NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS

SRR T NS “hss, INST. TEC’V,
MAY 1957
L RY
REPORT 1294 < Lol AR
AERO

THE COMPRESSIBLE LAMINAR BOUNDARY LAYER
WITH HEAT TRANSFER AND ARBITRARY
PRESSURE GRADIENT

By CLARENCE B. COHEN and ELI RESHOTKO

1956

For sale by the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C. Yearly subscription, $10.00, foreign
$11.25; single copy price variesaccording tosize - - - = =« - = » Price 20 cents



REPORT 1294

THE COMPRESSIBLE LAMINAR BOUNDARY LAYER
WITH HEAT TRANSFER AND ARBITRARY
PRESSURE GRADIENT

By CLARENCE B. COHEN and ELI RESHOTKO

Lewis Flight Propulsion Laboratory
Cleveland, Ohio




e

National Advisory Committee for Aeronautics

Headquarters, 1612 H Street NW., Washington 25, D. C.
Created by act of Congress approved March 38, 1915, for the supervision and direction of the scientific study

of the problems of flight (U. S. Code, title 50, sec. 151).
approved March 2, 1929, and to 17 by act approved May 25, 1948.

and serve as such without compensation.

Its membership was increased from 12 to 15 by act
The members are appointed by the President,

T JEroME C. Hunsaxer, Sc. D., Massachusetts Institute of Techmnology, Chairman

LeoNARD CARMICHAEL, PH, D,, Secretary, Smithsonian Institution, Vice Chairman

Josepn P, Apawms, LL, B,, Vice Chairman, Civil Aeronautics
Board.

ArLEN V., AsTIN, P, D., Director, National Bureau of Standards.

PrestoN R. Basserr, M A., Vice President, Sperry Rand Corp.

DrrLev W. Bronk, Pu, D,, Pres1dent Rockefeller Institute for
Medical Research

TroMas S. Comss, Vice Admiral, United States Navy, Deputy
Chief of Naval Operations (Alr)

FreperIcKk C. CrAwFORD, Sc. D., Chairman of the Board
Thompson Products, Inc.

James H. Dooritrie, Sc. D., Vice President, Shell Oil Co.

Crirrorp C. Furnas, Pu, D., Assistant Secretary of Defense
(Research and Development), Department of Defense,

CarLJ. Prinasrag, Rear Admiral, United States Navy, Assistant
Chief for Field Activities, Bureau of Aeronautics,

Dowxarp L. Purt, Lieutenant General, United States Air Force,
Deputy Chief of Staff (Development)

Artaur E. Raymonp, Sc. D., Vice Presxdent—Engmeermg,
Douglas Aireraft Co., Inc.

Francis W. REICHELDERFER, Sc. D,, Chief, United States

. Weather Bureau.

Epwarp V. RickENBACKER, Sc. D., Chairman of the Board,
Eastern Air Lines, Inc.

Louis S. Roruscuiup, PH. B,, Under Secretary of Commerce
for Transportation.

Naruan F. Twining, General, United States Air Forece, Chief
of Staff.

Huen L. DrypEN, Pr. D., Director

JouNn W. CROWLEY, Jr., B. 8., Associate Director for Research

Joun F. Victory, LL. D., Executive Secretaiy

Epwarp H. CuaMBERLIN, Ezecutive Officer

Henry J. E. Rrip, D. Eng., Director, Langley Aeronautical Laboratory, Langley Field, Va.

Smira J. DEFRaNcE, D. Eng., Director, Ames Aeronautical Laboratory, Moffett Field, Calif.

Epwarp R, Suarp, Sc. D., Director, Lewis Flight Propulsion Laboratory, Cleveland, Ohio

Warter C. Wrirriams, B, S., Chief, High-Speed Flight Station, Edwards, Calif.

I



.. THE COMPRESSIBLE LAMINAR BO

D255

SUMMARY

v An approximate method for the calculation of the com-
%ressibla laminar boundary layer with heat transfer and
arbitrary pressure gradient, based on Thwaites’ correlation
concept, is presented. The method results from the application
of Stewartson’s transformation to Prandtl’s equations, which
yields a nonlinear set of two first-order differential equations.
‘These equations are then expressed in terms of dimensionless
parameters related to the wall shear, the surface heat transfer,
and the transformed free-stream welocity. Thwaites’ concept
of the unique interdependence of these paramelers is assumed.
The evaluation of these quantities is then carried out by utilizing

- ‘exact solutions recently obtained.

. With the resulting relations, methods are derived for the
caleulation of the two-dimensional and axially symmetric
laminar boundary layer with arbitrary free-stream velocity
distribution, Mach number, and surface temperature level.
. The combined effect of heat transfer and pressure gradient
:'is demonstrated by applying the method to calculate the char-
acteristics of the boundary layer on thin supersonic surfaces
and .in a highly cooled, convergenti-divergent, axially symmetric
rocket nozzle. '
: INTRODUCTION

In recent years, with the advent of laminar ‘airfoils and
with the observation of laminar boundary layers at Reynolds
%mmbers as high as 50X 10% (vef. 2), the ability to reliably

estimate viscous flow and heat-transfer effects for a laminar -

boundary layer has become increasingly important. More-
over, with high-altitude flight becoming more common, the
subsequent lower Reynolds numbers cncountered should
more frequently produce a laminar boundary layer. Sta-
bility calculations based on the theory of Lees and Lin
(ref. 3) have also emphasized the possibilities of maintaining
a laminar boundary layer through cooling of acrodynamic
surfaces. The cffect of favorable pressure gradients in
increasing the stability of laminar boundary layers may
also make solutions to the laminar problem applicable to
the design of nozzles and turbine blades.

' Solutions of the laminar-boundary-layer cquations that
include effects of compressibility, pressure gradient, and
heat transfer have been quite limited in number. Of the
exact solutions, most have restrictions of range or applica-
tion, or both. The solutions of references 4 and 5 are re-

I Supaersedes NACA TN 3326, “The Compressible Laminar Boundary Layer with Heat Transfer and Arbitrary Pressure Gradient,” by Clarence B, Cohen and Eli Re hotkq,
¢ The prineipal developments of this paper, which 1s part of the doctoral dissertation of the senior author (ref. 1), were carried out under the stimulus and guidance of Pro’essor Luigi
Crocco and the sponsorship of the Daniel and Florence Guggenheim Foundation. The final analysis and the computatiot’xs were completed at the NACA Lewis laboratory.
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stricted to zero pressure gradient, while those of reference 6

allow small pressure gradients. The developments of refer-

ence 7 are restricted to small heat transfer and low Mach

Solutions obtained by assuming that fluid proper-
ties are constant or that the Mach number is essentially zero
arc obtained in references 8 to 10. Those solutions of
references 11 to 13 that are for a Prandtl number of 1 are
not restricted in range of compressibility, pressure gradient,
or heat transfer. However, they apply to specific types of
free-stream velocity distribution that are inappropriate for
general practical problems.

In 1921, von Kérmén (ref. 14) recognized that to solve the
skin-friction problem it was not necessary to have the exact
and complicated solution, but that it would be quite satis-
factory to cvaluate average quantities across the layer if

_ they could be related to the surface values. The concepts
of displacement and momentum thicknesses were introduced,
thus considerably simplifying the mathematics of the prob-
lem. With this integral method, if the form of the velocity
profile is related to a single parameter, a method of calculat-
ing the boundary layer is obtained. Pohlhausen (ref. 15)
carried out this method by postulating a quartic velocity
profile depending upon the local pressure gradient. A num-
ber of investigators have extended Pollihalligrl’s method to
compressible flows over insulated surfaces.

With the presence of heat transfer at the surface, the com-
pressible problem becomes more complex. Kalikhman (ref.

. 16) defined certain heat-flow quantities analogous to the

‘~displacement and momentum thicknesses and, in a manner

(‘Eimilar to Pohlhausen’s, developed a complex iterative

“brocedure for the solution of the gencral problem.: More
recently, references 17 to 20 have further developed this
technique. The preceding methods are tedious, since they
require a solution of at least one ordinary diflerential equa-
tion for any particular problem.

Thwaites’ method (ref. 21) does not require the solution of
ordinary differential equations. In that formulation, it is
suggested that the basic goal of an integral approach might -
be achieved if the problem is considered as that of relating
the wall shear, its normal derivative at the wall, and the
form factor (ratio of displacement thickness) to one another
withoutspecifying a typeof profile. To thisend, nondimension-
al forms of these quantities were defined and were evaluated

1955,
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by examining exact solutions for the incompressible laminar
boundary layer. It developed that a nearly universal
relation existed between these  quantities for favorable
pressure gradients, and for adverse pressure gradients
Thwaites selected a single representative relation. A unique
correlation was chosen that reduced the solution of an incom-
pressible problem to the evaluation of a single integral.

Rott and Crabtree (ref. 23) recognized that, in the absence
of heat transfer and with a Prandtl number of 1, the Illing-
worth-Stewartson corrclation between compress1ble and
incompressible boundary-layer solutions (ref. 24) could be
used to extend Thwaites’ method to include effects of
compressibility. -

With the presence of heat transfer the application of
Stewartson’s transformation does not correlate a given com-

pressible problem to an equivalent incompressible -one.
* Thus, the universal relation previously described is not
adequate. Unfortunately, there is little possibility of
establishing a family of universal relations with, for example,
the wall temperature as the distinguishing parameter, since a
variety of exact solutions to this problem is not available.
However, one such set of relations may be obtained from the
solutions of references 11 to 13.

In the present paper, after formulation of a nonlinear
system of two first-order differential equations (with' the
*. major restriction being a linear viscosity law), methods of
solution are developed depending on Thwaites’ concept of
universal functions. The functions used for this purpose
arc evaluated from the solutions of reference 12 only.

N BOUNDARY-LAYER EQUATIONS

The equations of thehsteady, two-dimensional compressible
laminar boundary layer for perfect fluids are

Contmulty
a (pu)"r'a‘{/ (p0)=0 )
Momentum:
ou bp 0
gt o oz oyl\¥ >
) 2
op_ (\)
oy
Energy:
dh_ op i Oh > |
bx+ PY oy +by Dr by>+“ oy ®)
(All symbols are defined in appendix A.)
The viscosity law to be assumed is
‘ t _
S\ @

Equutlon (4) is of the form taken by Chapman and Rubesin
(ref. 5), except that the reference conditions (uo, 1p) are free-
stream stagnation values, since, in the case of pressure
gradient, the local stream values are not constant along the

8 Other approaches, such as that of Young and Winterbottom (ref, 22), have resulted in
expressions for the momentum thickness similar to that of Thwaites. In that analysis,
however, the derivation was a modification of the Pohlhausen technique. The application
of a correlation concept was not proposed.

’
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flow.  The constant X is used to match the viscosity with
the Sutherland value at a desired location. If this location
is assumed to be the surface, the result is

where

ky=Sutherland’s constant=198.6° R (for air)
Stewartson’s transformation.—The velocities in the equa-
tions of motion (1) to (3) can be replaced through tho
definition of a stream function:

0w
\01/:&‘
Po / ((‘
)
y=—2
r = 0

Introducing the quantity A from equation (4), a slight modi-
fication of Stewm'tﬁonq transformation (ref. 24) may be

written:
' 'x
X=Jx
0

y=% —d_/

oJo po

e Pe dx
o Do

)

The transformed coordinates are now represented by upper-
case letters (X, Y), and the subscript e refers to local con-
ditions at the outer edge of the boundary layer (external).
The subscript 0 refers to free-strecam stagnation values.

Applying equations (4) to (7) to the boundary-layer
cquations (1) to (3) and assuming that Pr and ¢, are constant
(but not yet requiring that Pr=1) result in the following
system:

Ux+Vy=0 - : (8)
UUX‘I'VUY=UeUeX(1+S)+V0UYY (9)
s M2 .
Syyr 1—Pr U
USX-I- VSr=n Pr Pr +'Y 1 M? [(U > :]YY
(10)

where the enthalpy term S is defined for convenience as

g=ls_y

ho (1)

where h, is the local stagnation enthalpy. The stream
function has been replaced by the transformed velocities

(U, V) through the relations
U=syy
) (12)
V=—yx ’

The resulting relation between the transformed and physical

. . g e Qo
longitudinal velocities is U=a~ u.
e

t0+ltsu |
w+ksu>\/;(; (5)




i The boundary conditions applicable to the system (8) to
: (10) for a specified wall temperature are

-

U(X,00=0
f V(X,0)=0
S(X,00=8,X) | a3
lim §=0
’; Y00
: hmU={/,(X)
Y- J .

l Integral equations.—An alternate form of the momentum
‘equation may be obtained by subtracting the momentum
lcquatlon (9) from the product of the contmulty equation

.(8) and the quantity (U,—U). This results in

[UWU~x+[V(U,—D)ly+ U, (U—U)+
: UeUeXS-:—Vkoy (14)
i

If equation (14) is integrated with respect to ¥ between the
limits Y=0 and ¥ =A, where A is a constant distance normal
"'to the surface sufﬁuently large that the conditions S=0
Jand U=U, can both be satisfied, therc results
’fr=Vo(UY)Y=o

UD+UL 15)

?
’ d

| &

! dX G

,where the transformed momentum thlckness 8, and the
:transformed displacement thickness 8% are defined as

: ""*f (1——)dY .
| ,,_f (1———+S>dY

f
1
1
1
i
)

(16)

¢ .

By carrying out the indicated dxfferentmtlon, equation (15)
can be put in the form

d0u

!

T Y X (20+38)=773 Urde (17)

* This equation has the form of the conventional Karman mo-
‘mentum integral.

i It should be noted that because of Stewartson’s trans:

| formation a simple relation exists between the parameter

.0, and the actual physical momentum thickness 6. This
_relation 1s -
o=L0lg —p, (“)“’““ 18)

Pe Qo

Following a proccdurc with the energy equation similar to
_that for the momentum equation results in
a

ij» (lE X 7 !

| X7 E=p, (aY . 19
E Where the conveetion thickness is dcﬁned by

i . i

| e U ‘

| E——JO S U, dY _ (20)
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The method presented in this report uses exaét solutions
to the boundary-layer equations including the energy equa-
tion. Since both the skin-friction and heat-transfer param-
cters from the exact solutions are correlated withh parameter
which is evaluated from only the momentum integral equa-
tion, it will not be necessary to use cquations (19) and (20).

REDUCED BOUNDARY-LAYER EQUATIONS

At this stage, the relation governing the boundary-layer
levelopment is equation (17), subject to the boundary condi-
ions (0:r)--0=0_or (8,,)s, where the subscript sp indicates
stagnation-point values.  The former condition on 8,, applics
mycr 1s initiated without a stagnation
point (such as in the casc-of a supersonic thin airfoil). The
value of (6,),, depends on the value of (U,,),, and on the
surface temperature. At a stagnation point, (8,);p="0sp.
'Values-of -O5-arc-prosenteddn=table].

“ Before consideration of a solution that depends on a cor-
relation similar to that of Thwaites, it is'expedient to trans-
form the preceding system of equations to a system involving
dimensionless parameters. The correlation concept will
then be introduced and methods of solution developed.

-~
ﬁ(,{PAmMETmc FORM

The dimensionless parameters, which are related to
appearing in equations (17) and (19), can be defined and
evaluated from the following expressions:

Shear pammetcr or first- der1vat1ve parameter,

0 ty (D
{/\K)[_U i "aij> o

21

Correlation number (relatcd to pressure gradlent), or second-

derivative parameter, r

o )
U., 0%, (DY 2

o /ﬁ — ex 02 uezﬂz AYED 29)
\\.-‘:," n= Yo e 1+S Vi <7e_> <.t_e'> 4(-’
Heat-transfer p'arameter; or third-derivative purrametcr,
0l (2Y) —ml=[2 ()]
oY?/, oy \!

In deﬁnmons (22) and (23), use is made of the following
relatxons, respectively:

2 vul,, .
(b?>w=_ v * (1+8S) (24)
which is obtained from equation (9), and
DS _' Vo bsU
(W SO \ar), (25)

which is obtained by differentiating equation (9) with respcct
to ¥ and cvaluating the resulting cxpxcssion at Y=

If equation (17) is multiplied by U s there results

U, d(e

=Sz ”"( 3

*
where II”—G— is the form fnctm for low-speed flow (M, =0).
ir

(26)

P

riits

@3) -

e



TABLE I.—INITIAL VALUES OF PARAMETERS
(a) 8tagnation-point flow
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\ —
Cr e . Nu/+Rew 5 e, ﬁ) p e, @)
S , e VN OVl R Ve OV I
Pr=1 Pr=0.7 Pr=1 Pr=0.7 Pr=0.7 Irel
(2) (v () Pr=1 Pr=1
T'wo-dimensional (8=1) ‘

-1.0 e1.30 ° 1.21 e 0, 500 0. 438 0. 436 e —(),170 © 0. 400 ¢ ~0.425
-.8 e 1,50 1.49 o, H22 . 452 . 451 c,012 ".384 o (81"
—. 4 ° 2.4 2. 00 °, 546 474 ATH °,345 .338 °1.021

0 2.40 2. 46 +B70 . 495 . 495 . 048 .292 2.218

1.0 3.47 3. 54 L6156 . 533 . 087 1. 386 L1717 7.850

.
Axially symmetrie (8=14) ‘

1.0 1.64 1. 56 0. 700 0. 607 0. 607 —=0.0771 \ 0.300 —0. 257
-.8 1.856 1.79 712 617 . 621 L0576 . 289 L1000
-4 2.25 2.22 . 739 . 639 . 643 318 . 269 1,185

0 2.62 2,62 . 763 662 . 662 . 569 . 248 2,208

1.0 3.49 3.55 . 809 . 701 . 708 1.165 194 6.012

s These values are obtalned whean eqs. (16) of ref, 12 are solved for Pr=0. 7 M.-—-O.
b These values are obtained by multiplying the results for Pr=1 by (0.7) 0-
o Interpolated values from solutions of ref. 12,

(b) Sharp edge or pointed body

Cr+/Reu

Nuf~/Rew

Pr=0.7
®

Two-dimensional

0, 664 0.332 0. 205
Axially symmetric
1,150 0,575 0. 510

& These values are obtained by multlp]ylng
the results for Pr=1 by (0.7)13

TABLE II.—SUMMARY OF HEAT-TRANSFER AND WALL-
SHEAR PARAMETDRS ]
]
Sw 8 n 1 N r CfRew) I,
Nu / pm

—1,0 | —0.326 0.1336 (0O 1.0845 0. 0212 0 2,063
R -, 3657 L1579 . 0320 1.1804 0307 . 3381 1. 530
—. 3884 L1591 . 0896 1. 1382 . 0359 . 7939 1.013
—. 360 1257 . 1446 . 9504 . 0297 1.224 . 630
-.30 . 0907 L1749 . 7858 0212 1,493 . 404
-, 14 . 0343 . 2063 . 5590 00774 1.830 134

0 0 .220 . 440 2. 000
. 50 -, 0897 . 2459 L1793 | 1=.0188 2.347 —. 257
¢ 2.00 -, 2038 . 2829 —.2033 | —.0586 2,837 -, 538
—0.8 | —0.3088 0.1215 1.0305 0.0172 2.240
-.325 1304 . 0312 1. 0606 0210 . 3100 1.828
-.3285 L1298 . 0436 1. 0499 0216 . 4194 1.708
-, 3285 . 1260 . 0681 1.0185 . 0220 L6245 1. 501
—.325 L1212 . 0827 . 9885 0216 . 7438 1. 396
-.30 . 1017 L1214 882 . 0187 1.058 1,138
-, 14 . 0355 . 1935 . 5781 00642 1.712 692
0 .220 2, 000 . 519
. 560 —. 0837 -, 2678 1676 ~. 0138 < 2,599 199
1. 50 -, 2008 L3179 —. 1332 -, 0313 3,268 —. 083
2,00 -, 2522 . 3366 -, 2517 —. 0388 3. 502 —. 166
—0.4: —0.246 0. 0899 0 0. 9087 0. 00679 0 : 3.041
—. 2483 . 0894 L0300 - . 8068 . 00730 . 2041 2.679
—.24 . 0826 . 0624 .. 8519 . 00696 . 5775 2.399
-.20 0615 . 1210 7379 ., 00554 1,074 2,034
0 °.220 440 0 2. 000 1. 556
. 50 -. 0722 . 3019 L1442 —. 00573 3.042 1.185
2.00 -, 1733 L3924 —. 1713 —. 0118 4.628 . 759
0| —0.1988 0. 0681 0.822 0 , 4,032
-.16 . 0487 1051 L7068 0 . 9480 3. 00
0 0 220 . 440 0 2,000 2, 591
. 60 —. 0602 . 3220 L1232 0 3.436 2. 208
1.00 —. 8029 . 3556 0 4,317 2.218
1. 60 —. 1002 . 3808 —. 0748 0 5.122 . 180
2.00 -, 1064 . 3892 —. 1040 0 5. 565 4 . 152
1.0 | —0.1295 0.0417 | O 0.7280 |—0.00803 0 6.723
—.10 0294 . 09798 . 6476 —. 00644 . 8956 5.671
1} . 220 40 . 2,000 5.187
.30 -, 0334 L3277 . 1558 3.602 5.493
. 50 -.0735 . 3384 0755 00588 4.315 6,012
1.00 —~.0312 3065 00338 5. 644 7.850
1. 50 —.0186 . 2382 ~—.0114 . 00133 6. 662 11.125
2.00 —. 0089 . 1663 —. 0088 . 00034 7.527 17.105

. e e

v n oy
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. of the other solutions in the sketch, while the Hartree solu-

.
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Now, if definitions (21) and (22) are 1nserted equation (26)
becomes ‘

~U. 7 () =2 Het2) 41 (21)

A similar procedure can be carried out with the energy
equation, although it is not necessary for the calculation
method herein presented.

prari=]

CORRELATION IN TERMS OF n

If, in the definition of &% (eq. (16)), S'is set equal to zero,
the form factor then becomes the same as that of Thwaites
and cquation (26) becomes Thwaites’ momentum equation.

- If, in this case, physically valid rclations H,(n) and I(n)

can be established, the equation can be integrated and the
problem is solved. The assumption of the form of the veloc-
ity profile serves this purpose, and the resultant procedure is
the well-known Pohlhausen technique. (Kalikhman (ref.
16) was the first to carry the same approach over to the case
of the thermal profile.) Thwaites used the more direct ap-
proach by determining whether universal relations H,,(n)
and I(n) could possibly be established from the well-known
exact solutions of the boundary-layer problem. An exami-
nation of these solutions proved that for favorable pressure,
gradients a single relation for each of these quantities could
be established with a fair degree of accuracy, but for adverse
pressure gradients the relations departed from each other
considerably, as indicated for I(n) in figure 1 (taken from

4 <
~-Hartree (ref 26)
\u\‘ J~-Howarth (ret. 25)
o 7 -"I;hm%nes (re(f 2|t3 4
/" ~~Pohlhausen {metho
\;;\ o of ref, 15)
.2 "“~L\
Sy
Favorabl Ad SShee ]
~,
A foreble | Aderee TNON
0 gradient gradient \ A\
-2 -08 -04 0 04 08
n

Fircure 1.—8kin-friction correlation of Thwaites (ref. 21) for incom- .
pressible flow over an insulated surface.

ref. 21). Since the correlation technique requires the selec-
tion of a single relation between all boundary-layer quanti-
ties regardless of the history of the development of the spe-
cific boundary layer under ¢onsideration, the assumption of
a single relation for all boundary layers is not exactly valid.
Thwaites chose a relation for [(n) that would match the
Howarth solution (ref. 25) at separation. The Pohlhausen
solution predicts separation to occur much later than any

tion (ref. 26) predicts separation to occur earlier than the

Howarth solution. ' Stewartson (ref. 24) has indicated that

under certain cg ditions Howarth’s solution would predict

separation too Iy

With the c‘mcp‘mon of  the described differences in the

relation betweén boundary-layer quantitlps (due to the-
selection of the solutions of ref. 12 for the evaluation of the

correlated quantities), the method of corrclation to be

presented herein will contain as special cases the method of

Thwaites for incompressible flow and the results of Rott

The concept of correlation is herein extended by the
following major assumption: For_the compressible laminar
boundaryJugun.JmLh.hml%&fu.@_SﬁJh@uﬁnap the
sky;fnctmwd-hmt-nansfcw can be
correlated only in terms of the parameters n and Sy, derived

”from the exact solutions of reference 127 -

"It is thus implicd thal the solutions of reference 12

- adequately represent the general boundary layer, although
re derived for Falkner-Skan type

As in all first-order boundary-layer theories, the pressure
distribution (and consequently the external velocity dis-
tribution) is assumed to be known. Then the utility of the
corrclation may be stated as follows: If n is known at a

g S S

given point on the surface, 6,, (and hence 8) can immediatcly
be obtained from cquation (22). If I(n) is a known function
for the specified wall temperature, the wall shear is im-
mediately obtainable from ecquation (21). Similarly, if
r(n) is known, the heat transfer can be found from equation
(23).

If the postulate of corrclation in terms of » and 8, is
-admitted, equation (27) becomes

U. g (g ) =N @52 (29
where
N (n,Sw)=2[n(H ,+-2)+-1] (29)

This is the fundamental equation of the present method. .
Its solution, resulting in & determination of n(z), is the first
stage in solvihg for the boundary-la)mmcteristics.
Then the function I(n,S,) is used to determine the wall
shear, and the funcﬁffr?\ (n. Sw) is used to determine the
heat transfer

EVALUATION OF CORRELATION PARAMETERS‘

and Crabtree for compressible flow over insulated surfaces.

The quantities {, n, and r defined in -.cquations (21) to

T2 i f23) as evaluated from the solutions ‘of reference 12, .are -
o
t

{listed in table II. An alternate parameter to r for the de- ~
termination of the heat transfer is the Reynolds analogy

1

O’,Rew

Nu

parameter, defined as » relating the heat transfer to

the skin friction. Because this (arbitrarily chosen) parameter
is hercm determined from solutions for a Prandtl number of

1.0, it will be denoted < ’Re"’>
II. Tt isrelated to » by

U,Re,,,) L
Nu Jpraa o

as it - uppcars in table

Pr=1

28,0l

. (30)

o

The parameters [ and (C}’\I]ﬂ> as functions of =
- . W /pr=t -

and S, are plotted against n in figures 2 and 3, respectively.
The solid portions of the curves represent the solutions of
reference 12. The reversal of the curves for S,=1.0 is
associated with the velocity overshoot phenomenon discussed
in reference 12. .
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.52
\
48 .,
44 .
k] Extension used
~- in example I
40 = | )
T~ e
[~ \\\ v
.36 =N -
~J N Q
~ 1] u \\ N ‘ :
532 S \ {
£ ™ \
g s
s .28 ] i TS \\\\
8 e NAW
< [t~ AN
? 24 = N
a TN
4 S
g \\ o~ L ~w;.,\;m )
N\ ;
§ % FANGES ~
£ N G5
a N N0
.16 \\ \\
\ A
N \ N-.8 ‘
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METHOD OF SOLUTION

The solution of equation (28) obviously depends on a
knowledge of the term N(n,S,). This quantity was evalu-
ated from equation (29) and the associated formulas for
l, n, and H,. The results are shown in figure 4. It is to be
noted that the curve for S,=0 is nearly a straight Iine, and
for all negative values of S, the curves depart only slightly
from this condition except in the range near separation
where the curves become double-valued. For S,>0 (hot
wall) the curve is essentially straight except in the region of
strong favorable gradients. '

The examination of these curves and of equation (28)
suggests two methods of determining the correlation number
n. The first method is that of solving equation' (28) by
numerical integration. The necessamnumerical procedure,
however, is tedious, since it involves integration of a first-
order nonlinear nonhomogeneous ordinary differential equa-
tion. Because a simpler method is available when the
m’@e is isothermal, no numerical integration procedure
will be presented here in detail. However, some integration
relations are stated in appendix B.

The second method; applicable when the surface tempera- |

ture is constant (or, presumably, nearly constant), will be
termed the “lincar method.” This method uses the nearly
linear shape of the curves of N against n for constant S,,.
It directly corresponds to the procedure of Thwaites for
incompressible flow and to that of Rott and Crabtree for
ompressible flow over insulated surfaces. - The curve of
N against n for a given S, is assumed represented by

\
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N=A-+Bn (31)

If equation (31) is inserted in equation (28), a simple
linear first-order equation results, which has for its solution

X
n=—AUZ? U, f 7P-1dX (32)
U ) U

If equation (32) is transformed to physical quantities by
using Stewartson’s transformation, there results for two-
dimensional flow

RO ONE

where K= 2‘2 — =1y L is any fixed length, and the dlmensmn-
less pressure gradient P’ is given by

7 4. L dp. .
" Peue 'YMz U, dx

4
/ The left member of equation (33) has bcen arranged in a
v form convenient for later use.

\!

i The determination of the coefficients 4 and B is as follows:
If the straight line (31) is chosen to pass through the correct
value of N at zero pressure gradient (n=0), then A=0.44
independent of S,. In this case, only B is affected by the .
| presence of heat transfer. Figure 5 shows the values of '

16
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Fiogure 5.—Variation of B for use in linear method of determining
correlation number,
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“the two-dimensional flow, at N=0 (n,,=
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B(S,) for the following choices of matching conditions:

(1) The line (31) goes through the point corresponding to
N=0 (u,=0) in order to match the conditions at a stagnation
point. Thus, for two-dimensional flow (N=0), B=
—0. 44/nsp ‘

(2) The line (31) coincides with the tangent to the N(n)
lines at =0 (small pressure gradlents)

(3) The line (31) is selected to give good over-all agree-
ment for unfavorable pressure gradients.

If a better match with the curves of figure 4 is desired in
calculating n for certain ranges of pressure gradient, a

~’tangent line to the curve of NV against n may be chosen at a

desired value of n. For instance, in considering the flow in
‘the vicinity of a two-dimensional stagnation point with
'S,=—0.8, the tangent line through N=0 has the coefficients
A4=0.372, B=2.53. The value of B is quite sensitive to

- “he matching assumption, especially in the region 8,0

\ (fig. 5).
'sensitive to the value of B, since the-terms. involving B in

However, the final value of n(z) is somewhat in-

equation (33) appear both 1n51de and outside the integral in
a compensating manner. The accuracy of the method de-
treases, of course, in regions where the plots of figure 4 have
large curvature.

The calculation procedure is as follows: \Values of ‘A and B
are chosen for use in equation (33) cither from figure & or
from tangent-line considerations. The iﬁtcgration is then
performed by uqmg a suitable integration rule and a proper
step size. It is recommended that the step size chosen be
as small as practlcable in order to obtain results which are
reasonably smooth. In some cascs (e. g., near the boundary-
layer origin) it may be advisable to perform the integration
by obtaining Taylor series expansions of the integrand in
the variable (z/L). Then the integration can be carried
out in closed form, corresponding cffectively to zero step
size.

There are two possible starting conditions in a boundary-
layer calculation: (a) that of a sharp edge, that is, 6=0,
n=0; or (b) the stagnation point, where U,=u,=0. In
using the linear method, the starting conditions are auto-
matically satisfied if the chosen line (31) goes through the
correct starting point N(n). Thus, if matching condition
(a) is used, both possible starting conditions can be satisfied,
since the corresponding line (31) passes through.the curve
from the exact solutions at both n=0 (N=0.44) and, for
—0.44/B). Values
of n for stagnation-point flow taken from figure 4 are shown
in figure 6. .

The corresponding relations and procedure for axially
symmetric flow based on Mangler’s transformation (ref. 27)
are presented in appendix C.

It is sometimes helpful to have an analytical expression
for the initial variation of correlation number as a check on
the numerical calculations. The initial variation of n with
x for the various starting conditions, as represented by the

derivative (%) » is discussed in appendix D.
z=0 .

e o

/f,w Oncg the correlation number n is determined as a function

.2 and 3, respectively.

2
~—
A
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FIGURE 6.—LEffect of wall temperature on correlation number for
varlous pressure gradlents

BOUNDARY LAYER CHA;QACTERISTICS

'of , it is possible to obtain / and ((’ Re,,,> from figures
Pr=1

Then, the local skin-friction coefficient
and heat transfer are easily calculated from the following
relations, which apply to both two dlmensmnal and axmlly
symmetric flows:

| at)
}Jl T 5 Ll
From the dcﬁnltluub 0,—1 ) Rew=%£; Nu=t—_yt’”; Y
2 Pwu2 w \am » /
and from equations (21) and (22), it follows that CL

(38)

xdu to '
e __Pl &
mee,,,—zz \/ Ye d””—zz L

Tt may be noted that, at a stagnation point, equation (35)

reduces to
. 21

7 (36)
_nsp

Oy Rew= ;

Once O, is determined, the heat transfer may be calculated
from curves of the Reynolds analogy parameter against corre-
lation number of figure 3, by using the relation

Nu CivVRe, ™

Ve (G @7

Pr=1

RSP S
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In utilizing equations (35) to (37), it is useful to have the
initial values of the parameters. These values are listed ln
table I. '

The calculations thus far have been for Pr=1.0. The
effect of Prandtl number on skin friction is small and is there-

‘fore usually neglected. It can be seen from table I that, for
stagnation-point flow, the maximum. difference in the quan-

tity C,v/Re,, between solutions for ' Pr=1.0 and Pr=0.7 is
about 7 percent. With regard to heat transfer, Tifford and
Chu (ref. 28) have found, from solutions with constant fluid
properties, that the effect of Prandtl number on heat transfer

A

Using this apprommatlon, equation (37) becomes

T

UfRew
( Nu—>P7=1
Values of « suggested in reference 28 arc as follows: For
small pressure gradients, a=1%; for large adverse pressure
gradients, a=1%; and for extremely favorable gxadlents a=}%.
Squire (ref. 29) has indicated that «=0.4 is adequate for
stagnation-point flows. Recently obtained solutions (ref. 30)
of equations (16) of reference 12 for g=1, Pr=0.7, and

M, « show that this type of correction may be adequate
for all compressible boundary-layer calculations.

can be accounted for by multiplying

(38)

! (7=) o

It should be noted that, in the definition of Nusselt”

number, the temperature difference in the denominator was
assumed to be (t,,—t,). Since for Pr=1 the recovery
temperature is 1, the present calculations (based on those of
ref. 12) can give no indication of the adiabatic wall tempera-
ture for Pr>%1. For a first approximation, it may be reason-

able to calculate ¢,, by using a temperature recovery factor |

of (Pr)"2. This is the well-known expression for recovery
factor for the case of high-speed flow with zero pressure
gradient. The adequacy of its application to high-speed
flows with large pressure gradients is not well established.
The physical momentum thickness is determined from

n

N's

(39)

e

8 et
L tw P’ ¢
The displacement thickness 8% may be calculated by using

the following simple expression for the ratio of displacement

. thickness to momentum thickness:

HE "“Htr"l" MZ(H,,—]\-l) (40)
In reference 23, this expresslon was derived for flows over
insulated surfaces with Pr=1. Equation (40) is valid for
noninsulated surfaces as well. The dependence of H,, upon
wall temperature and ‘n is presented in figure 7. With large
amounts of cooling in favorable-pressure-gradient flows, it is
seen that negative form factors (and hence negative dis-
placement thicknesses) result. This occurs because the sur-

face cooling produces an increase in density near the wall, so

8 |
|
’ S,
w
7 1.0
]
]
s f
\
. - - \\I .
5
S
T From solutions of ref. 12
- 0
S 4
: |
€ /
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3 / :
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! = pam)
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=+ Extension used
V| L~ L
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O H - —— L
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-1 .
-5 -4 -3 -2 - 0] N .2

Correlation number, n

Ficure 7.—TForm-factor correlation.

that there is more mass flow per unit flow area within the
boundary layer than in the external flow.

The over-all thickness 8 of a boundary layer calculated
from exact solutions is a quentity not uniquely deﬁned Its

value depends on the value of the velocity ratlo — that is

chosen to represent the outer edge of the boundary layer.

However, for a given value of the velocity ratio (less than 1)

there is a single value for thickness. The ratio of this over-ail

thickness to the momentum thickness is given by the expres-
sion .

S ) 6tr

] 0,

'y 1

Mi(H,+1) 41)

The quantlty * is that for low-speed flow (34,=0) which

has been evaluated from. the solutions of reference 12 and is
presented in figure 8 as a function of correlation number n

for £i_0.995.
u

. .
The mass flow in the boundary layer is related to the differ-
ence (3-5*) and may be obtained by subtracting cquation
(40) from cquation (41), which finally results in

&
f pudy o
Joo 7 ﬂ—H,,) 0

42
pehe 6 ( )
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The quantity ———H 18 5.35 for the flat plate and, as ¢an

be seen from the information in figures 7 and 8, varies from
about 4.5 for adverse pressure gradients to about 6.5 for
favorable pressure gradients. ,

LIMITS DUE TO AVAILABLE EXACT SOLUTIONS

The curves of figures 2 and 3 are terminated at the boundary-
layer separation point on one end and at the value of the
correlation number.n at the other end, which corresponds to
the most favorable pressure gradient that can be represented
by the Falkner-Skan type solutions of reference 12. How-
ever, one may conceive a flow that contains values of n more
negative than the latter limit. For example, if a boundary
layer is allowed to grow on a flat plate until the momentum
thickness has an arbitrary value and is then subjected to a
favorable pressure gradient (u.,>0), equation (22) shows
that » might be made arbitrarily negative. Similarly, large
negative values of n may arise if a strong favorable pressure
gradient is maintained for some distance along a surface,
such as in a nozzle. Under such circumstances it would be
necessary to extend the curves of figures 2, 3, and 7 in order
to use the correlation method presented hereln Such exten-
sion is not possible by means of Falkner-Skan type solutions.

It is thus apparent that there are types of problems for
which the presently available correlations are not adequate.
To cstablish correlations in that regime would require exact
boundary-layer solutions for large favorable pressure gra-
dients of a form differeént from that of reference 12. Such
solutions are not known to the authors at this time. The

JU

R S

\
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extended portions of the curves in figures 2, 3, and -7 for
S,=—0.8 were drawn to enable the completion of example
II in the following section. The adequacy of this extension
is not known.

EXAMPLES

An important test of the method developed is the com-
parison of the final results for practical problems with the
findings of other theories or with experimental results.

1. SUPERSONIC SURFACES

The lincar method for determining the correlation number
n is applied to the calculation of skin friction and heat
transfer for the two supersonic surfaces at Mach number 3.0
calculated in reference 6. These surfaces are shown in

figure 9.
; Sradent o _)/%
e
% 5

x/L
Ficure 9.—Supersonic surfaces of example 1.

A comparison is made, in the following table, between the

results obtained by using the linear method and those ob--

tained by using Low’s perturbation method with Pr=0.72
(ref. 6). The comparison is made for a hot wall, an insulated
wall, and 2 cold wall at ¢/L=1 (see fig. 9). A value of « of
1/3 was used in these calculations. '

(C/—\/m):/l.;l . (Nu/-\/R—ew) z/Let
- Heat-transfer .

radient condition Linear Low Linear Low
method, (ref. 6), method, (ref. 6),
~ Pr=] Pr=0.72 | corrected Pr=0,72

‘ - for Pr
/

 Favorable.| Cold wall (Sw=—0.9). 0. 680 0. 679 0.270 0.271
. Insulated wall __...... 877 PR 7 N TR, [,

R ot wall (S»=0.61)_._ 1.031 1.048 .284 .318

Adverse...| Cold wall (S,=—09)_ 0.645 0. 661 0.320 0.307
Insulated wall........- . 406 I £ T IR (R,

Hot wall (Sv=0.43)._. .256 .386 - 274 .277

. A comparison of values indicates agreement of skin friction
within 2 percent in the case of a favorable pressure gradient.
For the adverse-pressure-gradient cases,reasonableagreement

_ . v o = e e e
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is obtained for the cold wall, although for the insulated and
hot walls a large difference is obtained. This difference is
due essentially to the fact that, in the case of an adverse
pressure gradient, the solutions of Low (ref. 6), which re-
semble the scries-type solution of Howarth (ref. 25), depart
from Falkner-Skan type solutions such as that of Hartree
(ref. 26) (c. g., fig. 1). An important consideration for the
case of the heated surface with an adverse pressure gradient
is that the flow is closer to separation than appears permissi-
ble for a theory based on small pressure gradients such as
that of reference 6; therefore, for this case the present calcu-
lation may be the more reliable.  Some of the difference in
the preceding table may also be a Prandtl number effect.
Good agreement is also obtained for heat transfer except
for the case of the heated surface with favorable pressure
gradient.
number effect.

1I. AXISYMMETRIC CONVERGENT-DIVERGENT ROCKET NOZZLE

The sccond example, that of a rocket nozzle, is one involv-
ing both large pressure gradients and heat transfer. The
nozzle chosen is illustrated in figure 10. It has a 25° half-
angle convergent section and a 15° half-angle divergent
section. The combustion-chamber stagnation pressure is
assumed to be 500 pounds per square inch absolute, the
stagnation temperature is taken as 4000° R, and the Prandtl
number is assumed to be 0.78. The nozzle wall is assumed
cooled to a uniform temperature of 800° R, which corre-
sponds to S,=—0.8. For the assumed 3-inch throat di-

,"- Assixmed stagnation point

P =500 3" radius

. Ib/sq in. abs 20 5o
= ° "

/o = 4000° R ; =z B

y=1.3

Pr=078 30

4, =800° R

- t f t !

_~Exact solution - stagnation-point flow
1

X,
,—Lin;iting value of n from
5 N\ . ’ exact solutions {(5,=-08)
-. N g /\\

-

& -3
E

E /
s W
. L

No‘zzle 1hlroc|1

"0 [ 2 3 4 5 6
Distance along nozzle wall, x/0

TI'taure 10.—Variation of corrclation number in rocket nozzle.

Some of that difference might also be a Prandtl
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ameter, the rocket has a nominal thrust of 5550 pounds for
v=1.3. Local static conditions along the nozzle wall were
obtained using one-dimensional flow relations.

The calculation was performed by the linear method with
A=0.372 and B=2.53. In order to climinate the effect
of step size in the initial portion of the integration, a series
expansion of the integrand was used for 0<(x/D)<0.5.
For (x/D)>0.5, the step size taken was 0.1. - The resulting
variation of n in the nozzle is also shown in figure 10, Ttis
seen thal, in a portion of the nozzle including the throat
(1.2<(x/D)<3.5), values of n'are obtained which require
use of an extended correlation curve as discussed earlier, in

~order to calculate skin friction, heat transfer, and displace-

ment thickness. No extrapolation is needed to obtain

" momentum thickness, since the momentum thickness is

related to n through equation (39).
The calculated Jocal heat-transfer rates as well as displace-
ment and momentum thickness are shown in figure 11. It

is seen that large rates of cooling are required in the neighbor- -

140 T T
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Froure 11.—Resulls of rocket-nozzle caleulations, -
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hood of the stagnation point and the nozzle throat. If the
cooling were to become insufficient, these seem to be the most
likely locations of failure. The required local cooling rate
{o maintain constant wall temperature decreases sharply
beyond the throat of the nozzle. \

In the absence of more appropriate information, it has
been customary in recent years to use {lat-plate heat-transfer
relations in estimating heat transfer in a nozzle. The usc
of such a relation in the current problem (Nu/yRe,=0.305
for Pr=0.78) yiclds values indicated in figure 10. It is
seen that for this problem the flat-plate relation seriously
underestimates the amount of cooling required over a large
part of the nozzle. 'This illustrates the importance of con-
sidering the effects of pressure gradient on heat transfer,

The momentum thickness is seen to reach a minimum
value at the nozzle throat. The displacement thickness
is a small positive quantity at the stagnation point but is
negative for most of the convergent section as well as in
‘the vicinity of the throat.* The over-all thickness (not
shown on the figure) variesfrom6.1 to 7.7 times the momen tum
thickness in going from the initial stagnation point to the
nozzle exit. ' ‘

The use of different values of A and B in performing the
numerical integration would have approximately the fol-
lowing effect: With the values. A=0.44 and B=3.0 (from
fig. 5), the momentum thickness would be about 10 percent
smaller in the vicinity of the throat than the valuesin figure 11
and would be within 5 percent of the presented values over
the rest of the nozzle. With A=0.335 and B=2.34, the
momentum thickness at the throat would be about 6 percent
larger than the value presented. The effects of varying

4 This unusual result produces the interesting possibility that, for a rocket nozzle with
cooled walls and viscid flow, a mass discharge coefliclent based on throat area, gencrally
assumed to be less than 1 because of boundary-layer ‘‘blockage” at tne throat, may actually
exceed 1. A distinction exists between this phenomenon and that of negative momentum
thickness (refs, 1, 10, and 12) associated with velocity overshoot.

P
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A and B on skin friction and heat transfer would be less
than.3 percent at the throat.

CONCLUDING REMARKS

The application of Slewartson’s transformation to the
compressible laminar-boundary-layer cquations with heat
transfer yiclded a simple first-order system of ordinary
differential cquations, the first of which is very similar to
the Karman momentum integral. Dimensionless shear and
heat-transfer parameters were defined. The assumption of
corrclation of these parameters in terms of & momentum
parameter resulted in a complete system of relations for
caleulating skin friction and heat transfer. Knowledge of
velocity or temperature profiles is not necessary in using
this calculation method. Procedures for the calculation
of the longitudinal distribution of correlation number are
presented, which include as special cases the method of
Thwaites and that of Rott and Crabtree. The dimensionless
parameters introduced herein were evaluated from the exact
solutions of reference 12. :

Calculations of an example involving small pressure
gradients ‘have shown reasonable agreement between this
method and the perturbation method of reference 6 over

the same range of Mach number, pressure gradient, and-

heat transfer.
The method is also applied to the calculation of heat

transfer and displacement thickness in a highly cooled,
convergent-divergent, axially symmetric rocket nozzle. The

results of this calculation show that high rates of heat transfer

are obtained at the initial stagnation point and at the throat

of the nozzle. Also indicated are negative displacement

thicknesses in the convergent portion of the nozzle; these

occur because of the high density within the lower portions

of the cooled boundary layer.

Lewis FricaT PrOPULSION LLABORATORY

NatioNaL ApvisorY COMMITTEE FOR AERONAUTICS

CLEVELAND, Ouro, February 1, 1955
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APPENDIX A K%{Z/

SYMBOLS
constant from N —A+ Bn t static temperature
sonic velocity ‘ tow adiabatic wall temperature
t = bt e g .
constant from N=A+Bn 9 U transformed longitudinal velocity, U=w -Z—O:gby
local skin-friction coefficient, O/=-=% o . ¢
P u longitudinal veloeity component
specific heat at constant pressure 1% transformed normal velocity, V=—yy
nozzle-throat diameter v normal velocity compouent
. A
convection thickness, E=J S g dYy X transformed coordinate along surface, X= J g ”%dﬂc
0 e 0 Wo
form factor, H=4*/6 T coordinate along surface
‘y
physical form factor for M,=0, H,,= Z” Y transformed normal coordinate, =% ;d Y
tr 0 PO
enthalpy Y normal coordinate
37—1 a exponent of Prandtl number in Reynolds analogy
2(v—1) parameter
thermal conductivity . 2m
ressure-gradient parameter, f=—-—
Sutherland’s constant g P ) 8 P T om+1
arbitrary length v ratio of specific heats
) over-all thickness
dimensionless shear parameter, l_ U) 5% displacement thickness
Mach number ] momentum thickness
exponent from Falkner-Skan external velocity distri- | N t0+ksu> ﬁ
bution U,=0X" (t[te) \fotkeu to
momentum parameter, N=2[n(H,+2) -] u dynamic viscosity
z %) v kinematic viscosity, v=yu/p
Nusselt number, Nu=z———_%—"’ p mass density ‘
“ UG:Ou T shear stxl*ess r=pu ou
correlation number, n=—- " ' oy
7)) .
L dp, v stream function, eq. (6)
dimensionless pressure gradient, P'= Zz;ﬂjg Subscripts:
Prandt] number, Pr— ey e local flow ou’.gside boundary layer (external)
. ‘ k s local stagnation value
static prfcssqrc - bod sp  stagnation point
radius of axisymmetric body tr associated transformed quantity
- 5 Puthe® .
Reynolds number, Le,=——— w wall or surface value
i Td/t 0 free-stream stagnation valuc
heat-transfer parameter, r=né % [5_1} (t—)]w 1 initial value

enthalpy function, S=%—
0

A coordinate used as subscript denotes differentiation
with respect to the coordinate.
13
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APPENDIX B

NUMERICAL INTEGRATION METHOD

METHOD

The most direct method of solving equation (28) is by
. numerical integration, using the calculated curves of N(n,S,,)
for determination of the right member.

An integration procedure may be simply mdlcated by
direet integration of equation (28). The resultant integral
equation can be written:

TFor two-dimensional flow,

= >[ ~ O, [, TRax] @)

TFor an axially symmetric closed body, through Mangler’s
transformation (ref. 26),

U,. rx 2
n=-—-—]§ . A{TTIE dX (B2a)
Since the integrands contain N(n), which is unknown at
this point, no simple evaluation is possible. In fact, these
equations are actually only a condensed notation of the pro-
cedure to be followed. The integration must be carried out
piecemeal, alternating with determination of the left member
of the equation and iterating for accuracy.

The necessity of working with the transformed coordinates
can be climinated by considering the Stewartson trans-
formation from U, to u,. For example, in physical coordi-
nates equation (B2a) beeomes

(M Qo p0> ‘2 N2 d (L>

J (B2b)
Lo @ Po

te ( (1’6' pe) ‘
“where L is any fixed length, and the dimensionless pressure
gradient P’ is given by

Pl

dp, Ldp,
Pre dx pe dr . (B3)
puE  YM?

Similarly, if the isentropic relation p/p”=constant is used

in equations (31) and (32) and if the Stewartson transfor-
wmation is applied, there results:

For two-dimensional flow,
x
ZNd (T) N
1

;M fo f o an, | (B4)
O ]

For an axially symmetric flow (closed body),

8

, ENRd
1):Ilto r? (t0>J M, (toglj) (B5)

INITIAL VALUES

37—1

where K”2(’y—1)

When the numerical integration method is used, certain
considerations are necessary in order to start the solution
properly. There are two possible starting conditions:
(1) sharp edge or pointed body, where 6=0 and n=0, and
(2) stagnation point, where U,=u,=0.

In the case of a boundary layer starting from a stagnation
point, the initial value n; of n is determined from the condi-
tion U,=0, U,=constant in equation (28). For two-

dimensional stagnation-point flow, the Hartree pressure- .

gradient parameter 8 is equal to 1.0. Since, for the Falkner-

2(8—1)
8

Skan type flow considered, N= n, it is seen that

N=0 at a two-dimensional stagnation point. This fixes n
at the values shown in figure 6, which were obtained from
figure 4. For axisymmetric stagnation-point flow over a
closed body, 8=1% (ref. 31), so that Nl——2n1 The values of
ny for axially symmetric stagnation-point flow over a closed
body as obtained from figure 4 arc also shown in figure 6.
For the stagnation-point flow over the blunt lip of an open
axisymmetric body, n,, can be shown to have the two-
dimensional value.

-
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APPEN DIX ©

_LINEAR METHOD FOR AXISYMMETRIC FLOW

For axisymmetric flows, the following equation, which is

equivalent to equation (33), is obtained by application of the -

transformation of Mangler (ref. 27):

n I\Ml -B
p,fA(> f (@) wa(7) e
te
where R=R(x) is the radius of the body at station z,
K= 2";7:;), and
dp.
, L dz
’Yp,,]W

In evaliating the coeflicients A and B of the straight line

N=A-+Bn (31)

A may be chosen as 0.44 so that the line (31) passes through
the correct value of N at n=0. The choice of B may be
made so that the line (31) goes through the point where
N=—2n in order to match the conditions at an axisymmetric

044.5). o

achicving better agreement with the curves of figure 3 in
certain ranges of pressure gradient, a tangent line to the
curve of N against n may be chosen as was indicated for
two-dimonsional {low. )

The three possible starting conditions are: (1) For a
pointed body, =0, n=0. (2) For a stagnation point on a
closed body, U,=u,=0 so that N=—2n. Values of n,, for
this axisymmetric stagnation point are shown in figure 5 and
indicated in table IT for =%. (3) For a stagnation point
on the blunt lip of an open axisymmetric body, it can be
shown using the axisymmetric form of equation (28) that
N=0 so that n. is that for two-dimensional flow.

stagnation point. In that event, B=—

APPENDIX D

INITIAL VARIATION OF CORRELATION NUMBER

It is sometimes helpful to have an analytical expression for
the initial variation of corrclation number as a check on
the numerical calculations. The following expressions for

(%) are determined from equation (28):
ze0 ]

TWO-DIMENSIONAL FLOW

Sharp edge: -

dn =) (%)
dw)z:O—— e /2=0 te =0 (Dl)
Stagnation point (blunt body):

D2)

@) — Ty - (ueﬂ)
i)™ N\, ).,
1 +<dL7\:>s » '

AXISYMMETRIC FLOW

For axisymmetric flow the initial derivatives must be
evaluated from the following equation:

_% d <nln’2

22 zi'X U;>=N(nisw) (DB)

Closed body.—
Pointed nose:

dn
d_r)t 0 =0 147( )z 0<te>z 0 (D4)
Stagnation point (blunt nose):
dn\ | gy Yors (R
&)= [2 ('uT ) T)] (08)
1+(__ r ]/ sp
an /s,
Open body.—
Sharp lip:
dn
. d_-t>z 0 =—0. 44( Ue Jz=0 e>z=0 : (DG)
Stagnation point (blunt lip):
dn TR R,
dx)’ ° 1+< [(u_e,)w—z 7’?>3,,:| o)
an /s,
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