi'_t = \left(\frac{1}{J_{zz}} \right) \left(\frac{F_y'}{2} \right)_{t,1,1} - \left(\frac{G_{t \cos \psi'}}{2} \right)_{t,1,1} - \left(\frac{G_{t \sin \psi'}}{2} \right)_{t,1,1}$$

BAY THRUST AND MOMENT EQUILIBRIUM

The equations obtained from equations (A4) and (A14) are sufficient in themselves to define completely the displacements of the structure. However, if the equations are solved by iteration, it is helpful to employ a periodic correction cycle based on the gross equilibrium of axial loads in the cross section.

$$\sum_j \left(\frac{G_{t \cos \psi}}{2} \right)_{t,1,1} - \left(\frac{G_{t \sin \psi}}{2} \right)_{t,1,1} = 0$$

It can be shown that equations (A15) are satisfied by the solution of equations (A4) and (A14); however, they are not likely to be satisfied by the displacement values obtained from any given cycle of iteration. In reference 2 it was demonstrated that convergence of the iterative process can be speeded if the displacement values are periodically corrected so that the stringer displacements satisfy equations (A15).

The corrections applied to the stringer displacements are a planar distribution over the cross section and are determined as follows:

$$u_{t,1,1} + \Delta u_{t,1,1}$$

$$\Delta u_{t,1,1} = \beta_{t,1} \psi_{t,1} \psi_{t,1}$$

Substituting equation (A16) into (A15) yields

$$(AE)_t \psi_{t,1} + (E Q_t)_t \beta_{t,1} + (E Q_t)_t \beta_{t,1} = (L E)_t + \sum_j \left(\frac{G_{t \cos \psi}}{2} \right)_{t,1,1} - \left(\frac{G_{t \sin \psi}}{2} \right)_{t,1,1}$$

A further simplification of the correction cycle can be made by eliminating the load and temperature terms on the right-hand side of equations (A17). This elimination can be accomplished by iterating the difference between the exact solution and one which satisfies statics (equations (A15)) but not necessarily continuity. The iteration of differences has an additional advantage in that smaller numbers, and consequently less work, are required to obtain a solution.

An examination of equations (A17) indicates that they can be satisfied by a planar distribution of strain corresponding...
to the elementary analysis of reference 1. Then the initial values of stringer displacements \(u \) can be defined as follows:

\[
u_{i,k}^{(0)} = u_{i-1,k} + \varepsilon_0 L_{i,k}
\]

(A23)

where

\[
(\varepsilon_0 L_{i,k}) = \left(\frac{L}{AE} \right) \sum \sum (AE \alpha T)_{i,k}
\]

and, with respect to the equivalent principal inertia axes,

\[
(\beta_s,\gamma')(x) = \left(\frac{L}{EI_y} \right) \left[-(M_y') + \sum \sum (AE \alpha T \gamma')_{i,k} \right]
\]

(A24a)

\[
(\beta_s,\gamma')(\theta) = \left(\frac{L}{EI_y} \right) \left[-(M_y') + \sum \sum (AE \alpha T \gamma')_{i,k} \right]
\]

(A24b)

\[
(\beta_s,\gamma')(\gamma) = \left(\frac{L}{EI_y} \right) \left[-(M_y') + \sum \sum (AE \alpha T \gamma')_{i,k} \right]
\]

(A24c)

The corresponding values of the bay displacements are obtained from equations (A14) and (A23).

Then the correction-cycle equations applicable to the iterated differences are as follows:

\[
\delta u_i'' = -\left(\frac{1}{AE} \right) \sum \sum (\Delta u_{i-1,k} - \Delta u_{i-1,k}) (AE)_{i,k}
\]

(A25a)

\[
\delta \beta_s'' = \left(\frac{1}{EI_y} \right) \sum \sum (\Delta u_{i-1,k} - \Delta u_{i-1,k}) (AE \gamma')_{i,k}
\]

(A25b)

\[
\delta \beta_s'' = \left(\frac{1}{EI_y} \right) \sum \sum (\Delta u_{i-1,k} - \Delta u_{i-1,k}) (AE \gamma')_{i,k}
\]

(A25c)

Equations (A25) provide corrections to the stringer displacements \(u \) only. These corrections remove any unbalanced moment or thrust on the cross section but add unbalanced shear forces which are removed by correcting the bay displacements \(\{r,\theta, \phi\} \). The corrected bay displacements are obtained from the corrected stringer displacements by application of equation (A14). These two operations constitute the complete correction cycle that brings the stringer loads into equilibrium with the external loads without changing the shear stress in any panel.

REFERENCES

TABLE I—STRINGER PROPERTIES

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>E</th>
<th>(\alpha T)</th>
<th>A</th>
<th>AE</th>
<th>AE-T</th>
<th>AE-T-L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.038</td>
<td>0.0350</td>
<td>10</td>
<td>0.040</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>0.039</td>
<td>0.0355</td>
<td>10</td>
<td>0.040</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>3</td>
<td>0.040</td>
<td>0.0400</td>
<td>10</td>
<td>0.040</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

TABLE II—PANEL PROPERTIES

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>E</th>
<th>(\alpha T)</th>
<th>A</th>
<th>AE</th>
<th>AE-T</th>
<th>AE-T-L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.038</td>
<td>0.0350</td>
<td>10</td>
<td>0.040</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>0.039</td>
<td>0.0355</td>
<td>10</td>
<td>0.040</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>3</td>
<td>0.040</td>
<td>0.0400</td>
<td>10</td>
<td>0.040</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>
TABLE I.—PRINCIPAL SHEAR AXES AND BAY DISPLACEMENT EQUATIONS

For load problems:

\[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \]

For temperature problems:

\[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \frac{1}{\alpha} \frac{\partial T}{\partial x} \]
<table>
<thead>
<tr>
<th>Load problem</th>
<th>Temperature problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f)</td>
<td>(A E t^l)</td>
</tr>
<tr>
<td>1</td>
<td>1.53, 08000x10^6</td>
</tr>
<tr>
<td>2</td>
<td>1.49, 07300</td>
</tr>
<tr>
<td>3</td>
<td>1.48, 04300</td>
</tr>
<tr>
<td>4</td>
<td>1.47, 00900</td>
</tr>
<tr>
<td>5</td>
<td>1.46, 00900</td>
</tr>
<tr>
<td>6</td>
<td>1.45, 00900</td>
</tr>
<tr>
<td>7</td>
<td>1.44, 00900</td>
</tr>
<tr>
<td>8</td>
<td>1.43, 00900</td>
</tr>
</tbody>
</table>

*For load problem:

\[
\beta_{st} = \left(\frac{2}{A E t^l} \right) \sum_{j=1}^{4} (\Delta t^l)'_j t (\Delta t^l)'_j t
\]

\[
(\beta_{st})_t = \left(\frac{2}{A E t^l} \right) \sum_{j=1}^{4} (\Delta t^l)'_j t (\Delta t^l)'_j t
\]

**For temperature problem:

\[
\beta_{st} = \left(\frac{2}{A t^l} \right) \sum_{j=1}^{4} (\Delta t^l)'_j t (\Delta t^l)'_j t
\]

\[
(\beta_{st})_t = \left(\frac{2}{A t^l} \right) \sum_{j=1}^{4} (\Delta t^l)'_j t (\Delta t^l)'_j t
\]
TABLE V.—STRINGER-DISPLACEMENT EQUATIONS

(a) Load problem

<table>
<thead>
<tr>
<th>j</th>
<th>(\sum_s)</th>
<th>(\sum_s 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>583, 092</td>
<td>0</td>
<td>0.15528</td>
<td>0</td>
<td>0.42370</td>
<td>0</td>
<td>0.08376</td>
<td>0</td>
<td>0.10940</td>
<td>0</td>
<td>0.04470</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1, 743, 044</td>
<td>0.04118</td>
<td>0.15528</td>
<td>0.42370</td>
<td>0.08376</td>
<td>0.10940</td>
<td>0.04470</td>
<td>0.07934</td>
<td>0.09923</td>
<td>0.26717</td>
<td>0.62800</td>
<td>1.46218</td>
</tr>
<tr>
<td>3</td>
<td>453, 048</td>
<td>0.07285</td>
<td>0.22448</td>
<td>0.07285</td>
<td>0.49282</td>
<td>0.14909</td>
<td>0.05990</td>
<td>0.17030</td>
<td>0.17030</td>
<td>0.01000</td>
<td>0.00030</td>
<td>0.00020</td>
</tr>
<tr>
<td>4</td>
<td>185, 928</td>
<td>0.08455</td>
<td>0.15528</td>
<td>0.42370</td>
<td>0.08376</td>
<td>0.10940</td>
<td>0.04470</td>
<td>0.07934</td>
<td>0.09923</td>
<td>0.26717</td>
<td>0.62800</td>
<td>1.46218</td>
</tr>
</tbody>
</table>

Check: 1003.121 + 1003.121 + 1003.121 + 1003.121 + 1003.121 + 1003.121 + 1003.121 + 1003.121 + 1003.121 + 1003.121 + 1003.121 + 1003.121 = 1
TABLE V.—STRINGER-DISPLACEMENT EQUATIONS—Concluded

(3) Temperature problem

<table>
<thead>
<tr>
<th>f</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>w</th>
<th>u</th>
<th>v</th>
<th>w_{L-x}</th>
<th>w_{L-y}</th>
<th>w_{L-z}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,135,854</td>
<td>0.043995</td>
<td>0.092015</td>
<td>0.125231</td>
<td>0.136515</td>
<td>0.060192</td>
<td>0.002668</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3570,641</td>
<td>0.010224</td>
<td>0.026945</td>
<td>0.030944</td>
<td>0.040730</td>
<td>0.020359</td>
<td>0.002610</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3570,641</td>
<td>0.034584</td>
<td>0.078273</td>
<td>0.103125</td>
<td>0.112548</td>
<td>0.050939</td>
<td>0.001119</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1,061,330</td>
<td>0.087602</td>
<td>0.178476</td>
<td>0.201014</td>
<td>0.215435</td>
<td>0.100630</td>
<td>0.000635</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>w</th>
<th>u</th>
<th>v</th>
<th>w_{L-x}</th>
<th>w_{L-y}</th>
<th>w_{L-z}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>614,764</td>
<td>0.011706</td>
<td>0.028432</td>
<td>0.032050</td>
<td>0.038825</td>
<td>0.017679</td>
<td>0.000615</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1,228,528</td>
<td>0.001841</td>
<td>0.004886</td>
<td>0.005698</td>
<td>0.006878</td>
<td>0.002165</td>
<td>0.000676</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>410,944</td>
<td>0.000564</td>
<td>0.001328</td>
<td>0.001569</td>
<td>0.001897</td>
<td>0.000587</td>
<td>0.000676</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1,057,524</td>
<td>0.031283</td>
<td>0.062565</td>
<td>0.073004</td>
<td>0.080536</td>
<td>0.030587</td>
<td>0.000676</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>w</th>
<th>u</th>
<th>v</th>
<th>w_{L-x}</th>
<th>w_{L-y}</th>
<th>w_{L-z}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>505,525</td>
<td>0.062160</td>
<td>0.124294</td>
<td>0.148672</td>
<td>0.178568</td>
<td>0.060804</td>
<td>0.002116</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1,050,027</td>
<td>0.000143</td>
<td>0.002856</td>
<td>0.003281</td>
<td>0.003760</td>
<td>0.001248</td>
<td>0.000676</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>476,066</td>
<td>0.037547</td>
<td>0.075067</td>
<td>0.090004</td>
<td>0.104568</td>
<td>0.035487</td>
<td>0.000676</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>546,067</td>
<td>0.000002</td>
<td>0.000002</td>
<td>0.000002</td>
<td>0.000002</td>
<td>0.000002</td>
<td>0.000002</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>w</th>
<th>u</th>
<th>v</th>
<th>w_{L-x}</th>
<th>w_{L-y}</th>
<th>w_{L-z}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,302,925</td>
<td>0.027518</td>
<td>0.055397</td>
<td>0.065397</td>
<td>0.075397</td>
<td>0.027518</td>
<td>0.000002</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1,302,925</td>
<td>0.027518</td>
<td>0.055397</td>
<td>0.065397</td>
<td>0.075397</td>
<td>0.027518</td>
<td>0.000002</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1,302,925</td>
<td>0.027518</td>
<td>0.055397</td>
<td>0.065397</td>
<td>0.075397</td>
<td>0.027518</td>
<td>0.000002</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1,302,925</td>
<td>0.027518</td>
<td>0.055397</td>
<td>0.065397</td>
<td>0.075397</td>
<td>0.027518</td>
<td>0.000002</td>
<td></td>
</tr>
</tbody>
</table>

Table Notes:
- G_{L}, $G_{condition}$, G_{L-L}
- A_{E}, $A_{condition}$, A_{L-L}
- F_{L}, $F_{condition}$, F_{L-L}
- $M_{condition}$, M_{L-L}
- w_{L-x}, w_{L-y}, w_{L-z}

For detailed calculations, please refer to the referenced text or additional materials.
TABLE VI.—MATRIX OF COEFFICIENTS

(a) Load problem

<table>
<thead>
<tr>
<th>(\Delta\delta_{x})</th>
<th>(\Delta\delta_{y})</th>
<th>(\Delta\delta_{z})</th>
<th>(\Delta\delta_{a})</th>
<th>(\Delta\delta_{\phi})</th>
<th>(\Delta\delta_{\theta})</th>
<th>(\Delta\delta_{\psi})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta\delta_{x})</td>
<td>0.145723</td>
<td>0.099952</td>
<td>0.040597</td>
<td>0.057185</td>
<td>0.039558</td>
<td>0.025064</td>
</tr>
<tr>
<td>(\Delta\delta_{y})</td>
<td>0.099952</td>
<td>0.047235</td>
<td>0.025064</td>
<td>0.018356</td>
<td>0.014021</td>
<td>0.009389</td>
</tr>
<tr>
<td>(\Delta\delta_{z})</td>
<td>0.040597</td>
<td>0.025064</td>
<td>0.018356</td>
<td>0.012807</td>
<td>0.010488</td>
<td>0.007974</td>
</tr>
<tr>
<td>(\Delta\delta_{a})</td>
<td>0.057185</td>
<td>0.018356</td>
<td>0.012807</td>
<td>0.009389</td>
<td>0.007274</td>
<td>0.005462</td>
</tr>
<tr>
<td>(\Delta\delta_{\phi})</td>
<td>0.039558</td>
<td>0.014021</td>
<td>0.010488</td>
<td>0.007274</td>
<td>0.005462</td>
<td>0.004037</td>
</tr>
<tr>
<td>(\Delta\delta_{\theta})</td>
<td>0.025064</td>
<td>0.009389</td>
<td>0.007974</td>
<td>0.005462</td>
<td>0.004037</td>
<td>0.002850</td>
</tr>
<tr>
<td>(\Delta\delta_{\psi})</td>
<td>0.018356</td>
<td>0.007974</td>
<td>0.005462</td>
<td>0.003147</td>
<td>0.002318</td>
<td>0.001642</td>
</tr>
</tbody>
</table>

\(A' \) = \frac{1}{2} \sum_{i=1}^{n} \Delta\delta_{i} \Delta\delta_{i}'

\(B' \) = \frac{1}{2} \sum_{i=1}^{n} \Delta\delta_{i} \Delta\delta_{i}'

\(C' \) = \frac{1}{2} \sum_{i=1}^{n} \Delta\delta_{i} \Delta\delta_{i}'

\(D' \) = \frac{1}{2} \sum_{i=1}^{n} \Delta\delta_{i} \Delta\delta_{i}'

\(E' \) = \frac{1}{2} \sum_{i=1}^{n} \Delta\delta_{i} \Delta\delta_{i}'

\(F' \) = \frac{1}{2} \sum_{i=1}^{n} \Delta\delta_{i} \Delta\delta_{i}'

\(G' \) = \frac{1}{2} \sum_{i=1}^{n} \Delta\delta_{i} \Delta\delta_{i}'

\(H' \) = \frac{1}{2} \sum_{i=1}^{n} \Delta\delta_{i} \Delta\delta_{i}'

\(I' \) = \frac{1}{2} \sum_{i=1}^{n} \Delta\delta_{i} \Delta\delta_{i}'

\(J' \) = \frac{1}{2} \sum_{i=1}^{n} \Delta\delta_{i} \Delta\delta_{i}'

\(K' \) = \frac{1}{2} \sum_{i=1}^{n} \Delta\delta_{i} \Delta\delta_{i}'

\(L' \) = \frac{1}{2} \sum_{i=1}^{n} \Delta\delta_{i} \Delta\delta_{i}'

\(M' \) = \frac{1}{2} \sum_{i=1}^{n} \Delta\delta_{i} \Delta\delta_{i}'

\(N' \) = \frac{1}{2} \sum_{i=1}^{n} \Delta\delta_{i} \Delta\delta_{i}'

\(O' \) = \frac{1}{2} \sum_{i=1}^{n} \Delta\delta_{i} \Delta\delta_{i}'

\(P' \) = \frac{1}{2} \sum_{i=1}^{n} \Delta\delta_{i} \Delta\delta_{i}'

\(Q' \) = \frac{1}{2} \sum_{i=1}^{n} \Delta\delta_{i} \Delta\delta_{i}'

\(R' \) = \frac{1}{2} \sum_{i=1}^{n} \Delta\delta_{i} \Delta\delta_{i}'

\(S' \) = \frac{1}{2} \sum_{i=1}^{n} \Delta\delta_{i} \Delta\delta_{i}'

\(T' \) = \frac{1}{2} \sum_{i=1}^{n} \Delta\delta_{i} \Delta\delta_{i}'

\(U' \) = \frac{1}{2} \sum_{i=1}^{n} \Delta\delta_{i} \Delta\delta_{i}'

\(V' \) = \frac{1}{2} \sum_{i=1}^{n} \Delta\delta_{i} \Delta\delta_{i}'

\(W' \) = \frac{1}{2} \sum_{i=1}^{n} \Delta\delta_{i} \Delta\delta_{i}'

\(X' \) = \frac{1}{2} \sum_{i=1}^{n} \Delta\delta_{i} \Delta\delta_{i}'

\(Y' \) = \frac{1}{2} \sum_{i=1}^{n} \Delta\delta_{i} \Delta\delta_{i}'

\(Z' \) = \frac{1}{2} \sum_{i=1}^{n} \Delta\delta_{i} \Delta\delta_{i}'

\(a' \) = \frac{1}{2} \sum_{i=1}^{n} \Delta\delta_{i} \Delta\delta_{i}'

\(b' \) = \frac{1}{2} \sum_{i=1}^{n} \Delta\delta_{i} \Delta\delta_{i}'

\(c' \) = \frac{1}{2} \sum_{i=1}^{n} \Delta\delta_{i} \Delta\delta_{i}'
TABLE VI.—MATRIX OF COEFFICIENTS—Concluded

<table>
<thead>
<tr>
<th>$\Delta\nu''$</th>
<th>$\Delta\nu''$</th>
<th>$\Delta\nu''$</th>
<th>$\Delta\nu''$</th>
<th>$\Delta\nu''$</th>
<th>$\Delta\nu''$</th>
<th>$\Delta\nu''$</th>
<th>$\Delta\nu''$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000195</td>
<td>0.000119</td>
<td>-0.000190</td>
<td>-0.007182</td>
<td>0.025693</td>
<td>0.000187</td>
<td>0.000198</td>
<td></td>
</tr>
<tr>
<td>0.000195</td>
<td>0.000119</td>
<td>-0.000190</td>
<td>-0.007182</td>
<td>0.025693</td>
<td>0.000187</td>
<td>0.000198</td>
<td></td>
</tr>
</tbody>
</table>

$\Delta\nu''$ is calculated using the formula:

$$\Delta\nu'' = \frac{\Delta\nu - \Delta\nu'}{\Delta\nu + \Delta\nu'}$$

Where $\Delta\nu'$ and $\Delta\nu$ represent the changes in the coefficients.
TABLE VII.—CORRECTION CYCLE

(a) Load problem

<table>
<thead>
<tr>
<th>B_{z1}</th>
<th>B_{z2}</th>
<th>B_{z3}</th>
<th>B_{z4}</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_{11}</td>
<td>-0.034018</td>
<td>0.026248</td>
<td></td>
</tr>
<tr>
<td>w_{12}</td>
<td>-0.072572</td>
<td>0.021023</td>
<td></td>
</tr>
<tr>
<td>w_{13}</td>
<td>-0.097469</td>
<td>0.032469</td>
<td></td>
</tr>
</tbody>
</table>

(b) Temperature problem

<table>
<thead>
<tr>
<th>B_{z1}</th>
<th>B_{z2}</th>
<th>B_{z3}</th>
<th>B_{z4}</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_{11}</td>
<td>-0.270297</td>
<td>0.029720</td>
<td>-0.029564</td>
</tr>
<tr>
<td>w_{12}</td>
<td>-0.166302</td>
<td>-0.006369</td>
<td></td>
</tr>
<tr>
<td>w_{13}</td>
<td>-0.026777</td>
<td>0.031614</td>
<td></td>
</tr>
</tbody>
</table>

TABLE VII.—CORRECTION CYCLE

<table>
<thead>
<tr>
<th>B_{z1}</th>
<th>B_{z2}</th>
<th>B_{z3}</th>
<th>B_{z4}</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_{11}</td>
<td>-0.270297</td>
<td>0.029720</td>
<td>-0.029564</td>
</tr>
<tr>
<td>w_{12}</td>
<td>-0.166302</td>
<td>-0.006369</td>
<td></td>
</tr>
<tr>
<td>w_{13}</td>
<td>-0.026777</td>
<td>0.031614</td>
<td></td>
</tr>
</tbody>
</table>

TABLE VII.—CORRECTION CYCLE

<table>
<thead>
<tr>
<th>B_{z1}</th>
<th>B_{z2}</th>
<th>B_{z3}</th>
<th>B_{z4}</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_{11}</td>
<td>-0.270297</td>
<td>0.029720</td>
<td>-0.029564</td>
</tr>
<tr>
<td>w_{12}</td>
<td>-0.166302</td>
<td>-0.006369</td>
<td></td>
</tr>
<tr>
<td>w_{13}</td>
<td>-0.026777</td>
<td>0.031614</td>
<td></td>
</tr>
</tbody>
</table>

TABLE VII.—CORRECTION CYCLE

<table>
<thead>
<tr>
<th>B_{z1}</th>
<th>B_{z2}</th>
<th>B_{z3}</th>
<th>B_{z4}</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_{11}</td>
<td>-0.270297</td>
<td>0.029720</td>
<td>-0.029564</td>
</tr>
<tr>
<td>w_{12}</td>
<td>-0.166302</td>
<td>-0.006369</td>
<td></td>
</tr>
<tr>
<td>w_{13}</td>
<td>-0.026777</td>
<td>0.031614</td>
<td></td>
</tr>
</tbody>
</table>

TABLE VII.—CORRECTION CYCLE

<table>
<thead>
<tr>
<th>B_{z1}</th>
<th>B_{z2}</th>
<th>B_{z3}</th>
<th>B_{z4}</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_{11}</td>
<td>-0.270297</td>
<td>0.029720</td>
<td>-0.029564</td>
</tr>
<tr>
<td>w_{12}</td>
<td>-0.166302</td>
<td>-0.006369</td>
<td></td>
</tr>
<tr>
<td>w_{13}</td>
<td>-0.026777</td>
<td>0.031614</td>
<td></td>
</tr>
</tbody>
</table>
TABLE VIII—SUCCESSIVE VALUES OF DISPLACEMENT

(a) Load problem

<table>
<thead>
<tr>
<th>Initial values</th>
<th>1st cycle</th>
<th>2nd cycle</th>
<th>3rd cycle</th>
<th>4th cycle</th>
<th>5th cycle (correction)</th>
<th>6th cycle</th>
<th>7th cycle</th>
<th>8th cycle</th>
<th>9th cycle (correction)</th>
<th>10th cycle</th>
<th>11th cycle</th>
<th>12th cycle (correction)</th>
<th>Total value</th>
<th>Check cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.0126056</td>
<td>-0.017684</td>
<td>-1.286910^-4</td>
<td>-0.171</td>
<td>-0.896</td>
<td>-2.100</td>
<td>-0.775</td>
<td>-1.600</td>
<td>-0.575</td>
<td>-1.525</td>
<td>-0.500</td>
<td>-1.500</td>
<td>-0.500</td>
<td>-0.500</td>
</tr>
<tr>
<td>2</td>
<td>-0.0126056</td>
<td>-0.017684</td>
<td>-1.286910^-4</td>
<td>-0.171</td>
<td>-0.896</td>
<td>-2.100</td>
<td>-0.775</td>
<td>-1.600</td>
<td>-0.575</td>
<td>-1.525</td>
<td>-0.500</td>
<td>-1.500</td>
<td>-0.500</td>
<td>-0.500</td>
</tr>
<tr>
<td>3</td>
<td>-0.0126056</td>
<td>-0.017684</td>
<td>-1.286910^-4</td>
<td>-0.171</td>
<td>-0.896</td>
<td>-2.100</td>
<td>-0.775</td>
<td>-1.600</td>
<td>-0.575</td>
<td>-1.525</td>
<td>-0.500</td>
<td>-1.500</td>
<td>-0.500</td>
<td>-0.500</td>
</tr>
<tr>
<td>4</td>
<td>-0.0126056</td>
<td>-0.017684</td>
<td>-1.286910^-4</td>
<td>-0.171</td>
<td>-0.896</td>
<td>-2.100</td>
<td>-0.775</td>
<td>-1.600</td>
<td>-0.575</td>
<td>-1.525</td>
<td>-0.500</td>
<td>-1.500</td>
<td>-0.500</td>
<td>-0.500</td>
</tr>
</tbody>
</table>

(b) Temperature problem

<table>
<thead>
<tr>
<th>Initial values</th>
<th>1st cycle</th>
<th>2nd cycle</th>
<th>3rd cycle</th>
<th>4th cycle</th>
<th>5th cycle (correction)</th>
<th>6th cycle</th>
<th>7th cycle</th>
<th>8th cycle</th>
<th>9th cycle (correction)</th>
<th>10th cycle</th>
<th>11th cycle</th>
<th>12th cycle (correction)</th>
<th>Total value</th>
<th>Check cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.022956</td>
<td>0.021710</td>
<td>-4.42910^-4</td>
<td>-0.201</td>
</tr>
<tr>
<td>2</td>
<td>0.022956</td>
<td>0.021710</td>
<td>-4.42910^-4</td>
<td>-0.201</td>
</tr>
</tbody>
</table>

STRESS ANALYSIS OF STIFFENED-SHELL STRUCTURES

1037
Table IX—Stresses

<table>
<thead>
<tr>
<th>Load problem*</th>
<th>Temperature problem**</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_{11})</td>
<td>(f_{11})</td>
<td>(f_{11})</td>
</tr>
<tr>
<td>(f_{12})</td>
<td>(f_{12})</td>
<td>(f_{12})</td>
</tr>
<tr>
<td>(f_{13})</td>
<td>(f_{13})</td>
<td>(f_{13})</td>
</tr>
<tr>
<td>(f_{21})</td>
<td>(f_{21})</td>
<td>(f_{21})</td>
</tr>
<tr>
<td>(f_{22})</td>
<td>(f_{22})</td>
<td>(f_{22})</td>
</tr>
<tr>
<td>(f_{23})</td>
<td>(f_{23})</td>
<td>(f_{23})</td>
</tr>
<tr>
<td>(f_{31})</td>
<td>(f_{31})</td>
<td>(f_{31})</td>
</tr>
<tr>
<td>(f_{32})</td>
<td>(f_{32})</td>
<td>(f_{32})</td>
</tr>
<tr>
<td>(f_{33})</td>
<td>(f_{33})</td>
<td>(f_{33})</td>
</tr>
</tbody>
</table>

Notes:
- *Load problem* refers to the stresses due to the load applied.
- **Temperature problem** refers to the stresses due to temperature changes.
- The total stresses are the sum of the load and temperature stresses.

Calculations:
- \(f_{11} \) = \(f_{11,1} \) + \(f_{11,2} \) + \(f_{11,3} \) + \(f_{11,4} \) + \(f_{11,5} \) + \(f_{11,6} \) + \(f_{11,7} \) + \(f_{11,8} \) + \(f_{11,9} \) + \(f_{11,10} \)
- \(f_{12} \) = \(f_{12,1} \) + \(f_{12,2} \) + \(f_{12,3} \) + \(f_{12,4} \) + \(f_{12,5} \) + \(f_{12,6} \) + \(f_{12,7} \) + \(f_{12,8} \) + \(f_{12,9} \) + \(f_{12,10} \)
- \(f_{13} \) = \(f_{13,1} \) + \(f_{13,2} \) + \(f_{13,3} \) + \(f_{13,4} \) + \(f_{13,5} \) + \(f_{13,6} \) + \(f_{13,7} \) + \(f_{13,8} \) + \(f_{13,9} \) + \(f_{13,10} \)
- \(f_{21} \) = \(f_{21,1} \) + \(f_{21,2} \) + \(f_{21,3} \) + \(f_{21,4} \) + \(f_{21,5} \) + \(f_{21,6} \) + \(f_{21,7} \) + \(f_{21,8} \) + \(f_{21,9} \) + \(f_{21,10} \)
- \(f_{22} \) = \(f_{22,1} \) + \(f_{22,2} \) + \(f_{22,3} \) + \(f_{22,4} \) + \(f_{22,5} \) + \(f_{22,6} \) + \(f_{22,7} \) + \(f_{22,8} \) + \(f_{22,9} \) + \(f_{22,10} \)
- \(f_{23} \) = \(f_{23,1} \) + \(f_{23,2} \) + \(f_{23,3} \) + \(f_{23,4} \) + \(f_{23,5} \) + \(f_{23,6} \) + \(f_{23,7} \) + \(f_{23,8} \) + \(f_{23,9} \) + \(f_{23,10} \)
- \(f_{31} \) = \(f_{31,1} \) + \(f_{31,2} \) + \(f_{31,3} \) + \(f_{31,4} \) + \(f_{31,5} \) + \(f_{31,6} \) + \(f_{31,7} \) + \(f_{31,8} \) + \(f_{31,9} \) + \(f_{31,10} \)
- \(f_{32} \) = \(f_{32,1} \) + \(f_{32,2} \) + \(f_{32,3} \) + \(f_{32,4} \) + \(f_{32,5} \) + \(f_{32,6} \) + \(f_{32,7} \) + \(f_{32,8} \) + \(f_{32,9} \) + \(f_{32,10} \)
- \(f_{33} \) = \(f_{33,1} \) + \(f_{33,2} \) + \(f_{33,3} \) + \(f_{33,4} \) + \(f_{33,5} \) + \(f_{33,6} \) + \(f_{33,7} \) + \(f_{33,8} \) + \(f_{33,9} \) + \(f_{33,10} \)

Checks:
- \(\sum_{i=1}^{10} f_{1i} = 0 \)
- \(\sum_{i=1}^{10} f_{2i} = 0 \)
- \(\sum_{i=1}^{10} f_{3i} = 0 \)
- \(\sum_{i=1}^{10} f_{4i} = 0 \)