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THEORETICAL AND EXPERIMENTAL INVESTIGATION OF ADDITIVE DRAG 1

By _IERWIN SIBULKIN

SUMMARY

The significance of additive drag is discussed and equations

.for deter min.ing it._ approximate value are derived for annular-

and open,-nose inlets. Charts are presented gicing values o_
addith,e drag eocfieient over a ral_ge qf free-stream 3Iaeh

numbers Jor open- and for am_ular-nose inlets with conical

.flow at the iMet. The _flect._ on additice drag of variable inlet-
tolal-pressure recover!! aml static pre.s.sures on the eenterbody

are investigated and an analytical method (( predicting the

mriation oJ pressure on the eenterbod?l with mass-flow ratio is

gicen.
I_5"perime,_tal additive-drag calues are presented .for a series

_ 20 ° al_d 25 ° cone lmlf-a,_gle inlets a._,d one open-nose inlet

operating at free-stream A[aeh .number._ of 1.8 and 1.6. A
compari._on with the theoretical ralue._ oJ additive drag .shows

exeeUent agreenLe_tt.for the open-no._'e inlet and .moderately good

agreemel_t for the a_ nular inlets.

INTRODUCTION

In the analysis of engine performance, it has been custom-

ary to define a net-thrust term tim( is evaluated between the
outlet of the engine trod a stat.ion ahead of the engine where

the entering stream tul)e is at free-stream conditions. If the

area of the entering stream tube at free-stream conditions is

not equal to the inlet area, conditions at the inlet (lifter from

those in the free stream; and if the flight velocity is super-

sonic, an additional fore(; must be considered in determining

the net propulsive thrust. This additional force tins been
called additive drag (ref. 1). The additive drag encountered

at subsonic speeds is included in the analysis of reference 2.
A theoretical method of predicting the magnitude of the

additive drag at supersonic spee(ls that is based upon an

analysis of the location of detached shock waves as a function
of relative mass flow and Math number is included in refeI-

ence 3. Dailey and McFarland of the University of Southern

California in 1950 suggested a method of computation based

upon an analysis of the entering stream tube. Suggested by
Nucci of the NACA Langley laboratory in 1950 was a method
which makes use of the external shock configuration. For

configurations having side inlets, an analysis of the effect of

changes in the entering air conditions ahead of the inlet is

given in reference 4.
In this report, prepared at the Lewis laboratory in 1950,

the necessity for inc[udfltg the effect of additive drag in

calculating the net prottulsive thrust is discussed and a

modified metllod of prcdi('ting the ad(litive drag based on an

analysis of the entering stream tube is presented. Theorcti('al

values calculated by the modified method are compared with

the values predit'ted I)y the methods of Dailey and of refe!'-

cncc 3. Coml)arison is Mso made with experimental wfiues

of additive drag obtained from tests of ram-jet models in the

Lewis 8- 1)y 6-foot supersonic tmmel. Also included in this

report is a conlparison of expermwntal additive drag values
with those predicted t)y the external shock method.

SYMBOLS

The following symbols are used in this report:
A

A_

As

zlx

Ay

Cf.s
C,

Da

F

Ft

F_

F,,._

F_

9
K

M

m

ll_max

P

P

pc

P8

flow area, sq ft

capture area, cross-sectional area at cowl lip including

centert)o([y area, sq ft
cross-sectional area of eenterbody at station 1, sq ft

eonlponent of surface area perl)en(lieuhw to longitud-

inal axis of inlet, sq ft

area of centerbody where it is intersected by bow

wave, sq ft

additive-drag coefficient, 2D,/poI'o'2A_
friction-force coefficient on center body, 2Fi.,_/p0V0".l_

incremental-cone-pressure coefficient, 2."t,(_--p,)/

poVoZA

additive drag, lh
total momentmn, n_V+A(p--po), 11)

sum of external pressure and friction (h'ags, lb

axial component of force on fluid due to friction oh

portion of centert)ody forward of station 1, lh

jet thrust, mV_+A_(p_--p0), lb
net thrust, ll)

net internal thrust, lh

inertial reaction of net propulsive thrust, 11)

scoop incremental drag, lb
acceleration due to gravity, ft/see :

bow-wave-position parameter
Mach nund)er

nlass-flow rate of fluid passing through inlet, slugs/sec
maxinlum theoretical rate of mass ilow throug|, cap-

ture area -Ool'oAo slugs/sec

total pressure, lb/sq ft abs

static pressure, lb/sq ft ahs
theoretical static pressure on surface of cone behind

an oblique shock, lb/sq ft abs
effective static pressure on portion of centerbody for-

ward of station 1, l[)/sq ft at)s

t Supersedes NACA RM ES1BI3, "Theoretical _nd Ex;n,rimental Investigation of Additive Drag" by 3fferx_ in Sibulkin, 19,51.
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p,, theoretical slalic I)ressurc immedialelv behind an

oblique shoel.: wave, l|)/s( 1 ft abs

1: gas constant, ft/°R
7' total tempeval Ill'e, °n

I" wqocity, ft/sec

f_ ratio of mass-flow rate with supersonic [low at inlet

to maximum theoretical capture-area mass flow
3' ratio of specilic heats

0_ cone half-angle of inlet eenterl)ody

O_ c(m'l-position parameler, angle betweell axis of inlet

and straight line ihal connects lip of cenlerbody

lip of cowl

X angle at station 1 between average direction of tlow

and longiludiual axis of inlet

P Oensily, slugs/eu fl

Subseril)lS:
0 free st ream

1 eomlilions at engine inlet (defined in text for" particu-
lar types of iulel)

e conditions at engine oullel

ANALYSIS

The net prol)ulsive thrust of an engine al zero angle of

at lack is Ihe resultant of the sum of the axial ,'omponents of

the pressure and frielion forces acting on lhe engine. A

schematic representation of these forces as applied lo a ram-

jet engine in aeeehwated tlight is shown iu figure 1, in which
the net propulsive lllrllsl of the engine is replaced t)y an equal

e

-.->

i l

ro_ I +--5

(b)

(a) U,qng statious 1 and e.
(b) U.',ing statitms 0 and e.

lq(;( rE l.---Schcmatic representation of forces acting on ram-jet
engine in accelerated flight.

and opposite inertial force F v according to l)'Alemberl?s

principle for accelerating systems. The forces are defined

as i)ositive in the directions shown by the arrows.

The sum of l)ressure and. friction forces acting oil the in-

terio," of the engine, which is called the Itet inlevnal thrust

1",,.,, ('an be caleulate(l from the change in tolal momentum

mV+:l(p--po) between stations 1 am[ c of lhe fluid[ passing

Lhrough the engine (tig. l(a)), that is,

/_', _= ?'j- & (1)

where/_'j -=m I', +.1, (p,-- po) and I_' 1 =-m_q+Al(p,--po).

Then

F,,=F,,,--_; (2)

where T;_ is the Stilt}. of the pressure and friction forces acting
on the exterior of the engine.

It is customary, however, to evaluate engine performance

between slations 0 and e (fig. l (b)) an(l to call the change in
total momentum of the internal flow (between stations 0 and

e) the net thrust /,'. as given by

l+',=I')-- Fo (3)
wllere

F0 -=,n I4, + el 0(Po-- Po) = m V0

In this ease, hovcever,

t)ecause lhe change in lotal momentum of [.lie free stream

between stalions 0 and 1 has nol l)een considered. There-

fore, in or<let to obtain the net propulsive thrust Fp, this

momentmn change (which is called additive drag l):) must
l)e included to give

F,,= F,-- F_-- I),, (4)

A mathemaliea] definition of addilive drag can be obtained

by combining e(]tlaliolts (1) io (4) tO give

16 "' :1+.-- F,, , , = & -- F,, (5)

or usiag the definilions of/g and F0,

1),, = **,V, +A, (p_ -- p,,) -- m Fo (5a)

where appropriate average values of the quantities at station
1 are used.

Another interpretation (which gives physical meaning to
net thrust F,) is t() consider that the diverging portion of the

entering stream tube behind a bow wave (fig. 2(a)) from I to

1I is replace([ by a thin, frictionless membrane (fiE. 2(b)).

hmsmueh as the flow field is unchanged, the net propulsive

thrust /_'_ will riot be affected. Because the engine has

J

{a}

/

I ....

i
i
i

b)

(a) Unextended.
(b) Exlen<led along streamline.

(c) l':xten(h_d not ahmg streamline.

(c)

]q(;vR_; 2. -Schematic re.presentation of addilive-drag
elimination by cowl extension.
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already been credite(t with the thrust due to the pressure

acting on the interior of the hyl)othetieal extension of the

engine from I to II by its inclusioI_ in the net thrust F,, a

drag force must be added because of the pressure acting on
the exterior of the engine extension which is equal to

_i II (P -- P0) ([._l
z

where dAx is the axial l)rojeetion of the surface area. This

integral may also be use(l 1o define the additive drag and is

equivalent to the definition given by equation (5a), as can
easily 1)e seen by al)plying the momentum t,heorem around

the surface I, II, III, IV, I in figure 2 (b).

Although no change in the for('es on the inlet: occurs when
an inlet is extended to fi'ee-stream diameter along a stream-

line, an increase in net propulsive thrust wouht be obtained

if the inlet were extended in the manner sho_m in figure 2 (e).

hi this case the angle through which the entering streamline
is turne(l is made smaller than the detachment angle and the

bow wave is replace(| t)y a normal shock at the entrance to

the inlet an(l an ot)lique shoel_ oft" the lip. Comparison of

the modified inlet in figure 2 (e) with the one in figure 2 (a),

shows thnt. the increase in the (.owl-pressure (|rag owing to
the extension of the inlet from I l to I is much less than the

value of the additive drag eliminated because the increase

in pressure behind the ot)lique shock in figure 2 (e) is much
less than the pressure rise behind the nearly norinal shock

in figure 2 (a).
Equation (Sa) applies directly only to an open-nose inlet.

The comparable equation for an annular-nose inlet can be

derived t)y considering the forces acting on the surface

bounded by I, II, III, IV, V, I as shown in figure 3 (a). A
summation of the axial components of the forces acting on

the enclosed fluid gives

where A_ eorrespomls to the flow area I1, III, and A,(_--po)

and F:., are, respectively, the axial components of the pres-

sure and the friction forces a(:ting on the centerbody, and
appropriate average values are used at station 1 and on the

centerbody. Again, as in the case of the open-nose inlet,

a definition of additive drag equivalent to equation (5b) is

D_=_ u (P--po) dA_

A side- or scoop-type inlet can be considered to be an
annular-nose inlet with the ccnterbody greatly extended

(fig. 3 (b)) and, consequently, its additive drag can be found

from equation (Sb).

If, however, the scoop does not extend completely around

the eenterbody, it is extreinely difficult to determine the

portion of the eenterbody which forms part of the boundary

of the entering stream tube (indicated by shaded surface on

diagram) and, (:onsequent]y, to determine the proper value

of A, for use in equation (5t)). Furthermore, for this type

of fuselage, the drag on the shaded portion of the center-

body is custonlarily included in the body drag. Conse-

I •

___v_ ......
I
I
I
I
L

I

.__- _III

'v i
!

to)

0 r

AI_, i

(
A°" (b)

(a) Au_ular-n()._einl(q.
(I)) Scoop inlet.

FIGVRE 3.--Schemat ic views of antmlar-nose- and scoo])-tYl)e inlets.

quently, reference 4 suggests thai, if the approximation is
made that the drag on the shaded 1)ovlion of the (.enter-

body does not clmnge as the mass flow through the enginc

elmnges, then a s('oop incremental drag I,'_ can be defined

equal to the ('hange in total monlentunl of the entering
stream tube between station 0 and 1; that is,

F_-m,I'l ('os k+.'ll (Pt--Po)--rove (Se)
Then

l.'v=F,--1,'a--I._ ,

where P'a inelu(les the drag on the shaded I)ortion of the

centerbody. If the direction of flow at station 1 is parallel
to the axis, the formula, s for evaluatil_ the scoop incremental

drag and the additive drag of an open-nose inlet (eq. (Sa))
are the same.

APPARATUS AND PROCEDURE

Experimental values of additive drag were oMtfined in

the NACA Lewis 8- by 6-foot supersonic tunnel for one

open-nose and severM annular-nose inlets. Tl,e inlets
formed the forwar(l end of a 16-inch ram-jet contiguvaiion,

which is schenmti(_ally shown in figure 4. Two cone angh,s

were tested; the 1)roje('lion of the eenterbodies was varied

by cylindrical spacer I)locks so as to obtain various super-
critical mass-flow ratios. The values of cone angle, (.enter-

body position, and design mass-flow ratio invesligate(l are

given in the fable apl)earing in figure 4.
Tests were eondu('ted at free-stream .Xlaeh numbers of

1.8 and 1.6 over a r:mge of nlass-llow ratio, whi('h was ('ou-

tvolle(l by a variabh,-tlrca orifice valve located in the engim_
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Cowl_ Center- -Spacer -Variable-area orifice
"_body.

[ '' _"l l r,L
I 2

Cone III
half-angle, 20 20 20 25 25 Open IIz_

deg nose I i :''" I
Z, in. 5.6:5 8.47 t0.47 6.71 8.21 --- r ..... qV

Supercriticol 1,17_".
moss-flow mt_ 1.0 0.7,5 0.51 375 0.51 LO

otM o = 1.8 0 I 2

FIGURE 4.--Scheniatic diagram of inlet c(mfi_uration.-, investigated.

(.ombustion ctlamber. Static pressures on the internal

surface of the cowl and on the centeH)o(ly forward of station

2 (located 15 in. hack of (.owl lip) were measured t)y wall

orifi('es, an(l total pressure tit station 2 was Ineauurcd I)y a

rake of total-I)ressure tuhes. The weight flow was ('ah'ulated

fi'om the total- and static-pressure readings at station 2 and

a correction factor was applied to bring the (lot a in agreement
with the theoretical values (if supereriti('al mass flow. The

additive drag was then ('ah'ulated by taking a momentum

balance aroun(l the surface I, lI, Ill, IV, V, VI, I of figure 4.

COMPARISON OF THEORY AND EXPERIMENT

OPEN-NOSE INLETS

The equation for the a(hlitive-drag ('(a, flicietlt ('a,,_ for an
allen-nose inlet t)ased on (he inlet lip area may be derived

h'om equation (Sat as shown in the al)l)emlix to give

, 2 Fs'0.1',l,, l (.)(a'"=v,lL,2 L Po 1"o 1)1 --,1_

whel'e

:'1. po I'o_,lo I_'_
.'IL po l'o,lt _ ......

For given values of M. aml mass-flow rail., the value of

31. can tie obtained by applying (he continuity equation

between stations 0 an(l 1. This rel.Hion m'/y t)e written
in the form

=1() 1'i
.'I, "f('__))=" f (:i'/1) 1'. (7)

where

.f(JI)=}lI 1 2 :112

with the usual assumption that 7"1= T,). The pressure ratio

PdPo is taken equal to the value across a normal shook

oeettrring at ]/0. Inasmuch as pz./l)_ and pc�Pc are known

funetions of J'l[_ and _1/0, all the quantities in eqtmtion (6)
are (leterndne(l.

The values of ad(litive-drag eoeflieienl for an open-nose

inlet ol)erating at Maeh numbers from 1.2 to _o have been

calculated t)y the foregoing procedure an(l are presented in

tigure 5. For a fixed vahle of mass-[h)w ratio m/m ....... the

value of (',+,,, increases with increasing 3L,
finite limit for M0= _o.

A comparison of theoretical (predicted

experinlental values of additive (h'ag at

0ig. 6) indicates good agreement down 1o

n)t(I al)proaehes a

liy c(l. (6)) aud
Mo=l.8 and 1.6

\
\

[

"'2,2 .4 .6 ,8 1.0

Moss- flow rotio, m/mfr_x

FIq I'RE (;.--('onq)arison of exl>erinmntal slid theoretical values

of additive drag of open-no'_c inlet.

lowest mass-flow ratio investigate(l. Because the additive

(h'ag of an open-nose inlet at a nlass-flow ratio of 1.0 must

equal zero, (he diserel)ancies at: that point can be attributed



THEORETICAL AND EXPERIMENTAL INVESTIGATION OF ADDITIVE DRAG 5

:70

6O

5O

4O

3O

02

2O

&
i



REPORT 1187-- NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

?
f

Yc

it, i

F L, 4' ;

I.O

.8

g
"_5

e,}

o

&
$

§,4
i

g
E
fO

--.2

Free-sfreem

Moch number,

"--Y Me 1

' !

0 .2 .4 ,6 .8 1.0

Moss-flow robe, m/mma x

FIf;URE 8. Variation of incremental-cone-pressure coctlicient with

free-stream Mach reindeer. ('one half-angle, 25 °.

to errors in the experimental amdysis. Part of tids discrep-
ancy is caused 1)y the omission of the unknown force result-
ing front friction on the inside of tlle cowl forward of station

2 in calculating the experiInentai values of a.dditive-drag

coefficient. Curves of the additive-(h.ag coefficient predicted

by the theory of reference 3 are also shown. This theory

predicts a linear variatioil of additive drag with nlass-flow

ratio that agrees with the present, aualysis at nlass-flow

ratios ttear 1.0, but underestinlates tim a<hlitive drag at.
lower mass-flow ratios.

ANNULAR-NOSE INLETS

Before <liseussing additive drag of ammlar-nose inlets, a
basic difference between ammlar- and open-nose inlets shouhl

tie consi<lered. When an open-nose inlet is operating with-

out a bow wave, tile mass-flow ratio m/m ...... nlust equal 1.0

and, consequently, the ad<litive drag must equal zero. For
an a nmdar-nose inlet, however, tim mass-flow ratio as herein

define<l will not equal 1.0 even when no bow wave is present

unless the oblique shock staltds at or inside the cowl lip. if

the oblique shock stamts upstream of the cowl lip, it. follows

that, because of the change in area of tile entering streain

tube behind the ot>li<lue shock, the nlass-flow ratio is less

than 1.0 and tile ad(litive drag is greater tllan zero. Con-

sequently, it is useful to define an amtular-inlet parameter

equal to the ratio of mass-flow rate with supersonic ftow at

ttle inlet to the maxiluum theoretical capture-area mass flow.

For most cases this definition is equivalent to defining _ as
the supercritical mass-flow ratio. Because from its (lefini-

tion the parameter B is a function only of 31o and of tile

geometry of the i,let, an inlet having a value of /3= 1.0 at

the <lesign -1/0 has a value of/_< 1.0 at an 3/'o below design.
Operation with conical flow at ir.let.--V',qwn an anm,]ar-

nose inlet having a certterl)o(ly that is conical forward of

station 1 (fig. 3(a)) is ol)erating without any bow waves, the
flow t)el,iml the ot)lique shock generate(t by the centerbo<ty

can lie pre(licted from conical flow theory (for exainple, ref.

5). In this case it is l)ossible to evaluate the a(htitive drag

f"directly from (p--po)d+l_. This procedure tins been for

lowed for four coue angles over a range of Maeh numbers
from a value slightly greater than the Inininlum for an at-

tached shock to an .llo of 5.0 (fig. 7). The curves show that

for a. fixed wdue of mass-flow ratio, the additive-drag coeftl-
cieut decreases as ALj increases, which is opposite to tile trend

in figure 5 for an open-nose i_det. The variation of values

of mass-flow ratio with cowl-positioil paraineter 0_ is also

give_t from which the theoretical supercritical mass-flow

ratio /3 can lie determine(l when the geometry of the inlet
a,n[M0 are l_nown.

Operation with bow wave. The equation for the additive-
drag coefficient 1)ased on the capture area A_ of an annular-

nose inlet can tie (lerived from e<luation (Sb) (as shown in

the al)pemlix, eq. (A6)) to give

, '2 F+I_ I'o Pt p, (_Mt2+l) cos X+
( 't'_-'Y:llJ LA_ t>oPc P,

+'-"-,-+ +
,lope ,it J '

wlwre appropriate average values are used at station 1.

ht evahmting equation (8), ,1'[1 call be found by applying

the continuity equation (eq. (7)) as a function of Ao/A_-

(A0/zl_)(Ag'A_) if tim average pressure recovery l',/Po and

flow angle X are known. For calculations involving an inlet
having a eenterbo(ty that is conical forward of station 1

when the oblique shock stands at tile lip (#= 1.0), the pres-
sure recow'J T I'#1',, is closely approximated by the product

of the l)z.'essure ratio across an oblique slloek and tim ratio

across a normal shock occurring at tile average of the Mach

mmll)ers on the colle surface an<l directly behind the ot)lique
shock. If it is assume(t that the average flow angle ), is

in<lepen(ien! of _, X can lie determine<l for an inlet wimse/_

equals 1.0 by the condition that ('<_==0 for m/m,_=_l.().

The elhwt of fi'icti(m oil the eentert)o<ly (,_, is negligible and
can })e assulne(l to lie zero.

I)ailey and NlcFar]an(t assume(| as a first approximation
that P/Po--:P,/P,,. This assunlption gives tile correct value

of a(l(lit ire (h'ag when the mass-flow ratio equals B, and should

increasingly underestimate tile a(hiitive drag as the mass-.
flow ratio is reduced. It was also assuine(l that for subcritical

flow the value of I)ressure recovery was constant at the value

previously (lescribed for fl----1.0. An improved apl)roxima-
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tion for -P.+/Po and the eft'eel of variations ill the pressure

recovery from the value assumed are dis('usse(l in the fol-

lowing sections.

Prediction of pressures on centerbody.--A t)etter at)prox-

imation for _)+/po can I)e based upon a simplification of the

results given in reference 3 for deternlining the position of
a bow wave. In terms of the notation given on the sketch

in figure 8, calculations based upon equations in reference 3
show that for an annular-nose inlet with _ _ 1.0, the variation

of L'/y_ with mass-tlow ratio is approximately linear for
.11021.6. The length y_ is the radius of the inlet at the

cowl lip, and the assumption is nmde that L--L', where L

is the axial distance front the l)<)int where ,'1_ is measured

to the point where the bow wave intersects the eenterbo(ly.

As a simplification it will t>e assumed that L/y_--K(1--

m/rn,,,,_); K is independent of cone angle and its w_riation

with :110 is given in the following table:

Mo

K

i
1. 6 I 2. 0 2. 4

1. 13 . 89 • 76

2.8 3.2

• 69 . 65

The values of K were determined by plotting L/y_ against

mass-flow ratio and finding the mean slope of the curves.

Then, from the geometry of the figure,

y = y+-- ycK(l -- _/m .... ) t an O_

where y, is the radius at A_. This gives

-- 2,,,,,,o+] (9)

from whi('h Av ('an be (.ah.ulated.
Forward of Av, the pressure on the centerbody equals the

previously assumed value of p_. The average pressure

t)ehind A_ will lie between p_ and the static pressure behind
a normal shock at the cone surface Maeh number p_. It

will be assumed that _=(p_+pl)/2. An incremental-cone-

pressure, coefficient ('_-2,.l_(_,--p_)/p_)l.'02A_ can now be de-
fined. When added directly to the value of Ca., obtained

using the approximation _=l)_, C, will account for the in-
crease in additive drag caused by the increase of pressure on

the cone behind the bow wave. Using the development

given yiehls

2 (A+--Au) ()'5--p_) (10)

The variation of C., with mass-flow ratio for a 25 ° half-angle

cone is shown in figure 8 for a range of ,_/o.

Although the approximate relation L/y_=K(1--m/mm_,)

is based upon a derivation in reference 3 for inlets with
¢_ 1, it, will be assumed that for other inlets the relation

L/y_=/£[1 -- (m/m .... ) (l/f3)] is approximately true, where the

.2
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+
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o
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.8

(a) -t"T_"'"_ _ _I
i ,

t
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oT .......

,_1 go .....

(c)

0

(d)

i

.4 ._ .g _.o .z .4 .6
Mass- flow p(>rameter, (m/mmox)(I/_ ]

o_

.8 1.0

(a) Cone half-angle, 20°; Math aural)or, 1.8. (b) Cone half-angle, 20°; Mach mtml)er, 1.6•

(c) Cone half-angle, 25°; Mach number, 1.8. (d) Cone half-angle, 25°; Mach number, 1.6.

FIe, treE 9.--Comparison of theoretical and experimental values of incremental-cone-pressure coefficient.
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values of K arc the same as those given previously. With

this approximation, a ('oInt)arison of the variaI ion of the tlwo-

ret i('al and experinwntal values of ('_ with (m/m ......) (1/_8)
is shown in figure 9. For a given M0 ,! a fix,d value of

(m/mm,_:)(l/_), the theory l)rcdi('ts that (',. in('r(mses as _ de-

creases. The scatter of ill(, experiInental data is, however,

too great to allow a con(qusion to he drawn sis it, the variation

of ('_ with f_ for the inlets tested. For mass-ll,)w ratios less

than apl)roximately 0.85 to 0.95, the flow into ill(, inh, ts was

pulsating so that the model upon wlfi('h lhe theor(,tical

results are based can only be ('onsid,q't,d to rat)resent an

average condition and s('atter in the data is h) he exl)e('ted.

Nevertheless, for 0_=2() ° the th(,ory agrees with the data

2.0

1.8

1.6

1.4

t,l.2

,.F

ta

'_1.0 L

g

(t .8

.6

.4

.2

! [ ! I

-- 25 ° Cone half-angle

-\

T

20 ° Cone half-angle
..... Open-nose inlet
..... Eq.(8)'[ Minimum additive-

Fig. 7 J drag curves

i

i_L ....i

.-+L'_\\'k

\

\

.2 .4

k

.6 .8

Moss-flow ratio, m/mme,r

t,'mrl_: 10.--l(ffect of cone angle and inh,t l)'u'am['ter # on

additive drag. Math nmnbcr, l._.

1.0

moderatdy well; for 0_=25 °, the experimental values are

greater than th(,or(,li(,al. In sill rases list, theory is an im-
provenn, nl over t,lw l)revious assumption, whi<.h (,orresl)onds
to (',--0.

The variation of additive-drag coeflMent with mass-lhm,

ratio as (,ah.ulated from equation (8) in('luding the effe('t, of

the in('r,,m(,nt'd-t'one-I)r(,ssure eoefti(.icnt ('_ and using the

value of t)rt,ssur(, r(,('overy 1'1/1'o, d(,s(.ribt,d l)rt,viously for

#--l.0, is drown in figure 10 at three values of _ for ea('h of

two annuht,' inlets operating at *1Io--1.8. F.r ('Oml)arison,
tiw valu(, of additive-drag ('oetti('ient for an o])(,n-nose inlet

at. the sam,, M0 is also shown. For a fixed value of mass-flow

ratio and as _ de('roases fronl 1.0, the additive drag (le('r(,ases

from a val,m g,',,ater than that fi)r an open-nose inle! to a

minimum when th(, th)w at the inlet is SUl)ersoni('. Curves

of the minimunl value of ('a,,, as (h,lernlined from equati,m

(g) whirh is ohlainahh, at ea('h value of mass-tlow ratio (that

is, wh(,n thv th)w _tl the inlet is sup(,rsoni(0, are also shown

for hath emw angles. (_oml)arahh, ('urv(,s ('Oml)Ulod from

(.oni(.,l llmv lh,,ory (fig. 7) are st,own for (.Oral)arts,re. Th(,

differen('es in these minimum ad(litive-(lrag ('urw,s ran |)e

atlribuh,d I() the small ('hanges in I)ressure recovery and
flow lmgh, X l[l_l.l o('('llS' ItS _ iS redu('('d and whM, wv,',, m,g-

h'('t('d in the ev'duation of eqmtliol) (8). Ea('h point on these

minimum (),,, ('urv(,s ('arrest)ands to a ditrerent inlet ('on-

tiguration, whereas the ('urves for a givm_/_ ref(,r to one inl(,t.

From tigun' 10, if a giv(,n amount of air must h,, st)iliad it is

hatter, from a(hliliv(,-(Irag ronsiderations, to a('hi(,ve lhis t)y

allowing lho Cnliqu(, sho(.k to stand tq)stream of the fowl lip

rather than by spilling the air t)ehind a bow waw,. (!onse-

quently, for an engine (lesignc(l to ()l)erate over a range of

M,, an al)l)re('iahh' gain in net propulsive thrust ('an be real-
iz(,(l at vahws of M.) twlow th(, design wdue t)y utilizing an

inlet in whi('h the proj(,(,tion of the c(,nterbody in('reases as

310 (le(,r(,as(,s to maintain supersoni<- flow at the inlet.

Effect of inlet t0tal-pressure recovery.--Tim a(hlitive-(h'ag

curv(,s of tigure 10 assume that the pressure re('overy 1'1,//'0

is ('onstant at lhe value (_'M('ulaled for 5= 1.0. The (,xperi-

znent al t-! al-lweSsur(' rat io h(q we(,n stal ions 0 and 2 is shown

in figun, l l an(I ('onq)are(l with Ill(' assumed vahw of l'dl'o.

If it is assUlm'(I thai lt,/l'_ is very dos(, lo 1.0, Ill(, (litt'er(,nr(,
between th(' eXl)erimental an(l theoreti(.al values in(li(,ales

thai lh(, eft'e('t on additive drag of a re(lu('tion in pressure

re('ov(,ry sh()uhl h(, (:(msi(h,r(,d. Th,, otr(,(.t on additive drag

of varying the ratio of assumed l)ressure r('('overy to the

re('overy Rw _ 1.0 from 1.0 to 0.8 at two values (,f f_ for an
annular inh't with a 20 ° half-ai_gh, cone at :lI0-- 1.8 is shown

in tigu,'e 12. ()v(,r(,stimating the ])ressure re('overy over-

estimat(,s the additive (trag |)y an amount that is ind(q)en(h,nt

of mass-flow ratio for a given valu(, of # bul (hwreases as fl
(|(_('I'Cas('S.

Exl)(,rim,,ntld vuh.,s of additiv,, drag obtained from tests

of annular-nose inlets are shown in figure 13 for free-sh'eanl

Mavh numh(,rs of 1.8 and 1.6. These results are compared

with the lhvo,',,t Md ('urves ohtaine(l from equation (g) using

the apl)roximl_ti(ms of l)ailey and .M('FarlaIl(l. Comparison

is also mad(, with theor(,ti('al ('urves using the al)proximation

for _;,/p, l)r(.s(.nled in this l)aper and experimtmtal vah,es of
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(a) Cone half-angle, 20°; free-stream Mach number, 1.8.

(b) Cone half-angle, 20°; free-stream Mach number, 1.6.

(c) Cone half-angle, 25°; free-stream Mach number, 1.8.

(d) Cone half-angle, 25°; free-stream Mach munber, 1.6.

Flc, uaE 1 l.--Comparison of theoretical and experimental values

of inlet total-pressure recover),.

pressure recovery. The curves calculated with the present
method also begin at the more exact values of additive-drag

coefficient given in figure 7.

The discrepancies between the experimental data and the

theoretical curves of the present method at and near super-
critical flow c,onditions can be attributed primarily to the

omission of the unknown force due to friction on the center-

body and cowl forward of station 2 in calculating the experi-
mental values of additive-drag coefficient. This error is

greatest near supercritical flow conditions and decreases as
the mass-flow ratio decreases. At lower values of mass-flow

ratio, the difl'erences between theory and experiment are due

primarily to the error made in predicting the magnitude of

the force resulting from the variable static pressures on the

eenterbody, as can be seen by comparing the differences

between theory and exl)eriment in tigures 9 an<l 13. As

previously suggeste(l, these errors may be due in part to the

pulsatil_g condition of the flow at, low mass-flow ratios.

The good agreement shown here between the experimental
data for inh, ts with/_ 1 and the theoretical curves obtained

using the assuml)tiuns of l)aih, y an(I MeFarlan(l is due to a
fortuitous cancellation of the errors due to assuming higher

presslu'(' re('overies an(l lower l)ressures on the centerhody

than those actually obtained.

CAI.CULATION OF ADDITIVE DRAG FROM SCHLIEREN
PHOTOGRAPHS

Another means of calculating a(l(titive drag, which ap-

proaches the l)rol)lem fi'onl a different viewl)oint, can be
obtained from the method suggested t)y Nucei. This meHmd

allows the sum of the additive an(l cowl-pressure drags to be

eompute(l using a scblieren l)hotograpll of the inlet shock con-

figuration an<l knowing the nmss-tlow ratio m/mm,_. If the

cowl-pressure (h'ag can l)e (leternfine(l by another method,
subtracting it from the sum of the two drags will give the

additive drag. The method involves taking a momentum

I>alance around the surface, I, lI, III, ]If', IV, V, VI, I as

shown in figure 14, where it is assunted that the cowl is

cylin<lrically extended (Iownst.ream front its point of max|-

atom dianteter lIl, to sial|on X so that px-po and AII['_-

g'tIII. An arbitrary point V on tlm 1)ow wave is then chosen
an(l the streamline VI, V, IV extended through it. Then

fl TMI (p--po)d,|.,=m(l'(,--l'x)+(-pn,.v--Po)(A,v--+tv) (11)

_lll
where (p--p,,)dA: defines the sum of the additive and cowl-

ix

pressure drags. Two alternative assuml)tious have been sug-

gested for p_v,v; namely,/-_IV,v=Pw at V, which gives an upt)er

limit, and _v,v=(p,,,+po)/2, which generally gives a lower
limit. The flow is also assume(l to be isentropic behin(l the

bow wave.

In order to evaluate equation (11), it. is necessary to deter-

mine m, Vx(or _l/x), an(l +lxv. The mass flow m can be cal-
" 1culated from o01 0(Av_--+ _), where A_ is a function of the

given mass-tlow ratio. The total pressure behin(l the bow

wave P_i,v can t)e (letermined by properly weighting the total-

pressure loss across the bow wave at several points front II
to V. Then front the isentropic flow assumption, 21Ix can be

<|etermined from po/liT., v. Finally) Aw can be computed by

applying the com inuity equation between stations 0 and X.
The results of such a calculation for additive-drag coef-

ficient, using a shock length of two inlet diameters, are shown

in figure 14 for an annular inlet with a 25 ° half-angle cone

operating at 21_[0=1.79 and compared with values ot)tained
front unpublishe(l I)ressure nleasurements.

The curves show that for the shock length used the assunq)-

tion made for plv,v greatly influences the results. For the

engine tested, the assunq)ti(m that, pv.v=(p,o+po)/2 gave

good agreement, especially at high mass-flow ratios. ]n
or(ter to determine the importance of accurately determining

the average pressure ratio aeross lhe portion of the bow wave
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-- considered, tile effect on the values of additive drag of an

error of 0.5 percent in Pt_,v was also calculated (by multi-

plying the computed I)li,v by 0.995) and is shown for each

assuml)tion of p/v,v; the effect is relatively small.

I V
Pressure-recovery rotio,

__ P'Po/(P'IPol'_o,_,,co/
9
,8

J
i
i
i

i
Inlet p_omete L

,_10

A .6
Moss-flow ratio,m/mme,r

SUMMARY OF RESULTS

Formulas were developed for determining the additive

drag of annular- and open-nose inlets. Calculations base<t

upon these formulas showed that for a fixed lip area and

cone angle the additive drag at: a given mass-flow ratio

varied wilh the projection of the centerbody and was least

when the flow at the inlet was supersonic.

The effect on additive drag of changes in the free-stream

Math mmd)er was relatively small. For annular inlets,

the additive drag decreased with increasing Math number

when the flow at the inlet was supersonic but increased with

increasing Math nUnlber for most cases when there was a

bow wave ahead of the inlet. For open-nose inlets, the

additive drag increased with increasing Mach number.

The forces due to the variation of static pressure on the

centerbody with mass-lh)w ratio were considered, amt an

analytical method of al)proximating their value was (leveL-

oped which showed that they represente([ an appreciable

portion of the additive drag. Overestimating the inlet

tota]-i)ressure recovery resulted in an estimate of additive

drag that was too large.

4

..... [ 1
8 1.0

] r I

Theoretical Expenmentol Inletpammeter,.Bi
.... Present o I.O

method o .75
-- Dai_ and 0 ,51

McForlond

.4 .6 8

(b) Cone half-any:It, 20°; Math number, 1.6.

__

i

I

FIOUR_ 13.--Comparison of theoretical and experimental variations of additive drag with mass-flow ratio for several centerbody projections.
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Comparisons of the theoretical values of additive drag

with experimental results showed excellent agreement for

all open-nose inlet and moderate agreement for several

annular-nose inlets when the effects of variat)le cefiterbody

pressures and inlet pressure recovery were considered in

obtaining the theoretical results.

Consideration of a proposed method of obtaining the

external drag from schlieren photographs showed that when
a shock length of two inlet diameters was used the results

depended largely upon the value of one of the assumptions
involved. For the particular configuration to which this

method was applied, one of the suggested values for this

assumption gave good agreement with the value of additive

drag obtained from pressure measurements.

LEwis FLIGHT PROPULSION LABORATORY

NATIONAL ADVISORY (_OMMITTEE FOR AERONAUTICS

CLEVELAND, ()UiO, February 1, 1951.

APPENDIX

DERIVATION OF ADDITIVE-DRAG COEFFICIENT Cd, a FOR ANNULAR- AND OPEN-NOSE INLETS

The additive drag for an annular inlet is given in the text gives
(eq. (5b)) as

D,=mV1 cos X-I-A_ cos h(pl--po)+A, (-p_--po)--mVo+FI.,

(il)

but it can be seen from figure 3 (a) that

then
zl_=A_ cos X+A,

Da=mt,q cos X+zt,pl COS h+AT_-A,po-mVo+F/._
(h2)

Substituting

m=pAV and p=p/g Rt

1.2

O

1.0

5

"1o

.4

.2

(c)

5

\

D.=plA 11712 COS X _+Alpl cos X+ A,-_,--A,po--gRtl

p0AoV0 2_'
gRto-- _+F_,,

Substituting :112= V_/TgRt an(t dividing by A_po gives

FIGURE 13.--C(melude(I.

o

D, A_p_'M/cos X__Alpx cos X AcA_0-- A,po A,po Jr- -- 1 --A _Po

Mass-flow ratio, m/mmax

qll
Expanmental Inlet parameter, .8

----- Present [] 1.0
method jD I.O(Unpubiishe_

Dailey and data)
McFa_nd o .75

o .51

(e) Cone half-angle, 25°; Mach number, 1.8.

o

\

\- 0

\
\
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\o
\

\:

.4 .6 .8 .4 .6 B 1.0

(d) Cone half-angle, 25°; Maeh number, 1.6.

(_Oml)arison of theoretical and experimental variations of additive drag with mass-flow ratio for severa
projections.

(A3)

(A4)

• centerbody
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Pt PoP1 pl
Substituting---- rearranging, and converting into

p0 p 0 P0 PI'

coefficient form gives

_,,ar|-2[-,'1, PoP, Pi(y2_l 2+ 1) 'l,_, A0 ,,7_, c°sx+:iCv0-l-x7 M0J-voPo
c:., (As)

Tile value of (' for an open-nose inlet can be derived fromd,a

equation (AS) by noting that for all open-nose inlet

Az=A_, cos X-- 1, A,=0, and (_,_=0, which reduces equation

(AS) to (e( 1 . (6) of the text.)

, __ 2 [-l'oP_ p, (./_l.lzq - . AOy_ll,2 ]"_-- y:l/,,_Lp 0 t'0 I', 1/- 1-l, (2__fi)
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