REPORT 1008

A SMALL-DEFLECTION THEORY FOR CURVED SANDWICH PLATES

By MANUEL STEIN and J. MAYERS

1951
AERONAUTIC SYMBOLS

1. FUNDAMENTAL AND DERIVED UNITS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Metric</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>(l)</td>
<td>meter</td>
</tr>
<tr>
<td>Time</td>
<td>(t)</td>
<td>second</td>
</tr>
<tr>
<td>Force</td>
<td>(F)</td>
<td>weight of 1 kilogram</td>
</tr>
<tr>
<td>Power</td>
<td>(P)</td>
<td>horsepower (metric)</td>
</tr>
<tr>
<td>Speed</td>
<td>(V)</td>
<td>meters per second</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit</th>
<th>Abbreviation</th>
<th>Unit</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>foot (or mile)</td>
<td>ft (or mi)</td>
<td>weight of 1 pound</td>
<td>lb</td>
</tr>
</tbody>
</table>

2. GENERAL SYMBOLS

\[W = mg \]

\[g = \text{Standard acceleration of gravity} = 9.80665 \text{ m/s}^2 \]

\[m = \frac{W}{g} \]

\[I = \text{Moment of inertia} = mk^2 \]

\[\mu = \text{Coefficient of viscosity} \]

\[v = \text{Kinematic viscosity} \]

\[\rho = \text{Density (mass per unit volume)} \]

\[\rho = \text{Standard density of dry air, 0.12497 kg-m}^{-1}\text{s}^2 \text{ at 15° C and 760 mm; or 0.002378 lb-ft}^{-1}\text{sec}^2 \]

\[\rho = \text{Specific weight of “standard” air, 1.2255 kg/m}^3 \text{ or 0.07651 lb/cu ft} \]

3. AERODYNAMIC SYMBOLS

\[S = \text{Area} \]

\[S_w = \text{Area of wing} \]

\[\sigma = \text{Gap} \]

\[b = \text{Span} \]

\[c = \text{Chord} \]

\[A = \text{Aspect ratio}, \frac{b^2}{S} \]

\[V = \text{True air speed} \]

\[q = \text{Dynamic pressure}, \frac{1}{2} \rho V^2 \]

\[L = \text{Lift, absolute coefficient} \]

\[C_L = \frac{L}{qS} \]

\[D = \text{Drag, absolute coefficient} \]

\[C_D = \frac{D}{qS} \]

\[D_0 = \text{Profile drag, absolute coefficient} \]

\[C_{D_0} = \frac{D_0}{qS} \]

\[D_i = \text{Induced drag, absolute coefficient} \]

\[C_{D_i} = \frac{D_i}{qS} \]

\[D_p = \text{Parasite drag, absolute coefficient} \]

\[C_{D_p} = \frac{D_p}{qS} \]

\[C = \text{Cross-wind force, absolute coefficient} \]

\[C = \frac{C}{qS} \]

\[\alpha = \text{Angle of attack} \]

\[\epsilon = \text{Angle of downwash} \]

\[\alpha_0 = \text{Angle of attack, infinite aspect ratio} \]

\[\alpha_i = \text{Angle of attack, induced} \]

\[\alpha_a = \text{Angle of attack, absolute (measured from zero-lift position)} \]

\[\gamma = \text{Flight-path angle} \]
REPORT 1008

A SMALL-DEFLECTION THEORY FOR CURVED SANDWICH PLATES

By MANUEL STEIN and J. M AyERS

Langley Aeronautical Laboratory
Langley Field, Va.
National Advisory Committee for Aeronautics

Headquarters, 1734 F Street NW., Washington 25, D. C.

Created by act of Congress approved March 3, 1915, for the supervision and direction of the scientific study of the problems of flight (U. S. Code, title 50, sec. 151). Its membership was increased from 12 to 15 by act approved March 2, 1929, and to 17 by act approved May 28, 1948. The members are appointed by the President, and serve as such without compensation.

Jerome C. Hunsaker, Sc. D., Massachusetts Institute of Technology, Chairman
Alexander Wetmore, Sc. D., Secretary, Smithsonian Institution, Vice Chairman

Defley W. Bronk, Ph. D., President, Johns Hopkins University.
John H. Cassady, Vice Admiral, United States Navy, Deputy Chief of Naval Operations.
Edward U. Condon, Ph. D., Director, National Bureau of Standards.
Hon. Thomas W. S. Davis, Assistant Secretary of Commerce.
James H. Doolittle, Sc. D., Vice President, Shell Oil Co.
R. M. Haden, B. S., Director of Engineering, Allison Division, General Motors Corp.
William Littlewood, M. E., Vice President, Engineering, American Airlines, Inc.
Theodore C. Lonquest, Rear Admiral, United States Navy, Deputy and Assistant Chief of the Bureau of Aeronautics.

Hugh L. Dryden, Ph. D., Director
John W. Crowley, Jr., B. S., Associate Director for Research

H. H. Chamberlin, Executive Officer

Henry J. E. Reid, D. Eng., Director, Langley Aeronautical Laboratory, Langley Field, Va.
Smith J. DeFrance, B. S., Director, Ames Aeronautical Laboratory, Moffett Field, Calif.
Edward R. Sharp, Sc. D., Director, Lewis Flight Propulsion Laboratory, Cleveland Airport, Cleveland, Ohio.

TECHNICAL COMMITTEES

AERODYNAMICS
Power Plant for Aircraft
Aircraft Construction
Coordination of Research Needs of Military and Civil Aviation
Preparation of Research Programs
Allocation of Problems
Prevention of Duplication
Consideration of Inventions

AMES AERONAUTICAL LABORATORY,
Moffett Field, Calif.

LANGLEY AERONAUTICAL LABORATORY,
Langley Field, Va.

LEWIS FLIGHT PROPULSION LABORATORY,
Cleveland Airport, Cleveland, Ohio

Conduct, under unified control, for all agencies, of scientific research on the fundamental problems of flight

OFFICE OF AERONAUTICAL INTELLIGENCE,
Washington, D. C.

Collection, classification, compilation, and dissemination of scientific and technical information on aeronautics
A SMALL-DEFLECTION THEORY FOR CURVED SANDWICH PLATES

By Manuel Stein and J. Mayers

SUMMARY

A small-deflection theory that takes into account deformations due to transverse shear is presented for the elastic behavior analysis of orthotropic plates of constant cylindrical curvature with considerations of buckling included. The theory is applicable primarily to sandwich construction.

INTRODUCTION

The usual sandwich plate as used in aircraft construction consists of a light-weight, low-stiffness core material bonded or riveted between two high-stiffness cover sheets. The elastic behavior of such plates under loading cannot be analyzed by conventional plate and shell theories in general since these theories neglect deformations due to transverse shear, an effect which may be of great importance in sandwich construction.

Many authors have considered transverse shear deflections in analyzing the elastic behavior of flat sandwich plates by means of small-deflection theories (see, for example, references 1 to 4). Most of this work has been concerned with sandwich plates of the isotropic type (for example, Metalite, cellular-cellulose-acetate core). In reference 3, however, sandwich plates of the orthotropic type are also considered (for example, corrugated core).

The treatment of curved sandwich plates in the literature has not been as general as that accorded flat sandwich plates, although several specific studies of the curved isotropic sandwich plate have been published. These studies have covered (a) simply supported, slightly curved isotropic sandwich plates under compressive end loading (reference 1), (b) axially symmetric buckling of a simply supported isotropic sandwich cylinder in compression (reference 1), and (c) a nonbuckling small-deflection theory for isotropic sandwich shells which takes into account not only deflections due to shear but also the effects of core compression normal to the faces (reference 5).

The need for a general theory for curved sandwich plates which is applicable to orthotropic as well as isotropic types and which includes both nonbuckling and buckling effects has led to the development of the theory presented in this report. This theory, which takes into account deflections due to transverse shear, covers those types of sandwich plates having constant cylindrical curvature, similar properties on the average above and below the middle surface, and essentially constant core thickness.

SYMBOLS

\(D_1\) flexural stiffness of isotropic sandwich plate, inch-pounds \(\left(\frac{E_1 t_1 h^2}{2(1-\mu^2)}\right)\)

\(D\) flexural stiffness of ordinary plate, inch-pounds \(\left(\frac{E}{12(1-\mu^2)}\right)\)

\(D_x, D_y\) flexural stiffnesses of orthotropic plate in axial and circumferential directions, inch-pounds

\(D_{xy}\) twisting stiffness of orthotropic plate in \(xy\)-plane, inch-pounds

\(D_{xq}, D_{yq}\) transverse shear stiffnesses of orthotropic plate in axial and circumferential directions, pounds per inch

\(D_q\) transverse shear stiffness of isotropic sandwich plate, pounds per inch

\(E\) Young's modulus for ordinary plate, pounds per square inch

\(E_z\) Young's modulus for faces of isotropic sandwich plate, pounds per square inch

\(E_{xz}, E_{yz}\) extensional stiffness of orthotropic plate in axial and circumferential directions, pounds per inch

\(G_{xy}\) shear stiffness of orthotropic plate in \(xy\)-plane, pounds per inch

\(L_B, L_B^{-1}, L_D, v, v^2, v^4, v^4\) mathematical operators defined in section entitled "Theoretical Derivations"

\(M_x, M_y\) bending moments on plate cross sections perpendicular to \(x\) and \(y\) axes, respectively, inch-pounds per inch

\(M_{xy}\) twisting moments on cross sections perpendicular to \(x\) and \(y\)-axes, inch-pounds per inch

\(N_x, N_y\) resultant normal forces in \(x\)- and \(y\)-directions, pounds per inch

\(N_{xy}\) resultant shearing force in \(xy\)-plane, pounds per inch

\(q\) lateral loading, pounds per square inch

THEORETICAL DERIVATIONS

GENERAL THEORY

In developing the equations of equilibrium for the orthotropic curved plate element, shown in figure 1, the basic assumptions made are that the materials are elastic, that the deflections are small compared with the plate thickness, and that the thickness is small compared with the radius of curvature. The last assumption implies that the shear forces N_{zy} and N_{zy} are equal and that the twisting moments M_{W} and M_{W} are equal.

Eleven basic equations.—As in ordinary curved-plate theory, 11 equations exist for orthotropic curved plates (considering deflections due to shear) from which the displacements acting in the plate can be determined. The 11 equations consist of 5 equilibrium equations, 3 equations relating resultant forces to strains, and 3 equations relating resultant moments with curvatures and twist.

The first five equations, expressing force equilibrium in the x- and y-directions, moment equilibrium about the z- and y-axes, and force equilibrium in the z-direction, are

$$\frac{\partial N_x}{\partial x} + \frac{\partial N_y}{\partial y} = 0$$ (1a)
$$\frac{\partial N_y}{\partial y} + \frac{\partial N_x}{\partial x} = 0$$ (1b)
$$\frac{\partial M_x}{\partial x} + \frac{\partial M_y}{\partial y} = 0$$ (1c)
$$\frac{\partial Q_x}{\partial x} \bigg|_{\partial y} + \frac{\partial M_x}{\partial x} = 0$$ (1d)
$$\frac{\partial Q_y}{\partial y} + N_z \frac{\partial w}{\partial x} + N_y \left(\frac{1}{r} \frac{\partial w}{\partial y} + 2 N_y \frac{\partial w}{\partial x} \frac{\partial w}{\partial y} + q = 0 \right)$$ (1e)

It should be noted that in these equations, higher-order terms have been neglected in accordance with considerations similar to those of reference 6.

For the orthotropic curved plate, the relations between the resultant middle-surface forces and the middle-surface strains are (see appendix)

$$N_x = E_x \frac{1}{1 - \mu_x \mu_y} \left(\frac{\partial u}{\partial y} + \mu_y \left(\frac{\partial v}{\partial y} - \frac{w}{r} \right) \right)$$ (2a)
$$N_y = E_y \frac{1}{1 - \mu_z \mu_y} \left(\frac{\partial v}{\partial y} - \mu_z \frac{\partial u}{\partial x} \right)$$ (2b)
$$N_{xy} = G_{xy} \left(\frac{\partial v}{\partial y} + \frac{\partial u}{\partial x} \right)$$ (2c)

From reference 3, the corresponding relations between resultant moments and curvatures and twist are

$$M_x = - \frac{D_x}{1 - \mu_x \mu_y} \left[\frac{\partial^2 w}{\partial x^2} - \frac{1}{D_x} \frac{\partial Q_x}{\partial x} + \mu_y \left(\frac{\partial^2 w}{\partial y^2} - \frac{1}{D_y} \frac{\partial Q_y}{\partial y} \right) \right]$$ (3a)
$$M_y = - \frac{D_y}{1 - \mu_x \mu_y} \left[\frac{\partial^2 w}{\partial y^2} - \frac{1}{D_y} \frac{\partial Q_y}{\partial y} + \mu_z \left(\frac{\partial^2 w}{\partial x^2} - \frac{1}{D_x} \frac{\partial Q_x}{\partial x} \right) \right]$$ (3b)
$$M_{xy} = \frac{D_y}{2} \frac{\partial^2 w}{\partial x \partial y} - \frac{1}{D_x} \frac{\partial Q_y}{\partial x} - \frac{1}{D_y} \frac{\partial Q_x}{\partial y}$$ (3c)

Equations (1), (2), and (3) are the 11 basic equations necessary for determining the forces, moments, and deflections acting in the plate. The number of equations can be reduced to five, however, by substituting equations (2) and (3) into equations (1). In this manner, five differential equations are obtained for determining the resultant transverse shear forces Q_x and Q_y and the displacements u, v, and w.
The 11 basic equations presented are not restricted to deflection problems alone but may be applied to buckling problems as well by considering the changes that occur during buckling and modifying equations (1) accordingly. For equilibrium of the curved plate element after buckling, equations (1) can be written with $N_x, N_{y}, N_{yz}, M_x, M_{xy}, M_y$ and w replaced by $N_{x0} + N_{x1}, N_{y0} + N_{y1}, \ldots, w_0 + w_1$, respectively, where the subscript 0 refers to values prior to buckling and the subscript 1 refers to changes in these values that occur during buckling. For equilibrium of the curved plate element prior to buckling the following equations apply:

\[
\frac{\partial N_{x0}}{\partial x} + \frac{\partial N_{y0}}{\partial y} = 0
\]

\[
\frac{\partial N_{y0}}{\partial y} + \frac{\partial N_{x0}}{\partial x} = 0
\]

\[
Q_{x0} - \frac{\partial M_{x0}}{\partial y} - \frac{\partial M_{y0}}{\partial x} = 0
\]

\[
Q_{y0} - \frac{\partial M_{y0}}{\partial y} + \frac{\partial M_{x0}}{\partial x} = 0
\]

\[
\frac{\partial Q_{x0}}{\partial x} + \frac{\partial Q_{y0}}{\partial y} + N_{x0} \frac{\partial^2 w_0}{\partial x^2} + N_{y0} \left(\frac{1}{r} \right) \frac{\partial^2 w_0}{\partial y^2} + 2N_{x0} \frac{\partial^2 w_0}{\partial x \partial y} + q = 0
\]

Subtracting the previous equations from equations (1) (as modified) gives the following equilibrium equations which apply to buckling problems:

\[
\frac{\partial N_{x1}}{\partial x} + \frac{\partial N_{y1}}{\partial y} = 0
\] (4a)

\[
\frac{\partial N_{y1}}{\partial y} + \frac{\partial N_{x1}}{\partial x} = 0
\] (4b)

\[
Q_{x1} - \frac{\partial M_{x1}}{\partial y} + \frac{\partial M_{y1}}{\partial x} = 0
\] (4c)

\[
Q_{y1} - \frac{\partial M_{y1}}{\partial y} - \frac{\partial M_{x1}}{\partial x} = 0
\] (4d)

\[
\frac{\partial Q_{x1}}{\partial x} + \frac{\partial Q_{y1}}{\partial y} + N_{x0} \frac{\partial^2 w_1}{\partial x^2} + N_{y0} \frac{\partial^2 (w_0 + w_1)}{\partial x^2} + N_{x0} \frac{\partial^2 w_0}{\partial y^2} + 2N_{x0} \frac{\partial^2 w_0}{\partial x \partial y} + 2N_{x1} \frac{\partial^2 (w_0 + w_1)}{\partial x \partial y} = 0
\] (4e)

In equation (4e) the terms $N_{x0} \frac{\partial^2 w_0}{\partial x^2}, N_{x0} \frac{\partial^2 w_0}{\partial y^2}$, and $N_{x1} \frac{\partial^2 w_1}{\partial x \partial y}$ may be neglected since they will be small compared with $N_{x0} \frac{\partial^2 w_1}{\partial x^2}, N_{x0} \frac{\partial^2 w_0}{\partial y^2}$, and $N_{x0} \frac{\partial^2 w_0}{\partial x \partial y}$. Also, if the deflection prior to buckling is zero or constant as occurs for many problems (for example, axial compression, hydrostatic pressure), all derivatives of w_1 vanish. For this type of problem equation (4e) becomes

\[
\frac{\partial Q_{x1}}{\partial x} + \frac{\partial Q_{y1}}{\partial y} + N_{x0} \frac{\partial^2 w_0}{\partial x^2} + N_{y0} \frac{\partial^2 w_0}{\partial y^2} + N_{x1} + 2N_{x0} \frac{\partial^2 w_0}{\partial x \partial y} = 0
\] (4e')

The six equations relating changes in middle-surface resultant forces with buckling strains and changes in moment with buckling distortions are identical with equations (2) and (3) with the subscript 1 added to $N_x, N_{xy}, N_y, Q_x, Q_y, M_x, M_{xy}, M_y, u, v$, and w.

The 11 equations, given by equations (4) and equations (2) and (3) (with subscript 1), apply to buckling problems in general (with equation (4e) or (4e') as required) and can be used to obtain the critical values of the loads acting on the plate. As is shown in the next section, however, for the case in which the deflection prior to buckling is zero or constant, the 11 equations can be suitably combined to yield 3 equations in $w_1, Q_{xz},$ and Q_{yz}, a form convenient for application to plates of sandwich construction.

Reduction to three equations for buckling problems in which the deflection prior to buckling is zero or constant.—

The reduction of the 11 equations to 3 equations in $w_1, Q_{xz},$ and Q_{yz} is achieved in several steps as follows:

By differentiating equation (4c) with respect to x, equation (4d) with respect to y, and adding the results to obtain the relationship

\[
\frac{\partial Q_{x1}}{\partial x} + \frac{\partial Q_{y1}}{\partial y} = \frac{\partial^2 M_{x1}}{\partial x^2} - 2 \frac{\partial^2 M_{x1}}{\partial x \partial y} + \frac{\partial^2 M_{y1}}{\partial y^2}
\]

equation (4e') may be rewritten as

\[
\frac{\partial^3 M_{x1}}{\partial x^2} - 2 \frac{\partial^2 M_{x1}}{\partial x \partial y} + \frac{\partial^2 M_{y1}}{\partial y^2} + \frac{\partial N_{x0} w_1}{\partial x} + \frac{\partial N_{y0} w_1}{\partial y} = 0
\] (4e'')

Next, equations (2) and (3) (with subscript 1) are substituted into the equilibrium equations (4a) to (4d) and (4e'') to give

\[
\frac{\partial^3 w_1}{\partial x^3} + \frac{\partial^2 w_1}{\partial x \partial y} + \frac{\partial w_1}{\partial x} + \frac{\partial^2 w_1}{\partial y^2} + \frac{\partial w_1}{\partial y} = 0
\] (5)

\[
\frac{\partial^3 w_1}{\partial x^2 \partial y} - \frac{\partial^2 w_1}{\partial x^2 \partial y} + \frac{\partial^2 w_1}{\partial x \partial y^2} + \frac{\partial w_1}{\partial x} + \frac{\partial^2 w_1}{\partial y^2} \left(\frac{\partial^2 w_1}{\partial x \partial y} \right) = 0
\] (6)

\[
Q_{x1} + \frac{D_y}{D_x} \left(\frac{\partial^2 w_1}{\partial y^2} \right) = 0
\]

\[
Q_{y1} + \frac{D_x}{D_y} \left(\frac{\partial^2 w_1}{\partial x^2} \right) = 0
\] (7)
where \(L, \) is the linear differential operator defined by

\[
\frac{d^2}{dx^2} + \frac{d^2}{dy^2} + \frac{1}{r(1-\mu_z \mu_y)} \left(\frac{\partial}{\partial x} - \mu_z \frac{\partial}{\partial y} \right) \left(\frac{\partial}{\partial x} + \mu_y \frac{\partial}{\partial y} \right)
\]

At this point, six equations have been eliminated and, therefore, five equations remain—equations (5), (6), (7), (8), and (9) in \(u, \ v, \ w, \ Q_x, \) and \(Q_y. \)

A further reduction in the number of equations and unknowns is effected by first solving equations (5) and (6) to obtain relations from which \(u_1 \) and \(v_1 \) can be determined and then substituting for \(u_1 \) and \(v_1 \) in equation (9). The expressions obtained by solving equations (5) and (6), in accordance with the rules governing the multiplication of linear operators, are

\[
\frac{D_x}{1-\mu_z \mu_y} \frac{d^2}{dx^2} + \frac{D_y}{1-\mu_y \mu_z} \frac{d^2}{dy^2} + \frac{1}{r(1-\mu_z \mu_y)} \left(\frac{D_x}{1-\mu_z \mu_y} \frac{1}{1-\mu_z \mu_y} \right) \frac{d}{dx} \frac{d}{dy}
\]

where \(L \) is the linear differential operator defined by

\[
\frac{D_x}{1-\mu_z \mu_y} \frac{d^2}{dx^2} + \frac{D_y}{1-\mu_y \mu_z} \frac{d^2}{dy^2} + \frac{1}{r(1-\mu_z \mu_y)} \left(\frac{D_x}{1-\mu_z \mu_y} \frac{1}{1-\mu_z \mu_y} \right) \frac{d}{dx} \frac{d}{dy}
\]

At this stage, the original 11 equations have been reduced to the 3 equations (14), (7), and (8), in the 3 unknowns \(w, \ V_1, \) and \(Q_y. \)

For most problems, equations (14), (7), and (8), together with proper boundary conditions, can determine the elastic stability criteria for an orthotropic curved plate subjected to middle-surface loadings. It should be noted, however, that the three equations are not sufficient if boundary conditions are specified on the displacements \(u, \) and \(v. \) For boundary conditions on \(u \) and \(v, \) as well as \(w, \) equations (10) and (11) must also be employed. When boundary conditions are not specified on \(u \) and \(v, \) (the case when only equations (14), (1), and (8) are used), certain boundary conditions are implied, nevertheless, by equations (10) and (11), consistent with the expression for \(w. \) A discussion of similar implied boundary conditions on \(u \) and \(v, \) as included in reference 7.

SPECIAL CASES OF BUCKLING EQUATIONS

Isotropic curved sandwich plate with non-direct-stress-carrying core.—For the isotropic sandwich plate with non-direct-stress-carrying core, the physical constants bear the following relationships to those of the orthotropic plane:

\[
D_{xy} = \frac{G_{xy}}{E_{xy}} \frac{d^2}{dx^2} + \frac{G_{xy}}{E_{xy}} \frac{d^2}{dy^2} + \frac{1}{r(1-\mu_z \mu_y)} \left(\frac{G_{xy}}{E_{xy}} \frac{1}{1-\mu_z \mu_y} \right) \frac{d}{dx} \frac{d}{dy}
\]

These relationships permit equation (14) to be simplified as follows:

\[
D_{xy} w_{1} + \frac{2D_{xy} E_{xy}}{r^2} \frac{d^2}{dx^2} + \frac{2D_{xy} E_{xy}}{r^2} \frac{d^2}{dy^2} + 2N_{xy} \frac{d^2}{dx^2} + 2N_{xy} \frac{d^2}{dy^2}
\]

\[
\frac{D_{xy}}{D_{Q}} \left(\frac{\partial^2 Q_1}{\partial x} + \frac{\partial^2 Q_1}{\partial y} \right) = 0
\]
where
\[v^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \]
\[v^4 = \frac{\partial^4}{\partial x^4} + 2 \frac{\partial^4}{\partial x^2 \partial y^2} + \frac{\partial^4}{\partial y^4} \]
and \(v^4 \) is defined by \(v^4(v^2w_i) = v^4(v^2w_i) = w_i \).

In this case, however, equations (7) and (8) are not needed to obtain the quantity \(\partial Q_{x_i} / \partial y = \partial Q_{y_i} / \partial y \), since this quantity can be found more conveniently from equation (4e'). From equation (4e'), therefore,
\[\frac{\partial Q_{x_i}}{\partial x} + \frac{\partial Q_{y_i}}{\partial y} = -\left(\frac{N_{x_i}}{r} + N_{y_0} \frac{\partial^2 w_1}{\partial x^2} + N_{y_0} \frac{\partial^2 w_1}{\partial y^2} + 2N_{y_0} \frac{\partial^2 w_1}{\partial x \partial y} \right) \]
Substituting for \(\partial Q_{x_i} / \partial y \) in equation (15) gives
\[D_1 v^4 w_1 + \frac{2t_i E_i}{r^2} v^4 - \frac{\partial^4 w_1}{\partial x^4} D_i D_0 v^2 \left(-\frac{N_{x_i}}{r} \right) \]
\[\left(1 - D_5 D_2 v^2 \right) \left(N_{y_0} \frac{\partial^2 w_1}{\partial x^2} + N_{y_0} \frac{\partial^2 w_1}{\partial y^2} + 2N_{y_0} \frac{\partial^2 w_1}{\partial x \partial y} \right) = 0 \] (16)

The term \(-N_{y_0}/r\), which appears in equation (14) for the orthotropic plate as \(G_{xy} L_{r_1} \frac{\partial^4 w_1}{\partial x^4} \), reduces to \(\frac{2t_i E_i}{r^2} v^4 - \frac{\partial^4 w_1}{\partial x^4} \) for the case of the isotropic plate. If this result is used in equation (16), the equation of equilibrium for the isotropic curved sandwich plate with non-direct-stress-carrying core becomes
\[D_3 v^4 w_1 + \left(1 - D_5 D_2 v^2 \right) \left[\frac{2t_i E_i}{r^2} v^4 - \frac{\partial^4 w_1}{\partial x^4} \right] \]
\[\left(N_{y_0} \frac{\partial^2 w_1}{\partial x^2} + N_{y_0} \frac{\partial^2 w_1}{\partial y^2} + 2N_{y_0} \frac{\partial^2 w_1}{\partial x \partial y} \right) = 0 \] (17)

If the radius is taken infinite, equation (17) becomes equivalent to equation (71) of reference 4.

Isotropic curved plate, deflections due to shear neglected.—The present theory can be reduced to a known theory for ordinary curved plates by appropriate substitutions for the physical constants. For an ordinary plate, the physical constants become
\[D_{x_0} = D_{y_0} = \infty \quad \text{(no shear deflections)} \]
\[\mu_x = \mu_y = \mu' = \mu' = \mu \]
\[D_x = D_0 = D (1 - \mu^2) \]
\[D_x = D_0 = D (1 - \mu) \]
\[E_z = E_0 = E' \]
\[G_{xy} = \frac{E_f}{2(1 + \mu)} \]

Upon substitution of these constants into equation (14), the resulting equation becomes independent of equations (7) and (8) and the equilibrium equation of the ordinary curved plate, therefore, is given by
\[D_3 v^4 w_1 + \frac{E_f}{r^2} v^4 - \left(N_{x_0} \frac{\partial^2 w_1}{\partial x^2} + N_{x_0} \frac{\partial^2 w_1}{\partial y^2} + 2N_{x_0} \frac{\partial^2 w_1}{\partial x \partial y} \right) = 0 \] (18)

Equation (18) is equivalent to the modified equilibrium equation for ordinary curved plates presented in reference 7.

CONCLUDING REMARKS

A theory has been developed for analyzing the elastic behavior of orthotropic curved plates, that takes into account the effect of deflections due to shear and requires the use of 12 physical constants to characterize the plate. Seven of the physical constants appearing in the equations of equilibrium are directly associated with the flat-orthotropic plate theory presented in NACA Rep. 899. The remaining five physical constants are included in the present theory to account for the stretching under loading of the middle surface of the curved plate.

For each type of orthotropic plate, the 12 physical constants may be evaluated either from the geometry of the cross sections and the properties of the materials used or by direct tests conducted on sample specimens. Because two reciprocal relationships exist (see appendix), only 10 of the constants need be determined independently.

The theory presented in this report does not take into account the compressibility of the sandwich plate in a direction normal to the faces. Such an effect does not enter into flat-sandwich-plate theory but might be of importance in certain types of curved sandwich plates where the elastic constants of the core material are small compared with those of the face material.

For practical sandwiches of the end-grain-balsa or corrugated-core types, order-of-magnitude considerations lead to the conclusion that the effect of core compressibility will be negligible as regards both buckling loads and deflections. For sandwiches with less stiff cores—for example, cellular cellulose acetate—the effect of core compressibility will be more important. Even for such cores, however, in the case of all the numerical examples given in NACA TN 1832, the effect of core compressibility is negligible in comparison with the effect of transverse shear deformations for sandwich-type circular cylindrical shells. The present theory, in which the core is assumed to be incompressible in a direction normal to the faces, appears, therefore, to be applicable to most practical sandwich plates.

LANGLEY AERONAUTICAL LABORATORY,
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS,
LANGLEY FIELD, VA., NOVEMBER 22, 1949.
APPENDIX

DERIVATION OF MIDDLE-SURFACE FORCE-DISTORTION RELATIONSHIPS

Resultant forces.—The relations between the elastic middle-surface strains and forces, satisfying the foregoing definitions, can be written as

\[
\begin{aligned}
\epsilon_z &= \frac{\epsilon_z}{E_z} - \mu'_z \frac{N_z}{E_z} \\
\epsilon_y &= \frac{\epsilon_y}{E_y} - \mu'_y \frac{N_y}{E_y} \\
\gamma_{xy} &= \frac{\gamma_{xy}}{G_{xy}}
\end{aligned}
\]

(A1)

The three strain equations can be solved for \(N_z, N_y, \) and \(N_{xy} \) in terms of the strains to give

\[
\begin{aligned}
N_z &= \frac{E_z}{1 - \mu'_z \mu'_y} \left(\epsilon_z + \mu'_z \epsilon_y \right) \\
N_y &= \frac{E_y}{1 - \mu'_y \mu'_z} \left(\epsilon_y + \mu'_y \epsilon_z \right) \\
N_{xy} &= G_{xy} \gamma_{xy}
\end{aligned}
\]

(A2)

Substituting the expressions for the middle-surface strains of a cylindrical section in terms of middle-surface displacements

\[
\begin{aligned}
\epsilon_z &= \frac{\partial u}{\partial x} \\
\epsilon_y &= \frac{\partial v}{\partial y} + \frac{w}{r} \\
\gamma_{xy} &= \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}
\end{aligned}
\]

into equation (A2) gives

\[
\begin{aligned}
N_z &= \frac{E_z}{1 - \mu'_z \mu'_y} \left(\frac{\partial u}{\partial x} + \mu'_z \left(\frac{\partial u}{\partial y} + \frac{w}{r} \right) \right) \\
N_y &= \frac{E_y}{1 - \mu'_y \mu'_z} \left(\frac{\partial v}{\partial y} + \frac{w}{r} + \mu'_z \frac{\partial u}{\partial x} \right) \\
N_{xy} &= G_{xy} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right)
\end{aligned}
\]

(A3)

These equations are used in the derivation of the equilibrium equations.

REFERENCES

Positive directions of axes and angles (forces and moments) are shown by arrows.

<table>
<thead>
<tr>
<th>Axis</th>
<th>Force (parallel to axis) symbol</th>
<th>Moment about axis</th>
<th>Angle</th>
<th>Velocities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designation</td>
<td>Symbol</td>
<td>Designation</td>
<td>Symbol</td>
<td>Linear (component along axis)</td>
</tr>
<tr>
<td>Longitudinal</td>
<td>X</td>
<td>Rolling</td>
<td>L</td>
<td>ψ</td>
</tr>
<tr>
<td>Lateral</td>
<td>Y</td>
<td>Pitching</td>
<td>M</td>
<td>ψ</td>
</tr>
<tr>
<td>Normal</td>
<td>Z</td>
<td>Yawing</td>
<td>N</td>
<td>ψ</td>
</tr>
</tbody>
</table>

Absolute coefficients of moment

\[C_L = \frac{L}{q_b S} \quad C_m = \frac{M}{q c S} \quad C_n = \frac{N}{q_b S} \]

(rolling) (pitching) (yawing)

Angle of set of control surface (relative to neutral position), δ. (Indicate surface by proper subscript.)

4. PROPELLER SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>Diameter</td>
</tr>
<tr>
<td>ϕ</td>
<td>Geometric pitch</td>
</tr>
<tr>
<td>p/D</td>
<td>Pitch ratio</td>
</tr>
<tr>
<td>V'</td>
<td>Inflow velocity</td>
</tr>
<tr>
<td>V_s</td>
<td>Slipstream velocity</td>
</tr>
<tr>
<td>T</td>
<td>Thrust, absolute coefficient $C_T = \frac{T}{\rho n^2 D^4}$</td>
</tr>
<tr>
<td>ψ</td>
<td>Torque, absolute coefficient $C_Q = \frac{Q}{\rho n^2 D^5}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Power, absolute coefficient $C_P = \frac{P}{\rho n^2 D^5}$</td>
</tr>
<tr>
<td>C_L</td>
<td>Speed-power coefficient $C_L = \frac{\delta}{\rho V^3}$</td>
</tr>
<tr>
<td>η</td>
<td>Efficiency</td>
</tr>
<tr>
<td>n</td>
<td>Revolutions per second, rps</td>
</tr>
<tr>
<td>ϕ</td>
<td>Effective helix angle $= \tan^{-1}\left(\frac{V}{2\pi n}\right)$</td>
</tr>
</tbody>
</table>

5. NUMERICAL RELATIONS

<table>
<thead>
<tr>
<th>Unit</th>
<th>Conversion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 hp</td>
<td>76.04 kg-m/s=550 ft-lb/sec</td>
</tr>
<tr>
<td>1 metric horsepower</td>
<td>0.9863 hp</td>
</tr>
<tr>
<td>1 mph</td>
<td>0.4470 mps</td>
</tr>
<tr>
<td>1 mps</td>
<td>2.2369 mph</td>
</tr>
<tr>
<td>1 lb</td>
<td>0.4536 kg</td>
</tr>
<tr>
<td>1 kg</td>
<td>2.2046 lb</td>
</tr>
<tr>
<td>1 mi</td>
<td>1,609.35 m=5,280 ft</td>
</tr>
<tr>
<td>1 m</td>
<td>3.2808 ft</td>
</tr>
</tbody>
</table>