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SUMMARY

In the first part of the investigation-an analysis is made of
base pressure in an inviseid fluid, both for two-dimensional and
axially symmetric flow. It is shown that for two-dimensional
flow, ‘and also for the flow over a body of revolution with a
eylindrical sting attached to the base, there are an infinite
nwmber of possible solutions satisfying all: necessary boundary
conditions at any given free-stream Mach number. For the
particular case of a body having no sting attached only one
solution is possible in an inviscid flow, but it corresponds to

. zero base drag. Accordingly, it is concluded that a strictly

inviseid-flwid theory cannot be satisfactory for practical ap-
plications.

An approximate semi-empirical analysis for base pressure
“in @ viscuous fluid is developed in a second part of the investiga-
tion. The semi-empirical analysis is based partly on inviscid-
_ In this theory an attempt is made to allow
for the effects of Mach number, Reynolds number, profile shape,
and type of boundary-layer flow. Some measurements of base
pressure in two-dimensional and axially symmetric flow are
presented for purposes of comparison. Erperimental results
also are presented concerning the support interference effect
of a cylindrical sting, and the interference cffect of a reflected
bow wave on measurements of base pressure in @ SUPErsonic

wind tunnel.
INTRODUCTION

The present investigation is concerned with the pressure
acting on the base of an object moving at a supersonic
velocity. This problem is of considerable practical impor-
tance since in certain cases the base drag can amount to as
much as two-thirds of the total drag of a body of revolution,
and over three-fourths of the total drag of an airfoil. In the
past, numerous measurements of base pressure on bodies of
revolution have been made both in supersonic wind tunnels
and in free flight, but these experimental investigations have
had no adequate theory to guide them. As a vesult, the
present-day knowledge of base pressure is undesirably
limited and some inconsistencies appear in the existing
experimental data.

Various hypotheses as to the fundamental mechanism
which determines the base pressure on bodies of revolution
were advanced years ago by Lorenz, Gabeaud, and von
Kérmén. (See references 1, 2, and 3, respectively.) These

hypotheses, which neglect the influence of the boundary
layer, do not appear to be adequate for predicting the base
pressure or for correlating experiments.

A semi-empirical theory of base pressure for bodies of
revolution has been advanced by Cope in reference 4.
Cope’s analysis and the semi-empirical analysis of the
present report were developed independently and are similar
in one significant respect; both consider the influence of the
boundary layer on base pressure. The basic concepts and
the details of the two analyses, though, are entirely different.
Cope’s equations are developed only for axially symmetric
flow, and do not provide for the effects of variations 1n
profile shape on base pressure. He evaluates the base
pressure by equating the pressure in the walke, as calculated
from the boundary-layer flow, to the corresponding pressure
as calculated from the exterior flow. In calculating the
pressure from the boundary-layer flow, however, several
approximations and assumptions are necessarily made which,
according to Cope, result in no more than a first approxima-
tion. =

The primary purpose of the investigation described in the
present report is to formulate a method which Is of value
for quantitative calculations of base pressure both on air-
foils and bodies. The analysis is divided into two parts.
Part I consists of a detailed study of the base pressure in
two-dimensional and axially symmetric inviscid flow. The
purpose of part I is to develop an understanding of the prob-
lem in its simplest form, and to study the effects on base
pressure of variations in profile shape. In part II a semi-
empirical theory is formulated since the results of part I
indicate that an inviscid-flow theory cannot possibly be
satisfactory for engineering ‘estimates of base pressure.
A comparison of the semi-empirical analysis with experi-
mental results is also presented in part II of the report.

Much of the present material was developed as part of a
thesis submitted to ‘the California Institute of Technology
in 1948. Acknowledgment is made to H. W. Liepmann of
the California Institute of Technology for his helpful dis-
cussions regarding the theoretical considerations, and to
A. C. Charters of the Ballistic Research Laboratories for
making available numerous unpublished spark photographs
which were taken in the free flight experiments of reference 5.

1 ¢upersedes NACA TN 2137, “An Analysis of Base Pressure at Supersonic Velocities and Comparison with Experiment,” by Dean R. Chapman, 1050. The present report includes
relerence to sorne experiments not discussed therein, and incorporates & more detailed analysis of the effects of variations in profile shape on base pressure in inviscid flow, . 5
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NOTATION
C  constant
d rod or support diameter
h base thickness (base diameter for axially symmetric
flow, - trailing-edge thickness for two-dimensional
flow)

L length upstream of base (body length for axially sym-
metric flow, airfoil chord for two-dimensional flow)

M  Mach number

P pressure

2 pressure coefficient referred to free-stream conditions

P—Pw
2
5 me
P, base pressure coefficient referred to conditions on a
. LA
hypothetical extended afterprofile et M
pIU/2

P, base pressure coefficient for maximum drag in inviscid
flow over a semi-infinite profile
Py* value of P, obtained by extrapolating to zero boundary-

. [
layer thickness the curve of P, versus %

q dynamic pressure (% pU2>

R gas constant

Re Reynolds number based on the length L

r radial distance from axis of symmetry to point in the
flow -

T  temperature _

t thickness of wake near the trailing shock wave

U  velocity

B angle of boattailing at base

v ratio of specific heats (1.4 for air)

) boundary-layer thickness

P density

SUPERSCRIPT

~

conditions on hypothetical extended afterprofile aver-
aged over a region occupying the same position
relative to the base as the dead-air region

SUBSCRIPTS

o  conditions in the free stream
b conditions at base
stagnation conditions

I. BASE PRESSURE IN AN INVISCID FLUID

Throughout this part of the report the effects of viscosity
are completely ignored and the flow field determined for an
inviscid fluid wherein both the existence of a boundary layer
and the mixing of dead air with the air outside a free stream-
line are excluded from consideration. It is assumed through-
out that a dead-air region of constant pressure exists just
behind the base and is terminated by a single trailing shock
wave. As will be seen later, the assumption of zero viscosity
oversimplifies the actual conditions; the results obtained with
this assumption agree qualitatively with a number of ex-
perimental results, but provide quantitative information
only on the effects of profile shape on base pressure.

TWO-DIMENSIONAL INVISCID FLOW OVER A SENXI-X)}E‘XNXTE PROFILE

In order to achieve the greatest possible simplicity at the
outset, the case of a semi-infinite profile will be considered
first . By this is meant a profile of constant thickness which
extends from the base to an infinite distance upstream
(fig. 1). The problem at hand is to determine the flow pat-
tern in the neighborhood of the base. Since the effects of
viscosity are at present ignored and only steady symmetrical
flows are considered, the problem is simply that of determin-
ing the flow over a two-dimensional, flat, horizontal surface
which has a step in it (fig. 2).
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o5 4 FIGURE 1.—Semi-infinite profile.
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=L Trailing shock
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FIGURE 2.—Example of invisecid flow over a two-dimensional profile.

It is easy to construct a possible flow pattern which satisfies
all necessary boundary conditions including the requirement
of constant pressure in the dead-air region. For example,
suppose the free-stream Mach number is 1.50 and some
particular value of the base pressure coefficient, say
P,=—0.30 (py/p,=0.53), is arbitrarily chosen. Since the
base pressure is prescribed, the initial angle of. turning
through the Prandtl-Meyer expansion (fig. 2) is uniquely
determined, and in this particular case is equal to 12.4°
at B. The pressure, and hence the veloceity and Mach num-
ber, must be constant along the free streamline BC. For
the example under consideration, the Mach number along
the free streamline is calculated from the Prandtl-Meyer
equations to be 1.92. For a uniform two-dimensional flow

over a convex corner, the pressure depends only on the angle

of inclination of a streamline, hence it follows that BC is
a straight line. The triangle BCE therefore bounds a region
of uniform flow having the same pressure as the dead-air
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region. As the trailing shock wave (fig. 2) extends outward
from E to infinity, interference from the expansion waves
eradually decreases its strength until it eventually becomes a
Mach wave. That part of the shock wave from C to E must
deflect the flow through the same angle as the expansion
waves originally turned it (12.4° for the particular example
under .consideration). This deflection certainly is possible
since the Mach number in the triangle BCE is 1.92 which,
according to the well-known shock-wave equations, is capable
of undergoing any deflection smaller than 21.5°. As the
flow procecds downstream from the trailing shock wave
CEF, the pressure approaches the free-stream static pressure,

thus satisfying the boundary condition at infinity.
It is evident that a possible flow pattern has been con-

structed which satisfies all the prescribed requirements as
well as the'necessary boundary conditions. This flow, how-
ever, certainly is not the only possible one for the particular
Mach number (1.50) under consideration, since any negative
value of P, algebraically greater than —0.30 also would
have permitted a flow pattern to be constructed and still
satisfy all boundary conditions. This is not necessarily
true, though, if valtes of P, algebraically less than —0.30
are chosen, as can be seen by picturing the conditions that
would result; if the base pressure were gradually decreased.
The angle of turning through the Prandtl-Meyer expansion
would increase and point C in figure 2 simultaneously would
move toward the base. The base pressure can be decreased
in this manner only until a condition is reached in which
the shock wave at C turns the flow through .the greatest
angle possible for the particular local Mach number existing
along the free streamline. The base pressure cannot be
further reduced and still permit steady inviscid flow to
exist. The flow pattern corresponding to this condition of
a maximum-deflection shock wave can be considered as a
“limiting”” flow of all those possible. There are obviously

an infinite number of possible flows for a given free-stream

Mach Number, but only one limiting flow.

The limiting value of the base pressure coefficient can be
calculated as a function of the free-stream Mach number by
reversing the procedure described above for constructing
possible flow patterns. Thus, for a given value of the local
Mach number along the free streamline a limiting flow pat-
tern can be constructed by requiring that the angle of turn-
ing be equal to the maximum-deflection angle possible for
a shock wave at that particular local Mach number. By
use of the Prandtl-Meyer relations the appropriate value of
the free-stream Mach number is then directly calculated
from the angle of turning and the local Mach number along
the free streamline. This process can be repeated for differ-

_ent values of the local Mach number along the free stream-

line and a curve drawn of the limiting base pressure coefficient
as a function of Mach number. Such a curve is presented
in figure 3. The shaded area represents all the possible
values of the base pressure coefficient for two-dimensional
inviscid flow. The upper boundary of the shaded area
corresponds to the limiting flow condition for various free-
stream Mach numbers.

There is no reason a priori to say that for a given M,
the limiting flow pattern represents that particular one

which most nearly approximates the flow of a real ﬂuid.:i

VELOCITIES AND COMPARISON WITH EXPERIMENT
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FIGURE 3.—Base pressure for two-dimensional inviscid flow.

The curve representing these limiting flow patterns can be
considered simply as being the curve of maximum base drag
(and hence maximum entropy ‘increase) possible in an n-
viscid flow. This is the only interpretation that will be
given to this curve for the time being. Since it is these
limiting solutions which will be singled out later for further
use, a special symbol P,, will be used to designate the base
It is evident from figure
3 that in the Mach number region shown the values of P»,
for two-dimensional flow correspond to very high base drags,
being almost as high as if a vacuum existed at the base.
At Mach numbers greater than or equal to 6.0, the values
of Py, exactly correspond to a vacuum at the base.

AXIALLY SYMMETRIC INVISCID FLOW OVER A SEMIINFINITE BODY

In principle the same method of procedure can be used
for inviscid axially symmetric flow as was used for inviseid
two-dimensional flow. The axially symmetric flows, how-
ever, are somewhat more involved than the corresponding
two-dimensional flows. For example, in axially symmetric
flow the expansion wavelets issuing from the corner of the
base are not straight lines as they are in Prandt-Meyer
flow. Moreover, additional complications arise since the
flow conditions upstream of the trailing shock wave do not
depend solely on the inclination of the streamlines at a
given point, but depend on the whole history of the flow
upstream of the Mach lines passing through that point.
As a consequence of these complications, the free streamline
of constant pressure cannot be straight. &
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In order to construct possible flow patterns as was done in
the two-dimensional case, the method of characteristics for
axially symmetric flow must be used. The details of the
particular characteristics method employed are described in
reference 6. By employing the characteristics method the
inviscid flow field corresponding to a given base pressure can
be constructed step by step for any given value of the Mach
number. The shape of the free streamline is, of course,
determined by the condition that the pressure and the
velocity must be constant along it. An example of such a
construction for a free-stream Mach number of 1.5 is given in
figure %’(a). In this particular case, the base pressure

Uniform flow

Free streomline M=184-=""

\\ Dead-air épace

Uniform pressure p, r=0552 r,

Axis of symmeftry

'////%

(3)
(a) Mo =1.5; Py=—0.25.
FIGURE 4.—Typical Mach nets for inviscid flow over the base of a semi-infinite body of
revolution.

coefficient which has been chosen arbitrarily is —0.25. It is
to be noted that there is a striking difference between the
axially symmetric flow (fig. 4 (a)) and the two-dimensional
flow (fig. 2). The inviscid flow pattern for the axially
symmetric case cannot be constructed all the way to the
axis of symmetry and still satisfy the prescribed boundary
conditions. This is a consequence of the curvature of the
free streamline and the fact that the Mach number along
‘the free streamline in the case under consideration is 1.84,
which, at the most, is capable of deflecting a streamline only
19.9° by a single shock wave. As is illustrated in figure

4 (a), the angle of inclination of the free streamline for this .

example is already 19.9° at a value of 7/r,=0.552, where 7 is
the radial distance from the axis and r,=2/2 is the radius of
the base.
pressurc free streamline would continue to increase mono-
tonically as the axis is approached, the flow pattern of
figure’ 4 (a) cannot be constructed farther than the point
shown (r/r,=0.552) and still permit the flow to be deflected
through a single shock wave and become parallel to the axis
of symmetry. This phenomenon is not attributable to the
particular combination of Mach number and base pressure
selected for figure 4 (a). In figures 4 (b), 4 (¢), and 4 (d),
other examples are presented which illustrate the flow for
Jdifferent values of Mach number and for different base

pressures. In each case the free streamline has been ter-

Z
<

Since the angle of inclination of the constant-

- prevents the outer flow from reaching the axis.

(=1}
- -

U

(D) Mo =2.5; Py=—0.215.

(d) Mg =4.0; Py=—0.0806.
FiGure 4.—Concluded.

minated at the point where the local angle of inclination is
equal to the angle corresponding to the greatest possible
deflection by a single shock wave. It is evident that none
of these flow patterns could be constructed down to the axis
of symmetry. Altogether, approximately 30 flow patterns |
were constructed by the characteristics method; in no case
could the flow be constructed all the way to the axis.

The flow patterns built up by the method of characteristics
should not be regarded as unrealistic simply because the How
cannot be constructed all the way to the axis. In a real
fluid the flow outside the boundary layer is similar because ‘
the wake behind the body fills the region near the axis and
This fact |
suggests that the axially symmetric inviscid-flow patterns

.
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should be investigated further as they might bear some
relation to actual flows if the displacement effect of the walke
were considered.

The flow fields containing a free streamline not meeting
the axis of symmetry can be considered as those that would
exist in inviseid flow about a body of revolution which has an
infinitely long cylindrical rod (or “sting”) attached to the
base. As an example, the flow of figure 4 (a) would corre-
spond to a body having a rod of diameter d=0.552/ attached
to the base. (See fig. 5.) With such a model the trailing
shock wave turns the free streamline through the greatest
deflection possible for the given local Mach number along
the free s_tf‘t\:lllllil)(}. The flow field is therefore the limiting
flow field:of all those possible for the given free-stream Mach
number and the given ratio of d/h.

frai/ing shock

wave
ld=0.552 h
to
~oo 3 T
—{) +o00

FIGURE 5.—Axially symmetric semi-infinite body with rod attached.

Just as in the case of the two-dimensional body, there are
also an infinite number of possible flow patterns for the body

of revolution with a rod attached. This is true because for

a given configuration as many additional flow patterns as
desired can be constructed by simply selecting the base
pressure to be any pressure between the free-stream pressure
and the pressure corresponding to the limiting flow. The
limiting flow pattern is to be given the same physical sig-
nificance for axially symmetric flow as for two-dimensional
flow; that is, the corresponding base pressure coefficient
P, represents the maximum base drag possible for an inviscid
flow with a single trailing shock wave and a given ratio
of d/h.

By choosing different values of the base pressure co-
officient for a fixed Mach number, the inviscid solutions
determined by the method of characteristics enable a plot
of Py, against d/h to be made. This procedure has been
carried out for Mach numbers of 1.25, 1.5, 2.0, 2.5, 3.0,
and 4.0. The results are shown in figure 6. Each point on
the curves in this figure represents one flow pattern con-
structed by the characteristics method. The values for
d/h=0 correspond to the semi-infinite body without a rod
attached. It is to be noted that for each curve in figure 6
the value of I, extrapolates to zero as d/h approaches zero.
This means that the base pressure is equal to the free-
stream static pressure, the free streamline is undeflected,
and the base drag is zero. Hence, the limiting flow pattern

“attached to the base.

COMPARISON WITH EXPERIMENT
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FIGURE 6.—Parameter proportional to the maximum base drag possible in an inviscid axially
symmetric flow.

and the infinity of possible inviscid flows for 0<d/A<1

degenerate into a single trivial solution corresponding to

zero base drag for d/h=0. This behaviour appears anoma-

Jous on first thought, particularly when one remembers

that the coefficient P,, represents the maximum possible

base drag that can exist for an inviscid flow of the type

being considered. An explanation can be obtained from a

consideration of the equations of motion since they are the .
basis for the method of characteristics. This explanation,

however, is not essential for an understanding of the main
conclusions regarding base pressure, and hence is presented

as Appendix A.

In figure 6 the limiting values as d/h approaches 1.0
correspond to the previously treated case of two-dimensional
flow. It can be seen that this must be the case by visualizing
the limiting process as taking place with both d and h
approaching infinity, but with the difference (h—=d) held
constant. The configuration approached in' this manner
would be a two-dimensional step of height (A-d)/2; hence
the pressure coefficient approached would be the limiting
base pressure coefficient for two-dimensional inviscid flow.
On the other hand, if d/k is equal to unity (instead of ap-
proaching it .from values always less than unity), then the
corresponding configuration would be a semi-infinite body
of revolution with a cylindrical rod of the same diameter
Although no dead-air region exists

-5-
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in this latter case since the flow is everywhere uniform, the
base pressure in Lhe%physicnl sense would be the static
pressure at the junction of body and rod, and hence /il
would be zero. :

The occurrence of more than one possible solution in
two-dimensional flow and also in axially symmetric flow
with a rod attached does not represent a new occurrence in
mviscid flow theory. A similar situation occurs, for ex-
ample, in airfoil theory for an inviscid, incompressible
fluid. As is well known, a satisfactory solution in this case
has been found in the use of the so-called Kutta condition,
which can: be readily justified on the basis of qualitative
consideration of viscous effects near the trailing edge.
Apart from the effects of viscosity several other consider-

ations, such as stability of the flow, also have been of

importance in other unrelated problems when selecting a
suitable inviscid flow solution from a possible choice of
more than one. As an example of this, the inviscid channel
flow studied in reference 7 may be cited. For the present
problem, however, the preceding analysis of axially sym-
metric inviscid - flows points toward viscous effects (rather
than stability of inviscid flow) as being the essential mechan-
ism determining the base pressure. Before considering
viscous effects, however, the effect on base pressure of vari-
ations in profile shape will be analyzed in detail since experi-
ments have indicated widely different results for various
profiles. The method presented later for correlating base
pressure data requires that the measurements first be cor-
rected for the effect of profile shape. In the section which
follows equations are developed for such a correction.
TWO-DIMENSIONAL AND AXIALLY SYMMETRIC INVISCID FLOW OVER
FINITE PROFILES

“In this section consideration is given to the flow over a
finite two-dimensional profile concurrently with that of a
finite body of revolution. For either type of flow, the
presence of the profile causes the Mach number and pressure
in the flow field ahead of the base (M, p) to be nonuniform
and different from free-stream conditions (M, p.). This
is illustrated in figure 7 (a) for a profile without boattailing.
As a result of the disturbance caused by the profile, the base
pressure depends on profile shape even in an inviscid flow.
In this section, a method is developed for calculating cor-
rected free-stream conditions (M’, p’) to which the base
pressure can be referred and be nearly independent of profile
shape. This method does not depend on the magnitude of
the base pressure or on the dimension d (fig. 7 (a)), and hence
is useful in comparing experimental measurements made on
various airfoils and bodies of revolution.

To fix ideas, the Mach lines shown as dotted lines in figure
7 (a) will be thought of as representing weak pressure
waves; those with positive tangents (e. g., DD) being mem-
bers of the so-called first family, and those with negative
tangents (e. g., DA) being members of the so-called second
family. Weak pressure waves issuing from the body can
affect the base pressure in several ways. For example,
waves of the first family starting between D and E not only
affect conditions at A, but also affect conditions between A

* It may be noted that M”and p’ are analogous in some respects to the corrected free-stream
average Mach nimber and pressure induced in the vicinity of the base by the presence of the profi
Both corrections are accurate only when ti

of the test model by the presence of the tunnel walls.
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(a) - '

Hypothetical
{ extended
P B3 af terprofile-

Sl ,
A/ Mp

\

(a) Finite profile.
(b) Finite profile with extended afterprofile.
FIGURE 7.—Sketch of inviscid flow over finite profile without boattailing.

’

and G. Such waves reflect from the bow shock wave be-
tween D and E and then become members of the second
family of waves between DA and EG which directly interact
with the dead-air region. Waves of the second family
beyond EG would not affect the base pressure in an inviseid
flow. The net effect. of profile shape on the base pressure of
a finite body, therefore, will be determined both by condi-
tions at A and by the variation of conditions between A and
G. If a hypothetical afterprofile were extended from the
base, as illustrated in figure 7 (b), then such conditions
would cause the average pressure (") and Mach number
(M) along AH of the extended afterprofile to differ from the
corresponding free-stream conditions. These differences
would represent the disturbance field induced near the base
by the profile shape, and the base pressure referred to 37/ and
P’ (e. g., a curve of Py’ or p,/p’ versus M’) could be regarded
as corrected for the effects of profile shape in inviscid flow.2
By applying the compatibility equations of the method of
characteristics for either two-dimensional or axially sym-
metric flow to the triangle AGH in figure 7 (b), it can be
deduced that the magnitude of the velocity averaged at
points A and H is approximately equal to the magnitude of
the velocity at point G. Thus, M’ and p’ can be evaluated
either from conditions along a hypothetical extended after-
profile, or else from conditions at an appropriate point (G) in
the flow over the given profile.

A second case to be considered is that of a profile having a

Mach number and pressure used in subsonic wind-tunnel operation: the former represent the
le; whereas the latter represent the average Mach number and pressure induced in the vicinity
he induced disturbance field is small and approximately uniform over the region in question.

-6-
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negative boattail angle (8), as illustrated in figure 8 (a).
This flow can be converted to an equivalent flow over a
profile without boattailing having the same base pressure
as the flow of figure 8 (a) and certain nonuniform conditions
ahead of the base. This equivalent flow, illustrated in figure
8 (b), is identical to the type already considered and is such
that the flow within C’O’G’ coincides with the flow within
COG in figure 8 (a). Point G, therefore, is defined by the
intersection ‘of the Mach line passing through C, and the
particular Mach line passing through O on which the ve-
locity vector at O is parallel to the free-stream direction.
Hence, for-this second case also, M’ and p’ can be deter-
mined approximately either from conditions on a hypo-
thetical extended afterprofile, or else from conditions in the
original flow at point G.

(e) (d)

(a) 8<0. (b) Equivalent flow for 8<0.
(c) B>0. (d) Equivalent flow for §>0.
F1GURE 8.—Sketch of inviscid flow in vicinity of base for profiles with boattailing.

A third and last case to be considered is that of a profile
having a positive boattail angle, as illustrated in figure 8 (c).
This flow also can be converted to an equivalent flow over a
profile ‘without boattailing having the same base pressure
as the original flow (fig. 8 (¢)), and certain nonuniform con-
ditions ahead of the base. As sketched in figure 8 (d),
the equivalent flow ahead of the base is such that the con-
ditions downstream of O’J’ are identical to conditions down-
stream of OJ in figure 8 (c).* Thus for 2>0,M" and p’ can
be determined approximately from conditions at G’ in the

.equivalent flow, or else from conditions along a hypothetical

profile extended downstream from O’, but M” and p’ do not
necessarily exist at any easily determined point in the
original flow.

For any profile the relationship between the base pressure
coefficient P,’= (p,—p’)/¢’ which corresponds to the Mach
number 4/”, and the base pressure coefficient P,= (p,—p.)/q.
which corresponds to the Mach number M, and to the given
profile, is given by the equation

=1 p,—py )

where
P=0"—p.)/q (2)

and, if the profile disturbance field is small,

i <V )P' v (]+ 5o >AP0 %

In this last equation (derived in appendix C), Ap,/p, is the
fractional loss in total pressure on passing through the bow
wave. If the ratio p,/p,, is used instead of the coefficient 7,
the analogous relation between the HlllO o/p’ and p,/p.
obviously is » |
I .S ; 4)

’

P @[pa) Pw

For a given profile, these equations enable a curve of 2, (or
po/p’) versus M’ to be plotted if a curve of 2, (or p,/p.)
versus M, is known.

In order to further clarify the concept of the dlslmbum e
field induced by profile shape, and also to illustrate the
magnitude of the variations in base pressure that might be
expected between different profiles, some representative
calculations of A/’ and p’ have been prepared in tables I, 11,
and III. For simplicity in these calculations, M’ and p’
have been evaluated along the hypothetical extended after-
profile at a distance & behind the base position, rather than
to use in each case a more involved average over the appro-
priate extent of dead air. Table I applies to two-dimen-
sional flow over the particular profile shown. The compu-
tations for M_=1 are based on the pressure distributions
calculated by Guderley and Yoshihara in reference 8; the
computations for other Mach numbers in this table are based
on shock-expansion theory. It is evident that the disturb-
ance field near the base is significant at low supersonic
Mach numbers where the bow wave is detached, and also at

hypersonic Mach numbers where the bow wave is very strong. -

At moderate supersonic Mach numbers, however, the profile
disturbancé field in two-dimensional flow is negligible, and
conditions on a thin airfoil depend solely on the local surface
inclination. It follows that the base pressure under such
circumstances is nearly independent of profile shape and
boattail angle. (If the angle of attack is small the base
pressure is also nearly independent of angle of attack under
these conditions.) -

Table II, which is based on the method of characteris-
tics, applies to the cone-cylinder body of revolution shown,

and illustrates that the correction for the profile disturbance

field is not large if the afterbody comprises a cylinder several
diameters long. For example, at a Mach number of 1.5
for which the value of p,/p,, is about 0.7, the value p’/p,=
0.98 corresponds to a correction of about 6.7 percent to the
base drag (since the base drag is proportional to (1—p,/p.)).

Table III applies to a cone (8=—10°), and illustrates
that the correction for such profiles can be sizable. At a
Mach number of 1.5, for example, the induced pressure field
in this case amounts to over one-fourth of the base drag.
For larger apex angles, the corresponding correction for
cones can be considerably larger. It is to be noted that
the induced pressure field usually represents a much more
important correction to base drag than the induced Mach
number field.

#8Such an equivalent flow can readily be constructed if the Mach number on the surface Just_ahead of the base in the original flow is sufficiently large, or if 8 is sufficiently small, to

—7-

insure supersonic velocities along O’G’ in the equivalent flow.
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II. A SEMI-EMPIRICAL METHOD FOR CORRELATING BASE
PRESSURE MEASUREMENTS AND COMPARISON WITH
EXPERIMENTAL RESULTS

QUALITATIVE EFFECTS OF VISCOSITY ON THE BASE-PRESSURE FLOW

A sketeh showing the qualitative flow characteristics for
the viscous-fluid flow in the region of the base is given in
figure 9. The flow along the first expansion wavelet starts
with the nonuniform distribution of Mach number M, pres-
sure p, and with a boundary-layer thickness 6. Because
the base pressure is lower than the pressure p, a small fan
of expansion wavelets originates at point A. The existence

Expansion

M,
\P-

Trailing shock
wave -—~_

Fi1GUure 9.—Sketch of the viscous-fluid flow in the neighborhood of the base.

of dead air in a small velume immediately behind the base
15 a result of the separation at point B. As a consequence
of the formation of a dead-air region it might be expected
that the pressure along the streamline BC is approximately
constant. The qualitative form of the boundary-layer pro-
files at stations between points B and C must take on the
same nature as those existing at the boundary of a super-
sonic jet issuing into ambient air. Because of the viscosity
of the fluid, the dead air is induced into a circulatory motion
in the directions indicated by the small arrows in figure 9.
The viscous mixing process causes the boundary layer to
thicken as it approaches point C. In axially symmetric
flow there is an additional reason for further spreading of
the streamlines in the boundary layer as the trailing shock
wave is approached. Since the mean radius of a stream-
tube in the boundary layer continually decreases as the
trailing shock wave is approached, additional spreading is
brought about in order to keep the annular cross-sectional
area of the streamtubes approximately constant.

With this qualitative picture of the flow processes in mind,
a brief description can be given as to how the base pressure
arrives at its steady-state equilibrium value. To fix condi-
tions in mind, suppose a jet of air is pumped from the body
into the dead-air region and then is suddenly stopped. At

the instant the jet is turned off, point C is far downstream -

of its equilibrium position. Due to the scavenging effect
of the outside flow on the mass of dead air, some of this
dead air is removed, thus causing the angle of turning at
the corner to be increased and the pressure of the dead-air
region to be decreased. The larger angle of turning in-
creases the velocity outside the boundary layer, which in

turn increases the scavenging action, thereby again lower-
ing the pressure and starting the cycle over again. Thus,

point C moves rapidly to a position as close to the base as

possible. There is, however, at least one important factor
which prevents point C from going as far toward the base
as that point which would roughly represent the limiting
solution for inviscid flow. As C moves toward the base,
the pressure ratio of the trailing shock wave increases,
making it more difficult for the scavenged air and: the low-
velocity air in the boundary layer to overcome the pressure
rise of the shock wave and flow downstream. The opposi-
tion of this effect to the ones mentioned previously would
serve to establish equilibrium. It appears, therefore, that a
satisfactory theory of base pressure would have to consider
the mixing process in conjunction with the inviseid-fluid
characteristics of the outer flow.

BASIS FOR CORRELATION OF EXPERIMENTAL DATA

It is assumed that the flow expands over the corner of the
base as illustrated in figure 9. The base thickness & would
be the trailing-edge thickness in the case of two-dimensional
flow, and would be the base diameter in the case of axially
symmetric flow. - An attempt to correlate the wvarious
measurements of base pressure is made on the basis of the
relationship

Pt <M', 2 ﬁ) Ta

which assumes that the base pressure coefficient corrected
for the profile disturbance field is affected by viscous effeets
only through the ratio of boundary-layer thickness to base
thickness. Actually, even for a fixed value of &/ the base
pressure would be affected by anything that affects the
distribution of fluid properties within the boundary layer
or within the mixing layer downstream of the base. It
will be seen subsequently,. though, that in many cases the
above relationship yields acceptable results.

- If the boundary-layer flow is laminar, then from dimen-
sional analysis and the classical considerations of the terms
involved in the boundary-layer equations, it follows that

Uw a— N/ . -,
5\/,, L—f(ﬂlw, profile shape)

©

Rewriting this equation,
C

\%}%f J(M ,, profile shape)= Yl_;)z
Vw

where C is a function of the-Mach number and profile shape,
but independent of viscosity. For a given L/k, variations
in profile shape affect the boundary-layver thickness prin-
cipally through the action of the pressure gradients set up
by the particular profile contour. As a first approximation
the effects of variations in pressure distribution on the thick-
ness of the boundary layer just ahead of the base will be
neglected since these effects in most cases should be small
compared to the eflects of Reynolds number and L/h ratio.
Within the limits of this simplification, the above equation is

=~

LA
2=
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applicable to any profile shape or length. * Hence in correlat-
ing the data for laminar-boundary-layer flow, the parameter
L/(h\/m) 1s used in the absence of direct measurements of
/h.

In the case of turbulent flow a similar parameter can be
obtained.; By approximating the turbulent boundary-
layer profile with a 1/7-power law, the ratio 6/h for low-
speed flow turns out to be inversely proportional to the
1/5 power of the Reynolds number. (For example, see
reference 9.) Using this result, the appropriate parameter
in_ correlating base-pressure data for turbulent boundary-
layer flow would be L/[h(Re)'?).

EXPERIMENTAL DATA FOR TWO-DIMENSIONAL FLOW

At present the available experimental results on base
pressure in two-dimensional flow are rather limited, but they
are sufficient to provide a qualitative check on one particular
result of the inviscid-flow calculations; this result concerns
the essential difference, as indicated by the inviscid-flow
calculations, between the base pressure in two-dimensional
flow and 1n axially symmetric flow. The absolute magnitude
of the base pressure coefficient for two-dimensional inviseid
flow at a given Mach number is represented by the limit of
the wvalues: for axially symmetric flow as d/h approaches
unity in figure 6. For low and moderate supersonic Mach
numbers this limiting value is several times the value for a
body of revolution, which, as will be seen later, is represented
in figure 6 by a d/h ratio somewhere between 0.5 and 0.8.
For high supersonic Mach numbers the difference between
the two types of flow, according to figure 6, is small. These
considerations which indicate that, except at high supersonic
Mach numbers, a pronounced difference should exist between
the base pressure in two-dimensional and axially symmetric
flow, are in agreement with existing data. In reference 10,
the wind-tunnel measurements for two-dimensional flow over
a wedge airfoil at a Mach number of 1.4 and a Reynolds
number of 0.6 million indicate a value of —0.41 for the base
pressure coefficient. Measurements presented later for axi-
ally symmetric flow at the same Mach number and Reynolds
number, however, indicate values around —0.20. This
large difference is in accord qualitatively with the considera-
tions based on the curves of figure 6.

In order to make a preliminary evaluation of the Reynolds
number effect on base pressure in two-dimensional flow,
some measurements have been made on a-constant-chord
wing of finite span having a thick trailing edge.* Because
the ambient air near the wing tips can flow laterally around

the tip and into the low-pressure region behind the base, the

data cannot be considered as strictly representing two-
dimensional flow. Nevertheless, the ratio of span to base
thickness (40) was sufficiently large on the wing employed
so that tip effects should not affect conclusions concerning
the qualitative influence of Reynolds number on base pres-
sure in two-dimensional flow. The results of base-pressure
measurements taken at a Mach number of 2.0 are shown in
figure 10 (a). It is apparent that the base drag increases
considerably as the Reynolds number increases. Since the
surfaces of the wings were smooth, and the highest Reynolds

number attained was 1.8 million, the data are representative
of the case of laminar flow in the bhoundary layer.
of these data against the parameter L/(h+ ) is shown in
fiigure 10 (b). It is to be noted that in this form a straight
line can be faired through the data in the region covered by
the tests. For larger values of L/(h+ R%¢) the line would be
expected to curve and approach the line representing zero
base drag.
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(a) Base pressure as a function of Reynolds number.
(b) Base pressure as a function of L/h+/Re.
F1GURE 10.—Measured base pressure on a finite-span wing; M, =2.0, ratio of wing span to
base thickness =40.
EXPERIMENTAL DATA FOR AXIALLY SYMMETRIC FLOW
Fortunately, there are sufficient experimental data avail-

able for axially symmetric flow to make a fairly extensive

correlation of P,’ with the parameters L/(k+v/Re) and -

L/[h(Re)'%], where h is now the base diameter. Most of
these data have been obtained from wind-tunnel measure-
ments on bodies of revolution mounted from the rear by a
cylindrical support. Accordingly, a knowledge of the pos-
sible support and wall interference effects is necessary for
a satisfactory interpretation of the wind-tunnel measure-
ments. Some experimental data on support interference

and reflected bow-wave interference are presented in ap-.
‘pendix B.

It will suffice for the present purposes to state
that the wind-tunnel measurements were taken with a
support sting of sufficient unobstructed length so that no
interference effect of support length is present in the data.
Likewise, no appreciable interference resulting from the

¢ These data were taken in the Ames 1- by 3-foot superosnic wind tunnel No. 1 employing a wing of 9-inch span with a base-pressure orifice located 1 inch outboard of the plane of symmetry.

—
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reflected bow wave js present in the data. As regards the
effects of support diameter, it is known from a relatively
complete set of interference measurements made by Perkins
(reference 11), part of which is presented later, that the data
taken at M=1.5 are essentially free of support interference.
At the higher Mach numbers, however, a complete set of
support-diameter interference measurements was not made.
Consequently, some effect may be present in the data taken
at M=2.0 and M=2.9. For consistency, these data which
may be affected to a small extent by support-diameter
interference have been taken with a fixed value of 0.4 for
the ratio of support diameter to base diameter. By com-
paring the base pressure measured on various bodies tested
with the same relative support diameter, the effects of body
shape can be deduced if it is assumed that changes in nose
shape do mot produce significant changes in the support
interference. This is believed to be a valid assumption for
the body and support dimensions used.

In reducing the experimental data for correlation, the
measurements are first corrected for the disturbance field
induced by profile shape. All bodies of revolution used in
the present experiments consisted of either a cone-cylinder
(10° semiangle of cone) or an ogive-cylinder (10-caliber
ogival radius) combination. In order to determine the body-
shape correction () the pressure distribution over such
combinations has been calculated using the method of charac-
teristics. Two typical pressure distributions for a Mach

20° -
Cone cylinder 5

Ogive cylinder &

N -

I~ -/0-caliber radius

.30,

X
/

\ r-Ogive cylinder

,~~Cone cylinder

3

/

b 3
T

&

Pressure coefficient, P
: 3 ;
S
B

Q
7

\

/.é‘:/‘

\V//

/]

/ 2 < 4 5 & 7 8 9
Distaonce from nose, colibers

0
Q
S

=10
0

FI1GURE 11.—Typical pressure distribution as determined by the method of characteristics;
Mg =2.0.

-10-

number of 2.0 are shown in figure 11. For the reasons
explained earlier, the correction /7 is determined by selecting
the value of the pressure coefficient existing on an extension
of the cylindrical afterbody at a location approximately
one diameter downstream of the base position. The values
of P’ determined in this manner enable the corresponding
values of 72, to be determined from equations (1) and (3).

The quantity /2, should not depend on the body shape for
a given M’. TFor all but a few exceptional shapes, such as
a simple cone without an afterbody, the Mach number M’
in the present tests is sufficiently close to the free-stream
Mach number to enable a direct comparison to be made
between various body shapes after correcting for the pres-
sure disturbance field only. For these exceptional cases,
which represent small values of the length-diameter ratio,

P ‘
an additional correction g{’\/'[b (M'—M_) is added to the: '

right side of equation (1), so that the comparison of various
bodies is made on the basis of a constant M’ equal to 3.
Since even in an extreme case this latter correction is small

s R O .
compared to P/, the derivative 5@‘; can be roughly estimated

without affecting the final results appreciably. For the
data to be presented subsequently, this correction was made
only for those bodies with a length-diameter ratio of 4 or
less, since it amounted to only 6 percent of the measured
data in the most extreme case (L/h=0.9) and was negligible
for the bodies with L/h greater than 4.

In attempting to correlate the available experiments it
will be convenient to consider first the case of laminar flow
in the boundary layer, and then the case of turbulent flow.
The experiments representing the case of laminar boundary-
layer flow were conducted on bodies of revolution with
polished surfaces, and those representing turbulent flow
were conducted on the same models with artificial roughness
added in the form of a narrow transition strip. (See refer-
ence 12.) Although for simplicity the data are referred
to simply as representing either laminar or turbulent flow,
in a few cases the actual boundary layer may be in the
transition state. It is to be noted that with smooth models
transition (insofar as it affects base pressure) probably
begins at Reynolds numbers of the order of 4 million.
Likewise, with roughness added in order to obtain turbulent
flow, the artificial roughness may not bring about complete
transition ahead of the base at Reynolds numbers less than

about 2 million.

Laminar boundary-layer flow approaching base.—Wind-

tunnel measurements of the base pressure for various bodies-

of revolution at a Mach number of 1.53 are shown in figure
12 (a). These data, taken from reference 12, include the
effect of variations in Reynolds number and body shape.
The large effect of both Reynolds number and body shape
is evident.
these data, the extent to which correlation is achieved is
most easily determined by plotting /%, as a function of
L/(h~y/Re). Figure 12 (b) shows the data of figure 12 (a)
plotted in this form, from which it is evident that the experi-
mental data correlate reasonably well to a single curve.  The
scatter of the various measurements about the mean line
is attributed partly to. the fact that the thickness and

B

Since the boundary-layer flow is laminar for.
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(a) Mca.sured.data, M, =1.53.
(b) Correlation of measured data, M’=1.53.
FIGURE 12.—Measured and correlated base pressure data; M o, =1.53, laminar boundary-
layer flow.

velocity profile of the boundary layer approaching the base,
and hence the base pressure, are not strictly a function
of the Reynolds number and length-diameter ratio alone.

The results of some measurements of the base pressure
for various bodies with laminar boundary-layer flow at a
Mach number of 2.0 are shown in figure 13 (a). The data
through which curves are drawn were taken in the Ames
1- by 3-foot supersonic wind tunnel No. 1 under conditions
similar to the tests at a Mach . number of 1.53 reported in
reference 12. The remaining data points were obtained
from the experiments of Kurzweg (reference 13) by plotting
his data for insulated smooth bodies as a function of Mach
number, and reading the values of base pressure for M _,=2.0
from the faired curves. The same qualitative effects of
body shape and Reynolds number as were observed at a
Mach number of 1.53 are evident from these data obtained
at the higher Mach number. Figure 13 (b) shows the data
of figure 13 (a) plotted in the form suitable for correlation
according to the theoretical considerations. Considering
the wide variety of body shapes tested, it can be seen that
these data also correlate reasonably well to a single straight
line. If the tests were extended to larger values of L/A,
this line presumably would curve and approach the abscissae
axis.

Turbulent boundary-layer flow approaching base.—The
results of wind-tunnel measurements of base pressure on
bodies of revolution at a Mach number of 1.5 with turbulent
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(a) Measured data, M =2.0.
(b) Correlation of measured data, M’=2.0.
FIGURE 13.—Measured and correlated base pressure data; M, =2.0, laminar boundary-
layer flow.

boundary-layer flow approaching the base are shown in
figure 14 (a). Also shown in this figure are the results

of free-flight measurements reported by Charters and

Turetsky in reference 5. It is evident from this figure that
the effect of Reynolds number on base pressure is small;
whereas figure 12 (a) shows that it is large in the case of
laminar boundary-layer flow.

The measured data of figure 14 (a) are shown in figure 14 (b)
plotted in the form suitable for purposes of correlating experi-
mental data. Since the body-shape correction (/) is
independent of viscous effects, the same corrections have
been used for the case of turbulent flow as were used for
laminar flow. It may be seen from figure 14 (b) that the
data correlate fairly well to a straight line.

Some experimental data for turbulent boundary-layer
flow at a Mach number of 2.0 are shown in figure 15 (a)
and the plot of P,” against L/[k(Ze)?] is shown in figure
15 (b). The curves in these figures show the same charac-

s




‘the wake near the trailing shock wave.
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FIGURE 14.—Measured and correlated base pressure data; M o =1.5, turbulent boundary-
layer flow.

teristic of relatively constant base pressure as was noted
above for turbulent boundary-layer flow at a Mach number

of 1.5. Again, there is a reasonably good correlation of
these data, as is evident from figure 15 (b).

COMPARISON OF EXPERIMENTAL RESULTS WITH THE INVISCID-FLOW
CALCULATIONS

Since the intercept (P,*) of a curve of P, versus 6/h is in-
dependent of the Reynolds number, some correlation (pos-
sibly only qualitative) might be expected between the ex-
perimental values of I”,* and the inviscid-flow calculations,
provided allowance is made for the displacement effect of
As long as the wake .
thickness is well defined (reasonably steady walke) a simple
and plausible method of estimating 2°,* would be to evaluate
the base pressure coefficient for maximum drag in an inviseid
flow wherein an equivalent solid object, such as illustrated
in figure 5, replaced the wake. Such an.object would have
no effect in inviseid two-dimensional flow but would have a
pronounced effect in axially symmetric flow. If in axially
symmetric flow a rod of diameter d is considered to replace
the wake of diameter ¢, the resulting maximum drag in
inviscid flow would be the same as calculated in part 1
where the corresponding base pressure coefficient was de-
signated by P,,. (See fig. 6.) Thus an estimate for the
variation of P,* with Mach number in axially symmetric
flow would be
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(a) Measured data, My =2.0.
(b) Correlation of measured data, M'=2.0.
FIGURE 15.—Measured and correlated base pressure data; Mo, =20, turbulent boundary-

layer flow.
Py ~P,, for =t (©)
and in two-dimensional flow it would be
P¥=P by (™

Since a fluctuating wake presumably cannot be replaced by

" a rod without essentially altering the flow conditions near

the base, the above estimates cannot be expected under
such conditions to yield anything more than the right order
of magnitude. ‘

Some information ‘on the thickness and steadiness of the
walke has been obtained from an examination of numerous
spark photographs taken of projectiles in free flight.> Typ-
ical spark photographs are shown in figure 16, and the re-
sults of measuring the wake thickness on a large number of
similar photographs are shown in figure 17. Figure 16 (a)
represents the case of laminar flow in the boundary layer at
a free-stream Mach number of 1.73. Under these condi-
tions the wake thickness appears to be reasonably well de-
fined, although the trailing shock wave is not well defined
near the wake. Figures 16 (b) and 16 (c) indicate that for
turbulent boundary-layer flow on bodies of revolution the
trailing shock wave and the wake are not very steady at
Mach numbers below about 2. Thus it. is not surprising

& These shadowgraphs were made available through the courtesy of the Ballistic Research Laboratories, Aberdeen, Md.
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FIGURE 16.—Shadowgraphs of projectiles in flight. (Courtesy Ballistic Research Labora-
tories, Aberdeen, Md.).

(d) Mg =2.33, turbulent,

(e) M =3.64, turbulent,

FiGure 16.—Concluded.

that, as will be seen later, equation (6) is in poor agrecment
with measurements for turbulent boundary-layer flow at
Mach numbers below about 2. At higher Mach numbers
the trailing shock wave ‘and the wake become more clearly
defined (figs. 16 (d) and 16 (e)), but the accuracy of equa-
tion (6) in this region cannot as yet be tested because of
insufficient experimental data.

A comparison between inviscid-flow calculations and ex-
perimental values of P,* is more direct for airfoils than for
bodies of revolution since the wake thickness presumably
need not be accounted for in two-dimensional flow. The
value of P,* as determined from the finite-span wing ‘data
in figure 10 (b) is —0.30. This is fairly c¢lose to the limit-
ing pressure coefficient (]’h ;) for two-dimensional flow, which
is —0.33 for a Mach number of 2.0. (See fig. 3.) Definite
conclusions as to the significance of this agreement, how-
ever, will have to await the results of measurements on air-
foils at other Mach numbers, and on airfoils with turbulent
flow in the boundary layer.

-13-
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For laminar flow on bodies of revolution at Mach numbers
of 1.5 and 2.0, the wake thickness ({/A) from figure 17 is
0.55 and 0.49, respectively. From figure 6, the correspond-
ing values of P,, are —0.25 and —0.29, xmputn’ol\ On
the other hand, the values of I7;* determined from the
intercepts of the extrapolated lines in figures 12 (b) and 13 (b)
are —0.24 and —0.20, respectively. Hence, although the
inviscid-flow calculations may provide a reasonable approxi-
mation for two-dimensional flow near M=2.0, and for
axially symmetric flow near M=1.5, there is a .serious dis-
crepancy with the experimental results for axially sym-
metric flow at M=2.0. This large discrepancy indicates
that the simple relation given by equation (6) which at-
tempts to connect P,* with the inviscid calculations is not
always a satisfactory approximation. The good agreement
obtained in two of the three cases may be entirely fortuitous.
Additional experiments are needed to clarify this point.
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EIGURE 17. Wake thickness as a function of Mach number (determined from shadowgraphs

of the Ballistic Research Laboratories, Aberdeen, Md.).

The fact that the inviscid-flow calculations agree quali-
tatively, though not quantitatively, with experimental
results can be seen by a comparison with measurements of
the base pressure at various Mach numbers but with an
‘essentially constant Reynolds number. Figure 18 shows
some experimental free-flight data of Charters (reference 5)
together with the corresponding wind-tunnel data of Kurz-
weg. (reference 13), and the present investigation.® These
experimental data are for turbulent flow in the boundary
layer. In this figure the ordinate of the curve labeled
“curve based on equation (6)” is proportional to the value
of the limiting pressure coefficient P,, determined at each
Mach number in the manner indicated by equation (6). It
is apparent that the curve based on the calculations of 7,
for inviscid flow gives the right order of magnitude for the
base pressure coefficient, but does not give good quantitative
agreement. As an incidental point, it may be noted that
the various wind-tunnel and free-flight measurements shown
in this figure agree quite well at all Mach numbers.

VARIATION OF BASE PRESSURE WITH REYNOLDS NUMBER FOR NATURAL
TRANSITION

Since the base pressure is different for laminar and turbu-

lent boundary-layer flow approaching the base, it is of
interest to examine the results of measurements in the

intermediate range of Reynolds number where the transition

¢ In the present experiments measurements occasionally were made in more than one facility.

../L/,

Aach numbers near 1.5 represent measurements with three different nozzles.
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layer flow,

“point” moves from a position downstream of the base to a
position upstream of the base. Figure 19 shows the results

of some base-pressure measurements at a Mach number of

2.0 on a body of revolution in the Reynolds number range
from 0.4 million to 10 million. At Reynolds numbers below
about 2 million, where the boundary-layer flow is laminar,
the base pressure coefficient depends to a great extent on the
Reynolds number, as was noted earlier.

moves ahead of the base, the base pressure again is sensitive
to changes in the Reynolds number (and presumably also
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In the Reynolds
number range from 4 to 6 million, where the transition point .

For example, the three experimental points in figure 18 representing the wind-tunnel data at ‘
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‘ to other factors affecting transition such as surface rough- |
| ness, free-stream turbulence, and rate of heat transfer).
At the higher Reynolds numbers where a turbulent boundary
layer exists for some distance ahead of the base, the base
pressure is not sensitive to changes in the Reynolds number.
From the viewpoint of reliably extrapolating small-scale
‘ measurements, it is encouraging that the base pressure coeffi-
cient for turbulent boundary-layer flow is not sensitive to
\ changes in:the Reynolds number. At a Mach number of
2.0 this insensitivity is evident from a comparison of the data
‘ for the model with an L/k of 5 in figures 15 (a) and 19. At
a Reynolds number of 2% 10° where ‘turbulent flow is at-
\ tained onthe models by using artificial roughness, the base
pressure eoefficient does not differ by more than 3 or 4 percent
from the value at a Reynolds numberof 1X 107, where tur-
bulent flow is attained without such an artifice. At a Mach
number of 1.5 the measurements indicate this same charac-
‘ teristic, as can be seen from the data given in figure 20.
These data at the somewhat lower Mach number do not
‘ show any appreciable dependence on Reynolds number
| within the range from 2X10° to 1.6X107. It is interesting
that the free-flight data of Hill and Alpher (reference 14)

the range from 2X 107 to 1X10%. These latter data, however,
give a widely different value for the base pressure. It is
evident from figure 20 that the base pressures measured in

reference 14 differ from the values of references 5 and 13-

and the present wind-tunnel tests because of some factor
other than differences in Reynolds number. The possible
effects of support interference in the present wind-tunnel
tests would not appear to contribute any appreciable amount
to this discrepancy for two reasons. First, good agreement is

obtained at all Mach numbers between the present wind- -
tunnel tests and. the free-flight firings of Charters; and

second, the measurements of support interference as'deseribed
in appendix B indicate that for the support dimensions used
(d/h=0.25 and d/h=0.40 in fig. 20) these effects are an order
of magnitude smaller than the observed discrepancies.
Since the models of reference 14 were equipped with tail fins
of sufficient size so that their presence at moderate supersonic
Mach numbers might be expected to lower considerably the
pressure in the vicinity of the dead air (algebraically lower
the effective P’), it would appear that the observed dis-
crepancy is attributable to the effect of tail fins on base

‘ also show no significant effect of Reynolds number within | pressure.’
1 =28 3 ‘J.
|
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7 Subsequent experiments conducted at the Ames Laboratory by J. R, Spahr and R. R. Dickey have shown that this is the case,
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CONCLUDING REMARKS

The simplest approach to an analysis of base pressure for
supersonic flow is that of considering the flow of an inviscid
fluid. Although such an approach has produced many
useful theories when applied to other aerodynamic problems,
it produces results of very limited value when applied to the
present problem. The inviscid-fluid theory indicates that
the only possible base pressure for a body of revolution
without arod attached to the base is the free-stream static
pressure. Moreover, this simple theory also indicates that for
two-dimensional flows, as well as axially symmetric flows
with a rod attached to the base, there are an infinite number
of possible solutions for a given body shape and Mach
number.

The first of the above-mentioned shortcomings of inviscid
theory can be remedied by allowing qualitatively for the
existence of a wake, since by so doing the high-velocity
streamlines are displaced from the axis of symmetry and a
base drag other than zero can be obtained. The second
shortcoming, of having an infinite number of possible
solutions from which to choose, is not easily remedied. In
particular, the comparison between the inviscid-flow cal-
culations and experiment has shown that if the limiting flow
pattern (maximum drag possible) at each Mach number is
singled out from the infinity of possible inviscid-flow solu-
tions, then 'the characteristics of base pressure observed
thus far can be explained, but only qualitatively. Thus, the
experimental finding that an increase in support diameter
‘behind a body of revolution can considerably decrease the
base pressure is explained by an interpretation of the behavior
in an inviscid-fluid flow. Also, the experimental result of a
‘much lower base pressure in two-dimensional flow (at low
and moderate supersonic Mach numbers) than in axially
symmetric flow is satisfactorily explained by the inviscid-flow

calculations. As regards quantitative results, though, the
caleulations based on the maximum drag possible in inviscid
flow do not agree with the observed effects for turbulent
boundary-layer flow, and agree only in certain cases with the
observed effects for laminar boundary-layer flow.

In an attempt to formulate a more accurate quantitative
analysis a semi-empirical analysis has been developed. The

available experimental data correlate reasonably well when -

the base pressure coefficient, corrected for the effects of profile
shape, is plotted as a function of a parameter which is
approximately proportional to the ratio of boundary-layer
thickness to base thickness. As a result of this correlation
several general conclusions can be drawn. One such conclu-
sion is that the variation of base pressure with. Reynolds
number is small at high Reynolds numbers where the bound-
ary layer approaching the base is turbulent, but is large at
low Reynolds numbers where the boundary layer is laminar.
Another conclusion is that the effect on base pressure of
the disturbance field induced by profile shape can be ade-
quately explained on the basis of inviseid calculations.

In order to develop a thorough understanding of the
behavior of base pressure in supersonic flow, further experi-
mental and theoretical investigations are required. At
present, experimental results are especially needed as regards
the base pressure in two-dimensional flow, even at low
supersonic Mach numbers. Experiments conducted at high
supersonic Mach numbers are also needed, both for two-
dimensional flow and for axially symmetric flow.

AMES AERONAUTICAL LLABORATORY,
NATIONAL ADvisorY COMMITTEE FOR AERONAUTICS,
Morrerr Fieup, Cavir., May 11, 1950.




APPENDIX A

AXIALLY SYMMETRIC FLOWS CONVERGING TOWARD THE AXIS

The rather anomalous result obtained when applying the
method of characteristics to base-pressure flows can be
clarified by examining the equations of motion on which the
method of characteristics is based. The differential equation
for the velocity potential ¢ of an inviscid axially symmetric
compressible flow is (see reference 6, for example)

2 2
<1—%> ¢r.r‘—2 ¢;2, ¢IT+<1——%’—2> ¢rr+%=0 (Al)
where a is the local velocity of sound, z is the coordinate
measured parallel to the direction of the undisturbed stream,
and 7 1s the radial coordinate. If a transformation is made to
a new system (&,7) of curvilinear coordinates, where £ and 7
are distances measured along the two Mach lines issuing from

a point, then the equation of motion for the velocity potential -

becomes simply (the details of the algebra involved in making
this transformation may be found in reference 6),
% =sin2 ad¢

o} e} 7 Or

(A2)

where « is the local Mach angle. It is to be noted that the

new variables have the simple physical significance that lines

of constant £ and » are the Mach lines of the flow.. The
derivative of the velocity potential in any given direction is

‘the projection of the velocity vector along that direction,

and the order of differentiation in equation (A2) can be

interchanged. With
¢ ¢
A e A3
55 L oAl (A3)
and
——=p=w sin §

where w is the velocity vector inclinded at an angle § with
respect to the axis, it follows from equation (A2) that along
Mach lines -

in2 m2
o« vdy dq i vd& (A4)

dp=

Thus, dp is the increment in the projection of the velocity
vector along the ¢ direction when passing a distance dn in
the physical plane along the 7 direction, and dq is the in-
crement in the projection of the velocity vector in the 7
direction when passing a distance d¢ along the ¢ direction.
Equations (A4) are the fundamental equations used in the
step-by-step construction of a supersonic flow by Sauer’s or
Frankl’s method of characteristics.

The reasons for the singular behavior as the flow approaches
the axis of symmetry can now be explained with the help of
equations (A4). Suppose a series of steps were laid off
in the physical plane in the manner indicated by the sketch

shown in figure 21 (a). The small increments (d¢ and. dn) -
along the Mach lines are laid off such that they are always

small compared to the distance from the axis » and also such

that for all steps d&/r and dy/r are always very néarly equal

to a constant, say (7, It is to be noted that if such a flow

converging to the axis is possible, then there would be an

infinite number of such steps along the streamline AB in

figure 21 (a).

Axis of symmeitry

w =Constant-

w =Sonic
velocity

(b)

(a) Assumed flow in the physical plane.
(b) Increments in hodograph plane corresponding to figure 21 (a).
FIGURE 21.—Characteristics construction for flows converging to the axis.

Now consider the increments in the hodograph plane
corresponding to those laid off in the physical plane (fig.
21 (a)). Figure 21 (b) illustrates the way, according to
equations (A3) and (A4), in which the increments must be
laid off in the velocity plane. Points having the same num-
ber in figures 21 (a) and 21 (b) represent the same point in
the flow. Let the smallest average Mach angle along the
steps in the physical plane be a,,, and the smallest vertical-
velocity component be v,, then for all steps along AB

idp|>|vmC sin? a,,|=-constant
and
|dg|>|vmC sin® a,,|=constant

-1 7-
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This means that every increment in the hodograph plane is
greater than a constant value. This value cannot be zero
unless points 1 and 3 are identical, which would represent
the exceptional case of a ‘“reversed” conical flow. On
passing from point A to point B there are, however, an
infinite number of such increments. They must be laid out
along the arc of a circle in the hodograph plane since AB
is a streamline of constant pressure. Hence, before reaching
point B the inclination angle of the velocity vector must be
greater than 46° (approximate maximum deflection angle
through a single shock wave for y=1.4). Because this
situation obviously prevents a shock wave from being fitted
into the flow, there results a contradiction to the assumption
that the over-all flow is possible. It appears, therefore,
that these flows are not always possible.

The preceding discussion, though not a mathematically
rigorous exposition, points out the reason why the inclination
angle 6 of a free streamline can increase at an excessive rate
as the axis is approached. The source of the trouble is
inherently associated with the last term in the equation of
motion (A1), since it has 7 in the denominator and a non-
vanishing factor in the numerator. The appearance of r
in the denominator of this equation stems entirely from the

ADVISORY COMMITTEE FOR AERONAUTICS .

continuity equation. This leads to a qualitative explanation
of the observed behavior near the axis of the inviseid flows.
Consider the changes that must occur on going from point
1 to point 3 in the physical plane (fig. 21 (a) ). If the flow
were two-dimensional, then the free streamline would be
straight and 6, would equal 6;, thereby preserving the cross-

sectional area between two adjacent streamlines on passing
The term involving 1/r does not occur for .

from 1 to 3.
plane flow and no difficulties arise. In the axially symmetric
case, the fundamental condition is again that the cross-
sectional area of an annular streamtube must be preserved,
since w, is equal to ws. This means that for purely ‘Geometric
reasons the streamlines bounding the annular streamtube
must spread apart as the axis is approached. In order to
have the pressure at point 3 equal to that at point 1, the
free streamline curves toward the axis. permitting the
bounding streamlines to  spread, thereby allowing the
continuity equation to be satisfied. Because of the 1/r term
in the continuity equation, the curvature rapidly ‘increases
as the axis is approached. Hence, before the axis is reached,
the inclination of ‘the free streamline exceeds the largest
value which any oblique shock wave can possibly overcome.

APPENDIX B

WIND-TUNNEL SUPPORT INTERFERENCE AND REFLECTED BOW-WAVE INTERFERENCE

When a body of revolution is tested in a wind tunnel it is
usually supported from the rear by a cylindrical rod. As a
result the measured values of base pressure may be consider-
ably affected, for one thing, by the presence of the support.
Support intérference on base pressure is a complicated func-
tion of the diameter of support rod, the unobstructed length
of support rod, the Mach number, and the Reynolds number.
If, as is the case for the experiments referred to herein, the
support length is much greater than the base diameter, then

the only appreciable interference must arise from the “dia-.

meter effect’”” of the rod. From theoretical considerations
certain inferences can be drawn regarding the resulting sup-
port-diameter interference on base pressure.

For a fixed Mach and Reynolds number, an increase in the
support diameter brings about two different effects. First,
the wake thickness is increased, thereby making it possible
for lower base pressures to exist. (See fig. 6.) A second effect
resulting from an increase in support diameter is that the
appropriate dimensionless boundary-layer thickness 8/(h—d)
is increased, thereby tending to increase the base pressure.
The two effects, therefore, oppose each other. For values of
d/h near unity the second effect must predominate; whereas
for small values of d/h the first effect would (on the basis of
fig. 6) be expected to predominate, especially at low super-
sonic Mach numbers.

Before comparing these theoretical considerations with
experimental measurements of the effect of variations in d/h
it will be advantageous to first consider the effects of having
only a finite length of unobstructed support rod. To examine
‘this effect, base-pressure measurements have been taken
with a constant value of d/k, but with various lengths of

unobstructed support. In these experiments the model was
located at a fixed position in the test section so as to eliminate
possible effects of axial pressure gradients along the test
section. The results from M=2.0 and 2.9 are illustrated by
the curves in figure 22, which show, for d/h=0.3, no change
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FIGURE 22.—Effect of support length on base pressure; d/h=0.3.

in base pressure if the support length is greater than about
3 base diameters. Since support lengths of over 4 body
diameters have been used in all subsequent tests, it is con-
cluded that any interference in the wind-tunnel measurements
of base pressure at M=2.0 and 2.9 is not attributable to
effects of support length.

The results of base-pressure measurements for various

support diameters with laminar boundary-layer flow are

shown in figure 23 (a). The data for a Mach number of 1.5
(reported by Perkins in reference 11) show the expected

increase, and then eventual decrease in base drag as the.
support diameter is progressively increased. At a Mach
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number of 2.9 the data show a monotonic decrease in base
drag as the support diameter is increased. Schlieren photo-
graphs show that the wake thickness ¢/h varies from approxi-
mately 0.5 to 1.0 as d/h varies from 0 to 1.0. Consequently,
it turns out that the behavior of the three curves in figure
23 (a) is qualitatively the same as would be indicated if
equation (6) were used to estimate P,*. (Itis to be remem-
bered that t/k is the “effective’ d/h of fig. 6.)
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(a) Laminar.
F1GURE 23.—Effect of support diameter on base pressure.

The corresponding results for turbulent boundary-layer
flow are shown in figure 23 (b). At Mach numbers of 1.5
and 2.0 these data show the same trends as for laminar
boundary-layer flow, but at a Mach number of 2.9 the trend
is not the same. At Mach numbers near 3, and possibly
higher, it appears that the relative importance of. the two
above-mentioned effects of increasing d/h depends on the
condition of the boundary-layer flow.
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It may be noted from figure 23 (a) that there is one point
corresponding to d/h=0 on the curve representing laminar
flow at a Mach number of 1.5. This point, which was
determined from the measurements using a side support,
gives the same value for the base pressure as exists for a
support with a d/h ratio of about 0.3. At all the other Mach
numbers, where special interference measurements were not
made, the base pressure was measured with a constant value
of 0.4 for the ratio d/h. From the curves in figure 23 (a) it
may be inferred that, at least for Reynolds numbers of the
order of 4 million, these base-pressure data for laminar flow
are not significantly affected by support interference.

Unfortunately, an investigation of support interference for

turbulent boundary-layer flow has not been made using a side -

support. Definite quantitative statements about the pos-
sible effects of support interference in the turbulent-flow data
(figs. 14, 15, 18, 19, and 20) cannot be made at present.
Evidence that the combined effects of support and wall
interference are not large, however, is given by the good
agreement obtained at all Mach numbers between the
free-flight firings of reference 5 and the various wind-tunnel
measurements (figs. 14, 15, 18, and 20).

A possible source of wall interference arises from the
reflection of a bow wave from the side walls, and the eventual
intersection and interaction with the wake at some down-
stream position. This interaction for M=2.0 and }/=2.9
occurs at a position varying from 7 to 22 base diameters
downstream of the base. Since the large disturbance caused
by the balance housing has no measurable effect at distance
of 3 base diameters from the base (see fig. 22), there is no
reason to expect that the base-pressure measurements at
M=2.0 and M=2.9 might be affected by reflections of bow
waves from the tunnel side walls. At a Mach number of 1.5,
however, the downstream position of interaction is closer; it

varies from approximately 2.7 base diameters for the model

with an L/h of 7, to 5.4 base diameters for the model with an
L/h ratio of 4.3. In view of the possible interference from
reflected bow waves at low supersonic Mach numbers, a
special investigation was made in 1946 prior to the tests of
reference 12 to determine the magnitude of this effect. The

results, taken at a Mach number of 1.53,% are presented here
as they aid in evaluating the accuracy of the wind-tunnel

measurements of base pressure, and they show that the
conclusion of Faro: (reference 15) regarding the magnitude of
the bow-wave interference effect in the present experiments
1s incorrect.

Figure 24 illustrates the test setup employed in evaluating
the effect of a reflected bow wave on base pressure. Because
of symmetry the two outer dummy models caused two shock
waves, similar to reflected bow waves, to interact with the
wake behind the base of the center model (on which the base
pressure was measured). By varying the distance between
the dummy models of the test setup, the position of inter-
action was readily changed. The strength of the bow wave
on the models employed (6-caliber ogival radius) in this
special investigation varied from approximately two to eight
times the strength of the bow wave on the various models for
which base-pressure data are presented.

& This Mach number differs somewhat from that of more recent tests (at M=1.50) since the earlier tests were conducted in 1946 at a time when the 1- by 3-foot supersonic wind tunnel was
temporarily equipped with a set of fixed nozzle blocks instead of the flexible plates now employed. 'q =
A -
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~--Base pressure orifice

Effective width of

wind tunnel

reflected bow wave--<
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FIGURE 24.—Sketch of test setup used for determining the effect of a reflected bow wave on base pressure,

Schlieren photographs of the flow for two different posi-
‘ions of interaction, and two different Reynolds numbers,
are given in figure 25. The distance z, from the base to the
position of interaction, is equal to 2.5k in both figures
25 (b) and 25 (c). This particular position simulates the
closest position to the base of the interaction of reflected
waves in the presont tests. The corresponding base-
pressure measurements ® without and with the interference
wave present are illustrated in figure 26 by the circle and
triangle symbols, respectively. The data show no appreci-
able effect on base pressure of the shock wave which simu-
lates a reflected bow wave.. If a reflected bow wave comes

too close to- the base, however, then large interference
effects are possible, as illustrated by the square symbols in
figure 26, and the corresponding schlieren photographs in
figure 25 (d). Except for purposes of illustrating this effect,
base-pressure measurements were, of course, not taken
under these latter conditions of important interference
from reflected waves. Since the simulated reflection waves

of the models used in this special investigation were several -
times stronger than the bow waves on the models for which-

the base pressure was measured, it is clear that the wind-

tunnel measurements presented are not appreciably affected

by interference of a reflected bow wave.

% These data fall slightly below other data presented herein because of the very small amount of boattailing on the models used in this special investigation.
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APPENDIX C

\ DERIVATION OF APPROXIMATE EQUATION FOR ¢/¢w

The ratio ¢’/q. can be written as

ql IU12
‘ e p.,,U.,,z

AU

UD?

,Po Po

Po Po P

1+2 (C1)

‘ In this and subsequent equations, powers higher than the
‘ q q ) I )
U -U,

_ g
small in comparison to unity, and are therefore neglected.

| first of quantities such as are assumed to be

In equation (C1), p, and p, represent the stagnation densi-
ties corresponding to conditions in the free stream and to

‘ conditions just ahead of the base, respectively. Designating

AM=M'—M, and again considering only first-order
terms, it follows that
'y— 1 =%
= 14-—F— M" | ¥-1
\ P Bepe | 1T T
‘ Po o P 1+ M 2 Do
} M, AM _Ap, i
Eriads Do ey |

i where Ap, is the loss in total pressure on passing through
\ the nose shock wave, and may often be neglected. From
| the energy equation

A_U_U’z—Umz__
T T

or, using ¢,=vR/(y—1) and M= UNyRT

Ey(L =1 c T T’ 1’

U.?

S VO

Y.
! AR y b
“ C @ (‘Y—l) Mcoz 1+ M'2

AN
M(,,(1,+7—;—1 Mj)

(C3)

hence the combination of equations (C1), (C2), and (C3)
_Ap (C4)

gives
'”H’(w ”> ' ’MI"” : |
g 1+15= M2 P ‘

The pressure coefficient P’ is related to AM and Ap, by

¥

Pla B =Pe L 124 3 D' Po Po_
o is YM.*\Do Do Pe

o) P M. |

r | =X |

2 1+ JI y 1(] _-i&>—1 &

2 ) |

'YMm 1+ M2 Do ]

20 M \?[ 2 é&, ((‘ 5 (\

o (1+‘— M, ) TME po. |

N

Substitution of equation (C5) into equation (C6) yields the
relation -

M * 2
=1+< - —1>P'—7M z(1—}—“’

{
|
presented earlier as equation. (3). |
|
‘
|
!

M, )AP" (C6)
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TABLE I.—VALUES OF M’ AND p’ FOR A TWO-DIMENSIONAL

AIRFOIL

&
| |
Mo | M | Phre
. {

‘ |
1 | 1425 ! 0.73 |
1.5 { 1. 50 1. 00 |
2 | 2.00 | 1. 00 |
3 { 2.99 | 1.01
8 | 7.85
L |

) { 1. 14
82 | ®

TABLE II.

VALUES OF M’

AND »’ FOR A CONE-
CYLINDER BODY OF
REVOLUTION !
) ] TABLE III.—VALUES OF M’
4 AND »’ FOR A CONE
10°
} \i
il
2 2
r | ‘
{ Mo | ar 1 PP Ml s 1M P[P
1.5 | 1.51 0.98 1.5 1,58 ST Lo 05 88
2 l 2.02 .97 2 2.09 | .87
3 3.03 95 3 3.13 H .82
l Y | 7o 86 7 S 716 | ~18
|




