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REPORT No. 28. 

AN INTRODUCTION TO THE LAWS OF AIR RESISTANCE OF AERO FOILS. 

By GEORGE DE BOTHEZAT. 

PREAMBLE. 

It is only very slowly, through the centuries, that the notion of the resistance of a fluid 
to the motion of a solid body ha been developed. This notion is intimately associated with 
the concepts which we gain from mechanical phenomena. In the aurora of the first gleams 
which pierced the darkness of the human mind in the domain of the concepts of motion, fluid 
re istance was not differentiated from motion. 'l'bus Aristotle 1 considered in principle-not 
willing to admit the possibility of a vacuum-that the resistance of a fluid was inseparable 
from the phenomena of motion. 1t i. this point of view which paralyzes, so to say, completely. 
his attempts to form a conception of the phenomena of motion, the exposition of which by 
him was, it mu 1, be added, very hazy. Through antiquity to the Middle Ages, dynamical 
phenomena were dawning, but with a very confused mi understanding. Leonardo de Vinci 
seems to have thought much about the motion of bodies under terrestial conditions. It is 
without any doubt that he made numerous and remarkable attempts at mechanical flight. 
But, in his dynamical concepts, he does not seem to have clearly separated the phenomena of 
motion from the phenomena of the 1'e istance of fluids. Thus he used the confused conception 
of the impetus which ought to be communicated to a body when the same is set in motion, 
and which ought to dis ipate itself progres ively to cause the body to stop. But by the use of 
the conception of dissipation of the impetus, he even arrived at the happy conclusion of the 
impossibility of perpetuum mobile. It is Galile0 2 who finally has a full conception of the material 
nature of the gases and of the influence the same have on the motion of bodies-an influence 
which he knew to decrease with the velocity. This i why Galileo, in his celebrated experi­
ments on falling bodies, recognized the necessity of making them at low velocities. Low veloci­
ties first made possible the quantitative observations, and secondly diminished all the resist­
ance, for the decreasing of which all possible measures were taken. So it is that Galileo first 
came to the modern conception of dynamical phenomena. 

To disengage the law of the motion of bodie , considering the latter as moving in vacuo 
and without any hind of resistancc, and to look on all other effects, such as friction or medium­
resistance, as additional effects, this was the conception which allowed the establishment of 
dynamics. This conccptional sorting of questions in the complex problem of motion must be 
considered as one of the greatest scientific conquests. On our planet the motion of bodies 
always takes place in a fluid. The phenomena of motion, taken as a whole, is so complex that 
it is inextricable for the human mind. A very large conceptional effort had to be developed to 
rise to the abstraction of the phenomena of motion, cleared from the influence of the immediate 
medium. But once this big step made, we have the magnificent picture of the powerful dynami­
cal laws, of which we have seen the development; the questions of friction and fluid resistance 
being considered as special separate questions, whose complexity is enough to make them subjects 

1 Aristotle. "Physique," Line VII, Chap. VI. Frencb translation by Bartbelmy Suint-Hilaire . 
• Galileo. "Dlscorsi et dlmostrazioni malomatjcbe intorno a due nuo\ e sricnze attananti alia mccanica at I movimenti locaU." Bologna 

edltlon 165;;. 
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of special branches of science. We understand now why all the first dynamical investigations, 
until recent times, were almost exclusively made on problems wherein the influence of the 
medium could be neglected. It is for this last reason that the advance of celestial ulechanics 
was developed long before we began to understand the laws of the motion of bodies under terrestial 
conditions. It is undoubtedly true that it is only with the birth of aviation that profound 
studies of the motion of bodies in 1'eal fluids were started and that the light began to penetrate 
through the complex and delicate phenomena of fluid resistance, which phenomena have, for 
a long time, veiled from our eyes the laws of dynamics but which have now given us the con­
quest of the aerial ocean. 

Actually we are only taking the first steps in the conception of the problems of fluid resistance. 
The former statu of these questions consisted more in the comparison of fluids to some l1' echani­
cal system, more or less imilar to fluid, than in the study of the real fluids ,,'ith their real prop­
erties . Thus, J ewton likened fluids to a system of ela tic particles whose impact on the solid 
body produced the fluid resistance. Euler 1 in his research on fluid resistance, likened fluids 
to a continuous homogeneous frictionless medium and cnlculated the fluid resistullC'(, by aid of 
the general equation. which he built up for that kind of medium. He was brought to the con­
clusions, very far from reality, that a body moving in a fluid morts no re.'istance to it motion. 
This conclusion is a consequence of the assumption of a continuous and nonryriic flow around 
the body. Recently Kutta has shown that, in the general case of the continuous flow of a 
perfect fluid around the body, the circulation around the contour embracing the body can have 
a finite value, and in such a case the fluid re istance has a finite ,alue but is perpendi ular to 
the general stream velocity. Thus, in a perfect fluid only the power COlTCSPODCling to the 
resultant pressure on the surface of the body is necessarily equal to zero, but the resultant 
pressure can have a finite value. We will later consider Kutta's conceptions. Hehnholtz is 
the first to have made a serious attempt to bring the foundation of hydrodynamics into more 
close agreement with reality j and his work in that sense is of great importance. He showed 
the necessity for the consideration of vortex motion and indicated the po sibility of the forma­
tion of surfaces of discontinuity in fluid motion. 

This last idea of surfaces of discontinuity was used by Kirchhoff 2 and by Lord Rayleigh 3 

for the calculation of fluid resistance in some simple ca es, which method wa recently 
largely developed by G. Greenhill 4 H. Levy 6 and others . The flow which in reality is estab­
lished seems only rarely to be of the kind assumed by Kirchhoff and Lord Rayleigh, so that in 
general the experimentally measured fluid resistance does not correspond to that calculated by 
the Kirchhoff and Lord Rayleigh method, a fact to which aheady William Thomson 6 (Lord 
Kelvin) has drawn attention. The way in which viscosity has been considered until now 
does not give a satisfactory solution of the problem of fluid resistance, either. The calculation 
of fluid 1'e istance by the equations of motion of a viscous fluid in the final form given them by 
Stokes 7 seems to agree with experiment only for very small velocities. It is only the dp"V"elor ­
ment of aviation that has given a new powerful impulse to aerodynamic , and ha brought with 
it the necessity of a conception of fluid resistance closer to reality. Many quite new ideas and 
concepts have thus been progressively developed. 

In 1902 W. M. Kutta 8 formulated, first for a particular case and soon after generalized for 
the general case, an important theorem which gives the relation between the fluid resistance 
and the flow around a body which encounters that resistance. This theorem was established 
by its author for the case of perfect fluids . In that case. this theorem tells us that the lift of 

1 Euler. " P rinCipes generaux du mouvement des nuides." Histolre de I'Acad. de Berlin 1755. "D~ principiis motus Fluidorum." No\ I 
Comm. Acad. Petrograd 1759. 

'Kirchhoff. "Vorlesungen tiber McchaniJr, " 1697. 22st Vorlcsung. 
• Lord Rayleigh. "Scientific papers," 1. 
• G. Greenhill. "Stream lines pnst a plane barrier. and 01 the discontinuity arising at &n cd"e. " Report 19, Advisory Committce lor .\crc·nnu-

tics, 1912. 
• H. Levy. "Discontinuous motion past a Curved Boundary," Proe. Roy. Soc. 1916. 
• Lord Kelvin. "Math. and Phys. papers." IV, p. 215. 
T Stokes, G. O. "Math. and Ph,s. papers ." I. p. 78. 
8 W. M. Kutta. " IIIustrirte Aeronautische Mitteilungen," 1902. "Sitzungsberichte der Koniglicbell Bayerischen Akademie der "·issen­

scha!ton." Miinchen, 1910 and 1911 • 

.. 
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the body is equal to the product of the density, velocity of the stream at infinity, and circu­
lation around a contour surrounding the body, but for the drag it gives the value zero. To cal­
culate the lift by this theorem, it is necessary to know the flow around the body. Kutta 
assumes that this flow is a compound forward and cyclic motion of the fluid; but this is only 
an assumption, without sufficient foundation. The Kutta theorem, understood as just stated, 
was applied with many developments to numerous cases by Joukowski 1 and Tchapliguine. 
The results of all these calculations do not fully agree with experiment. I have submitted the 
Kutta theorem to critical examination 2 and have showed that this theorem must not be under­
stood as giving the solution of the problem of fluid resistance, because it lpavcs open the ques­
tion of the flow around the body and only gives the relation between flow and fluid re istance. 

In recent years, Karman 3 has called attention to the fact that the flow around a body 
having a rectilinear and uniform motion of translation in a fluid very often con ists of a system 
of vortices which are formed behind the body, and has shown the relation which must exist 
between the momentum of these vortices and the fluid resistance! 

The works of Karman are probably the f"iTst to indicate the necessity of the determination 
of tho type of flow which in reality takes place around a body in order to be able to calculate 
ts fluid resistance, a question to which not enough attention was p!1id before. And what is 
particularly important, the type of flow which most generally establishes itself is not necessarily 
one of the types which were presupposed by all the foregoing theories. The £low around a 
body immersed in a fluid is not nec('ssarily continuous as it was supposed by Euler; it is not 
generally charactprized by a ystem of surfaces of discontinuity either, a was assumed by 
Kirchhoff and Lord Rayleigh, which surfaces of discontinuity must be considered as almost 
unstable, the viscosity disturbing them; but more often the flow is characterized by a system of 
vortices as shown by Karman. 

Nevertheless, the systematical study of the different kinds of flow around solid bodies 
which are compatible with the general equation of hydrodynamics is of the highest value. It is 
of the geratest importance to disengage all the types of flow which are pos ible for fluids because 
only under such conditions can we reach the complete solution of the great fluid resistance 
problem. Generally speaking, all kinds of flow satisfying the equations of hydrodynamics are 
virtually possible under special conditions. Particular attention must, however, be paid to 
the question of finding out the exact conditions under which each kind of flow can take place. 
In many cases of flow of air or water the types of flow characterized by vortices in quincunx 
seem to be most usually obtained. This is on account of the need of stability, and the con­
ditions of energy dissipation inside those fluids . If we look over the historical development 
of hydrodynamics it is the progressive discovery of the properties of the different types of flow 
that we see before us. 

In the development of modern hydrodynamics the question of the conditions which fix 
the type of flow established under given conditions was left nearly without any examination. 
Exactly speaking, what did the classical hydrodynamics give us in order to determine the flow 
in the case of steady motion ~ Of the four equations of the motion of an incompressible fluid 
which forms the foundation of classical hydrodynamics, three give the relation between the 
distribution of the velocities and the pressures 5-it is these which express the theorem of 
momentum Ul its application to a fluid particle-and only one, the equation of continuity 
determines the flow. The question of finding the flow around a body as defined by the equa­
tion of continuity is a problem of finding a function which verifies the Laplace equation and 
satisfies the boundary conditions. It must be remembered, however, that the equation of 
continuity is only a necessary condition for continuity and is not at all sufficient. As Helm­
holtz has first remarked, the discontinuity of the tangential components of the velocity in 

I See "Aerodynamique" by N. Joukowski. Paris, 1916. 
2 See Note I at the end of this pamphlet. 
• v. Karman. "Nachrichten von dar Koniglichen Gesellschaftder Wissenschaften w Gottingen." 1911. "Pbysikalische Zeltschrlft." 1912. 

See also the abov&-mentioned Aerodynamique, by N. ]oukowski nnd Note IV at the end of this pamphlet. 
• In the following the conceptions 01 Karman will be extended to the aerofoil. 
• This Is particularly wel1 seen when we us. the equations of tJuid motion in natural curvilinear coordinates. See Note II. 
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regard to some surfaces is compatible with the equation of hydrodynamics, so that when a flow, 
satisfying the equation of continuity is found, it must still be verified that such a .flow is vir­
tually possible. This is probably one of the most important questions in the problem of fluid 
resistance. I must finally add that in some cases the continuous flow of a fluid seems to be 
practically impossible. 

I will give an example. To follow more easily the motion of a fluid, let us divide its con­
tinuous volume by a system of triorthogonal surfaces which accompany the fluid in its motion, 
so that we have no flow through these surfaces. Continuous motion will mean that each 
fluid element will always remain in contact with the 14 elements which are in touch with it 
at any moment; that all the elements contained in any closed surface moving with the fluid 
will always remain in it; that all the elements which are inside tbe .fluid will never come on its 
surface; that all the elements which are on the boundary surface of the fluid will never come 
inside the fluid, etc.; so that the whole motion is considered only as a continuous deformation 
of the fluid medium without any alteration of the mutual grouping of the elements. If we now 
consider for example the flow of a viscous fluid running out of a pipe into a reservoir, considering, 
as generally admitted, the vdocity of the fluid on the pipe walls equal to zero, and if we attempt 
to follow the deformation of a fluid element, we very easily see tbe impossibility of such a concep­
tion. It is enough to remember that the elements all keeping close together will be found in some 
cases making some hundreds of thousands of revolu tions pel' second. 1 The admittance of con ti­
nuity in such conditions seems to be very difficult. In all probability, the real motion must 
consist of a succession of continuous states of motion interrupted by discontinuous intervals. 

The following question can very natmally arise: How did it bappen that in the domain 
of rigid dynamics we at once reached so many results which stay in close agreement with the 
motion of real solid bodies, and that in many bydrodynamical problems we have not been till 
now able to secure satisfactory solutions. The fact lies in the nature of the question. In 
the historical evolution of mechanics the concept of a rigid body was first fully reached. The 
formation of this concept did not present any special difficulties and its application to the 
analysis of an enormous number of problems of practical mechanics has shown at once all its 
power. The scientific world was already in the possession of a fully developed rigid dynamics, 
experimentally verified, when, in Euler's times, attention was brought to the general problem 
of fluid motion. When the concept of a perfect fluid was reached it was instinctively assumed 
that this conception bore a relation to the real fluid quite as close as the conception of rigid 
bodies to a real solid body. It was with great astonishment that men recognized the disagree­
ment which began to appeal' between the consequences of the hydro dynamical equations and 
the hydraulic experiments. For a long time the inve tigators in hydrodynamics somewhat 
skeptically considered the disagreement between theory and practice, and did not pay much 

1 In the case 01 a continuous motion 01 a fluid in a horizontal pipe, the axis 01 the pipe is an axis 01 summetry lor the whole phenomenon. Using 
this axis, as the Z axis 01 a system 01 cylindrical coordinates, the equations 01 the fluid motion in these coordinates lor our case will be 

/)v, /)'v, /)p 
6V,liZ-1' aT'-l)z 

Where 6 is the density 01 the fluid and I' IS the viSCOSity constant. But in consequence 01 continuity and incompressiblllty 

/)v'_O and ~-4-Const. 
/)z c)z 

where 4 is the pressure gradient along the Z axis, so that 

and 

For tbe vortex components we have 

and from tho foregoing 47 w,-­
I' 

In some of PoiseuiUe's experiments with water, 4 was 01 the order 01 one atmospbere ~ 10' ~:,e; .. ~O.Ol ; T~ 0. 10: 

so that we get 

whioh gives 10'/2 .. revolutions per second. 

I 
I 
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attention to it; and I will allow myself to say that probably some of them believed more the 
conclusions of their equations rather than the experimental results. The great success of rigid 
dynamics in its origin is without any doubt one of the principal reasons why there has been 
so much confidence in the concept of a perfect fluid and why in a certain period of the devel­
opment of hydrodynamics this science has been brought to a very abstract development, 
more as a mathematical discipline than as a science of nature. But the demands of the mag­
nificent conquest of the aerial ocean by the airplane has, I think, definitely brought the 
hydro dynamical science on the right way of one of the mo t important natural sciences. 

If we review the foregoing, we can now give the following statement of the question of 
fluid resistance: 

To be able to calculate the fluid resistance of a body, we must first determine the type 
of flow which takes place around the body in the case considered. 

It appears that the conditions which hold at the surface of contact of fluid and solid con­
stitute a special difficulty and hence that special condition exi t there. It may therefore 
seem that it is necessary first to make a special study of the problem of the flow of the fluid 
in the immediate neighborhood of the body . As conditions of flow depend upon the shape 
of the surface of the body and the physical properties of the fluid , I think that the solution 
of this problem could be obtained only in an empirical-theoretical way; that is to say, to find 
out by what quantities, experimentally measul'ed, we can fix the mutual relation between the 
surfaces of contact and the fluid flowing along them, so that these quantitie once known, 
the flow in the neighborhood of the body could be determined. It seems that only a thin 
layer of fluid is disturbed by the immediate influence of the surface of a body and that at a 
moderate distance from the body the influence of the body smface practically disappears. 

The conditions of flow in the portion of a fluid remote from any rigid body seem to be 
easier to understand than the conditions in the immediate neighborhood of a body. In the 
remote fluid portions we can have continuous motion, and so long as continuous motion takes 
place no vorti ces can appear within the fluid, and this independently of any assumption as to 
viscosity.l The appearances of vortices can only come from the formation of sU1jaces of dis­
continuity in the fluid. The mechanics of formation of the latter surfaces is very probably 
the following: 

A real fluid has to be considered as a fluid-elastic body (in opposition to the solid-elastic 
body), the stresses in which are fL'{ed by the distribution of the velocity gradient. The fluid­
elastic body can, without any doubt, move as a continuous whole only provided the stresses 
at all the points of the fluid have not reached a certain value. If some of these stresses exceed 
a certain magnitude, which must depend upon the properties of the fluid, the fluid may break 
at that point if tension stresses appear, or slip, if the stresses are shears . It is in this way 
that surfaces of discontinuity arise in a fluid. But the existence of them can be only a momen­
tary phenomenon which is replaced by vortices, the smfaces of discontinuity being unstable 
in regard to viscosity . We thus see that the study of the problem of fluid resistance must 
consist first, of finding out the conditions under which continuous motion of a fluid can take 
place around a body. The system of stresses in the fluid arolmd the body seems to be the 
criterion for that continuity . When the latter conditions are not satisfied, then we shall have 
to find out what systems of vortices can be compatible with the problem; then, afterwards, 
when the type of flow is exactly fixed, the fluid resistance can be calculated by the theorem 
of momentum. 

I Let us consider. for simplici ty, a viscous fl uid moviog parallel to a p lano. (For tho notations, see Note II. ) Tho moment oltho forces acting 
on two opposite sides oC a Quid olement will be 

tbat is, an rn finitely small quan tity of tbe four th order. 
Tbo moments of momentum of tbe element wtll be proportional to 

6dTdvdfJ (dv'+dT'), 

that is, an infmitely small quantity of the fi ftb order. Therefore, if the fo ret'S actio!: on tho surface of the element gh 'o rise to a moment, the 
olement will necessarily take an infirute rotation, which would moan diseonLiouity. 
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I will here ask the reader to pay special attention to the following fact. The formation 
of special types of vortex systems behind a body moving in a real fluid is a direct consequence 
of the energy dissipation inside the fiuid owing to viscosity. As will be shown in thi pam­
phlet, the work of the fluid resistance forces brings with it tho necessity of the formation behind 
the body, in the limiting case, not only of the interior surfaces of discontinuity of the KirchhofI­
Lord Rayleigh theory, but also of a system of exterior sUl'faces of discontinuity remote from 
the body. All these surfaces of discontinuity are constituted by vortex sheets. But such 
vortex surfaces of discontinuity being unstable, they go o,er into stable vortex systems, the 
quincunx vortex system being the one mo. t generally obtained, for the case of large aspect 
ratio. I callfundame1!taZ wave the vortex motion generated by the exterior vortex surface of 
discontinuity, and secondary wave the vortex motion generated by the interior vortex sUl'face 
of discontinuity. We can now under tand why at small velocities the flow around a body 
approaches more a continuous flow. At small velocities the work of the fluid resistance forces 
is small and is quickly dissipated inside the fiuid. But at greater fio,,- ,elocities the work of 
the fluid resistance forces can not be at once dis ipated in the fluid, and n decrease of the kinetical 
and potential energy of the fluid is produceo, which gives rio e to an 0 cilIatory motion of the 
fluid left behind the body, and thus a progressive dissipation of the lost energy is realized. 

We thus see that the whole question of the problem of ail' re:--istance consists in finding 
out the conditions which determine the kind of flow around a body, and we ee now how far 
the first attempts to calculate the fluid resistance were from reality . They can only be con­
sidered as attempts to draw the conclu:'1ions from certain assumption , and it is only with time 
that the idea of the conception of a real fluid, which was always problematic, has <>lowly been 
reached; and we find ourselves now only at the beginning of the development of tbi great 
question. 

This pamphlet must be considered only as an introduction to the ques tion of the law of 
air resistance of a.erofoils, which will give a general review of the present main kno'wledge 
of that question. But a special attempt will be made to show the insufficiency of many con­
ceptions often admitted, and to indicate the ways in which, it seem to me, futUl'e investigations 
must be undertaken. At the end I have added some notes which I tbink will be of interest 
for those who would like to have more complete references concerning the questions di_cussed. 

Among the que tions contained in this pamphlet the following are taken from the "author's 
lectures, given since 1912, at the Poly technical Institute of Petrograd: The scheme of the 
phenomenon of fluid resistance; calculation of the apparent angle of deflection of the stream 
behind an aerofoil; the establishment of the fundamental wave created by the motion of an 
aerofoil and the determination of its characteri tic elements; determination of the part of the 
drag due to tip vortices and its dependence upon aspect ratio; connection between tip and 
edge vortice and the relation of the last to the drag and the lift of the aerofoil; generalization 
of Bernouilli's theorem; exact demonstration and generalization of Kutta's theorem; the 
equation of metacentric curves in Plucker'S coordinates. 

The author takes pleasure in thanking Dr. J. S. Ames for his kind assistance given by 
reading the manuscript of this Report and correction of its style. 

GEORGE DE BOTHEZAT. 
WASHINGTON, D. C., Septembe1', 1918. 
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CHAPTER 1. 

PRELIMINARY CONSIDERATIONS.l 

When, under earth conditions, a certain body is moving, its motion necessarily takes place 
in a fluid, more generally in air or water. 

When the velocity of the body is relatively low, or the fluid i of low density and low 
viscosity, the action of the fluid medium on the motion of the solid body is not very marked. 
In those cases we can, without appreciable error, abstract oUl"selves from the influence of the 
medium and consider the motion of the body as taking place in a vacuum. 

When the velocity of the body reaches a certain value in a viscous fluid of finite density, 
the action of the medium on the motion of the body becomes of prime importance. In that 
case, to be able to study the motion of a solid body, we must, in addition to the forces which 
act on the body and among which we necessarily have the Archimedes lift, add a system of 
forces which express the action of the fluid on the different lements of the sUl"face of the body 
in motion. This system of superficial forces, which is distributed ove?' all the surface of the body, 
is generally called fluid resistance. 

For any body having any general motion in a fluid, the determination of the fluid resistance 
is so complex a problem that its general solution can actually not be found either experimentally 
or theoretically. Only some very simple cases of uniform /" 
and rectilinear motion of bodies have been, until now, sub­
mitted to a more or less complete investigation. 

We imagine a solid, which is brought into motion with 
a rectilinear and uniform velocity of translation, in a fluid 
medium, which is immobile with respect to the earth, which 
has uniform and constant temperatUl"e, and which has such 
dimensions that the distUl'bances caused by the motion of the }o·IG.1. 

solid do not reach the boundary surface of the fluid. In that condition, at a time which is 
generally somewhat after the body has reached this constant velocity, certain steady conditions 
are established. The solid is, so to say, accompanied in its motion through the fluid by a 
certain state of distUl'bance of the fluid around it. There was a time when it was thought that 
this distUl'bance has, relative to the body, an invariable configUl'ation; but we now know that, 
generally, this distUl'bance is invariable relative to the body only bifo?'e the same, and that 
behind it we often have a state of periodical distUl'bance. The result of this distUl'bance is a 
system of steady or periodical forces acting on the whole sUl"face of the solid. This system of 
forces, which constitutes the fluid resistance, can always be brought to a resultant wrench, 
whose components will be designated by R, for the resultant force of the wrench, and by 0, 
for the resultant torque of the wrench. (See fig. 1.) If these above-mentioned forces are 
periodical, we will understand by Rand 0 the mean values of the resultant force and the 
resultant torque of the wrench. 

It is quite possible that, for the same body brought into motion with the same velocity, 
the system of forces of air resistance may be different, depending on the manner in which the 
body is brought to its state of motion, but it seems that in most general cases, the viscosity 
tends, so to say, to make uniform all the possible types of distUl"bances around the body, so 
that, generally, in a free fluid, the same distUl'bances are always established around the body when 
it reaches the same velocity in the same fluid . In that sense we can say: 

For a solid body, moving in a fluid medium with a constant velocity, there corresponds a 
determinate fluid resistance. 

1 The main contents 01 this chapter are teken from the first chapter of the Author's" Etude de la Stablllte de I' Aeroplane" Paris 1911, 
II chapter which WIIS written at that time under the influence of the lectures of Paul Palnleve. 
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We therefore see that, when the body has reached a steady state of motion, the resultant 
force R and the resultant torque Vof the wrench of the fluid resistance are independent of the 
time, and are functions only of the magnitude of the velocity and its orientation toward the 
body. 

Under the "law of fluid resistance for unif01'm translation of a solid," we will understand the 
formulas which give, in position and magnitude, the resultant force R and the resultant torque 0 
of the wrench of fluid resistance, as functions of the characteristics of the form and the dimensions 
of the body under consideration, and the magnitude of the velocity of the body relative to the fluid 
and its orientation toward the body. 

It mu t be remarked that the components Rand 7) of tho resultant wrench do not replace 
fully the fluid resistance, but are equivalent to the system of forces of fluid resistance in only 
one single sense, namely, that modification which the fluid resistance introduces in the motion 
of the body will be the same when we replace the system of forces of fluid resistance by the re-
ultant wrench. In all other relations R and V are not equivalent to the fluid resistance; for 

example, the stresses which are produced in the body by the system of fluid resistance are entirely 
modified when we sub titute Rand V for the fluid resi tance. The resultant wrench of a system 
of forces is only an analytical transformation, the possibility of which is established by the 
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theorems of mechanics and which allows us to reduce a 
given system of forces to its simplest expression. The 
resultant wrench is determined only with one degree of 
freedom, its position on its line of direction being entirely 
arbitrary. There is no interest in seeking for an exact 
position of the wrench on its line of direction. These 
data would not give us any complementary indication 
upon the motion of a solid. The motion of a solid is 
absolutely determined when the resulting wrench of the 
system of acting forces is given in magnitude, direction, 
and sense. The position of the wrench on its direction 
does not enter into the question of motion. 

It is easy to see that the system of forces of fluid 
FIG. 2. resistance can never be reduced to a single resultant 

torque, because, if that were possible, the body on co brought to that velocity at which this 
could take place would be able to move of itself infinitely forward without any expense of 
power, because it would only be necessary to equilibrate by an acting torque the torque of 
fluid resistance; and this is in full contradiction to all we know about fluid resistance. 

For the same reason the projection of the resultant force R on the direction of the velocity 
must always have a sense inverse to that of the velocity, because if it were not so, the body 
once brought to that state of motion at which that could happen would be able, for example, 
to pull something infinitely-the torque of fluid resistance being equilibrated by an acting 
torque-and so do work of itself, which would be in contradiction with the principle of energy. 

When the body under consideration has a plane of symmetry parallel to its velocity, the resistance 
of the fluid is 1'educed to a unique resultant force R lying in the plane of symmetry of the solid and 
whose projection on the direction of the velocity has always the inverse sense of the velocity. 

This proposition can be easily justified. The system of forces of resistance will then be a 
ymmetrical system (see fig. 2) and can always be reduced to a system of forces lying in the plane 

of symmetry; but the latter system of forces can always be reduced to a resultant force or to a 
resultant torque. As we have seen, however, the reduction to a torque being impossible, the 
ystem of forces will reduce itself to a single resultant force, the projection of which on the 

velocity must have a sense inverse to the velocity for reasons already indicated. 
All the foregoing does not exclude the possibility of the body's taking a rotary motion 

as a result of the translatory motion in 8. fluid. 
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We will have especially to study the law of air resistance of aerofoils. The model aero­
foil generally has a perimeter of approximately rectangular shape and its cross section is built 
up by a system of arcs. In figure 3 j represented in plan and in cross seotion through its plane of 
symmetry, an aerofoil of the type mentioned, which is moving in air with a constant velocity 
V parallC'1 Lo its plane of symmetr.y. The force of air resistance admits neccssarily a resultanL 
force R, whose projection on Lhe direction of the velocity is in Lhe inverse sense of Lhe velocity. 

I once more emphasize the fact that no point of the resultant force R has Lo be distin­
guished from any other point and that the resultant force is fully specified when we know, 
first, its magnitude; second, its line of action, which is defined by direcLion imd position toward 
the aerofoil under consideration. The position of the resultant force on its line of action is 
ad lib-i~wn; that is to say, no special point can be, from a mechanical sLandpoint, exclusively 
distinguished as point of application or center of pressure 
of the resultant force R. 

Very often the conception 01 point 01 application 01 a force is much misunder­
stood. Let us consider, for example, a nail fixed to a solid body, whicb is pulled by 
a rope fastened to tbat nail. In such a case we can certainly speak 01 the poinl of 
application 01 a lorce to our body, whic'h pomt of application is the surface of contact 
01 tbe nail with the body. When the nail is small and the body large, we can 
abstract oursel\'es in a first approximation from tbe size of the surface of nail conlact 
and consider that surface as a point, and in that sense speak of the point of appliC':l­
tion of tbe force to tbe body. But as soon as we begin to speak about the equili­
brium or the motion of our body, considering it as a solid body (by which we mean 
that we are neglectmg the deformation of the body) under the action of tbe acting 
force , the conreption 01 point of application loses every mechanical sense, as follows 
directly from our statement of the question, because,considermg oniy the equilibrium 
or the motion 01 the body, we abstract ourselves from its other physical properties to 
wldeh belongs also its elasticity. But lhe consideration 01 our body as invariable 
brmgs with it at once tbat the action of a lorce upon a body m sense of motion or 
equilibrium is mdependent of tbe position of the force on its line of action, so that 
Irom the standpomt of mechanics 01 rigid bodies only the magnitude of the forces 
and tbeir lines of action have to be considered, the position of the forces on their Imes 
of action being anyone, and we do not need to consider any pomt 01 application. 
Notbing astonishing must be found m that last fact. We must only remember the 
whole statement of tbe problem of motion of the rigid body. It must not be tbougbt 
either that tbe consideration 01 sucb abstract concepts as the rigid body is somethmg 
exclusive. On the contrary, one of the most important scientific methods consists 
m the sorting 01 the different sides 01 the questions studied by isolating by abstraction 
a pbysical property of a body from its otber properties; and this general scheme Of 
the evolution 01 our knowledge must never be forgotten, lor doing so is the cause 01 
great misundcrstandillg, as happens with the center 01 pressure in aviation. 

In the begillniog 01 the development of aviation, and by some writers until now, 
it was considered as evident that the center of pressure, being the pomt 01 application 
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of the force 01 air 1'0 istance, the airplane had to be considered as suspended at that point when flying. This conception brongbt at once tbe false 
conclusion which is in full discordance with experience, that the lowering 01 tbe center of gravity wouid mcrease tbe stability, and ibis lalse con­
ception was only the result 01 the consideration 01 the notion of point of application, whicb, exactly speaking, has nothing to do witb the motion 01 
rigid bodies. By the aid of tbe theorems of mechanics we G1lIl easily find at whieh polnt we can consider the airplane as suspended when in fligbt, 
so that our conclusions fully coincide with reality. 'l'his pomt is tbe center of mass, because tbe theorem of moments of momentum ls applicable 
to tbe center of mass independently of its state of motion, so that tbe oscillation of a rigjd body around its center of mass is tbe same as if lhe 
center 01 mass was i=ovable. From this rigbt conception we see m lull agreement with experience that tbe weigbt can bave no influence on tbe 
stability 01 the airplane, wbicb can be secured oniy by tbe lorces 01 air resistance. I have stopped on the last question a little more tban I ought 
to do, but the conception of center of pressure is generally so misunderstood in aviation tbat I thougbt tbat this explanation would not be 
unavailing. 

Until now we have admitted that the fluid was immobile and the body moving in the 
fluid, but we could also consider the body as immobile and the fluid running by the body in 
a uniform stream. If in both cases the realtive velocity of the stream toward the body is the 
same, the flow around the body can be the same in both cases, if the nece sary precautions 
are taken for that purpo e. But it can very easily happen that in these two cases the flow 
may be different because of differences in the boundary conditions. The p1'inciple of relativity 
of hydrodynamics COil ists in admitting that the fluid resistance depends only upon the relative 
velocity, of the fluid to the body. It is clear that this principle can be admitted only when 
the flow around the body in both cases is the same ; and under the latter conditions the prin­
ciple of relativity is fully verified and i the conclusion of the general law of dynamics_ 

\ 



CHAPTER II. 

THE EMPIRICAL LAWS OF AIR RESISTANCE OF AEROFOILS. 

Let us consider an aerofoil represented in cross section by figure 4, moving in ail' with a 
velocity constant in magnitude and direction. The air resistance R of the aerofoil is fully 
specified by-

I. Its magnitude; 
II. Its po,ition and orientation toward the aerofoiL 
To fmd the position and orientation of the air resistance Ii as well a the orientation of 

the relative wind velocity V toward the aerofoillet us take as reference line an arbitrary line 
LL invariably connected with the aerofoil cross section (see 

A 

L 

flg. 4) . We will de ignate hy a , and call it " angle of attack," 
the acute angle which the velocity V makes with the line 
LL; by (3 the angle which the air resistance Ii makes with 
the normal to that same line, and by V the point where 
the line of action of the air reRistance R cuts the line LL, 
which point will be called center of pressure. The orienta­
tion of the aerofoil relative to the velocity V is fully speci-
fied by the angle a. 

It has been shown by numerous experiments that the 
resultant air resistance encountered by an aerofoil, for certain intervals of the velocity varia­
tion, follows the following empirical law : 

1. In magnitude the air resistance R of the aerofoil­
(1) Is proportional to the area A of the aero foil; 
(2) Is proportional to the square of the velocity Vof the aerofoil relative to the air; 
(3) Is a fun tion of the orientation of the aerofoil toward the relative velocity V; 
(4) Is propor tional to the air mass den ity O. 
II. In position and direction the air resi..,tance of an aerofoil is independent of the mag­

nitude of the velocity V and depend only upon the orientation of the aerofoil toward the 
relative velocity. 

The foregoing empirical law of air resis tance of aerofoils can be stated in the following 
formula: 

R = 7eoA Pf (a) 
in which 7c is a coefficient of proportionality and f (a) a function of the angle of attack which 
is characteristic for the type of aerofoil considered. The last formula can 111so be written: 

R= KA Pf (a) 
or 

where 
K=7co; Ka=Kf(a)=kao ; 

the coefficient Ka and ka being certain functions of the angle of attack a only . 
It is customary in aerodynamics to consider the resultant air resistance R decomposed 

into two components, the drag R"" along the relative velocity; :. 
R",=R sin ({3+a) = KaA V2 sin ({3+a ) 

and the lift RlI , along the normal to the relative velocity. 
RI/ =R cos (!3+a) = KaA P cos ((3+a) 

16 
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when the air reo istance R is ill direction independent of the magnitude of the velociLy V, w(' 
can write 

where 

R" = K"A VZ = k"oA VZ 
R" = K"A VZ = klloA VZ 

J{" = k"o = 1(, sin (8 + a) 
J{" = 7c"o = J{a cos (,s + a) 

the coefficients k" and k" being functions of the angle of attack a only. 
Let us now examine the exact meaning of the foregoing empirical laws of air resistance 

and the restrictions to which these laws are submitted . 
We shall begin by an exact statement of the definition of all the quantities which occur 

in 'the foregoing laws. 
The angle of attack. - Lct us designate by a l the angle of attack mea ured from one ref­

erence line LILI and by a 2 , the angle of attack measured from a second reference line L 2L 2 , con­
nected invariably both with the same aerofoil (see fig. 5); and let E be the angle between these 
two lines. It is easy to see that we have 

If the direction of V varies, We shall have 
a 2 +l1a2 =a1 +l1a l +E 

or 

because E is a constant angle. 
We therefore see that the variation of the angle of attack is the same for the same variation 

of the velocity orientation, independently of the reference line from which the angle of attack 

FIG. 6. 

is measured. It is probably for the last reason that in the beginning of the development of 
aviation it was thought that the reference line used to fix the angle of attack can be chosen 
arbitrarily, and the Ch01'a of the aerofoil was generally adopted as such reference line. There 
would be nothing to say against such a convention if we had to do only with aerofoils 
with cross-sections of the same type, but all the difficulties begin when we wish to compare 
aerofoils with cross-sections of different p,ofiles. It is in the conception of chord that the whole 
misunderstanding lies. In geometry the word chord is defined as a straight line joining two 
points of a curve, but what is the chord of an area like the section of an aerofoil ~ Nobody knows 
exactly, but, what is still worse, is that it is impossible to establish such a definition. When 
the cross-section profile of the aerofoil is formed by two curves which cut one another, we 
instinctively take as chord the common chord of the curves which limit the profile considered 
(see fig. 6a); but for profiles such as represented on fig. 6b two such chords can already be drawn. 
We are still more perplexed for the choice of the chord in the case such as shown in fig. 6c, in 
which any line drawn through that profile could with equal success be considered as chord. 
From these simple example., we see that the celebrated chord is nothing else than a reference line 
which is chosen arbitrarily. In such conditions when could we say that the profiles a, b, and c 
of the fig. 6 have the same angle of attack.1 When we have to do with a flat plate the defini­
tion of the angle of attack presents no difficulty. It is evidently the angle between the relative 

1 This last question is of first importance lor avIation practice. For example, how can we judge lor two airplanes having their wings of dif!erent 
cross-section, that they are flying under the same angle 01 attack? 

147498--20--])[0. 28----2 
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velocity and the plate itself (see ng. 7). But what is the aerodynamical characteristic of the 
direction of the fiat plate ~ It is nothing else than the direction for which the lift of the plate 
is zero. When the wind blows along the plate, the whole air resistance is reduced to drag 
and we have no lift. It is consequently from the direction of zero lift that we measure the 
angle of attack of a flat plate. Thus the direction of zero lift forms our reference line in that case. 

Many years ago Paul Painleve indicated that, if we wish to obtain a rational basis for the 
estahlishment of the definitions of all the conceptions which we use in connection with the air 
resistance law of aerofoils, we must simply draw a parallel between the aerofoil and the fiat plate 
considered as a conceptional standard. 

Adopting this standpoint, we shall adopt as reference line of each aerofoil the direction for 
which its lift is zero and we shall call that line the zem lift line or, more simple, the zero line. 
The plane normal to the symmetry plane of the aerofoil and containing the zero line will be 
called the zero plane. The zero plane and the zero line are experimentally fully determined for 
each aerofoil. 

Let us consider an aerofoil (see fig. 8) on which the wind blows successively in the directions 
Vll V2, Vs, V., and let Ru R 2, R a, R. be the air resistance corresponding to those directions. 
We reach the zero line when the resultant air resistance is in the wind direction, as is the case 
for R.. The zero line has to be determined experimentally not only in direction but also in 
exact position relatively to the aerofoil. 

It is easy to see that for each type of aerofoil we generally have four zero lines as shown on 
figure 9. We shall adopt as standard zero line the one which corresponds to zero lift when the 
wind is blowing on the entering edge. It is the zero line which corresponds to Vi and Ri in 
figure 9. The angle of attack measured from the standard zero line will be designated by i and 
called absolute angle oj attack or absolute incidence (see fig. 10); distinguishing this angle from 
the relative angle of attack a measured from any other reference line. The standard reference 
line and absolute angle of attack as above defined are important aerodynamic characteristics 
of the aerofoil. i 

The partisans of chord have reproached the definition of the standard reference line with 
the fact that it is difficult experimentally to measure the incidence from that line. But it is 
quite another question when we have to determine in experimentation the orientation of aerofoils 
in the wind current. In that case we certainly must choose as reference line that line from which 
the measurements are most easily made and such a line could be called the experimental reference 
line. The question of experimental reference line is a question of the technic of experimentation. 
In one experimental method, one line is more convenient; in another method, another line is 
more convenient. But when stating the results of our experimentation, we must always give 
them in absolute angle of attack, because only in this case will comparison be possible. 

Finally I must also mention the following fact: It can happen that for a certain aerofoil 
cross-section the lift may be zero for any direction of the relative wind within a certain angle, 
as shown in figure 11. In that case one of the extreme zero lines, V i R i or V.R. of the above 
figure, ought to be taken as reference line. In such a case, the lift curve plotted, for example, 
as function of the incidence would have the shape shown in figure 12. 

The aerofoil area. -The area of an aerofoil also needs a special definition. According 
to our standpoint of a parallel drawn between aerofoil and fiat plate, we shall adopt as "aerofoil 
area" the area of the projection of the aerofoil on its zero plane. (See fig. 10.) Only with such 
a definition will be avoided all the difficulties and indeterminations, as will be easy to see from 
the detailed discussion which has been made for the angle of attack. 

The center of pressure.- To avoid difficulties, we must also adopt as center of pressure 
the point of intersection of the zero line with the resultant force of air resistance R. 

I For example, an absolute incidence of fi"e degrees means that a five degree decrease of the angle 0/ attaclr bring us to zero llft. For the nero­
foils actually used in aviation practice tbe standard zero line is generally disposed above the aer%il, wbich means that when the absolute 
Incidence Is equal to zero the air resistance gil'os rise to a moment relative to the entering edge. 

) 
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FIG. 7. FIG.S. 

i? 
FIG. 9. FIG. 10. 

FIG.n. FIG. 12 
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I shall show in a few words what, for example, happens if we take for the center of pressure 
the intersection of the o-called chord and the air resistance R. In figure 13 is represented 
an aerofoil and the system of the resultant forces of ail' resistance Ro, Rll R 2, Ra, R 4, Rs, for 
different angles of attack increasing in an arithmetical progression. If we follow the dis­
placement of the center of pre sure 0' referred to the chord, we easily see that there is one posi­
tion of the air resistance when it is parallel to the chord, and the center of pressure goes to 
infinity. So that the curve of the center of pressure taken on the chord has always for small 
angles of attack an asymptote. The general shape of the curve of center of pressure in that 
case is shown in figure 14a, where is plotted the distance of the center of pressure 0' from the 
entering edge A' as function of the relative angle of attack a ' . If we take the center of pressure 
on the zero line, then the curve of center of pressure will not have any point at infinity and 
the curve of center of pressure will have the shape represented in figure 14b1, where is plotted 
the distance A 0 (see fig. 13) as function of the absolute incidence i. The passage of the center 
of pre sure to infinity when taken on the chord is only a consequence of a bad definition, because 
it must be remembered that in the definition of the center of pressure we must be guided only 
by convenience. 

To illustrate fully the meaning of the conception of the center of pressure, I shall draw a. 
parallel between the notions of center of pressure, center of mass, and metacenter. 

Let us first consider two parallel forces FI and Fl of constant magnitude applied at two 
points 1 and 2. (See fig. 15.) As well known, the resultant R12 of these two forces will be 
parallel to them and will divide the distance I, 2 in inverse ratio to the forces FI and Fz• If 
we consider now the two forces FI and F2 turning around their points of application but main­
taining their magnitude and remaining parallel, the resultant force R12 will also turn around 
a definite point. If we consider now a system of three parallel forces F I , Fz, Fs constant in 
magnitude and turning around their points of application, it will be easily seen that the 
resultant force of the three forces will also turn around a definite point, because R12S is the 
resultant of R12 and F3, and so on, independently of the number of forces. The point through 
which the resultant force of a system of constant parallel forces turning around their points 
of application always passes, is called the center of the parallel forces. The center of mass is 
a particular case of center of parallel forces when the forces considered are the weights of the 
different elements of a body. 

Let us now consider generally any system of forces applied at any points. If we con­
sider the continuous variation of these forces, their resultant force will also vary continuously in 
magnitude, position, and direction, and will describe in space a certain surface which is called 
the .metacentric sU1face. When all the forces considered lie in the same plane, the resultant 
force also lies in the same plane and the metacentric surface is reduced to a metacentric curve, 
which is the envelope of the successive positions of the resultant force. The point at which 
the resultant force touches the metacentric curve is called the metacenter. (See fig. 16.) When 
the forces considered are parallel and constant in magnitude, the metacentric curve reduces 
to 8. point. We therefore see that we can consider the center of mass as 8. particular case of 
metacentric curve reduced to a point. 

If we consider the system of forces of air resistance of an aerofoil, these forces admit a 
metacentric curve and it will be easy to see that this metacentric curve has always a cusp 
point admitting the zero line as tangent at that point. In figure 17 is represented the general 
hape of the metacentric curve of an aerofoil. For comparison, in figure 18 is represented 

the metacentric curve of a fiat plate.2 

The important fact is that the center of pressure is neither a center of parallel forces nor 
a metacenter, but simply a point arbitrarily chosen to fix the position of the resultant force 

I The scalo used on fig . HI' to plot the distance A' G' is smaller than the scale uscd on fig. 14b to plot AG . 
• In the theory of the airplane the metacentric curvcs do not have the same importance as in ship theory. In the last theory the mctaeentrie 

curves allow a direct evaluation of the restoring moments, on account of that fact that, to a first approximation, the IiIting foree of a ship is con­
stant when the srup undergoes oscillations. It is not the case for the airplane, where the lifting forces are variable in magnitude when the airplane 
is oscillating, so that the metacentric curve alone does not determine the restoring moment. That is why for aerofoils the metacentric curve must 
be considered only as giving the general picture 01 variation of the resultant force of air resltance in position and direction . 
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of air resistance. That is why we must choose it in the way most convenient for our purpose. 
For this last reason we shall take the center of pressure on the zero line. In that case we shall 
have no point of the center of pressure curve in infinity, and the cusp point of the meta­
centric curve will be the limit position of the center of pressure on our zero line. 

The velocity.-The velocity V which enters in the formulas of air resistance of aerofoils 
di posed in a uniform, fluid current has to be taken in front of the aerofoil and at such a dis­
tance from it that Lhe disturbances in the medium caused by the presence of the aerofoil do 
not reach it. This distance generally lies in front of the aerofoil between one and two 
times its breadth. 

The fictitious equ ivalent plan e.-As a summary of all the foregoing discussion we are 
brought to the following conception: 

Let us consider the zero plane of an aerofoil and project on this plane the aerofoil and 
take this area as the fictitious equivalent plane, or, shorter, as equivalent plane, of our aerofoil; 
that is to say, attribute all the properties of our aerofoil to that plane and refer all the quan­
tities which we use to de cribe the law of air resistance of aerofoils to that fictitious equivalent 
plane. We hall thus take a area of the aerofoil the area of Lhe equivalent plane. (See fig. 
19.) We shall measure the angle of attack from that equivalent plane and this will be our 
absolute incidence i. We sha11 take the center of pressure on that equivalent plane and fix 
the direction of the force of air re istance R by the angle fJ of its inclination to the normal to 
that equivalent plane. Under such condition, all the formulas of pages 2 and 3 have to be 
referred to the equivalent plane; and in that case we shall write: 

1. The magnitude of the air re istance 11 of aerofoils (see fig. 19) 

where 

The drag 

The lift 

where 

R = leoA V:[(i) = lLA V:[(i) 

R= K,AV2=k.OA V 2 

K = leo; Ki = Kf(i) = 7CiO 

Rx=R sin (fJ+i) = KxA V2=kxoA V2 

RlI=R cos (fJ +i) = ..K;,A V2=k1/oA V2 

Kx=kxo= Ki sin (fJ +i) 

..K;, = k1/o = ~ cos (fJ + i) 

the coefficients Kx, K" and kx, leu being functions only of the absolute angle of attack i. 
Som e general da ta on aerofoils. -To the foregoing formulas I will add the following 

remarks: 
For the orientation under which the aerofoil is practically used, the lift of the aerofoil 

is generally equal to zero only when the wind is blowing on the back of the aerofoil, and the 
equivalent plane is disposed somewhat above the aerofoil. The position and orientation of 
the equivalent plane can, in general, also depend from the value of the speed V, so that to 
different speed intervals can correspond, for the same aerofoil, different equivalent planes. 

Starting from zero absolute incidence, the air resistance 11 rises very quickly out of the 
zero plane, so that for angles of attack around 5°, the air resistance makes small angles with 
the normal to the zero plane. 

For the aerofoils actually used in aviation for small angles of attack, the ratio of drag 
to lift can reach 1/20. 

For actual aerofoils, considering the incidence increasing from zero, the center of pressure 
first approaches the leading edge (see fig. 17)--that is, travels in a sense inverse to that for the 
case of a flat plate (see fig. 18)-and only afterwards, for greater values of the angles of attack 
(generally larger than 10°) the center of pressure begins to travel away from the leading edge. 

The coefficients Kx, K'/l and lex, k1/l for equal values of the angle of attack, have the same 
values only for aerofoi1s having similar cross-section and similar perimeters; and still in that 

\ 
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case their values also depend upon the magnitude of the aeroloil area A and the magnitude 
of the velocity V. These coefficients do not vary much when the magnitude of the aerofoil 
area changes, and by the variation of the velocity the coefficients Kx and lex are principally 
affected-they diminish when the velocity increases- the coefficients [(1/ and ley do not seem to 
depend much upon velocity for a value of the last above a certain value. 

For small angles of attack-up to around 10°-for most actual aerofoils, the coefficients 
k1l follows a linear law and the coefficient lex a parabolic law. So that for such angles we can 
write 

ky = lei 
kx = k (ai2 + bi + c) ; 

so that in such a case the lift and drag of the aerofoil have for expressions 

Ry = kBA V2i = KA V2i 
Rx = kBA V2(ai2 + bi + c) = KA VZ(ai2 + bi + c) 

The value of the coefficient K depends upon the aspect ratio L ib, that is, the ratio of its span L 
to its breadth b. For values of this ratio equal to about 
5 or more, the coefficient K for most actual aerofoils, for 
usual atmospheric conditions, has a value near to 1/200, 
the units used being the meter, the kilogram, and the 
second. For smaller values of the aspect ratio, the 
value of K diminishes. 

FIG. 20. 

Different chara cteristic cu rves used to plot 
the result s of measurements of the air resistance 
of aerofoils.-To plot the results of measurements of 
air resistance of aerofoils different systems of curves are 
used. From any system of characteristic curves giving 
a full specification of the laws of air resistance of aero­
foils, we can deduce any other one. 

First method.1-The most direct way of representing 
the air resistance of an aerofoil is to plot the curves of 
the coefficients Ki or ki as function of the angle of 
attack i, and the curve of the angle {3 as function of the 
angle of attack i. The Ki or lei curve gives a direct 
evaluation of the magnitude of the force of air resistance; 
and the (3 curve gives the laws of variation of the incli­

nation of the air resistance to the normal to the zero line. The general shape of the Ki and (3 
curves are represented in figure 20. 

Second method.-Another method very widespread in the practice of modern aerody­
namical laboratories is to plot the lift curve K" and the drag curve Kx as functions of the 
angle of attack i. To these curves the drag-lift Kxl Ky curve is generally added. It is much 
more convenient to use the drag-lift curve than the lift-drag curve, as it is made sometimes, 
because many fundamental properties of the airplane are directly connected with the drag­
lift curve.2 The general shapes of the drag curve, the lift curve, and the drag-lift curve are 
represented in figure 2l. 

Third method.-Probably one of the oldest methods used to represent the laws of air 
resistance of aerofoils consists in plotting the lift coefficient as function of the drag coefficient. 
This method was used by Lilienthal. When using this method the angle of attack is marked 
on the curve. (See fig. 22.) This method presents the advantage that we can also read on 
the curve Kv = F(Kx ) the variation of the drag-lift ratio . It is easy to see that the tangent 

1 This method of plotting is used by the author for propeller calculations. 
J Soo, for example, O. de Bothozat, "Etude de la Stabilitio de I' Aeroplano," pp. 58-68, Paris, 1911. 
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of tho angle l' which a line joining the origin with a point of the curve K,,= F(Kz ) makes with 
the K1I axis is equal to 

so tha t we can directly plot a scale for K z / K" on a parallel to the /(z a.,-...::is. Each straight 
line joining the origin with a point of the K1/ = F(l{z ) curve cuts off on that scale the value 
of Kz/Ku- The tangent drawn from the origin to the curve K,, = F(Kz) gives the minimum 
of the value of Kz / K". 

In his last research on aerofoils, Eiffel uses this method and for convenience plots the K z 
at the scale ten times bigger than the K1/. 
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To specify fully an aerofoil by each system of the foregoing curves, there must be added 
the curve of the center of pressure and the zero line in exact position and direction. It is 
also good to draw the metacentric curve which gives a full picture of the positional and direc­
tional variation of the forces of air resistance. 

I must also add that it is necessary that the data on aerofoils be at least determined for 
an interval of - 90 0 to 900 of absolute in0idence. This is on account of the fact that we must 
not limit ourselves to the actual necessities, but must also give data which future research 
and discovery may need.' 

1 As example, lean indicato the [ollowin~ [act : Onl y because tbo aero[oil data were not enougb extended, we can not actually calculate tb~ 
tbru t of a propulsive screw at a f!Xed poin t wbenever tbe necessary met hods ore already at our disposal. A propeller at a fi xed point works at 
very large angles o[ attack, 20·, 30·, 40·, and in some cases still greater. 
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CHAPTER III. 

THE FLOW AROUND THE AEROFOIL. 

In the beginning of the de\elopment of aviation, the main knowledge arose at first only 
to the general quantitative relations about air resistance of aerofoils, and it is only very slowly 
that light has been thrown on the flow phenomena. 

For an aerofoil moving with a uniform and rectilinear velocity in air the following flow 
phenomena have been progre ively discovered experimentally. 

I. On the upper surface of the aerofoil we have a decrease of pres ure and on the lower 
surface of the aerofoil we have an increase of pressure. The depre sion created on the upper 
surface is, for small angles of attack, alway larger than the increru e of pre ure on the lower 

FIG. 23. 

surface, 0 that the lift oj the aerojoil is due 
more to a suction exerted on the tipper side than 
to the pressure exerted on the low r side. 

II. The stream in the wake behind the 
aerofoil appears to be deflected downward. 

III. From the tips of the aerofoil vortice 
run off which we will call the tip v01'ticps (see 
Fig. 23) . The rotation of the fluid in the e 
tip vortice has the en e from the out ide 
space into the in ide space between the vor­
tices, if we look from above.l 

IV. In the space between the tip vortices 
two kinds of flow can take place. For very 
small angle the flow is continuous; that is to 
say, we have no sensible turbulent motion. 

But when the angle of attack increases beyond a certain value of the last, there appear on both 
edges of the aerofoil vortices, parallel to these edges, which we will call the edge vortices . The 
greater the velocity of the flow running on the aerofoil, the smaller is the angle of attack for which 
edge vor tices appear. These edge vortice are not stationary with reference to the aerofoil. 
They grow up on the edges of the aerofoil and, when they have reached a certain intensity, they 
run off in the general direction of the stream behind the aerofoil, so that these edge \ortices 
have a certain velocity with reference to the aerofoil. 

The edge vortice which grow on the upper and lower edge rotate from the space out ide 
the two vor tice into the space inside, when one looks from above, so that behind the aerofoil 
there appears a system of vortices in quincunx 2 rotating in inverse senses (see fig. 24). The 
ends of the. e vortices go over into the tip vortices. As the edge vortice are rotatlllg in llwerse 
sense the mean value of the inten ity of the tip vortices i not modified by the edge vortices. 
We now see that the general picture of the flow behind an aerofoil looks like a vortex ladder 
running off the aerofoil.3 

So far as I know, exact measurement of the depression on the upper side and the pressure 
on the lower side of an nerofoil were fiTst made by G. Eifl'el. The apparent stream deflection 
behind the aerofoil seems to have been observed by many investigators. The neces ity of the 
existence of tip vOTtices seems to have been first indicated by Lanchester. The vortices III 

1 Observations of t ip vortices have been made by J. R. Pannell and N. R. Campbell. "The Flow of Air AroWld a Wing Tip," Report No. 197, 
March, 1916, Advisory Committee for Aeronautics . 

• I call quincunx vortex system, a system of two parallel rows of eq uidistant rectilinear and parallel vortices rotating i.n inverse senses in each row, 
and in such an arrangement that the vortices of one row are disposed towards the middle of the distance between the vortices of the other row. 

a Good pictures of edge vortices rWlning oft an aerofoi! can be found in the "Technical Report of the Advisory Committee for Aeronautics," lor 
the years 1912-1913. "Photographic Investigation of the Flow ArOWld a Model Aerofoil," by E. l<'. RcH, p. 133. 
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quincunx were first noted by Karman for the par ticular case of the orthogonal motion of a flat 
plate and the motion of a cylinder. 

Before attacking the detailed discussion of the above-mentioned flow phenomena, I shall 
first make some general remarks on the flow phenomenon around a solid body moving in a fluid 
with a uniform velocity. 

General scheme of t h e p h enomenon offiuid r esistance.-I shall here develop a general 
scheme of the fluid resistance phenomenon, which must be considered as a conceptional limit, 
but which takes account of all the fundamental circumstances of the fluid resistance phenomenon 
in their most simplified form, and thus allows a better view of the relations which hold. 

We shall first consider the case of an infinite cylindrical body having a plane of symmetry 
and moving in an infinite fluid with a constant velocity Vo parallel to that plane of symmetry, 
the sense of Vo being taken as positive sense. (See fig . 25.) 

Let us imagine an observer moving with the body. For such an observer there will appear 
a relative stream running on the body. 
When the fluid is considered as perfect this 
relative stream can be assumed as being a 
potential stream- that is, a stream ad­
mitting a velocity potential for the velocity 
distribution in it. But for a real fluid , in 
the case of our problem, according to the 
indications of the experiment, there must 
necessarily be losses inside the fluid and 
thus a certain distribution of vortices in it . 
This last fact is a direct consequence of 
the general equations of motion of a viscous 
fluid, according to which there are no losses 
inside the fluid where there are no vor tices. 1 

For the general analysis of the fluid resist­
ance phenomenon we will place ourselves in 
ideal limiting conditions and replace the 
effective relative stream running on the 
body by a conventional relative stream, but FIG. 24 . 

so defined that in relation to the .fluid resistance the conventional relative stream will be fully 
equivalent to the effective relative stream. 

We will first assume that in each cross section normal to the plane of symmetry of our body 
the velocity of the conventional relative stream is constant. In such conditions, to take 
account of the change in the distribution of the velocities in the general stream which are pro­
duced by the presence of the body, we must consider our conventional relative stream as limited 
by surfaces of discontinuity outside which the general stream velocity is unmodified, but inside 
which the velocity, being constant in each cross section, is different from the outside velocity. 
(See fig. 25.) These surfaces of discontinuity must thus necessarily be constituted by vortex 
sheets. On the other hand, as we must also conceive the fluid as adhering to the surface of the 
body-a fact to which seem to lead Zahm's 2 experiments on skin friction, which have shown 
its independence of the state of the body's surface-we must consider the surface of the body 
as covered by a vortex sheet in which gliding of the fluid takes place, the relative velocity at 
the surface of the body being equal to zero. We thus see that in our conception of the flow 
phenomenon around the body the vortices instead of being spread in a certain way inside the 

I .\eeording to Lamb, " 'l'reatise on the Mathematica l 'fheory of the MoLion of Fluids ," tho di ~sipation of energy inside a fluJd mass is given 
by the general expression 

which is equal to zero for "'%~"'y-",.=O 
'" ALmospberic l'rietion on Evon Sur/aces," Philosophica l Magazine, July, 1901. 

\ 
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fluid have to be conceived as concentrated on the surface of the body and on the boundary of 
the conventional relative stream. (See fig. 25.) 

Let us consider now two cross sections, I and II, of the relative stream running on the 
body. Both cross sections are considered immobile relative to the body and are taken normal 
to the stream. Section I, of conventional height ho, is taken bofore the body at a distance not 
reached by the disturbance created by the body in the fluid. The relative velocity and the 
pressure in that section, uniform in the whole section, are designated by po and - Vo, this last 
velocity being equal in magnitude to the velocity of tho body, but having an inverse sense. 
The Section II is taken behind the body; p and - V are the uniform pressure and relative 
velocity in that section. The absolute velocity w of the stream behind the body is equal to 

(1) w = - V - ( - Vo) = Vo - V. 

The velocity w is nothing but the mean velocity of the wake behind the body. 

1 
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FIG. 25. 

Let us designate by 0 the value of the Bernouilli constant corresponding to Section I. 
According to Bernouilli's theorem we must have 

oV 2 

(2) Po+--t= o. 

Let us follow from Section I to section II a stream line in the relative motion of the fluid 
toward the body. Starting from the values po and Vo in Section I, pressure and velocity will 
vary aJong the stream line. When we pass by the body, the velocity will be increased and 
the pressure decrea ed. Behind the body the velocity will drop and the pressure increase, 
and when we reach Section II we shall find there a pressure p and a velocity - V connected by 
the relation: 

(3) 

where 6. 0 is the drop in the Bernouilli constant, which occurs when we go from Section I to 
Section II. In reality this drop is due to the losses taking place at tho surface of the body by 
skin friction and inside the fluid by viscosity, which losses, in our limited conception, are assumed 
to be concentrated on the boundaries of our conventional stream. Subtracting equation (4) 
from equation (3), we obtain the relation connecting po and Vo in Section I with p and V in 
Section II. 

(4) 

Let us designate by IT the whole amount of work done by the forces of viscosity inside 
the fluid between the Sections I and II. We can always consider this interior work referred 
to the velocity Vo in Section I and consequently write 

(5) ll=FVo, 
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where F is a fictitious force, which we call the dissipative force and which corresponds to the 
interior work done between the Sections I and II and referred to the velocity Yo. By its direct 
meaning, t:,. 0 is the interior work by unit of volume of the relative flow crossing the two sec­
tions I and II in a second, which volume, counted per unit of length of the body, as a conse­
quence of continuity, is equal to either of the two expression 

(6) ho Vo=h V, 

when one neglects the very small density variations. We thus have 

(7) t:,. O=~= FVo= F 
ho Vo ho Vo ho 

or 
(8) F=hoD.O. 

The general picture of the flow around the body begins now to appear more clearly. Outside 
the boundaries SS and S'S' of our conventional relative stream (see fig. 25), as we consider 
the fluid unaffected by the motion of the body, we thus have the uniform pressure po; and in 
the absolute motion the fluid is immobile, so that in Section II from outside to inside we have 
a difference of pressures po - P and a difference of velocities w= Vo- V, maintained by the 
conventional boundaries SS and S'Sf, which are vortex sheets. 

Let us now apply the theorem of momentum to the fluid mass contained between the body 
considered, the vortex sheets SS and S'S', and the Sections I and II and included between 
two planes normal to the body at a unit distance from one another. Let us designate by Rr. = 

kr.ob Vol the drag of the body counted per unit of length, b being a linear dimension of the body. 
This drag constitutes, in our case, the resultant of all the forces acting on the surface of the 
body. It will be easy to see that we have 

(9) oho Vo2- oh P+ h(po - p) =kr.ob V02(*) 

This last relation in connection with the relations 

(10) 

and 
(11) 

o F 
(Po-p)+ - (V/- P)=t:,.O= -h 

2 0 

gives thus three equations connecting the pressure p, the velocity V and height h in the section 
II with the corresponding quantities Po, Yo, and ho in the section I. From all these quantities 
the only ones to be considered as known in our problem are Po and T'o. 

It is easy to show that when the section II is considered taken at such a distance from the 
body that either p = Po or V = Yo, we will have very approximately • 

(12) F""kr.ob V02 

That is, the dissipative force equals the drag. 
For when V= Yo, which brings with it h=ho, we have 

(13) F=ho(Po-p)=h(Po-p)=kr.obV02 
and when p = Po, then 

(14) F=~ho(V02- VZ) 
2 

=~ho Vo2-~ho VZ+~ho Vo2-~ho V02 

=~h v,2-ih p(~+ho VOZ) 
2 0 0 2 h hV2 

=oho vo2-ih vz(ho+ Yo) 
2 h V 

• To find the resultant o( the outside pressure on the boundary o( the portiou o( the relative stream considored, it is sufficient to conceive tbe 
pressure p. added and subtracted In the section II. We then will have a uniform pressure Po on all the boundary surface, whose resUltant Is zero, 
and the pressure h (p,-p) In the section II, which quantity constitutes the resultant pressure. 

\ 
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But, as will be seen in the following, when lex is a small quantity, the difference between ho, h, 
and Vo, V in case of p = Po is negligible, so that 

(15) F",ohoVoz- ohV2= ler..obVo2 

In the general case 

(16) 

The relations (15) and (16) lead us to make the assumption that the dissipative force can 
be considered as having the form 
(17) F=fobV0 2 

where f is a characteristic coefficient depending upon the form of the body and the properties 
of the fluid and the position of section II. In the case of P = Po or V = Vo we have 

But in the general case we will have 

The inferior limit for f is determined by the skin friction at the surface of the body.l 
All the foregoing constitutes, so to speak, a limited scheme of the fluid resistance phenom~ 

enon, but one which gives a complete picture of the relations occurring. Let us examine the 
connection between our scheme and reality. 

In the relative flow around a body, the observed velocities in a section such as section I 
are uniform when the section is taken at a sufficient distance from the body, but in a section 
such a II the uniformity of velocity is generally not observed. This last fact does not consti­
tute an essential difference, because we can always conceive the velocity V as a certain mean 
value of the real velocities. 

Much more essential is the question of the practical possibility of the existence of the 
vortex sheets at the surface of the body and on the boundary of the stream. It has been 
pointed out by many investigators that vortex sheets in viscous fluids must be considered as 
unstable.2 Experiments performed on the observation of the flow around bodies, although 
not very numerous, have already given valuable indications.3 For relative flow velocities 
having a sufficient value, the vortex sheet covering the surface of the body always passes over 
into a system of vortices in quincunx. This last fact was first fully understood by Karman, 
who also indicated the reason why we get the quincunx vortex system. Karman's investiga­
tions of the quincunx vortex system have shown that this system is stable. The edge vor­
tices above mentioned are nothing else than the vortices in quincunx into which the vortex 
sheet covering the surface of the body passes. For low velocities we also have in all prob­
ability a tendency toward the formation of the vortices in quincunx, but the energy in the 
wake being small, the energy of the beginning vortices is dissipated before their complete for­
mation. The motion which is established must be a kind of turbulence which distributes 
inside the fluid the vortex sheets covering the surface of the body. The mechanism of this 
distribution is in all probability the following: We either have a direct, irregular, and periodical 
transformation of the surface vortex sheet in quincunx vortices, dissipated before full forma­
tion, reformation of the surface vortex sheet, and so on; or we have a periodical irregular for­
mation of the surface of discontinuity established in the Kirchhoff-Lord Raleigh theory. 
These surfaces of discontinuity, which must necessarily be vortex sheets, can appel1l' as inside 
boundaries of the relative motion, only as momentary phenomenon. At such a moment the 
flow appears as represented in figure 26. But these surfaces, being unstable, quickly disappear 
and the vortex intensity concentrated in them is dissipated before the formation of a definite 

1 It must be remarked that the calculation of the resultant skin friction at the surface of a body often presents some amhiguity, the ~"act dis­
tribution of the velocity at the surlace of the body having to be knO\VD • 

• See H. Poincare, "Theories des Tourbillons," p.l74, § 142; A. B. Basset, "A Treatise on Hydrodynamics," Volume II, p. 309; and C. Schaefer, 
"Einliihrung in die Theoretlsche Physik," Band I, p. 896, § 199 . 

• For a review of these ohservations see W. L. Cowley and H. Levy, "Aeronautics in Theory and Experiment," Chap. II. 
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kind of vortex motion. Such irregular, unstable, periodical process, affected by the smallest 
perturbation, spreads the surface vortices in the fluid. 

In whole probability all the observations made upon the vortex sheets surrounding the 
body apply also to the vortex sheets SS and S'S', constituting the outside boundaries of our 
conventional relative stream. For small relative flow velocities, those vortex sheets are in a 
certain way distributed in the fluid; but for greater velocities it is possible that they go over into 
the stable system of vortices in quincunx. We thus see that behind a body moving in a fluid 
we shall have, in general, a periodical fluid motion. I shall call primary or fundamental wave the 
fluid motion generated by the formation of quincunx vortices from the vortex sheets limiting the 
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relative stream boundaries from the outside, and secondary wave the fluid motion generated by 
the formation of quincunx vortices from the vortex sheets limiting the inside relative stream 
boundaries. Both fundamental and secondary waves will be consiclered in more detail in the 
following. The possibility for the existenqe. of the fundamental wave will appear with still 
more evidence from the general examination of the flow around an aerofoil, to which we shall 
now pass. 

The same scheme which we have developed for a symmetrical body can be applied to an 
asymmetrical body like an aerofoil. All that has been said relative a symmetrical body has to 

-<;> 

FIG. 27. 

be directly transferred to the aerofoil. The difference will consist in the fact that, as the aerofoil 
has a lift component due to the fluid, there must be a fluid momentum corresponding to that 
lift. That is to say, the relative flow behind the aerofoil must be deflected downward. The 
schema tical flow around an aerofoil is represented in figure 27. Let us now imagine for one 
moment the aerofoil immobile and the stream running on it with the velocity Vo. The fluid 
velocity outside the stream boundaries SS and S'S' will also be Vo' In such a condition it is 
easy to see that there will be a tendency to straighten the deflected stream by the outside 
stream. If we assume the possibility for the stream between the boundaries 88 and 8'8' to 
become horizontal after section II, the application of the momentum theorem for the lift, 

\ 
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between two sections such as I and II, will show an increased pressure pz above and a decreased 
pressure PI below. In such a condition it would be difficult to imagine how the theorem of 
moments of momentum applied to the stream portion between SS and S'S' on one side and I 
and II on the other side could be satisfied. Such a flow appears impossible, and it is easy to 
see that, after its downward defl'ection, the stream, by the difference of pressure (P2-PI) must 
necessarily be deflected upwards . It thus becomes evident that behind an aerofoil we have 
a wave motion of the relative stream. The instability of the vortex boundary sheets SS and 
S'S' also lead to this conclusion. The wave motion which is to be expected is represented 
schematically in figure ·28. It is sufficient to look at this last figure to see at once that the 
wave motion obtained is governed by a system of vortices in quincunx, rotating in one sense 
for the upper row and in an inverse sense for the lower row. We thus see that behind the 
aerofoil we can expect to see the phenomenon of the fundamental wave mentioned in the 
foregoing. 

The phenomenon of the secondary wave can also take the place for the aerofoil. 
We are thus brought to the conclusion that a simple deflection of the relative stream behind 

the aerofoil is not to be expected. Nevertheless, the preliminary study of the stream deflection 
behind an aerofoil is of interest for the following r eason. 

FIG. 28. 

Let us consider an aerofoil II disposed in the wake of another 1. This aerofoil II will 
then be submitted to a periodical stream. Let us assume for simplicity that both the magnitude 
of the velocity Vof the flow running on the aerofoil II and the angle of attack i vary according 
to sinusoidal laws. so that as a first approximation we consider 

T being the period, v and i the amplitudes of variation of V and i, t the variable time. The 
difference of sign in the above expression denotes the fact that the velocity V is assumed 
increasing when the angle of attack decreases, and vice versa. We shall also assume that for 
the instantaneous values of V and i the resultant air-resistance R of the aerofoil II can be 
expressed by the formula: 

writing KA = }... Let us now, under these assumptions, calculate the . mean value Rm of R. 
We have 

Rm= ~ f: Rdt 

_- Tl fTo '(Vo . 27l" t )2(. .. 27l" )d 
1\ + v 8m T ~o - 1 sm T t t 

~, V'T'i, J~ + 'Vo'(2~-jV,) J~SID ~ ,a, + 

+ AV (vio - 2iVo)fT sin2 27l" tdt _ Aiv2 fT sins 27l" tdt. 
ToT ToT 
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As is well known, the integrals of the odd exponents of the Sine are equal to zero, and 

1 fT. 2 271" t - lL - SIll - 72 ToT 

So that we finally get 

R V 2(. jv ) 1 L 2· m = h 0 ~O - Vo + 72hV ~o 

For small values of v the term t hV2io can be neglected, and thus 

Rm~h Vo2(io- ~J 

33 

and we are brought to the following conclusion: It is easy to represent such a periodical flow 
that an aerofoil disposed in it will show, for the mean value of the air resistance, an apparent 
decrease of the angle of attack. The aerofoil will thus appear as if placed in a downward 
deflected stream. The study of the apparent stream deflection behind the aerofoil is thus 
justified. 

FIG. 29. 

The apparent stream defiection.-If we make the assumption that all the lift of an 
aerofoil is due to the momentum created by the deflection of the stream downward, the angle of 
deflection of the stream can be easily calculated. This calculation will also give us a mean 
value of the height of the stream disturbed by the presence of an aerofoil in the fluid. 

Let us consider a unit of length of an aerofoil and draw around it a contour a, b, c, d defined 
as follows (see fig. 29): 

The side ab of the contour is a plane cross section of the stream taken at such a distance 
before the aerofoil that the flow in that section is not disturbed by the presence of the aerofoil. 
It is the cross section I of the relative stream. The two sides ac and bd of our contour are 
taken along two stream lines at such a distance that the local phenomena created by the presence 
of the aerofoil in the fluid do not reach them, and that the pressure on these two stream lines is 
equal to the outside pressure. At the end, the side cd, constituting the section II of the relative 
stream, is a plane cross section taken at such a place that the velocity of the stream has nearly 
taken its original value and the pressure has also nearly reached its original value. These 
last assumptions are only a certain approximation. Let us now calculate the increments of 
the components of the momentum of the fluid running out of this contour for a unit of length 
of the aerofoil, along the velocity and along the normal to the velocity. 

It is easy to see that the increment of the components of the fluid momentum along the 
velocity is equal to 

MP-MV2cos a=MV2(1-cos a) 

and that the increment of the components of the fluid momentum along the normal to the 
velocity is equal to 

MV2sin a 
147498--2o--~o. 28----3 
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As these two components of the momentum must be equal to the two components of the 
fluid pressure on our aerofoil, we must have 

(18) 

(19) 

Rx = kxob V2 = ho P(l - cos a) 

RlI = kijb V2 = hO V2sin a 

where b is the breadth of the aerofoil and 0 the air mass density. From the last relations it 
follows that 

kxb=h(l-cos'a) kllb=h sin a 

kx 1- cos a a 
1S = sina tg2 

but, as we have 

2tg c:. 
. 2 

SIll a= 1 + tg2a 
2 

we easily get the value of 

(20) 

2~ 
. _ kll 2kx ky 

SIn a---k- z=k 2+7C 2 
1 +....1:.... x 11 k 2 

11 

Having the value of sin a we easily get the va.lue of the stream height disturbed by the ael'ofoil: 

= ky b = b k/( 1 + ~::) = b (kx2+ k~,2) 
h sin a 2kx 2kx (21) 

For small values of the angle a and negligible values of ki, we can write 

(22) a~2kx 
-k 

11 

(23) h~bky~ 
2kx 

The value of these formulas, the deduction of which is only based on certain assumptions, 
lies in the fact that they indicate from which quantity depends the apparent angle of deflec­
tion of the stream and the height of the fluid stream disturbed by the presence of the aerofoil. 
Further, these formulas give values for both quantities of the order of magnitude as obtained 
from experiment.1 

The formula (22) is capable of an interesting geometrical interpretation. If we draw a 
plane normal to the resultant air resistance H, we then see that the stream is, so to speak, 
reflected on this plane. (See fig. 30.) 

From these very simple considerations we see that the conceptions developed in turbine 
theory, where it has been assumed that the fluid runs off from a turbine wing in the direction 
of the tangent to its trailing edge, are absolutely inadmissable. The apparent direction of the 
stream behind an aerofoil or a turbine wing depends not only upon the direction of the tangent 

1 For example, let us take (the units used being m., ku., and sec.) 
i_ 60 

ky_ kya _!.i _ 1/200'6~i 
a a i 

k.lky -l/16 
we then have 

bk,' bky b.I/4 tb 
/1- 2k. - ~ kz -S'JIJ6-

Jii. 
a quantity which is of the order of what experience with biplanes indicates to be negligible influence of the mutual interference of the wings. 

I 
/ 
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to the trailing edge but upon the form of all the parts of the aerofoil or the wing. The general 
results to which we are brought in this elementary calculation are certainly only of a first ap­
proximation, but they give a rational description of the general phenomena. 

We shall now proceed to examine the problem of the apparent stream deflection behind 
the aerofoil to a second approximation. 

When the stream meets the aerofoil, as the result of the impact which takes place there 
must be a certain amount of energy dissipated inside the fluid. Let us designate for the section 
I before the aerofoil, by Po, Vo and ho, the pressure, the flow velocity and the relative stream 
height disturbed by the aerofoil, and by p, V and h, the values of these same quantities for 
the section II behind the aerofoil. We shall apply to the fluid between the sections I and II 
the momentum theorem taking account of the dissipation of energy by two limiting assump­
tions. The first assumption will consist in considering in the section II the velocity V = Vo; 
the second, in admitting p = Po. Under such conditions the dissipative force F will be equal 
to the drag of the aerofoil for an angle of attack equal to zero, as follows from the foregoing. 
For other values of the angle of attack, the coefficientJhas to be considered, for a given aero foil, 
and as a function of the angle of attack. In the case of V= Vo, as we have F=h(po-p), the 
dissipative force F can be conceived as applied in the section II normally to that section. 

FIG. 30. 

Applying the momentum theorem, in the case of the first assumption, it is easy to see that 
we have: (See fig. 27, and compare with the similar equations (18) and (19) ). 

(24) 

(25) 

Rx =lexobV2 = hoV2_hoV2 cos a+fobV2 cos a 

Ry =ley obV2=hOP sin a-fobV2 sin a 

which equations express the fact that the drag and lift are equal to the corresponding com­
ponents of the variation of the fluid momentum to which are added the components of the dis­
sipative force F. 

Dividing the last equations by ob P we get 

(26) 

(27) 
from which follows 

lex=h/b-h/b cos a+J cos a 

ley = h/ b - J sin a 

. lev d 
sm a=h/b-f an cos a 

h/b-k ... 
h/b-f ' 

and, since sin2 a+ cos2a= 1, we have 

(h/b-f)2=ley2+ (h/b-lex)2 

or, removing the parentheses and multiplying, we finally find 

(28) h/b lev
2
+lex2 -fZ 

2(kx -j) 
or 

(29) 
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By aid of the relation (28) we find 

and consequently 

( ) . ~~~ 
30 sm a=ky2+ (kz -f)2 

Neglecting the squares of kz and f which are of the same order and very small quantities for 
actual aerofoils and small angles of attack, we get 

(31) 
h"" bk1l2 

2 (kz-j) 

(32) 

In the case of the second assumption, that is, for P=Po and t10=fJI2(Vo2- P), we have 
(see fig. 27 and compare with the similar equations (18) and (19) ) 

(33) 

(34) 
or 

(35) 

(36) 

kzfJbV02=hofJ Vo2-MPcos a 

kyfJb Vo2 = hfJV2sin a 

V2 
kz=ho/b-h/b Vo,cos a 

V2 . 
k1/=h/b Vo2 sm a 

and taking account of the condition of continuity ho Vo = h V we get 

V 
(37) ho/b- kz = ho/b Vo cos a 

(38) 

Taking into account the relations (8), (15), and (16), we find 

V2 2F 2fb 
1--17: 2 = fJh 17: 2 =-h ; 

000 0 

so that the ratio V21 Vo2 is seen to be equal to 

V2 b 
(39) - =1-2f-Vo2 ho 

Squaring the relations (37) and (38), adding them and substituting in the last the foregoing 
value of P/ Vo2, we find 
(40) (ho/ b- kz)2 + k/= (ho/b)2(1- 2fb/ho); 

from which relation we directly find 

(41) 

Introducing this last value of ho/b in the equation (38) and substituting in it for VI Vo its value 
we find 

(42) 

Finally, neglecting for reasons already mentioned the squares of kz and 1, we find 
bk 2 

(31) ho'" 2(kz~f) 

(32) 

I 
I 

2(k -f) 
sin a"'a'" k 

1/ 
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If we now introduce these last values of no and sin a in the equation (38), we at once see 
that 
(43) V~ Vo and consequently h~ho 

This shows that the difference between hand ho, or between V and Vo, is only of the order 
of kr.2

; that is, of the second order compared with kr., and consequently negligible. We thus 
see that in the wake of the aerofoil we must have nearly the same velocity as in front, but a de(Jl'eased 
pressure. 

All the foregoing discussion brings us to the following important conclusions. Both 
assumptions for negligible values of kr.2 andf2 bring us to the same mean values of the height 
ho of the stream disturbed by the aerofoil and the angle a of the apparent stream deflection, 
th" variation in the ma~nitude of the stream veloCIty and stream cross section being of the 
order of lrx

2
, and therefore negligibJe. The expressions (31) and (32), compared with the cor­

responding expressions (22) and (23), give for the height h larger values and for the angle a 
smaller values. 

Let us now see how far the results of the foregoing discussion are verified by experiment. 
In his" Nouvelles recherches sur la resistance de l'air et l'amation, " G. Eiffel, on pages 165-170, 

gives the results of measurement of the air resistance of an aerofoil disposed in the wake of 
another. Let us designate by I the aerofoil disposed directly in the wind stream, and by II the 
aerofoil disposed in the wake of I. In figure 31, Zr is the zero line of the first aerofoil and 

~z' 
--- --------

FIG.3l 

.I 

/ 

/' -z 

Zn the zero line of the second, Vo, the velocity of the stream before the :first aerofoil, and i and 
i& the angles of attack of the first and second aerofoils relative to the velocity Vo. Eiffel shows 
that for the aerofoil II the air resistance is such that the angle of attack of that aerofoil, instead 
of being equal to ia, appears to be reduced to the value 1"., smaller than i a. Eiffel calls ia the 
" apparent" incidence and 1". the "real" incidence. Eiffel gives the corresponding values of 
ia and 1". for different angles 'Y between the zero planes of the two aerofoils; and these we 
reproduce in the Table A, only referring all the angles to the corresponding zero lines. 

TABLE A. 

i, '" 
1---1---------------------------

50 3° ................ ... .......... ... .... _. _._ .................... _ .. _ .................. . 
7 5 1°,4 3°,6 3° -0,4 3°,4 
9 7 ~7 ~3 5 ~6 ~4 

11 9 3,9 5,1 7 1,9 5,1 
13 11.......... .•........ 9 3,1 5,9 
15 13 .......... ........ . . 11 4,5 6,5 
17 .......... .......... .......... 13 5,6 7,4 

Let us now conceive the stream velocity behind the :first aerofoil as deflected and having 
the general direction V. The angle of attack, 1"., is the angle between V and Zn, so that, if a 

is the value of the stream deflection angle, we must have (see fig. 31) 

ia -1".= a 

\ 
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In the Table A, by aid of the values of ia and ir, the values of a are calculated for different 
values of the angles of attack i of the aerofoil I , and three different values of t.he angle 'Y, 2°,4°, 
and 6°, respectively. By using the values obtained, in figure 32 are plotted the curves of a = J(i) 
for the three values of 'Y=2°, 4°, 6°. It is easy to see that all the plotted points define well 
enough a curve, which means that behind the aerofoil I, we really have an apparent stream 
deflection depending only upon the aerofoil I , and its angle of attack, i. The angle of mutual 
inclination of the two aerofoils has no influence on that phenomenon, as ought to be expected. 
The aerofoil, II, has simply to be considered as disposed in a stream deflected by the aerofoil I, 
whose velocity in magnitude is nearly the same as in front of the aerofoil r. Knowing the rela­
tion between a and i, we can easily calculate the air resistance of any other aerofoil, as the aerofoil 
II, disposed behind the aerofoil 1. . 
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Let us now calculate according to these last data the values of the coefficient f. This cal ­
culation is made by aid of the formula (32), in the Table B, where are reproduced all the data 
concerning the aerofoil I, which are necessary for that calculation. 

TABLE B. 

aO a radiants k, lox ak, ak. IIkx '2 f=kx-T 

5° 2°,5 0,044 0,176 0, 01R2 0, 00388 0, 0144 0, 79 
8 4,0 0, 070 0,288 0,0217 0,0101 0,0116 0, 535 

11 5,3 0, 093 0, 383 0, 0308 0, 0178 0, 013 0, 42 
14 6, 5 0, 133 0, 475 0,0454 0, 0268 0, 0186 0, 41 
17 7, 5 0, 130 0,568 0,062 0,0366 0, 0254 0,41 

The values of the coefficientJ obtained are plotted in figure 32, where, for comparison, 
is also plotted the curve of lex. In the last column of the Table B is also calculated the ratio 
of f to lex. These last values are very suggestive. They show that the dissipative force F 

I 

I 
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decreases when the angle of attack increases, and that for mean values of the last it is equal 
to nearly one-half of the drag. 

Finally I will remark that the energy dissipation, of which account was taken in the 
foregoing, and to which corresponds the dissipative force F, is that dissipation of energy 
which takes place in the immediate neighborhood of the aerofoi1. It is evident that all the 
energy spent to move an aero foil in air is dissipated in the surrounding medium; but one 
part is dissipated in the direct neighborhood of the aerofoil and corresponds to skin friction 
and turbulence connected with it, which we evaluate by FVo ; and another part is dissipated 
by the oscillatory motion of the air left behind the aerofoil-that is, by the damping through 
viscosity of the fundamental and secondary waves created. 

The experimental tudy of the apparent stream deflection behind the aerofoil in the 
light of the ideas here developed is very important for many 
problems connected with the design of airplanes, propeller, and 
turbines. It must, however, be remembered that we have to do 
only with an apparent stream deflection, the real motion of the 
fluid behind an aerofoil or turbine wing being generally periodical. 

Short review of some propositions on vortices.-Before 
proceeding to examine the question of the tip vortices and the 
fundamental and secondary wave, I shall state briefly some well­
lmown propositions on vortices in general. 

Let us consider a small circle of radius r' rotating in its plane 
with an angular velocity w. Each part of the contour of this 
circle has a velocity equal to rw. If we now calculate for the 
contour of the circle, the quantity which in hydrodynamics is 
called the circulation-that is, the integral of the velocity v along 
the contour of the circle-we find (see fig. 33) 

(44) 

or 

(45) 
I 

w =2du 

) 
/ 

FIG. 33. 

where I is the circulation along the contour of the circle and du the area of the small circle. 
We therefore see that the angular velocity w of a rotating circle is equal to the circulation I 
divided by the double of the surface of the bircle. 

Let us now consider a fluid element having the velocity ('11" v, w) at a point (x, y, z) in a 
moving fluid mass. Let us draw through this point the axes X, Y, Z parallel to a system of 
triorthogonal immobile axes and calculate the circulation along an elementary contour with 
sides equal to dx and dy, as shown in figure 34. We have 

The quantity 

(46) 

( 
ov \,7 ( 0'11,) (Ov OU \,7 dI=udx+ V+ oX dx jY- 1£+ oy dy dx-vdy= ()x -oyjX dy 

which we designate by Wz is called the component of the vortex with reference to the Z axis. 
(Compare formula (45).) In a similar manner 

(OW OV) (OU OW) 
Wz = ~ 0 y - 02 ; W ll = 1- 02 - 0 x 

are the vortex components with reference to the X and Yaxes. We have 

w2 = W:z;2+ W1(2+ wi 
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The doubles of the vortex components 2w,tJ 2w1/) 2wz are the determinants of tbe matrix. 

II! ;y gz II 
'If, v w 

2wx 2w" 2wz 

As a consequence of continuity, the following proposition holds for vortices: 
If we have a vortex motion at one point of a fluid, we must necessarily have vortex motion 

at all the points of a line going through that point. Such a line of small cross section du at each 
point of which the vortex has a finite value is called a vortex filament. The quantity 

(47) 2w du= 1 

is called the intensity of the vortex filament. A vortex filament can never begin or end in a 
fluid. It must be a closed contour or have its ends on the boundary surface of the fluid. The 
cross section of a vortex filament can be variable, but its intensity is always constant along the 
whole filament-that is to say, for a vortex filament, we have 

2w du =Const. 

The vortex filament is always constituted of the same fluid particles-that is, the vortex filament 
moves with the fluid. A system of vortex filaments disposed close together form a vortex 
tube. 

Let us consider a fluid mass in motion with a vortex filament in it, and let us draw a surface 
across the fluid and take a contour on that surface. The circulation along the contour is equal 
to twice the sum of the elements of the surface multiplied by the components, along the corre­
sponding normal to the surface, of the vortices on that surface. (See fig. 35.) 

(48) 

where Wn is the vortex component normal to the considered surface. This last relation con­
stitutes Stokes's theorem. In the application of this theorem two cases have to be distinguished. 
If the contour, by progressive shrinking, can be reduced to a point without leaving the fluid, 
the space occupied by the fluid is said to be "simply connected." If, in ide the space occupied 
by the fluid, we have solid bodies or holes crossing the fluid mass, not every contour in the 
fluid can be reduced, by shrinking, to a point ; and the space containing the fluid is said to be 
" not simply connected." In a simply connected space, if the circulation along the contour 
has a finite value it means that vortices are crossing the inside of the contour and the double 
of the sum of tbt> components of the vortices normal to a urface containing that contour multi­
plied by the corresponding element:i of the urface is equal to the circulation along that con­
tour. In a. not simply connected space a finite value of the circulation can also mean that solid 
bodies or holes are crossing the inside of the contour. 

In a fluid mass in motion with vortices in it, the velocity at. each point depends upon the 
di tribution of the vortices. Each element of each vortex contrihutes to the velocity atel:Lch 
point. The components of the velocity at a point due to a vortex element ds of a vortex fila­
ment of intensity I is equal to (see fig. 36) 

(49) d
- _ 1 ds Sin <p 
u- 41!'r 

where l' is the di tance between the point considered and the vortex element, and <p is tbe angle 
between ds and 1'. The direction of the velocity du is normal to the plane containing l' and ds 
and has the sense of the rotation around ds in the sense of the vortex. The velocity at a point 
is the geometrical sum of the velocity componen.ts due to all the elements of the vortice con­
tained in the fluid. 
~ the case of one single rectilinear vortex filament in an infinite fluid mass, by reason of 

symmetry the velocity is the same for all the points at the same distance from the vortex. If 

• 
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we therefore calculate the circulation along a circle contained in a plane normal to the vortex, 
and having its center on the vortex, we get 

so that 

(1)0) 

1 = 2wdu = 2rrrv 

I 
V= 2rrr 

That is to say, the fluid velocity for points around a traight vortex filamrnt i equal to the 
intensity I of the vortex divided by 27r t,in1es the distance r froID the point considered to the 
vortex. '.rhe vortex i eU'doe. not move. 

Let us consider now the case of two straight parallel and infmite vortices of equal intensity 
I rotating in inven>e sen e and contained in an infinite fluid ma s . In figure 37 the vortices 
are represented in cros, section and in plane, and Lithe distance between the vortices. We 
will refer the vortices to a system of triorthogonal axes X, Y, Z as shown in figure 37, the origin 
being in the middle between the vortices and the Z axis being perpendicu lar to the plane con­
taining the vortices. 

Let us first calculate the velocity at the point A, at the distauce x from the origin O. due to 
one of the vortices. Applying the foregoing formula we have 

u= I dy sin tp 1
+00 

47rr2 
-00 

and from figure (31) we easily see that We have 

y=r cos tp; (L/2-x) =r sill tp 

from which follows 
.y 

L/2-x =ctg tp 

and 
dy -d tp 

L/2 -z = sin ztp 

Substituting these last in the foregoing integral we get 

7r 

u - .,.--:-=~-...,.. I 12 - 47r(L/2-x) _ 7r -sm 

2 
and integrating we finally have 

I 1 
u= 47r (L/2-x) cos tp 

7r 
2 

Considering x cqual to L/2 we will find the velocity of one of the vortices prorlucoo by the other 
which is equal to 

(51) 

This is the value of the velocity with which both vortices move parallcl to 01(' Z axis. For 
the velocity between the two vortice.<; produced by both we will have 

(52) 
I I IL 

V= 27r(L/2 - x) + 27r(Lj2 + x) = 2"'rr'(L""""2/-;-4---x=Z) 
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For poin ts in the middle between the vortices the velocity is equal to 

(53) 21 
V= rrL=4u 

For other points between the vortice the velocity follows a parabolic law, and, as a first approJ'­
imaLion, can be considered as nearly uniform in the middle part hetween the vorLice~ when the 
cnss se ·tions of the vortices are small relative to the distance between them. (See fig. 37.) 
We therefore see thttt the velocity of ~he fluid in the middle between the vortices is exactly equal 
to four times the \-eloeity of the vortices themselve and that the velocity of Lhe fluid between 
the v rtice3 relative to them is equal to twice the velocity of the vortices themselve, . 

We have now all the necessary references for the following:t 
The tip vortices .. - Let us consider an ae1'ofoil moving with a constant and uniform 

velocity F in a fluid mas and let u ' designate by dz an element of length of the aerofoil, z 
being the distance of the element of the aerofoil consideced from its middle cro s section. (See 
fig. 38.) Let dRy be the lift corresponding to the element of the aerofoil considered. The 
quantity 

i.3 the lift per unit of length at the di tance z from the middle cross section of the aerofoi1. 
According to Kutta's theorem (see Note 1) we must have 

(54) 

so that 

(55) 1= dRy 
5V.dz 

is the value of the circulation along such a contour as I, embracing the aerofoil at the cross 
section considered. (See fig. 38.) When z varies, and until we do not approach too near to 
the tips of the aerofoil, the value of 1 is nearly constant. As a first approximation for the 
mean valu e of 1 we can take 

(56) 

where L is the length of the aerofoil. Let us now move our contour to the tips of the aerofoil, 
and ju. t before the value of 1 begins to change we let the contour follow the fluid in its motion. 
According to a theorem of Wmiam Thomson (Lord Kelvin), the circulation along the contour 
moving with the fluid must be invariable, so that when the contour reaches such a position as 
II ('ee fig. 38) the circulation will have the same value as in the position 1. But in the position 
II we have no solid bouy inside the contour, and consequently we mu t, according to Stokes's 
theorem, have a vortex traver ing that contour. 

We so come to the conclusion that v01,tices must necessa1-iZy 1'Un o.fffrom the tips of ael'ojoils, 
nM that the mean value of the intensity of this vortex must be 

(57) 

According to this statemenL, the tip vortice dil"appear only when the lift vll.Jlishe ; that 
to say, when the relative wind blows on the aerofoil along the zero plane. 

Having established the value of the intensity of the tip vortices, let us now co n ider their 
infiucJlo'c on the air resistance of the aerofoil. For the simplicity of the explanation we will 

1 For more dot~i1ed references on vortices sec the clas ical tnmtise on mechanics by P aul Appell, "Troite de mecanique rationnelIe," Tome 
Ill, Chap. XXXV, p. 389, and p. 475, § 791, and also" Aeronautics in Theory and Exporiment," by W. L. Cowley and n. Lc'·y, Chap. III. 

• \ 
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put ourselves in the simplest case and will assume that the tip vortices are of small cross section 
compared with the length of the aerofoil, so that they can be considered as vortex filaments. 

If we follow an aerofoil moving with a constant velocity V, we see that the tip vortices 
run parallel to themselves, as should be the case for parallel vortices rotating in inverse senses . 
The velocity with which these two vortices displace themselves in the stream, at a distance 

..lI 

PIG. 38. 

from the aerofoil where the influence of the last can already be neglected, is, according to the 
foregoing, equal to 

I 
(58) U= 2710£ 
and is normal to the plane containing the vortices. The motion of the fluid between the two 
vortices in the middle part relative to the vortices is equal to 

(59) I 
2u=1rL 

So that the mean value of the flow velocity between the tip vortices relative to the aerofoil is 
equal to (see fig. 39) 

17+211, 

----- -- ---.:--- --

FIG. 39. 

We therefore see that as a first approximation we can consider the tip vortices as bisecting the 
angle which the mean value of flow velocity between them makes with the original direction of 
the stream running on the aerofoil (. ee fig. 39). We also see that the angle of deflection of 
the tip vortices downward is equal to 

(60) 

J II 
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Substituting the value of the velocity u by its expression (58), and in the last the circulation I 
by its value (57) we find 

(61) 

If there were no other circumstances producing the deflection of the stream downward, this 
would be the correct mean value of the deflection angle. 

If now, for the calculation of the part of the drag due to the tip vortices , we should apply 
the momentum theorem, a suming that the mean value of the velocity behind the aerofoil is 
as a first approximation the resultant of the velocity Vof the aerofoil and the velocity 2u= 
I/7rL, we would find, according to the calculation already made on page 34, that 

and substituting in the last expression the value of sin ~ given by (61) we would get 

kx sky 
ky = ..J1-s3ky2 

where by s we have designated the quantity 

b 
S=--

27r L 

or, finally, 

(62) 

which expression gives us a first approximation to the value of the drag due to the tip vortices. 
If we compare the values which the last formula gives for the drag with those values which 
direct experience shows for actual aerofoils, it will be easy to see that the drag of an aerofoil is 
much larger than that calculated by the formula (62).1 We afterwards see that the value of 
the drag given by the formula (62) decreases with the aspect ratio of the aerofoil and is equal 
to zero for an infinite value of the aspect ratio. These last conclusions are very important. 
They first show us that that part of the drag of an aerofoil which is due to the tip vortices 
practically disappears for a value of the aspect ratio greater than a certain one. We afterwards 
see that the most important part of the drag, practically the whole, for a sufficient value of the 
aspect ratio, is due to other circumstances than the tip vortices, which circumstances are, as 
we already know, on one hand the energy dissipation in the direct neighborhood of the aerofoil­
that is, skin friction and turbulence-and on the other, the fundamental and secondary waves. 

We can now perfectly conceive the importance of the phenomena which take place on the 
surface of contact of the solid and fluid bodies. We can not expect to be able to calculate the 
drag of an aerofoil before these phenomena are fully understood, as has been already stated in 
the preamble. 

I The easiest way to see It Is the following: 

Remarking that in the formula (62) 32kll' is a very small quantity we can write 

ks/ky -ak,- b 1<, __ b _. Ki 
2rL 2rL~ 

For actual aerofolls, as mean values we have 

b/L-l/6; 2r 1 ~ ::.:0.2; K-l/200 

So that 

/c.}/cy ::': 1~0 
Which is out of proportion with any observed value for the drag-lift ratio. 

\ 
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All this discussion brings us to very important conclusions. We have fully understood 
the influence of the aspect ratio on the drag and, so to say, the mechanism of its influence. 
When the aspect ratio increases, the part of the drag due to the tip vortices practically disap­
pears, the influence of the tip vortices becoming negligible. The last fact taking place, the 
shape of the tip vortices is also negligible. It follows that the shape of the tips of the aerofoils 
has a negligible influence on the air resistance of the aerofoil, if only the aspect ratio has a 
sufficient value. 1 

We can now formulate the two following propositions: 
1. The tip v01'tices have an influence on the drag oj the aerojoiZ; but this dec1'eases with the 

increase oj the aspect ratio and practically disappears jor a certain value oj the last. 
2. When the aspect ratio oj an ae1'ojoil has a sufficient value, the influence oj the j01"m oj the 

tips oj the aerojoiZ on the air resistance is negligible. 
These two last conclusions are in full agreement with all experience with aerofoils up to this 

time. 
We have been able, by the analysis of the tip vortices phenomenon, to understand the 

reasons which require for the aerofoils a certain value of the aspect ratio and have deduced 
the slight influence of the tip forms when the aspect ratio has a sufficient value. 

Short Review of the Properties of Systems of Parallel Vortex Rows.-We will call 
vortex row a system of an infinite number of infinite rectilinear parallel and equidistant vortices 
of infinitely small cross section and of strength I equal in magnitude and sense, disposcd on one 
straight line. We will give a short review of the properties of systems oj parallel vortex rows, 
which play a very important role in the phenomenon of fluid resistance. 

The fluid mass in which the infinite parallel rectilinear vortices are considered is assumed of 
infinite dimensions in all senses, having in infinity a velocity equal to zero, or moving as a whole 

'(j 
J<. 

o 

o 

o v 

-------~f{ (ly) 

o 
I 
I 
I 

I 0 
I 

o 

with a velocity constant in magnitude and direction, inde­
pendent of the motion which can take place inside the fluid. 

We consider the whole system of vortices cut by a plane 
normal to them and their mutual positions defined by the 
positions of their sections in that plane. 

We will first consider in their general outlines the condi­
tions which must be satisfied by a system of infinite parallel 
and rectilinear vortices in order to maintain an invariable 
configuration. 

X In figure 40 are represented the sections of a system of 
FIG. 40. vortices, as above mentioned, cut by a plane normal to them. 

The vortices are assumed to maintain for one moment an invariable configuration and arc 
referred to the orthogonal (X, Y) axes moving with the vortex system. Let us concentrate 
our attention on one of the vortices of the system, say A, with the coordinates x and y, and 
consider this vortex A undergoing an infinitely small displacement ox and oy relative to the 
other vortices, the last maintaining their configuration, and let u and v be the components of the 
velocity of the vortex A. Ai3 is well known, u and v are the components of the velocity pro­
duced at the point x, y by the other vortices of the system. The displacement of the vortex 
A will produce the variations du and dv of its velocity components, which will represent the 
components of the velocity of the vortex A relative to the other vortices, and we will have: 

ou ou 
du=ox oX+ oy oy 

ov ov 
dv=ox oX+ oy fly 

The vortex A will be stable for every virtual displacement (ox, fly) provided du and dv, respec-

1 And if the tips do not have any extravagant form which could give rise to additional local air resistance. 
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tively have signs opposite to the signs of the displacements ox and oy. But it is easy to see 
that, so long as 

OU OU ov ov 
ox' oy' ox' oy 

have finite values, it is always possible to imagine a displacement (ox, oy) for which du and 
dv will have the same signs as ox and oy. In other words, a stable displacement of a single 
rectilinear vortex among others maintaining their configuration appears as impossible. 
But in the case of 

(63) oU=O' oU = O' ov = 0' ov =0 
ox ' oy ' ox 'oy 

we have 
du=O; dv=O 

for all infinitely small virtual displacements of a single vortex. Under such conditions the 
vortex considered will be in a state of neutral relative equilibrium among the other vortices. 

As for the space between the vortices, we must have the equation of continuity satisfied; 
that is, 

as well as the vortex intensity equal to zero 

ou _ ov =0 
oy ox . 

The four conditions (63) are reduced to two conditions. It is thus sufficient to have two of 
the quantities (63) equal to zero in order to have a neutral state of equilibrium of a single vortex. 

It is easy to see that the conditions (63) mean that the velocity (u, v) must have a maximum 
or minimum at the point where the vortex A is disposed. 

When the relations (1) are satisfied, a small displacement of the vortex A does not produce 
a change of its velocity. But let us consider the influence that the displacement of the vortex A 
can have on the other vortices of the system, say on the vortex B, for example. Let us imagine, 
first, that the vortex A undergoes a displacement or along AB only (see Fig. 41). Let [be the 
strength of the vortex A. Before its displacement the vortex A was producing in B a velocity 
normal to AB, that is, to r and equal to [ /27fr, which, combined with' the velocities that the 
other vortices of the system produce in B, keep this vortex in relative equilibrium. After its 
displacement, the displaced vortex A will produce in B a velocity equal to [/27f (r+or). We 
thus see that we can consider the displacement of the vortex A as producing in B an additional 
velocity equal to 

(64) 
[ [ [ 

27f(r + or) - 21T1' = - 21T1'2or 

which is normal to r (see Fig. 41). In the same manner it will be easily seen that the displace­
ment on of A normal to r will produce in B an additional velocity directed along r and equal to 
(see Fig. 42) 

(65) 
1 ---on 
2~ 

If we now let B displace itself in the direction of the additional velocity communicated by 
the displacement of A, we will at once see that such a displacement of B will produce in A the 

additional velocities - 2:r Kor along l' - 2~2 Krm along the normal to r where K is a factor of pro­

portionality, which will be exactly inverse to the displacements or and on when the two vortices 
considered are of inverse sense (see Fig. 43), and which will have the same senses as or and rm 
when the two vortices considered have the same senses (see Fig. 44). 

\ 
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FIG. 41. 

FIG. 43. FIG. 44. 

FIG. 45. 
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The foregoing preliminary discussion is given here only to show the nature of the question. 
It will, however, allow us to arrive at a general understanding of the stability conditions of 
vortex rows. 

Let us consider first one vortex row, i. e., all the vortices in the same sense (see Fig. 45). 
If we displace one of the vortices 01 the row, say A, first to the position A', considering the 
other vortices for one moment immobile, it will be easy to see that in the position A' this vortex 
will get from the other vortices an additional velocity in the sense of the arrow 1. If we displace 
this same vortex to the position A" it will get an additional velocity in the sense 01 the arrow 2. 
Thus for neither displacement will there appeal' an additional velocity directed toward the 
original position of A. If we now consider the additional velocities which the vortex will receive 
from the displacements of the other vortices produced by the displacement of the vortex A, 
it will be easily seen from the foregoing, since all the vortices have the same senses, that these 
additional velocities will only increase the original displacement of the vortex A. Thus one 
vortex row appears as an unstable configuration. 

Let us now consider two parallel vortex rows rotating oppositely in each row. The 
additional velocity given each displaced vortex will consist of the velocity due to its own dis­
placement and of the velocities this vortex gets due to the displacements of the other vortices 
produced by its own displacement. This last additional velocity which is caused by the 
vortices of the same row as the vortex considered, has a destabilizing action, as all the vortices 
of the same row rotate in one sense, but the additional velocity caused by the vortices of the 
other row will produce a stabilizing action, as they rotate in inverse sense. We thus can conceive 

FIG. 47: 

that two parallel rows of vortices with inverse rotation in each row can have a stable configura­
tion. The investigations of Karman have shown that two parallel rows such as represented in 
Fig. 46 can not be stable, but two rows in quincunx as represented in Fig. 47 can be stable for 
a certain value of the ratio d/2l= A of the distance d between the two rows to the distance 2l 
between the vortice in each row. The most probable value of X for a stable configuration of 
two vortex rows in quincun.x seems to be 1 

(66) 
d 
2l=X=O .283 

If a single vortex row could be stable it is easy to see that it would be immobile, because 
the velocities which all the vortices communicate to one of them mutually balance. As for 
a quincutLx arrangement of vortex rows, it is easy to see that it will move with a constant 
velocity parallel to the general direction of the rows (see Fig. 47) because each vortex of one 
row will receive no velocity from the vortices of the same row, but from each two vortices of 
the other row, disposed symmetrically relative to the vortex considered, it will receive a resultant 
velocity directed along the direction of the row. 

Let us calculate the value of this velocity. For that purpose let us first calculate the 
velocity produced by a single vortex row in a point P. Let us refer the vortex row 
_____ -A'a. A'v Av Aa, As __ - - - - to a system of orthogonal axes X'O' Y' whose X' axis is parallel 
to the vortex row considered, and let us also consider the system of axes XO Y parallel to the 

I V. Karman has published two papers on that question. In his first paper "Uber den Mechanismus des Widerstandes, den ein bewegter 
Korper in einer Flussigkeit erfahrt" Nachrichten von der Koniglichen Gesellschaft der Wissenschaften zu Gottingen, 1911, p. 509, Karman found for 
~ the value 0.367. N. Joukowski has made some experiments which seem to verify this value. See his" Aerodynamique," Paris, 1916, p. 20;. In 
his second paper "Uber den Mechanism us des Flussigkeits und LuItwiderstandes" Physikalische ZeitschriIt, January 15, 1912, Karman finds (or 
~ the value 0.283 and produces the results of experiments, also verifyiug this last value. This question thus demands further investigations. 

147498--20--~o. 28----4 
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system X'O' Y' but whose origin 0 is midway hetween the yortices A'I and A (see fig. 48). Let 
(~, 1/) be the coordinates of the point P in reference to the axes X'O' Y' and (x, y) the coor­
dinates of the same point in reference to the XO Y axes. The coordinates of the origin 0 in 
reference to the axes X'O' Y' will be designated by (~o , 110) ' We have 

(67) 

The coordinates of any vortex A of our row in reference to the X'O' Y' axes will be designated 
by (a, b). As is well known, we have 1 

(6 ) u-iv=.L " _ 1_ 
27f'/,LJz-a 

with 

and where u and v are the components of the velocity produced in the point P by the vortices 
of the row considered, I the intensity of each vortex of the row. 

y 
1 

I 
I , 
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I 
I 
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FIG. 48. 

For the vortices of our row disposed symmetrically relative to 0, the quanti ty a has for value~ : 

Thus 

and, consequently, 

with 

we thus see that 

a l = (~o + l) +i110 
a3 = (~o + 3l) + i110 
a s = (~0+5l) +i110 

z- at = (x-l) +iy 
z-as=(x-3Z)+iy 
z - as = (x - 5l) + iy 

p=x+iy 

a'i = (~o-l) + i110 
a's = (~o - 3l) + i110 
a' 5 = (~o - 5Z) +i110 

z - a'i = (x + l) + ip 
z- a's = (x + 3l) +iy 
z - a' 5 = (x + 5l) + iy 

2p 
0'- _ !'t 

• See ror example "Traite de MecaniquG Rationelle," by Paul Appell, Vol . III, p. 481. 
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If we now remember the well-known fOl'mula 

k=oo 

\l 4·28 
tg 8= LJ(2k-1)2r - (28)2 

k=l 
and identify this formula with 

we get 

and thus 

or 

7r . h7r 
I tg 2Z x + ~ tg 2Z y I t x' + i t h ' - - - g g Y 
4l 1 2' t 7r t h 7r -Ifl1- 2i tg x' tgh y' 

- ~ g2Z x g 2l Y 

introducing the notations 

Thus 
. 1 tg x' +i tgh y' tg x' (1- 2 tgh2y') . tghy' (1 + 2 tg2x') 

- ~u- v= 4l1- 2i tg x' tgh y' = 1 + 4 tg2x' tgh2y' +~ 1 + 4 tg2x' tgh2y' 

and we finally find 

(69) 
1 tgx'(2tgh2y'-1) 1 tgfz (~-~o) [ 2tgh

2 
(7J-7Jo) iz- 1] 

v = 4Z 1 + 4 tg2x' tgh2y' 4Z 7r 7r 
1 +4 tg2 2Z (~-~o) tgh2 2Z(7J-7Jo) 

1 tghy'(l+2tg2x') I tghiz(7J-7Jo) [ 1+2 tg2 iz (~-~o)] 
u=-4Z 1+4tg2 x'tgh2 y'=-4Z 1+4t 2~(t_t)t h2~( _ ) 

g 2Z <; <;0 g 2Z 7J 7Jo 
(70) 
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These last formulae constitute the general expressions for the components u and v of the velocity 
at a point P (~, 7J) produced by a single vortex row. 

I will hore note that, since for 

(71) 

we have 
v=O 

for any value of ~, a single vortex row has around it such a flow that at the distance (7] -7]0) 
fixed by the relation (71), we have two streamlines that are straight lines. 
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If we now apply the formulae (69) and (70) to a ystem of two vortex rows in quincunx in 
order to find the velocity communicated to one row by the other, as we have ~ = ~o for each 
vortex, we find 

and 

(72) 

where 

v=o 

I 7f 1 7f 

U= - 4l tgh 2l (1/-1/0) = - 4l tgh 2l d 

1/ - 1/0 = d 

and for the stable configuration of two vortex rows in quincunx with A = d/2l = 0.283 we find 
for the magnitude of u the value 

(73) 

~, P, 

I 
I 

I 
u""0 .35 2l 

I 
I t ... 

.Yl 

I 
I 

I 
I 
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I 
I 

I 
I 

~8 
FIG. 49. 
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Let us further calculate the momentum q counted per unit of vortex length that corresponds 
to two vortices A and B of equal intensity I rotating in inverse senses which we will refer to 
the system of !{O Y axes. (See Fig. 49.) It is easy to see that the component of the momentum 
of the two vortices in the direction AB is equal to zero. Because if we consider a :fluid strip 
parallel to the direction of AB such as blb1 the component of the momentum along the direction 
of AB of the :fluid element situated at a point such as Pl is equal and directly opposite to the 
momentum of the :fluid element p'l symmetrical to Pl in reference to the axis Y (see Fig. 49). 
The component of the momentum along the direction of AB which corresponds to the whole 
strip b

1
b

1 
is thus equal to zero. As the same takes place for any :fluid strip parallel to AB, 

the resultant momentum corre ponding to the two vortices A and B will be normal to AB. 
For the calculation of this momentum, let us divide the fluid into strips normal to AB such as 
b

2
b

2
• The component of the momentum of the :fluid element situated at a point such as P2 

along the normal to AB, and due to one of the vortices is equal to (see Fig. 49) 

adx dy . -.!.... . h/2 - x 
211"r r 
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when we note that 

We thus find 

FIG. 50 . 

:~~lm1~1 
I 
I 
I 
I 
I 
I 
I 
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which quantity appears to be independent of the coordinate x. It will be easy to see that this 
last momentum is positive for the vortex B for all the strips at the left of B and negative for all 
the strips at the right of B. The inverse takes place for the vortex A (see Fig. 50). Thus when 
we calculate the total momentum q, the momentum of the strips outside A and B will mutually 
cancel, and there will be left the momentum of the strips between A and B. We thus find 

(74) 
fJl 

q=2'2' h=8flL 

where h is the distance between the two vortices considered. 
Let us now consider a system of two parallel rows of vortices in quincunx. We can always 

conceive this system as built up by the superposition of two identical vortex row system.s with 
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the intensity of each vortex equal to 1/2. (See Fig. 51.) To each pair of vortices of intensity 
1/2 will correspond a momentum normal Lo the line joining them and equal Lo 

1 
q=ah 2" 

If we consider the sum of all Lhis momenLum for the whole sysLem, it is easy to see that we will 
get only a resulLant along Lhe general direction of the rows. Each pair of vortices of intensity 
1/2 will con tribuLe to this resultant by a momentum equal to 

(75) 1 d I 
ah - . - =ad -

2 h 2 

and the resultant momentum counted per vortex of intensiLy 1 and per unit of length of the last 
will thus be equal to 

;. 
~ 1Z1 -- 9 C 0-9 f ---·-----:~~11-':~-- -- :--- - ------,~~':~- -- : ---------; -~------

71;' d" I ""2" I ;' 
// 1 /(5;] ,,:; / 

-I L-:': __ L__ -L-~~E'~:--~~~;L-------='-f~~ ----------------
I j i 

FIG. 51. 

Summing up from the foregoing all the data relating to a system of two parallel vortex 
rows in quincunx we see that-

The quincunx system maintains a stable configuration for 

(76) 
d 
2Z= 0.283 

The system communicates to itself a velocity parallel to the general direction of the rows 
equal in magnitude to 

(77) 
1 7rd 1 

u = 4Z tgh 2Z ........ 0.35 2£ 

Tho resultant momentum of the sy tern is directed along the general direction of the rows 
and counted per vorLex and per unit of length of the last, is equal to 

(78) 

The Fundamental and Secondary Waves.-We will now make an attempt to calcu­
late the order of magnitUde of the flmdamental and secondary waves. As we have seen in the 
foregoing, the fundamental wave will be produced by the vortices in quincunx built from the sur­
faces of discontinuity which are, in the limiting caso, the boundaries of the 'wake behind a body 
or aerofoil. The secondary wave is produced by the vortices in quincunx built from the 
Kirchhoff-Lord Rayleigh surfaces of discontinuity. In some cases, in all probability only one 
of the waves will be formed; in others both waves will appear simultaneously and ono will 
propagate itself in the other. The study of the conditions of formation of the fundamental 
and secondary waves demands further deep investigations. I will here consider only the cases 
i.n which each kind of wave appears separately. 
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Let us consider a. solid body or an aerofoil disposed in a uniform fluid stream having a 
general velocity equal to Y. If a system of two parallel vortex rows in quincunx is assumed 
to appear behind, the momentum counted pel' unit of time, corresponding to the vortices 
appearing, will be equal to the momentum per vortex, multiplied by the number of vortices 
formed. As the vortex in the flow will have a velocity equal to u the number of vortices 
formed will be equal to 

and the corresponding momenium equal 

(79) 

to 

V-u 
2~ 

adI V -u. 
2l 

To a first approximation we can assume the drag of the body or aerofoil considered (counted 
per unit of length) equal to the last quantity-that is 1 

V-u 
(~O) Rx = adI ~ = kxab P 

or, introducing for u and d their values in (77) and (76), we get 

(81) I ( 0.35 I) kxb=0.283 V 1---W V 

The following considerations allow us to estimate the value that the intensity of the vortex 
III quincunx built behind a body or aNoroil mfly have. 

v, __ _ 
~,--------2l----------~--------2l ------~ 

L ~~ 4 ~B 1 
I-----l : l ----l 

I 

~---
FIG. 52. 

Let us consider in a fluid flow a surface of discontinuity, or vortex sheet, on both sides of 
which we have a finite velocity difference equal to w' = V i - Vz (see fig . 52). For a contour 
such as C drawn between two points A and B of the surface, whose distance is 2l, the circulation 
will have the value 

2l Vi - 2l Vz = 2l (Vi - Vz) = 2lw' 

When now the vortex sheet considered goes over into a row of vortices whose mutual distance 
is 2l, in the ideal case the circulation will remain invariable, and if a vortex is built between the 
points A and B, the intensity of it will be equal to 

(82) I =2lw' 

Thus in the case of the fundamental wave we will have 

(83) w' =W and I =2lw 

where w is the mean wake velocity; and in the case of the secondary wave we will have 

(84) w' = Vand I=2iV 

the fluid inside the Kirchoff-Lord Rayleigh surfaces of discontinuity being at rest and the 
velocity on t.he surface being equal to V. 

I Tha whole purpose of this paper is to be first of 011 qu ite elemcntro.ry. Tbat is why I bave al!o" 'ed m)-scIr to give tbe foregoing formula, 
which is not quite exact, the flow periodicity behind the body and tbe pressuro difference in front find behind ha\-ing been neglected. The error 
committed using this formula can reacb 30 per cent; thv,i is wby this formula Ri-. es only an idea of tbe order of magnitude of the quautities considered , 
wbieb Is tbe ouly thing we wish to reach here. 

\ 

) 
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InLroducing Lho valuo (82) of I in (81) we find 

kxb=0,283· 2l ~ (1-0,35t:) 

and Lhus for Lhe wave lengLh 2l wo got 

(85) 2Z= - w' (kxb __ W') 
0,283 V 1- 0,35 V 

Thus at first approximaLion the length of the fundamental wave appears equal to 

(86) 2l= kxb 

0,283 ;( 1-0.35;) 

and t.he length of the secondary wave equal to 

( 7) 2Z""5,4 kxb 

To give a concrete example, let us take an aerofoil with 

b=2 mt.; kz=0.05 

and assume the ratio wi V to be of the order of 0,01,1 
In such a case, for the length of the fundamental wave we find 

?z"" 0.01 ""3 
'" =0.283 . 0.01 5 mt. 

and thus 

and 

d=0.283 . 2l~10 mt. 

For the length of the secondary wave we get 

2Z=0.1 . 5.4""0.5 mt 

d""0.15 mt. 

Secondary waves have been observed by several experimenlators, and are fully of the 
order of size given by the foregoing formulae. But fundamental waves, as far as the author 
has knowledge of the subject, ha'Ve never been experimentally observed. The cale of this 
phenomenon shows the great interest of its experimental sLudy. The possibility of the for­
mation of the fundamental waves explains the action which bodies moving in a fluid may 
have on oach other when they approach one another, as has been observed in ome cases be­
tween airplanes and ships. The phenomenon of the fundamental wa'Ve indicates also how 
complicated is really the comparison of the fluid resistance of a body moving in a free and 
in a closed space. I will, finally, mention once more the fact that the phenomenon of the 
fundamental wave is a consequence of the fluid viscosity and can not be conceived in an ideal 
fluid. 

The Pressure Distribution on the Surface of the Aerofoil.- One quest-ion has 
been left so far without discussion: It is the pressure distribution on the urface of the aerofoil. 
The general outlines of this phenomenon are easy to understand. The velocity of the flow 
running on the aerofoi1 is increased above the aerofoil amI decreased below, which has flS a 
direct consequence the decrease of pressure on tho upper surface and the increase of pressure 
on the lower surface of the aerofoil. But we are not able to make the exact calculation of the 
pressure di tribution along the surface of the aerofoil. The pre sure distribution is very 
closely connected with the phenomena which take place on the surface of contact of the fluid 
and solid body. Until some new conception throws a new light on these phenomena, it doos 
not seem that the pressure calculaLion can be started with any success. The general ideas 
which were clevelopect in the preamble indicate the way in which tho solution of the problem 
will probably be found. 

1 The value of wi V is connected with the value of kz . The elementary considerations developed in the beginning of this chapter may be used 
to find the mutual order of magnitude of kz and wi V. 



NOTE I.-Generalization and General Discussion of Kutta's Theorem on Circulation. 

The circulation theorem which I have in view in the pr sent note was fu'st indicated for a particular case by W. M. 
Kutta.' Soon afterwards, Kutta 2 and Joukowski 3 have recognized the generality of this theorem. This theorem 
is announced as follows: 

When a rectilinear and ttniform fluid current, having at infinity the velocity V, flolUs normally to the generatrix of an 
infinite cylinder from any section, and when the circulation along a contour embracing the cylinder and situated in the plane 
of one of its orthogonal sections has afinite value I , the component Ry of the resultant force oj the fluid on the cylinder, taken 
along the normal to the velocity and referred to a unit length of the last, is equal to the product of the velocity V, the circulation 
I and the density of the flUid: The sense from Ry to V is coincident with the sense of the circulation. 

According to this theorem, the lift produced by a unit length of the cylinder considered is expressed in magnitude 
by the following formula : 

Ry=5V I 
We shall establish two fundamental and quite general relations from which the circulation theorem will appear as a 
particular case. 

--> 

x 
Fro. I. 

Let us embrace the infinite cylinder considered by any contour disposed in the plane of one of its orthogonal 
sections. Let W be the velocity of the fluid at the point (x y) of the contour; u and v the components of the velocity 
Walong the axes (see fig. 1) ; dx and dy the projections of the element of the contour on the axes. Let us designate by 
X and Y the components of the resultant force of all the exterior forces applied to the fluid contained in the contour 
considered and let us apply the theorem of momentum to the motion of the portion of the fluid considered. We then 
have 
(1) Y=fvdm; X=fudm, 

the integral being taken around the contour and dm representing the fluid mass which flows out per unit of time through 
an l ement of the contour. Let us designate by '" the current function. By the definition of that function, we have 
W ~=U", 
and also 
(3) 

with 
(4) eN eN 

u=oy ; v=-ox 

Substituting in the first of the equations (1) the value of dm taken from the equation (2) we obtain 

(5) Y=flvd",=f5v(udy-vdx) 
or, 

Y=/o[v(udy-vdx)+u2dx-u2dx] 
=flu(udx+vdy)-)l!(U2+v2)dx; 

and, remarking that 
(6) udx+vdy=dI 

, W. M. Kutta. Illustrirte Aeronautische MitLeilungen, 1902. 
' w. M. K ulta. Sitzungsberichte der Koruglichen Bay erischen Akaderrue der Wissenschaflen, MUnchen , 1910 and 1911. 
3 N. E . Joukowski. Geometriche Untersuchungen tiber die Kutta'sche stromung, Mosco\\", 1910, 1911. See also his course" Aerodynamlque," 

Paris, 1916, p. 139. 
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is nothing else than the flow dI along an element of our contour, in a counterclockwise direction, i. e., a direction such 
M will turn the axis of X into that of Y, we get 

(7) Y= f hdI- f HVZdx 

and finally, integrating by parts the lirst term of the second member of that relation, we get 

(8) Y= [ liuI- f lilduJ - f HPdx 

which expression holds for any contour and constitutes the first of the relations we wished to get . 
Applying that relation (8) to a contour along which 

we easily Bee that we have 

(9) 

and conBequently Yreduces to 
(10) 

v=o; U= V=Const. 

JoIdu=O; JoW2cL1:=O 

Y=IiVI 
I being the circulation along the contour considered . 

Following the same way with the second of the equations (1), we get 

(11) X= fliudf= fliu(udy-vdx) 

{I2) 

(13) 

= J Ii(u2dy-uvdx-v2 dy+v2dy) 

= f li (U2+v2)dy-JIiV('tUia:+vdy) 

X= fliW2dy- JlivdI 

X= f IiW2dy- [IiV 1- fliIdv J 
The last of these equations constitues the second relation we wished. 

Applying this last relation to a contour along which 
v=O; U= V=Const. 

we eMily see that we have 
(14) X=O; 
all the three termsoft.he second member of the relation (13) being equal to zero . 

Let us now stop to note the exact interpretation of the relations (10) and (14). As it has been indicated, X and Y 
are the components of the resultant forces of all the exterior forces applied to the volume of fluid contained in the con­
tour considered. These forces are: First, the pressures of the cylinder on the fluid, which are equal and opposite to the 
pressures of the fluid on the cylinder ; second, the exterior pressures on the contour. Let us consider a contour over 
which v=o; U= V=Const. and which is limited in one sense by two stream lines sufficiently distant from the cylinder 
so that they are parallel to the X axis, and in the other sense by two lines perpendicular to these stream lines. Along 
the stream lines parallel to the X axis we can consider the Bernouilli constan t as being effectively constant, and in con­
sequence the pressure P constant and equal to the exterior pressure Po, the velocity Vbeing constant. Under this condi­
tion the component along the Yaxis [rom the exterior pressUl'es on our contour will be zero, and Y ,nil represent the 
negative of the component of the pressures of the fluid on the immersed cylinder. The expression (10) consequently 
gives us for the numerical value Ry of the lift of the fluid on our cylinder Ry=1i VI. But if we consider a stream line 
which flows near our cylinder, there must be some interior loss through viscosity along this stream line because each 
immersed body gives rise to drag. The Bernouilli constant along BUch a stream line mu t necessarily decrease, and 
when we reach the side of the contour, parallel to the Yaxis, where the velocity V ha again taken its original value, 
the pressure there will not take its original value Po, the Bernouilli constant having decreased. The relation (14) 
consequently expresses the fact that the component along the X a·xis of the resultant force of the exterior pressures on 
our contour is exactly equal to the drag, and this still in the case when the sides of ~ur contour are moved to infinity. 
In the IMt case, the exterior pressures tend to their limit value Po, but this is not reached; and the integral 

fpdy 

always remains exactly equal to the drag. Messrs, Kutta and Joukowski, who were the first to establish the relations 
(10) and (14), have limited themselves to a consideration of a perfect fluid. In that case, having no interior losses, the 
Bernouilli constant has an invariable value along any stream line and the relation (14) expresses, then, the fact that 
the drag of an immersed cylinder is zero. But it is ab olutely unnecessary to limit ourselves to a perfect Quid, since 
the theorem of momentum from which the equations (10) and (14) are a direct consequence, is applicable whatever 
the interior forces acting on the considered system are. 

We are thus brought to the general conclusion that, for any contour surrounding an immersed cylinder, the fol­
lowing general relations must hold: 

(15) Jpdx-Ry= fliv(udy-vdx)= fliudI- fIiW2dx=[ouI- f li 1du]- fliW2cL't 

(16) J pdy-Rx= fliu(udy- vdx)= J oWZdy- f livdI= f IiW2dy-[livI- flildv] 

which connect the lift and drag of the cylinder, referred to a unit length of the last, with the flow around this cylinder. 
In the application of these formulas, three particular CMes have to be distinguished: 
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1st. The formulas are applied to the contour of the cylinder itself. The contour of the cylinder being a stream 
line through which we have no flow, we must simply have 

R y= f pdx; R.= f pdy 

which is the case considered in classical hydrodynamics. 
2d. The formulas are applied to a contour which consists of stream lines and normal lines. (For the definition 

of the last lines, see Note II.) In that case the integrals which figure in the second members of the relations (15) and 
(16) have to be calculated only along the normal lines. 

3d. The Kutta case 

Ry = -0 VI; R.= f pdy 



NOTE ll.-Generalization of the Bernouilli Theorem. 

For the determination of the pressures in a fluid, we have the 13ernouilli theorem, which fumishes us the law of 
variation of pressure along a stream line and also along a vortex line. We also know that the Bernouilli theorem is 
applicable to the whole fluid, considering the Bernouilli constant as invariable when the fluid motion is irrotational. 
But in the general case, when we go from one stream line to another, the Bernouilli constant changes its value. What 
is the law of variation of the Bernouilli constant in the whole fluid ma s in the general case? It is the solution of this 
important question which the present note gives. We so arrive at the general solution of the problem of the distribu­
tion of pressures in a fluid mass. 

Let us consider a fluid mass in a steady state of motion. Let us consider in this fluid mass the stream line curves 
and also two other families of fundamental curves: the normal lines, defined by the property that the tangent at each 
point to those curves coincides with the principal normal of the stream line passing through this point, and the binormal 
lines, defined by the property that the tangent at each point coincides with the binormal to the corresponding stream 
line. The stream lines, the normal lines, and the binormal lines form a system of triorthogonal curves. 

These curves have for eq uations: 
The stream lines: 

~=c!J!.=r!!. 
u v w 

The normal lines: 
d.c dy dz 

Bw - ev=eu-Aw= Av-Bu 
The binormal lines: 

dx dy dz 
A=]3=C 

In these equations u, v, ware the components of the velocity of the fluid and A, B, Cthe determinants of the matrix: 

I ~ ;'11 : 11 
dt dt dt 

For example 

A=Vdw_w~ 
dt dt 

expressions in which~, 1ft, ~~ are the total derivatives; for example, 

du OU 0'11 ow 
dt =u ox+VO'lj +w oz 

the motion being steady. 
Let us consider a fluid element contained in the elementary parallelepiped, whose edges dr, dv, d(3 are respectively 

directed along the stream lines, the normal lines and the binol'mallines. On these curves, we get the following positive 
senses: On the stream lines, the sense of the velocity of the fluid particles ; on the normal lines, the sense toward the 
center of curvature of the corresponding stream lines; on the binormal lines, the positive sense is chosen in such a way 
that the trirectangular trihedral (dT, dv, d(3) be positive. 

Let us apply the d'Alembert principle to the fluid element dr, dv, d(3 and let us consider for the sake of simplicity 
the fluid as incompressible and having no weight (see fig. 1). The resultant of the exterior pressure on the fluid element 
has for components: 

- ~ dT dv d(3 along dr 

- ~ dr dll d(3 -. - dv 

- 9.J! dT dv d{3 -. - d(3 ov 
p being the pressure at the point considered. 

The resultant of the forces of inertia applied to that element has for components: 
dV: - at odr dvd{3 along dT 

_y2 odr dv d{3 -. - dv 
p 

o -. -d{3 

o being the density of the fluid at the point considered; V the velocity, and p the radius of the principal curvature. 

60 



(1) 

(2) 

(3) 

AN INTRODUCTION TO THE LAWS OF AIR RESISTANCE OF AEROFOILS. 

According to the d' Alembert principle, we must have : 
op dV 
ch +0 (It= 0 

op V2 
ov +0-;;=0 

op 
ofJ =0 

61 

This system of relations represents the eq uation of motion of the fluid referred to the triorthogonal curvilinear system of 
stream lines, normal lines and binormal lines, which can be called the natural curvilinear coordinates of the fluid or. 
shorter, the natural coordinates of the fluid. 

1. The equation (1) brings us directly to the Bernouilli theorem. We have 
op dV op dVdr op dV 
Or + 0 Tt=Or + 0 dr (ft=Or + 0 V dr = 0 

and integrating along a stream line, we get 

(4) 

a relation which constitutes the Bernouilli theorem, C being the Bernouilli constant. 

1/ 

~ ______ ~ __ ~c 

FIG.!' FIG. 2. 

II. The equation (2) gives us the distribution of pressure along the normal lines. Integrating this equation along 
the normal lines, we get 

(5) 

This last equation is susceptible of the following important transformation: 
Let us designate by W T , wv, w{J the components of the vortex and by Vn Vv, V{J the components of the resultant 

velocity Valong the directions dr, dv, dfJ at the point considered. We have 

VT = V; Vv=O; V/l=O 

The relations between the double of the component of the vortex wand the component of the velocity are given by 
the determinants of the matrix 

(6) 

We thus have 

(7) 

or 

(8) 

On the other hand (see fig. 2). 

(9) 

dO being the contingence angle. 

line, we get 

(10) 

2 
oV. oVr 

w/l=7);-~ 

oVv VdO V 
7);=~=p 

Substituting this laflt value of 0 ;:'v in the relation (8), for an integration along a normal 

dV 
dv= -V----

- -2w{J 
p 
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and substituting this last value of dv in the equation (5) , we get: 

(ll) 
I

I>VdV 

p+ 1-2Pi=C 

Finally, the integral of this last relation is susceptible of the following transformation 

I 

IJVdV = j IJVdV[ I-(1-2Plt)+(1-2P'¥) ] 
w{J w{J 

1-2p V 1-2p V 

j JIJVdV-.2PC;: 
= IJVdV-

w{J 
1-2p V 

=IJv2- I oVdV 
2 ~-1 

2pw{J 

and the equation (11) takes the form 

(12) p+IJ~2=C+I IJi
dV 

---1 
2pw{J 

which relation gives the distribution of pressure along the normal lines. 
We easily see that the last equation has the form of the Bernouilli equation, only the integral which figures in the second 

member determines the variation of the Bernouilli constant when we go from one stream line to another along a normal line. 
If we put 

(13) flC= J IJi
dV 

--1 
2pw{J 

the equation (12) takes the form 

(14) 

We now see, it is sufficient for w{J to equal zero along a normal line-which means that on the normal line consid­
ered the vortex w is in the contingence plane-for the integral flC to be equal to zero and therefore for the Bernouilli 
constant to be invariable along the normal line considered. It is evident that w{J is zero when w=O. 

The integral flC can be written in the form 

flC= J _ l _ _ ! 
2pwfJ V 

IJdV 
(15) 

and is then susceptible of the following geometrical interpretation: The denominator of this integral represents the 
difference between the inverse of the speed which the fluid particle would have if rotating with the angular velocity 
2w{J around the center of curvature of its instantaneous position and the inverse of the resulting velocity Vof the 
particle. 

III. The integration of the equation (3) along the binormal lines brings us directly to the conclusion that along 
those lines 

(16) p=Const. 

that is to say, in the case of a nonheavy fluid, the binormal lines are isobars. It will be easily seen that in the case of a 
heavy fluid , the distribution of pressure along the binormal lines will be the same as if the fluid were immobile. 

We also see that for the case of irrotational motion of a fluid the binormal lines are also the lines of constant velocity, 
the Bernouilli theorem being applicable to the whole fluid mass. 

The system of relations for (ll), (12), and (16) fully determines in the general case the distribution of pressures in 
a fluid mass in motion. This system of relations carries us to the following important consequences, which I will 
indicate in general outlines: 

I. It is su.fficient to !.,"now the distribution of pressure along a surface cutting all the binormal lines in order to know the 
distribution of pressure in the whole fluid mass. 

This proposition is a direct consequence of the fact that the pressure is constant along a binormal line . 
II. On both sides of a vortex layer, even thin, thtJre can exist a difference of pressure which can be of sensible value . 
To convince ourselves of such a possibility, it is enough to picture a vortex layer in which the quantity 

V-2pw{J 
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has a small value inside the layer, which can happen without Vand wfj having excessive values. Then , when trav­
ersing the layer along a normal line, the integral 

f llV'dN 
V-2pWfj 

will have a large value, and, consequently, according to formula (ll), the difference of pressure on the two sides of 
the layer can have a sensible value. 

The conception of a thin vortex layer maintaining a sensible difference of pressure is very important for the under­
standing of many hydrodynamical phenomena which take place in real fluids. I shall take a typical example. 

FIG. 3. 

Let us consider a propeller having any number of blades and working in free air at a fixed point, for example. 

!!e ntation of the propeller creates a well-enough limited fluid stream. Let us follow a stream line in the sense of 
.he IDltion of the fluid projected by the propeller (see fig. 3). When we reach a point such as B disposed before the 
prope~r, the pressure p must be necessarily less than the exterior pressure Po, because the velocity is all the time 

increasing when we approach the propeller and at points such as Al and A2 we have pressures very close to the 
pressure p. But when we go through the plan of rotation of the screw, the pressure increases and in a point such as 
C disposed directly behind the propeller, the pressure r is generally greater than the exterior pressure Po. It 
would be difficult to conceive the existence of different pre ures p/ and p at points C and A 2 , if i t were not for the 
vortex layer, which consequently must constitute the surface of the fluid stream created by the screw and which i 8 
capable of maintaining differences of pressure. Without the knowledge of the existence of the vortex layer con­
stituting the surface of the stream created by the propeller the distribution of pressure around the propeller would 
be difficult to conceive. 



NOTE III.- The Equation of the l\'Ietacentrlc Curve. 

The aero foil considered is referred to any system of X and Yaxes invariably connected with the aerofoil , for ex­
ample, the one represented on Fig. 1. The air resistance R of the aerofoil is resolved into two components RIX and 
RI1/ along the X and Yaxes. These components are connected with the drag Rz and lift R1/ of the aerofoil by the 
realations 
(1) RIZ=Rz cos a-R1/ sin a 

(2) RI1/=Rx sin a+R1/ cos a 

Let us designate by N the moment of R relative to the origin O. We have 

The quantities 
(3) 

N=R.l. 

fully define the vector R in position and direction and are sometimes called the Plucker's coordinates of a vector. In 
these coordinates the equation of the direction of R is 

(4) 

\ 

x----------~~~~~~~~-------

In fact, the normal form of the equation of the direction of R is 

x COB <p+y Bin <p- l=O 
but 

and thUB 
RI1/=R COB <p; RIZ=-R Bin <p 

consequently 

or 

and the equation (4) is thus established. 
The metacentric curve is the envelope of the consecutive positions of the air resistance R , and thus is fixed by 

the Bystem of relations 
(5) 

(6) 
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from which we find 

N -Rlz RI y N 

iJN oRlz iJRly iJN 

(8) x iJcr. - iJcr. 
(9) Y 

ocr. iJcr. 
RI -BiZ 

IRI 
- Rlz y 

0;11/ iJRly ORIZ iJRlz 
ocr. ---aa- ocr. ocr. 

which represent the equation of the metacentric curve in parametric form, cr. being the parameter 
These equations can also be written 

RI oN _ NoRlz 
z ocr. iJcr. 

X= ORI ORI 
RI y rn Z 

Z ocr. -"'1/ ocr. 

RI oN -N iJRI1/ 

O(N) aaRr; 
l-(RIII) 
ocr. RIZ 

y_ Yocr. iJcr. 
RI ORI1/ RI ORIZ 

"'(fa - ya;;--
fcr.(%J 

_ _ ~(RIZ)= 
(Ja Rly 

which can be used for the tracing of metacentric curves. 

7498-20-No.28-5 

iJ [ / RIz2] 
~ l-yHR? 

iJ (RIZ) 
(Jot Rly 
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NOTE IV.'-The Mechanism of Fluid Resistance? 

By TH. v. KARMAN and II. RUBAcH. 

The resistance of a solid body moving with a uniform velocity in an unlimited fluid can be calculated theoretically 
only in the limiting cases of very slow motion of small bodies or of very high fluid viscosity. We are brought in such 
cases to a resistance proportional to the first power of the velocity, to the viscosity constant, and, for geometrically 
similar systems, to the linear dimensions of the body. To the domain of this " linear resistance "-which has aroused 
much interest, especially within recent years, on account of some important experimental applications-has to be 
opposed the limiting domain of comparatively large velocities, for which the so-called "velocity square law" holds 
with very good approximation. In this latter domain, which embraces nearly all the important technical applications, 
the resistance is nearly independent of fluid viscosity, and is proportional to the fluid density, the square of the 
velocity, and-again for geometrically similar systems-to a surface dimension of the body. In this domain of the 
"square law" is included the important case of air resistance, because it is easy to verily, by the calculation of the 
largest density variations which can occur for the speeds we meet in aeronautics and airscrews, that the air compression 
can be neglected without any sensible error. The influence of the compression first becomes important for velocities 
of the order of the velocity of sound. In fact, experiments show that the air resistance, in a broad range from the small 
speeds at which the viscosity plays a role up to the large speeds comparable to the velocity of sound, is proportional 
to the square of the velocity with very good approximation. 3 In general, fluid resistance depends upon the form and 
the orientation of the body in such a complicated way that it is extraordinarily difficult to predetermine the flow to a 
degree sufficient for the evaluation of the resistance of a body of given form, by a process of pure calculation, as can be 
done by aid of the Stokes formula in the case of very slow motions. We also will not succeed in this paper in reaching 
such a solution, but will still make the attempt to give a general view of the mechani.m of fluid resistance within the 
limits of the square law. 

We can state the problem of fluid resistance in the following somewhat more exact way. 
Since the time of the fundamental considerations of Osborne Reynolds on the mechanical similitude of flow 

phenomena of incompressible viscous fluids of different density and viscosity and- under geometrical similitude-for 
different sizes of the system considered, it is known that the resistance phenomenon depends upon a single parameter 
which is a certain ratio of the above-mentioned quantities. Thus the fluid resistance of a body moving with the uniform 
velocity U in an incompressible unlimited fluid may be expressed by a formula of the form { 

(I) 

where 

/.I is the viscosity constant 

p the fluid density 

W=l/olUf(~p) 

l a definite but arbitrarily chosen linear dimension of the body, and f( U:p) a function of the single variable 

R= Upl. We will call "Reynolds' parameter" the quantity R which has a zero dimension. 
I/o 

Theory and experiment show that for very small values of R-that is, for low velocities, or small bodies, or great 
viscosity-the functionf (R) is very nearly constant; the resistance coefficient of the Stokes formula corresponds to the 
limiting case off(R) for R=O. The square law corresponds to the limiting case of R=oo. We approach this latter case 
the more nearly the smaller the viscosity I/o, so that in the limiting case of R=oo, the fluid can be considered as 
frictionless. And we can ask ourselves, to what limiting configuration does the flow of the viscous fluid around a solid 
body tend when we pass to the limiting case of a perfect fluid? This is, according to our view, the fundamental point of 
the resistance problem. 

The fact that we obtain in this case a resistance nearly independent of the viscosity constant-since according 
to formula (I) this corresponds to the square law-allows us to conjecture that in this limiting case the resistance is 
determined by flow types such as can occur in a perfect fluid. 

I This note is the translation of the paper of Th. v. KArman and H. Rubachpublished in "Physikalische ZeitschriIt," Jan. 15, 1912. The 
author has considered It necessary to add here this complete translation, on account of the importance of the new conceptions of Th. v. KArman. 

, Tbe actual note constitutes a more complete exposition of two notes of Th. v. KArman published in the "Nachrichten der Kgl. Gesellsch. 
der Wiss. tU Gottingen," containing his hydrodynamical researches upon the stability of vortex systems and the conclusions concerning ftuid 
resistance obtained from the latter. The experiments here discussed and the measurements givcn have a provisional character; exact measurements 
are expected in connection with an intended dissertation of H. Rubach . 

• See, for example, the interesting e.'-"perimcnts of O. Foppl on the validity of the square law for air resistance, "Dissertation," :Aachen, p. 40 
(also "Jahrbuch der Motorluftschifi"-Studiengesellscha(t, 1911) . 

• Compare Lord Rayleigh, Phil. Mag., vol. 21, p. 708, 1911. 
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It is now certain that neither the so-called "continuous" potential flow, nor the "discontinuous" potential flow 
discovered by KirchhO.t! and v. Helmholtz, can express properly this limiting case. Continuous potential flow does not 
cause any resistance in the case of uniform motion of a body, as may be shown directly by aid of the general momentum 
theorem; the theory of the discontinuous potential flow, which, in relation to the resistance problem has been dis­
cussed principally by Lord Rayleigh, 1 leads to a resistance which is proportional to the square of the velocity; the cal­
culated values do not, however, agree with the observed ones. And, independent of the insufficient agreement between 
the numerical values, the hypothesis of the "dead water," which, according to this theory ought to move with the 
body, is in contradiction to nearly all observations. It is easy to see by aid of the simplest experiments that the flow, 
when referred to a system of coordinates moving with the body, is not stationary, as assumed in this theory. Further­
more, in the theory of discontinuous potential motion, the suction effect behind the body is totally missing, while in 
the dead water, which extends to infinity, we have everywhere the same pressure as in the undistUl'bed fluid at a great 
distance from the body. But according to recent measurements, in many cases the suction effect is of first importance 
for the resistance, and in any case contributes a sensible part of the last. 

The reason why in a perfect fluid the discontinuous potential flow, although hydrodynamically possible, is not realized 
is without any doubt the instability of the surfaces of discontinuity, as has already been recognized by v. Helmholtz 
and specially mentioned by Lord Kelvin" A surface of discontinuity can be considered as a vortex sheet; and it can 
be shown in a quite general way that such a sheet is always unstable. This can also be observed directly; observation 
shows that vortex sheets have a tendency to roll themselves up; that is, we see the concentration around some points 
of the vortex intensity of the sheet originally between them. This observation leads to the question: Can there exist 

~-------t----------~1 

FIG. 1. 

stable arrangements of isolated vortex filaments, which can be considered as the final product of decomposed vortex 
sheets? This question forms the starting point of the following investigations; it will, in fact, appear that at least for 
the simplest case of uniplanar flow, to which we will limit ourselves, we will be led to a "Bow pictUl'e" which in all 
respects corresponds quite well to reality. 

THE INVESTIGATION OF STABILITY. 

We will investigate the question whether or not two parallel rows of rectilinear infinite vortices, of equal strength 
but of inverse senses, can be so arranged that the whole system, while maintaining an invariable configuration, will 
have a uniform translation and be stable at the same time. It is easy to see that there exist two kinds of arrangements 
for which two parallel vortex rows can move with a uniform and rectilinear velocity. The vortices may be placed 
one opposite the other (arrangement a, fig. 1), or the vortices of one row .may be placed opposite the middle points 
of the spacing of the vortices of the other row (arrangement b). In the case of equality of spacing of the vortices in 
both rows, as a consequence of symmetry for the two arrangements a and b, it appears that each vortex has the same 
velocity in the sense of the X axis, and that the velocity in the sense of the Yaxis is equal to zero. We have to answer 
the question, which of these two arrangements is table? 

To illustrate first by a simple enmple the method of the investigation of stability, we will start with the con­
sideration of an infinite row of infinite vortices disposed at equal distances I and having the intensity r, and will study 

IOn the resistance of fluids, Mathematical and Physical Papers, Vol. I, p. 287 . 
• Mathematical and Physical Papers, Vol. IV, p. 215. This paper oontains a detaUed critique of the theory of discontinuous motion. 

\ 
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the stability of such a system. If we designate by xp' Y" the coordinates of the p - tl! vortex, and by xq , Yq the 
coordinates of the q-th the velocity impressed on the latter vortex by the former is given by the formulre 

"Upq=~ . Yp-Yq 
2". (Xp -Xq)2+(Yp -yq}l 

r x-x vpq =-_ . p q 

2". (Xp-xq?+(Yp -lIq )2 

These formulre express the fact that each vortex communicates to tho other a velocity which is normal to the line 
joining them and is inversely proportional to their distance apart. Therefore the resultant velocity of the q-th vortex 
due to all the vortices is equal to 

00 

where p=q is excluded from the summation. If now the vortices are disturbed from their equilibrium position, the 
small displacements being tp , TIp, the vortex velocities can be developed in terms of these quantities, and we will 
be brought to a system of diiierential equations for the disturbances tp, TIp. i. e., for small oscillations of the system. 

Let us accordingly put 
Xp=pl+~, 

Yp=TI, 

a.nd, neglecting the small quantities of higher ordors, we will get 

tJ - -oo 

The differential equations so obtained, which are infinite in number, are reduced to two equations by the sub. 
stitution 

These two equations are 

with PFO 

The physical meaning of this substitution is easy to see: we consider a disturbance in which each vortex undergoes 
the same motion only with a different phase tp. Under such conditions we have to do with a wave disturbance and the 
system will be called stable, when for any value of tp, that is, for any phase difference between two consecutive vortices, 
the amplitude of the disturbance does not increase with the time. 

Let us introduce the notation 

The foregoing equations theo take the form 
d~o () ([i =K 'P Tlo 

dTlo () de =K tp to 

Let us put to and Tlo proportional to el\l; we will then find for each value of 'P two values for X, that is 
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It follows that the vortex system considered is unstable for any periodic disturbance, because there is always 
present a positive real value of A, that is, the disturbance is of increasing amplitude. 

Applying this method in the case of two vortex rows we will find that the arrangement a, that is, the symmetrical 
arrangement, is likewise unstable, but that for the arrangement b there exists a value of the ratio hll (h is the distance 
between the two rows, I is the distance between the vortices in the row) for which the system is stable. 

In both cases A <;an be brought to the form 

where A, B, Care functions of the phase difference cp. The system will be stable if (C2-A') is positive for any value of «. 
For tbe symmetrical arrangement a, the functions A, B, C are expressed by the form ulx: 

But for Cp=1r we get 

A (1r)= ;;. [ ctgh' (hn -tgh2 en] 

C(1r) = ;; [ctgh' en-tgh'("t) ] 

so that this arrangement is unstable for any values of h and I. 
For the unsymmetrical arrangement b we find 

_ ~ (pH)2l2-h2 
C(tp)-D[(p+Wl'+h2]2 cos (pH)cp 

p-o 

We see now that C(.,...)=o, so that in the place where Cp=1r, A must also be equal to zero, because, on account of the 
double sign, A takes a positive real value. This brings us to the condition 

But 

and 

~(2P~1)2 12 ;;. 
p-O 

so that, as the necessary condition of stability we find the relation 

11.,. ,-
coshy=,,2 

and for the ratio hll we find the value 
hll=O,28S .... 
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For a certain value of the wave length of the disturhance, corresponding to ",=7r, we get X=o, that is, the system 
is in a neutral state. But it can be shown by calculation that our system is stable for all other disturbances. This 
unique disturbance has to be lested by further invesligations. It can, however, be seen that a zero value for X must 
appear, because only one stable configuration exists. If this were not so, we would find for Z/l! a finile domain of sta­
bility.' 

TilE "FLOW PICTURE." 

The consideration of the question of stability has brought us to the result that there exists a particular config­
uration of two vortex rows which is stable. The vortices of both rows have then such an arrangement that the 
vortices of one row are placed opposite the middle of the interval between the vortices of the other row, and the 
ratio of the distance h between the two rows to the distance Z between the vortices of the same row has the value 

h 1 ,--7=; arc cosh "V 2=0,283 

The whole system has the velocity 

p-o 

which can also be written 

or, introducing the value of hll found by the stability investigation, we get 

u=Js 
The flow is given by the complex potential ('" potential, '" flow function) 

where 

By aid of this formula we have calculated the corresponding streamlines and have represented them in Fig. 2. 
We see that some of the streamlines are closed curves around the vortices, while the others run between the vortices. 

FIG. 2. 

On the other hand, we have tried to make visible the flow picture behind 
a body, e. g., a flat plate or circular cylinder, moved through immobile 
water, by aid of lycopodium powder sifted on the surface of the water, and 
to fix these pictures photographically (exposure one-tenth of a second). 

The regularly alternated arrangement of the vortices can not be 
douhted. In most cases the vortex centers can also be well determined; 
sometimes the picture is disturbed by small "accidental vO'rtices" pro­
duced in all probability by small vibrations of the body, which in our pro­
visional experiments could not be avoided. We had a narrow tank whose 
floor was formed by a band running on two rolls, and the bodies tested 
were simply put on the moving band and carried by it. It is to be expected 

that by aid of an arrangement especin.lly made for the purpose much more regular flow pictures could be obtained. 
while in the actual experiments the flow was disturbed on the one hand by the vibrations of the body and on the 
other by the water fl.ow produced by the moving band itself. 

The alternated arrangement of the vortices rotating to the ri~ht and to the left can only be obtained when the 
vortices periodically run off first from one side of the body, then from the other, and so OD, 80 that behind the body 
there appears a periodic motion, oscillating from one side to the other, but with such a regularity, however, that the 
frequency of this oscillation can be estimated with sufficient exactness. The periodic character of the motion in the 
so-called "yortex wake" has often been observed. Thus, B!'rnard 2 has remarked that the fl.ow picture behind a 
narrow obstacle can be decomposed into vortex fields with alternated rotations. Also for the flow of water around 
balloon models the oscillation of the vortex field has been observed.3 Finally, Y. d. Borne 4 has observed and pho­
toO'raphed recently the alternated formation of vortices in the case of air flowing around different obstacles. The 

I From a mathematical standpoint our stability investigation may be considered as a direct application of the theorems of Mr. O. Toplitz on 
Cyclanten with an infinite number of eloments, which he has in part published in two papers (Gottingen Nacbrichten, 1907, p. 110; Math. Allnalen 
1911. p. 351), and in part been so kind as to communicate personally to us . 

• Comptes Rendus, Paris, H~, &19, 1908. 
I Technical report of the .\dvisory CommiLtrc for Aeronautics (British), 1910-11 . 
• Undertaken on Lhe initiative of tho ropresent tivcs of aeronautical science in CotLingeD, November, 1011. 

" 
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phenomenon could not be explained until now; n.ccording to our stability investigation the periodic variations appear 
as a natural consequence of the instability of the symmetrical Dow_ 1 

It is also very interesting to observe how the stable configuration is established. When, for example, a body is 
set in motion from rest (or conversely, the stream is directed onto the body) some kind of "separation layer" is first 
formed , which gradually rolls itself up, at first symmetrically on both sides of the body, till some small disturbance 
destroys the symmetry, after which the periodic motion starts. 'l'he oscillatory motion is then maintained corresponding 
to the regular formation of left hand and right hand vortices. 

We have also made a second series of photographs for the case of a body placed at rest in a uniform stream of 
water. For this case the flow picture can be obtained from Fig. 2 by the superposition of a uniform horizontal velocity. 
We will then see on the lines drawn through the vortex centers perpendicular to the stream direction , some ebbing 
point where the stream lines intersect and the velocity is equal to zero. However, in the same way as the motion is 
affected by the vibrations of the experimental body in the case of the motion of a body in the fluid, so in this case the 
turbulence of the water stream !rives rise to disturbances. 

As to the quantitative agreement attained by the theory, it must be noted that our stability conditions refer to 
infinite vortex rows, so that an agreement of the ratio h/l with the measured values is to be expected only at a certain 
distance from the body. The measurements on the photographs show that the distance 1 between vortices in a row is 
very regular, so that 1 may be measnred satisfactorily, but per contra the distance h is much more variable, because 
the disturbance of the vortices takes place principally in the direction normal to the rows, that is, the latter undergo 
in the main .transverse oscillations. The best way to determine the mean positions of the centers of the vortices would 
be by aid of cinematography, but we can also, without any special difficulty, find by comparison the mean direction 
of each vortex row directly from photographs. So in the case of the photograph of a circular cylinder 1.5 cm. in diameter, 
when making measurements beyond the first two or three vortex pairs we have found the following mean values for 
hand 1 

h=1.8 cm.; l=6.4 cm. 
,'0 that for the ratio h/l we obtain the value 

h/l=0.28. 

For the flow around a plate of 1.75 cm. breadth we found 

h=3 cm.; 1=9.8 cm. 
Accordingly 

h/l=0.305. 

The agreement with the theoretical value 0.283 is entirely satisfactory. 
For the first vortex pair behind the body, h/l comes out sensibly larger, somewhere near h/l=0.35. But in the first 

investigation of Karman, mentioned at the beginning of this paper, the stability of the vortex system was investigated 
in such a way that all the vortices with the exception of one pair were maintained at rest and the free vortex pair con­
sidered oscillating in the velocity field of the others. Under such assumptions it was found that h/l=l/7r arc cosh..j3 = 
0.36. We therefore think that the conclusion can be drawn, that in the neighborhood of the body, where the vortices 
are even more limited in their displacements, the ratio h/l is greater than 0.283 and approaches rather the value of 0.36. 

APPLICATION O~' THE MOMEXTUM THEOREM TO THE CALCULATION OF FLUID RESISTANCE. 

Let us assume that at a certain distance behind the body there exists a flow differing but slightly from the one 
of stable configuration which we have established theoretically in the foregoing, but that at a distance in front of the 
body, which is great in comparison with the size of the body, the fluid is at rest-aa it is quite natural to assume. 
We will then be brought by the application of the momentum theorem to a quite definite expression for the resistance 
which a body moving with a uniform velocity in a fluid must experience. Practically, by such a calculation for the 
uniplanar problem, we will obtain the resistance of a unit of length of an infinite body placed normally to the plane 
of the flow. 

We will use a system of coordinates moying with the same speed u as the vortex system behind the body. In 
this coordinate system, according to our assumptions, at a sufficient distance from the body the vortex motion behind 
the body as well as the fluid state in front of the body will be steady, and we will have, when referred to this system 
of coordinates, a uniform flow of speed -u in front of the body, but behind the body the velocity components will 
be expressed by 

b,p b,p 
-u+-and --by bx 

where >It is the real part of the complex potential 

I The tone that is emitted by a stick rapidly displaced in air is fixed by this periodicity, to which Prol. C. Runge has already drawn our 
attention. 
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The body itself has, relative to this system of coordinates, the velocity U -u, where U is the absolute velocity of the 
body. If we designate hy l the distance between the vortices of one row, there must take place, as a consequence 
of the displacement of the hody, in the time T=lI( U-u), the formation of a vortex on each side of the body. We 
will calculate the lllcrement of the momentum. along the X axis, in this time interval T (that is, between two instants 
of time of identical fl01Y state) and for a part of the flow plane, which we define in the following way (see fig. 3). On 
the sides the plane portion considered is lilnited by the two para llel straight lines Y=±1); in front and behind, by 
two straight lines x=Const. disposed at distances from the body which are great in comparison with the size of the 
body, the line behind the body being drawn so as to pass through the point half way betv.·een two vortices having 
inverse rotation. When the boundary lines are sufficiently far from the body we can consider the Huid velocities at 
those lines as having the values indicated in the foregoing. 

For a space with the boundarie indicated above the relation must exist that the momentum imparted to the 

body f 0 Wdt (where Wis the resultant Huid resistance) is equal to the difference between the momentum contained 

in the space considered at the times t=r and t=r+ T and the sum of the inHow momentum and the time integral 
of the pressure along the boundary lines. If we thus consider as exterior forces the force - Wand the pressure, which 
act on the whole system of fluid and solid, they must then correspond to the increment of th e momentum-that is, 
to the excess of momentllm after the time T less the inflow momentum. 

y 

Y'? ro~ ___ ~cr-_________________ -r ___ , 

--.~. -
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FIG. 3. 

We will calculate these momentum parts separately. The excess of momentum after the time T is equal to the 

difference of the values that the double integral p J J u (x, y) dx dy takes at the tilnes t=r and t=r+ T. But the 
tllne interval has been chosen in such a way that the state of flow is identical, with the difference that the body hall 
been displaced through the distance 1=( U-u) T. The double integral reduces thus to the di fference of the integrals 
taken over the strips ABCD and A'B'C'D' both of breadth l, For the strip A'B'C'D' the fluid speed can he taken 

equal to -u for the strip ABCD equal to-u+~t so that we get 

~=pJllq~tdx dy 
o -1) 

If we pass to side boundaries havina T/ = otl , we obtain for I( the very simple expression 

~=prh 

which can also be obtained directly by the application of the general momentum theorem to vortex systems. 
We will unite in one single term the inflow momentum and the time integral of the pressure, because in such a 

way we will be led to more simple results. If we c')Dsider a uniplanar steady fluid motion \lith the velocity com­
ponents u (x, y) and v (x, y) and consider a fixed contour in the plane, the intlow momentum in a unit of time in the 

direction of X is expressed by the closed integral p f (U'dy-uvdx) where it, v are the velocities on the contour. The 

pres ure gives the resultant fpdy along the X axis, but since for a steady flo" the relation 

u2+1i2 
p=Const-p-2-

must hold, we thlls obtain for the sum of both integral. multiplied by T 

I2=Tf p(u.2dy-uvdx)+Tfp dy 

=Tp f Ci2
21i2 dy-uvdx ) 
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Or, introducing the complex quantity, 

we get 

1.=p 1m J ( w'dz) 

where 1m is to be understood as the complex part of the integral. 
If we pu t [or the contour 

then the terms in u' will at once be eliminated, and also the terms in u on account of the equality of the inflow and 
outflow; and there will remain only the terms in u/2 and u'v'. The latter will give a finite value only for the boundary 
line passing through the vortex system (AD in fig. 3) . Passing to '1=00 , we get 

and integrating along AD we get 

But 

so that, integrating and introducing the values 

where u again ha~ been written for 2~ tgh ~h. 

. 2".x 
tr cos -r-

1 cosh h". 
1 

r hr 
x(iw) ="4 -i 21 

x( -iW)=-i+i;~ 

Thus the total momentum imparted to the body i8 

IT Wdt=prh- Tp (t;~h -/:l) 
If for the mean value of 1fT i T Wdt we write W (as the time mean valne of the resistance) we will obtain with 

T=l/( U-u) the final formula 

(II) 

The fltqd resistance appears here expressed by the three characteristic constants r, h, 1 of the vortex configuration 
(as u is expressed by the last). In the deduction of this last formula we did not take account of the stability condi­
tions, so that this formula applies to any value of the ratio h/l. If we assume the vortices in the row to be brought 
all close together so that they are uniformly distributed along the row, but in such a way that the vortex intensity per 
unit of length remains finite , we thus pass to the case of contint;'::llf1 vortex sheets. In this case r/l= U, but r'/l=O 

and u=-¥, so that the fluid resistance disappears. The discontinuous potential {}(n~_~_~_~oltz thus does not 

give any resistance when the depth of the dead water remains finite , as can also be shown from general theorems. 

THE FORMULAE FOR FLUID RESISTANCE. 

Let us now apply to our special case the general formula we have just found , introducing the ~ 
rand u, and hand 1 according to the stabili ty conditions. For tho speed u we have 
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further, 
h/l=0,283 

80 that we get 

If we introduce, as is ordinarily done, the resistance coefficient according to the formula 

W=,pw p d U2 

where d is a chosen characteristic dimension of the body, to which we refer the resistance, we will obtain ,pwexpressed 
by the two ratios u/ U and ltd in the following way 

(III) 'l'w=[0,799 ~-0,323(~ YJi 
We have thus obtained the resistance coefficient-which before could be observed only by resistance measurementB­
expressed by two quantities which can be taken directly from the flow phenomenon, viz, the ratio 

and 

u _ Velocity of the vortex system 
rr - Velocity ofilie body--

1 Distances apart of the vortices in one row 
(j= Reference dimension of the body 

Both quantities, corresponding to the similitude of the phenomenon, within the limits of validity of the square law 
can depend only upon the dimension of the body. 

These two quantities can be observed very easily experimentally. 'rhe ratio ltd can be taken directly from photo­
graphs, while the ratio u/ U can be found easily by counting the number of vortices formed. If we designate by T the 
time between two identical flow states we can then introduce the quantity lo= UT, v.hich is the distance the body 
moves in the period T. This quantity must be independent of velocity for the same body, and the ratio l/lo for similar 
bodies must also be independent of the dimensions of the body but determined by the hape of the body. Remember­
ing that T=l/( U-u), we then find between u/ U and l/lo the simple relation 

u I 
U=I-Z;; 

By some provisional measurements we have proved the similitude rule and afterwards calculated the resistance 
coefficient for a flat plate and a cylinder do" posed normal to the stream, for the purpose of seeing if the calculated values 
agreed with the air resistance measuremeuts, at least in order of magnitude. 

Our measurements were made first on two plates of width 1.75 and 2.70 cm. and 25 cm. length, and we havemeas­
ured the period T and calculated the quantity 10=UT for two different velocities. We have used a chronograph 
for time measurements and the period was observed for each Yortex row independently. Thus was found for the 
narrower plate 

for the wider plate 

U=10 .0 em/sec 
T=l.Z6 sec 

UT=12.6 em 

U=9.6 em/sec 
T=1.99 sec. 

UT=19.1 sec. 

15.1 em/sec 
0.805 sec 

12.1 em 

15.5 em/sec 
1.20 sec. 

18.6 sec. 
Mean value UT=18.8 em 

The ratio of the plate width is equal to 

and the ratio of the quantities 10= UT ':s eqnal to 

So that the similitude rule is in any case confirmed. 

2.70=154 
1. 75 . 

18.8=152 
12.3 . 

A circular cy;in~I-Oi.l..5 ~m. diameter was also teasted at two speeds. We found the values 

U=I1.0 em/sec 
T=0.66 sec. 

UT=7.3 em 

15.8 em/sec 
0.48 sec. 
7.5 em 

Mean value UT=7.4 em 
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Knowing the values of lo= UT we can calculate for the plate and the cylinder the speed ratio u/U. Thus, 

for the plate u/ U=O.20. 
for the cylinder u/ U=O.14 

and with the values of I indicated before we have 

for the plate l/d=5.5 
for the cylinder l/d=4.3 

where d is the plate width or cylinder diameter. We thus find the resistance coefficients 

for the plate >Pw=0.80 
for the cylinder >Pw=0.46 

75 

The resistance measurements of FoppP have given for a plate with an aspect ratio of 10:1 the resistance coefficient 
>Pw=O.72 and the EiffeJ2 measurements, for an aspect ratio of 50:1; that is, for a nearly plane flow, the value >Pw=0.78. 
Further, Foppl has found for a long circular cylinder >Pw=0.45, so that the agreement between the calculated and meas­
ured resistance coefficients must be considered as fully satisfactory. 

The theoretical investigations here developed ought to be extended o.nd completed in two directions. First, 
we haye limited ourseh'es to the uniplanar problem; that is, to the limiting case of a body of great length in the direc­
tion normal to the flow. It is to be expected tho.t by the investigation of stable vortex configurations in space we will 
also be brought to a better understanding of the mechanism of fluid resistance. However, the problem is rendered 
difficult by the fact that the translation velocity of cUl'yed vortex filaments is not any longer independent of the size 
of the vortex section, because to an infinitely thin filament would correspond an infinitely great velocity. Never­
theless, it must not be considered that the exten ion of the theory to the case of space would bring unsurmountable 
difficul ties. -

Much more difficult appears the extension oi the theory in another direction, which rEally would first lead to a 
complete understanding of the theory of fluid resistance, namely, the eyaluation by pure calculation of the ratios 
lid and u/ U, which we have found from flow observations, and which determine the fluid resistance. This problem 
an not be solved without investigation of the process of vortex formation. An apparent contradiction is brought out 
y tha fact that we have W)('d only the theorems established for perfect fluids, which in such a fluid (frictionless fluid) 

vortices can he formeJ. 'f)ris contradiction is explained by the fact that we can everywhere neglect friction except 
at '.e ~urrace of the bwy. It ~n be shown that the friction forces tend to zero when the friction coefficient decreases, 
bu the vortex intensity remains .'1nite. If we thus consider the perfect fluid as the limiting case of a viscous fluid, 
.ll';J. the law of vortex formation mUb· be limited by the condition that only those fluid particles can receive rotation 

u;.ch have been in contact with the surtb.r:e of the body. 
This idea appear first, in a perfectly clear way, in the Prandtl theory of fluids having small friction. The Prandtl 

theory investigates those phenomena which take place in a layer at the surface of the body, and the way in which the 
separation of the flow from the surface of the body occurs. It we could succeed in bringing into relation these inves­
tigations on the method of separation of the stream from the wall with the calculation of stable configuration of vortex 
films formed in any way whatever, as has been explained in the foregoing pages, then this would evidently mean 
great progress. Whether or not this would meet with great difficulties can not at the present time be stated. 

1 See the work of O. Foppl already mentioned. 
, G. EilIal, "La Resistance de I'Mr et I' Aviation," p. H, Paris. 1910. 
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