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LNiRODIICTION.

$1. This report -was prepared by Dr. H. Bateruan for publication by the National Advisory
CommiLtee for Aeronautics. The tlkwry of small oscillations about a state of steady motion
-which was de-doped many years ago by E. J. Routh * has been appIied with marked success
in ~eroclynarnics, the desired simplicity of the equations being secured by the introduction of
the resistance coefficients by G. H. Bryccn=3 Ilk simplification of the equations is based on
the assumption that in a s~mht departure from a state of steady motion the increments in the
component aerodynamicaI forces and couples can be expressed in terms of the increments of
the component velocities of translation arid rotation rdo~e yithout any additional terms clepencI-
ing, for instance, on the increments of the accelerations. mk assumption seems to give a
gwocl approximation to the truth in the ease of an airplane, but in the case of a balloon the
additional terms are required. When a flying machine is treated as a rigid bod~ the general
type of steady motion is one in whleh the center of gra-i-ity describes a hebx and the algebraic
equation which determines the tempornl characteristics of the oscillations is of the eighth
degree, but this equation can be simplified in certain cases. h the case of an airplane hav@
mplane of symmetry, the oscilIaticms about a state of steady rectilinear flight can be regarded
as built up from longitudinal and lateraI oscillations which are practically indepe~dent of one
tino ther. When certain resistance coefficients are assumed to be zero each set of oscillations is
associated -with an algebraic equation of the fourth degree.2

.4 notabIe simplification also occurs in the case of a body Ike a pmwhute which has an a.us
of symmetry, when the steady motion is rectikear and in the direction of the axis of sp-rnetr~-.

In a recent report on the dynamical anal@s, 3 Messrs. Klemin, Warner and Denkinger
ha-w studied the effect on the period and rate of subsidence of the pitching oscillations of an air-
plane of a change in one of the resistance deri-ratires when @ the others are kept constant. Xt
occurred to the author that it might be -worth -w-Me to continue this work by considering simul-
taneous -radiations in-t-w-oor three of the deri-ratiws and to pay special attention to cases in which
a slight change in some of the deri-ratives has (1) no effect, and (2) a marked effect in the charac-
teristics of the lo~~ oscillation.

The results which haw been obtained are e.xhibitecl by means of diagrams in which two of
the resist ante coefficients are used as coordinates, and cur-res are drawn aIong which the modulus
of deca~ of a long oscillation has a constant due, numbers being given to inclicate the ~alue
of the period at various points of each cur-i-e. .%t Mr. Warner’s suggestion numbers ha~e beeu
given in some cases to indicate the ratio of. the period to the time of damping to half the initiaI
amplitude, as this quantity is adopted as a measure of stcbility in the report to which we have
just referred.

IThe SwbXlty of a Giwn State of Motion (Adams Prize Essay). London, 1s7. Advanced Rigid Dymmks. Chaps. III and YI.
~Smbility in Aviation. Ihcmillm k Co. (19111.
~Third Annual Report of the >’ational Adriswry Ccmm-ttee FM.%romutics A’o.17,p. 330. (1917.) This report will be referr~ tO SU&-~

—
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quently as 17.
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The method has F&o been adapted to the lateral oscillations of a symrnetriefil airpltmc tind
to the oscillations of a parachute. The graphical method used here is inferior in many respects
to the beautiful one devised by L. Bairstow and J. L. Nayler, British .~dvisory Committee’s
Report ATO.116, 1915, but the work was completed before this report canlc to the wri~er’s
notice.

$2. Pitching oscillutiows.-ll%en the pitching oscillations are regarded as independent of
those in roll and yaw, the biquadmt.ic equation which determines the temporal characteristics
of the oscillations may be written in the form

[ 1k (Ax+y)(h+z)(k+w) +2 k(x-kz)+A @n do +gq)l(lh+y}

(1) + (gz +{W) (M + Cos 8.) + (??.?–22) $ (M – sina) +M(m~ @o– T) = ~

where x= – V-M., y= – Mq, z= =.Y., w= =2.,

(2) T7= U+ Zq+X~

and the notation is & same as in the reports of Hunsaker, Klemin, Denkinger, and Warner,
Let k’– ZCZh+7 be one factor of the expression on the left hand side of equation (11.

Replacing k’ by 2ak – -Ywe can recluce the above expression to one which is linear in ~ fir]d

equate to zero the terms with and wi~hout h. This gives us the t}vo equations

(3) V[y +.4(W +2) +4Aa] = (y +2Aa) (w +Za) (z +2LY)+~q(y +2ACY)

[ 1[ 1+Z2a+z+*sin60+N&f7z) +( WL’+f n)+ Cmoo-?l f

which generally cietermine z and y uniquely ~when a and Y are given, thah is, when the period

— and the co-efikient of subsidence= a of the oscillation are gi-wm.~=d::d Instead of the la~t[,r

cfuantity it is convenient to use the time

~_loge 2 .69.- —
—a —a’

which represents the time which it takes for the amplitude of a simple oscillfition to fall tu
half value.

With the aid of equations (3) and (4) the cur~es t = constant (a= constunt) ha,vc kn

drawn in the (c, y) pIane for various values of z, W, t, n, f, 6, and do, the valtle .A = 100 being
adopted in each case. We can use the same diagrams for any other value of A by simply alte-
ring the scaIes for x, y, and r. It shouId be noticed in f~ct that equfiticm (I) is still saiisfiwl if
we replace A, z, y, t by K-4, Kz, Ky, K(, respect iT’eIy, keeping the other quantities the same.

In diagrams 1-% there are two sets of cuves corrw.pending rcspecti\-eIy to the mducs ~ = I
and ~ =2, Each set of curves is macle up of three pairs, the two curws of each pair correspond.. :=--..—. .---= -~

~They may fail to do this for certa~ particular ~aIues of ~ and Ywhen the two linear Wuations in r and Yme the same. It shonhl be noliced

—. .—

frowe’rer,that when #o=o, 8=0, f=o, theequatiorrs give

(2&+lo+z)[to~+wz( 7-l)+ i(q-l)q=o

\vhen b+w-tz=o we have 7=$7+202 and the eqw.t,onof the Me along which both a and Yareconstant ist=o. This is one of the boundaries O(
the region of skkdlity in the (r, u) plane. The second factor I@+roz(q– I) + $(a–lp is generally positil-e with the Yalues of the re.sfahmcccrkffkient
usually fonnd for an airplane. If it could vanish there woufd bean Mnite number of straight Iines along Whicha and Y&reconstant and ~ecled
by the relation

Y=t+igi(h+?).



DIAGRA-MS OF AIRPLANE STABILITY. 351

to the same value of t, but the upper cur-re corresponds to the -due ~= 1 and the lower cum-e
to the -due f=O.

The values of z, UI,E, in diagram I are roughly those found for the Curtis: J. N. 2 @ Report
17. A few- slight changes have been made to facilitate the caIcuIations, but thes=edo not affect
the general concI~~ions. The mdues of q in diagram 1 are greater than the number deri~ed .
from the value of .X. given in Report 17. This number is about 0.6 and it is remarked on page
332 that .TW decreases as the angIe of incidence increases and the speed decrease-s. Since .Sm
may actuaIIy become negative as the critical speed is approached, ewes have akio been drawn
forthewduesq=o and ?=–1.

In stud-ying these diagrams it should be noticed in the first place that the Iines t= ~ and
z = u bit the region of stability. The fird of these ties is curved. men q is decreased this
line rises and the region of stabihty becomes more restricted. On this account alone we can .
expect a decrease in q to he unfa~orable when the other re&tance deri-vati~es remain const ant.
This agrees with the result found in Report 17 but it is worth wh!de to co~~ider the matter more
fully.

If we take any due of q and begin to draw the curves t = mnst ant, starting from t = = and
gradualIy decrea@ t, we find that a certain minimum -raIue to is reached below which the cur~e
no longer lies in the pari of the region of stability shown on the diagram. It is clear from the
diagrams thah G increases Then q decreases. This increase in the time of damping is partIy
otiset by an incre~~e in period; but, if the other re~ist~ce deri~ati~es rema~ co~tant, the ratio
of the period to the time of damping apparently decrease-s y-ith ~. Thk is seen more eady by
looking at diagrams Ic and lb.

If some of the other resistance coefficients aIter at the same time as q the unfavorable
effect of a decrease in the value of ~ ma-y be partially or completely offset. Thus if, when we
decrease ~ from 2 to 1? we increase y so as to keep t constant, we increase the period p and so
improve the stability as far as the long oscillation is concerned. With smaLl values of ~ a con-
siderable incre~~e in g may be needecI to keep t constant w-hen q is decreased> but a much smalIer
increase in y may be sufficient to offset the unfa-rorable effect of the decrease of q. The effect
of decreasing ~ ma-y ako be offset by decrea.s~~ z; for: if we decrease z so as to keep t constant,
~he period p k seen to be increased. This may be seen -rery clearIy in diagram I if w-estart with
the point t= 13.8, p =20-1, 7=2, and pass fist to the poini with the same coordinates in the part
of the diagram comespondtig fo ~ = 1 and then proceed aIo~~ a line y = com~tant untiI the cur-re
i!= 13.8 is reached. .% comparison of the different diagrams indicates that the generaI form
and arr~~ement of the cur-res is roughly the same for the different sets of vaIues of z, w, and t.
.h exception occurs in Lhe case of the cm-yes for ~ = – I h diagram Ia. It W be seen that ~
this case the curves ~= O cross the curve-s ~= 1 -whiIe in the other diagrams a cum-e ~ = Oremains
below- the corresponding cur-re ~= 1.

IL is generalIy assumed that r= O, stice the moment about the center of gf’a~ity of the
airpIane clue to air forces is zero in horizontal flight and therefore w-ill not he dfected by &
change in speed. It is easy, how-e-rw, to imagine some arrangement which wiIl make XU and
therefore ~ different from zero. The inclination of a flap held by a spring and exposed to the
air -will wry with the speed of the tipIane* co~equently the force On it W not be propor-
tional to the square of the speed, and so ~ WW be eitther positi~e or negati-re.

It. will be seen from Lhe diagrams that a positive value of ~ is generally unfavorable to
stability. When q is negative, a machine with a moderately large -due of z may be an exception
to this ruIe; but, =when XW is positi~e, the stabiIity can apparently be impro~ed by making f
negati~e.

If this is done -with the aid of a flap held by a spring, 5 changes may also be produced in

the other resistance deri~ati~es, particularity X. and.& We must therefore aIso study the effect
on stability of changes in E and z. Whis ma-y be done -with the aid of diagrams 1–17.

5 The scsbilty of emseropIane which IMs springs in the mntroI CCKUWCfiOmMS - fiSCUSSMM ~ more rigorous msmer by L. Baimtow and
R. Jones. British Ad- Committee for Aeronautics. (R-M No. 210.)

54%!2-21-23
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It appears that an increase in $ from 2 to 3 has practicality no effect cm Lhe position of the
curves t= constant, but it does lower the period; hence an increase in 1 scans to lx unfavomble.

A comparison of diagrams IV and V indicates that an increase of z from 0.1 to 0.2 10WCR
the curves t = constant and is on the whole favorable to stabiliiy.

The general conclusion then is that, if some kind of a flap held by a spring is to be used
to improve the stability, as far as the long oscillation is conccrncd, it shoul{l Ijc chosen so m
to decrease Z,,, increase – X., and make M,, positive.

The diagrams may also be used for other purposes; in particular, tJley mtiy be used 10
confirm some of the conclusions in Report 17. It will be noticed thtit as a point. moves tov,wrd
the origin along a ~urve t = constant, the period p increases, and so the s~abiIity is impraved.e
It may then be advantageous to decrease both P.U$Oand – .Ug, but – Jlq must not be dccrcascrl
too rapidly. There is a Iirnit to the ratio of – dg to – d.r if we wish the change to bc favorable
to stability, and this limiting Take may be shown clearly on the diagram by drawing the curves

for which $ is constant, in accordance with a suggestion made by Mr. T_lTarner. These curves

are shown in diagrams Ib smd lc. It wiIl be noticed Lhai the curves + constnnt, am stccpPr

than the curves f = constant, but are not quite as steep as the curves p = conskmt.
A comparison of diagrams I and II indicates that an increase of w from 2.9 to 3.9 increases

the period y and has more effect on the time of damping t when ~ is negative tl~an ~vhen ~ is
positive. When ~ =2, the time t apparent] y increases with w; but, wlwn q =1, t increases for
small values of t, e. g.} those less than 13.8, and decreases for large ‘values of t. When q =0 nnd
~ = – 1, t decreases as w increases, the effect being quite marked when ~ = – 1.

In diagram VI the effect is shown of making 8 difterent from zero, It appeurs that by
making 3 positive we decrease the time of damping and produce verl lit~le chat}ge in tl~c
period. Other things being equal, an increase in 6 seems to be favorable to stability. It should
be noticed, however, tha,t Xq occurs in the expression for Y, consequently unIess an increase
in X* is balanced I)y a decrease in Zq the numerical ~-alue of T’ will be lo]vered znd tho values
of the quantities depeklding on V altered. It appears then that the Meet of zn incrc.am in
.Xq may be offsefi by the change in T’. It should be observed, however, that, ;shen A-Q is
about 3, the percentage change in the value of V is not large, and so the effect of the increase
in 3 shouId predominate over the effect of the change in ~’. In diagram VI u is wriMcm in
place of 13.

In di&gram VII the effect is shown of, a change in 6~, o tkr things remaining the same.
It appears that the stability is improved ‘by making .90positive} for the curves t = constant. are
lowered. By making 6~ negativej the time of damping is increased. In particular, if the
speed were not increased, the time of damping wouId be greater in a vertical dive than in
horizontal flight. This may be seen when the stability of the parachute and Micop kr me

studied. (See Report No. 80.) —A. ... . .- -- ——
~Itshould be noticei tinat the nearer the representative point is to the origin of coordinates: ho mora nrwked 1s WI erlxt on p and t of

-.. —

small changes in ‘Iand y.
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Lateral osciZZations.—When the lateral oscillations are m alI tically independent of thf’
pitching oscillations the biquadratic equation which. determines the temporal ehtiracteristics
of the oscillations is

h(l+fc) (A+w) (A+q)+rA(k+ zl–iyx(A+w) +2( A+q)–t2A–yr=o (1)
wher~ 7

LP= –X&2, _Lr= – :y AL’, Lv=:m

~JTp= —Y 1{ ~ r
Qt c, A;=–v Kc’, Ne = -C[m,

l“p = o, Y,= o, Y,, = – w.

Writing X2 – 2cYX+ D= o ad reducing the above equation to a iinear
equating to zero tl~e coefllcients of h and 1, that

(2)

one in X we find, on

f3(’w+?7+x+4a)=@+2a) (w+2cr) (q+2a)+r(x +2a)–$y(w+2a) +z(l–t),
(3)e’–6[(z+2a) (W+q+za)+ wq+r–ty]+zv–yr=o.

With the aid of these equations the curves t= ccmstant may be drawn in the (r, y) plane
for various sets of values of z, f, ~, ,and w. It will be seen from the diagrams that there is a
mwked difference between the cur~es for which g is positive and those for which ~ is zero or
negative.

It. has been pointed OULrecently by Prof. E. B, Wilson 8 that in normal flight at a ftiirly
low angle of incidence the quantity NP is negative, and that cousecluently there is no need
for a fine adjustment of the values of AT., L,,, NP, and Lp in order to secure both spiral stability
and stabiIity in the Dutch roll. .4t larger angles of iucidence AL may be zero and even positive,
and then there is moro need for a fine adjustment. On this account most of the diagrams have
bem drawn for zero and positive values of t, one diagram being deemed sufilcient. to indicate
the general arrangement of the curves when 5 is negative. It \vilI be noticed that when : is
negative the period p is rather short but the time of d~rnping t can also be made short and so
th~ short period is not a great’ disadvantage. By maliing &positive the period can bc moro
than doubled, but this is offset by the lengthening of the time of damping.

It should be noticed that in the diagrams the region of stability is bounded by the curve

t = m and the line y=?. If the representative point lies to the left of the curve t = m, the air-

plane is unstabIe in the Dutch roll; while if the point lies above the line y =~, the airplane is

spirally unstabIe.g The shape of the curves t= constant, is very much the same for the diflereut

-ralues of ~, { and z used in the diagrams, but the position of the line y= ~ varies considerably.

Am examination of diagrams VIII-XII indicates that it should be possible to construct tin
airplane which, when ff~ing at a large angle of incidence, is spirally stable and hm & period for
the Dutch roll of about 15 seconds with a fairly short time of damping.

It has been remarked that in a moderately stabIe airplane the period is not sensiti~e, com-
paratively large changes in the airplane having small effect on the period and damping.’” As
an illustration of this phenomenon it is of some interest to consider the lines along which both
p and t are constant. Such a line is obtained by choosing a and o so that the two equations (3)
are the same. Writing down the conditions

(’w+2a)(Tl+2c4 +I_-6 –f(w+2a) _z(l–i)~6(w+q+2a)———.
–tl(w+q+2a) e~–{

‘—--– lp.fl(wy+c)+z~ ‘
—

~Cf. J. C. Hmsaker, DynaiiiieaI Stability of Aeroplams, Smithsonian Miswlkmeous Coileet ions (Washington), Vol. 62,h’o.6, June (1916),pp.
55-57.

~Fourth Annual Report of the National Advfsory Committee of Aeronautics. No. 23. W%shfngton (1919).
~For these terms see Hunsaker (k cit.).
10Of. IV. S.parren,Kuull ScaIe Aeroplane Experimenfs,~) The Aeronautical Journal, February, 1919,p. 56.
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we have tFo eqmtions to detertie ct and o when z: w, :, q md ~ me

hand /, ~, w, a, and o be regarded as given, the resulting equations
uniquely. The equation for q is

365

given. If on the other
mill determine q and z

– (q+2a)(w+2a)r=w +o[@~(zo+2-a) –g~–~]+~’.

If w + 2a is sraaLl, a comparati-rely small percentage change in o means a comparatively large
percentage change in the -ralue of q. For exampIe if W= O.ll ~=0.6, 5=2, u+-2a= –.05,

9=.27, q= .72, .z=l.’is2

0=.26, T= .97, z=l.79$

0=.25, ?j’=1.233, Z=l.777

IrLdiagram VIII with:= 1, the equation of the straight line along which p and t are constant
is .0SS4Z+ .0241y– .3S43 =o; and we ha-re w+2a= – .0241, 6= .4953, t= 11.12, p=8.96.

Ih appears from the diagrams that the greater the curvature of the cur-re t= constant, the
more rapid is the variation of p as the representati-re point moves along it. If the cur-re is
concave to the axis of q, p increases as the point mo-res up the curve, while, if the curve is
convex to the axis of y, p increases as the point moves clown the curve.

If we wish an airplane to have rq+stanee derivatives for which the period is not semitive,
a good plan is to bring the representative point as close as possible to the straight line aIong
which p and t are constant. Ti%en t is negative this line does not seem to appear on tha
diagram.

A study of diagrams W-II-XII reveals the following properties:
(I} The greater the vaIue of .$the greater seems to be the effect on the damping of a change

in w.
t2 ) Au increase in w decreases the time of damping but does not. great~y alter the period.
(3) An increase in q decreases the time of damping aud increases the period when t= o;

but, when $=1, 2, or 3, the effect seems to be re-rerse.
(4) An increase in z seems to widen the gaps between the curves t = constant and to greatly

increase the period when g = 1 and f =2.
It. will be noticed that in diagram XIII the numbers on the curves t= constant indicate the

value of $.

(~) me ctief effect of a decrease in ~ seems to be a sIight change in curvature of the cur-res
t=constant.
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APPENDIX TO REPORT NO. 80.

ABILITYOF THE PARACHUTEANJ) HELICOPTER.

Note I.

The expressions for R’ and Kin terms of z,, z,, r,, y,, y,, y, may be found as follows:
Writing

fl(Y) = (Y+YI) (Y+Y2) (Y +Y3) –W%(Y +YJ –WI(Y +%) – W%(Y +%) ,

.f2(Y)=%(Y+YJ (Y+%) +%(Y+YJ(Y+YJ +G(Y+YJ (Y+%} -LW3)

we find thafi

f,(y) =Z1(Y+ ‘1) &’$z:pJ,;”@ “’) J(Y) -f,(Y),

where
(xl +2, + x,) ’f,(y) =Ac,x,(y +y,) +Bx,l”,(g +y,) + C%(y+ y3).

The coefficient of y on the right-hand side is the quantity denoted by 11.
Again writing

~,(y) = (ay + ~)~a(y) – ~

whore aj b, and K are constants to be determined, w-e may find the -due of K by substituti[~g
in the last equation a value of y which makes ~’(g) = O. me thus fmd that

H(?J+ y,) = Z+u?n– h), H(’y+g2) =Z2(L7-ATL), H(y + y’) ==X,(Am - M)
= XII’ ==E2Q = X2R

H2K= a,z,x,[H2 – QR –RP –PQ].

Putting ~3(y) = o in the identical relation connecting ~,(y}, .L(y), and f,(y) we also hd that

In this relation tbe positive signs must be taken for the square roots so that K is posit.ivc
when XI, Xz, and TSaxe positive.

Note 11.

In the case of a helicopter rising or falling vertically it may be sufficient to take into ac-
count the fin action ancl gyroscopic action of the lifting screw.

Writing
Q = O, E= X., F= – iXT, J=iNU, K= Nr+iil’v

the period equation becomes
X(k+u)(i+y +iz)+x(hw+i)=o

whero
,~= g’ATti Alr ~p

—7 y=g~7 .z=q~l *
A
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Routh’s conditions indicate that for stability the quantities

T=&pP-H,#.- (@)&]

so thak the conditions K> o arid T> o ~re equidenb.
The effect of gyroscopic action on stabdity has been estimated for the case of an airplane

iri rectilinear flight and found to be smaII.11 The value adopted for Np w-as XP – rQ where 1
is the moment of inertia of the propeller abouti the axis of g and Q its angukr wlocitty about
this axis.

l~oo
With 1=150 pounds-~fi and Q=2FX== 125.8 radians per second, this gave a -ralue of .

A’P of &bout l~m for an airplane of mass m = 1,300 pounds. In the case of the helicopter, Q is
smaIIer than for the airplane propeller but 1 is -rery much greater if the diameter of the lifti~m
screw is large. It seems likeIy, then, that the gyroscopic effect on stability fl be greater
than in the case of the airplane.
-
11L.BtiNtOW,B.M?tfl Joins, and ii. W. H. Thompson, British Advisory Committee’s Report. 19C?-13,p. 166. +


