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DIAGRAMS OF AIRPLANE STABILITY.

By H. Bareuax,
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INTRODUCTION.

§1. This report was prepared by Dr. H. Bateman for publication by the National Advisory
Committee for Aeronautics. The theory of small oscillations about a state of steady motion
which was developed many years ago by E. J. Routh® has been applied with marked success
in aerodynamics, the desired simplicity of the equations being secured by the introduction of
the resistance coefficients by G. f. Bryan.? This simplification of the equations is based on
the assumption that in a slight departure from a state of steady motion the increments in the
component aerodynamical forces and couples can be expressed in terms of the increments of
the component velocities of translation and rotation alone without any additional terms depend-
ing, for instance, on the increments of the accelerations. ‘This assumption seems to give a
good approximation to the truth in the case of an airplane, but in the case of a balloon the
additional terms are required. Vhen a flying machine is treated as a rigid body the general
type of steady motion is one in which the center of gravity deseribes a helix and the algebraie
equation which determines the témporal characteristics of the oscillations is of the eighth
degree, but this equation can be simplified in certain cases. In the case of an airplane having
a plane of symmetry, the oscillations about a state of steady rectilinear flight can be regarded
as built up from longitudinal and lateral oscillations which are practically independent of one
another. When certain resistance coeflicients are assumed to be zero each set of oscillations is
associated with an algebraic equation of the fourth degree.?

A notable simplification alse occurs in the case of a body like a parachute which has an axis
of symmetry, when the steady motion is rectilinear and in the direction of the axis of symmetry.

Tn a recent report on the dynamical analysis? Messrs. Klemin, Warner and Denkinger
have studied the effect on the period and rate of subsidence of the pitching oscillations of an air—
plane of a change in one of the resistance derivatives when all the others are kept constant. -
occurred to the author that it might be worth while to continue this work by Lonsmlermg blmul—
taneous variations in two or three of the derivatives and to pay special attention to cases in which
a slight change in some of the derivatives has (1) no effect, and (2) a marked effect in the charac-
teristics of the long oscillation.

The results which have been obtained are exhibited bv means of diagrams in which two of
the resistance coefficients are used as coordinates, and curves are drawn along which the modulus
of decay of a long oscillation has a constant value, numbers being given to indicate the value
of the period at various points of each curve. At Mr. Warner’s suggestion numbers have been
given in some cases to indicate the ratio of the period to the time of damping to half the initial
amplitude, as this quantity is adopted as a measure of stability in the report to which we have
just referred.

! The Stability of a Given State of Motion (Adams Prize Essay) London, 1877. Advanced Rigid Dypamics. Chaps, IIT and VI.
2 Stability in Aviation. Maemillan & Co. (1911). 7
# Third Annual Report of the Nagional Advisory Committee for Aeronautics. \0 17,p.830. (1917.) This report will be referred to subse
quently as I7.
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The method has also been adapted to the lateral oscillations of a symmetrical airplane and
to the oscillations of a parachute. The graphical method used here is inferior in many respects
to the beautiful one devised by L. Bairstow and J. L. Nayler, British Advisory Committce's
Report No. 116, 1915, but the work was completed before this report came to the writer's
notice.

§2. Pitching oscillations.—When the pitching oscillations are regarded as independent of
those in roll and yaw, the biquadratic equation which determines the temporal characteristics
of the oscillations may be written in the form

ANAN+Y ) (N w) -f-:c[)\()\ +2) +A % sin ao]+gn>\(f1>\ + )

(1) + (1 +tw) (NS +cos 8,) + (f — 21) % (N6 —sin 6,) +NF(cos B, —n) =0
where g=—VM, y=—M, ==X, w==12,,

v i
§= ‘Tg;Z n= - g’Xw} §= _g"njw 5='9‘an

(2) V=U+2,+X,

and the notation is the same as in the reports of Hunsaker, Klemin, Denkinger, and Warner.

Let N>—2ah++v be one factor of the expression on the left hand side of equation (1).
Replacing A\? by 2ah—vy we can reduce the above expression to one which is linear in X and
equate to zero the terms with and without x. This gives us the two equations

B) Ay+Aw+z) +4da]=(y+240a)(w+2a) (& +2a) + iy +24a)
+xl:2a+z+ %sme —I—é(é———ﬂ]%—{ §lw+ T,n)-!— cos f,— ]
@) Ay —~yly+2da)w+z+2a) + A (wz+Ey) +2]+cos 8, (Ex +fw) —% sin 6, (g8 —28) =0,

which generally determine 2 and ¢ uniquely * when « and v are given, that is, when the period

2 . . ey e .
p= 1/—75 and the co-efficient of subsidence =« of the oscillation are given. Instead of the latter
y—

quantity it is convenient to use the time

log, 2_.09

t=

— & -

which represents the time which it takes for the amplitude of a simple oscillation to fall to
half value.

With the aid of equations (3) and (4) the curves = constant (a=constant) have been
drawn in the (z, ¥) plane for various values of z, w, & », {, 5, and 6, the value 4 =100 being
adopted in each case. We can use the same diagrams for any other value of A by simply alter-
ing the scales for z, ¥, and {. It should be noticed in fact that equation (1) is still satisfied if
we replace 4, z, ¥, ¢ by «d, «x, xy, «t, respectively, keeping the other quantities the same.

In diagrams I-V there are two sets of curves COI‘I‘CprTldng respectively to the values =1

and n=2. Each set of curves is made up of thl ee pau‘; the t\\o curves of each pan’ correapond

+ They may fail to do this for certain partlcular values of « and v when the twolmear equationsin r and y are the same. It should be noticed

howerver, that when @=0, §=0, { =0, theequationsgive
(Qatw+2) [w+wz(n—1) +£(r— 1) =0

When 2o+ 10 +2=0 we have y=£3+wz and the equalion of the line along which both « and y areconstant isz=o¢. Thisisoneof the boundaries of
the region of stability in the (r, ) plane. The second factor w2+wz(n—1)+#n—1)%is generally positive with the values of the resistance coefficient
usually found for an airplane. Ifit could vanish there would be an infinite number of straightlinesalong which « anid 4 are constant and connected
by the relation

reit; L (ata).
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to the same value of ¢, but the upper curve corresponds to the value =1 and the lower curve
to the value f=o.

The values of z, w, &, in diagram I are roughly those found for the Curtiss J. N. 2 ip Report
17. A few slight changes have been made to facilitate the calculations, but these do not affect
the general conclusions. The values of 7 in diagram I are greater than the number derived
from the value of X, given in Report 17. 'This number is about 0.6 and it is remarked on page
332 that X, decreases as the angle of incidence increases and the speed decreases. Since .Y,
may actually become negative as the critical speed is approached, curves have also been drawn
for the values p=0 and 5= —1.

In studying these diagrams it should be noticed in the first place that the lines {= o and
£ =0 limit the region of stability. The first of these lines is curved. When 5 is decreased this
line rises and the region of stability becomes more restricted. On this account alone we can
expect a decrease in 7 to be unfavorable when the other resistance derivatives remain constant.
This agrees with the result found in Report 17 but it is worth while to consider the matter more
fully.

If we take any value of 7 and begin to draw the curves ¢=constant, starting from ¢= « and
gradually decreasing ¢, we find that a certain minimum value £, is reached below which the curve
no longer lies in the part of the region of stability shown on the diagram. It is clear from the
diagrams that #, increases when y decreases. This increase in the time of damping is partly
offset by an increase in period; but, if the other resistance derivatives remain constant, the ratio
of the period to the time of dampmg apparently decreases with 4. This is seen more easily by
looking at diagrams Ic and Ib.

If some of the other resistance coefficients alter at the same time as 5 the unfavorable
effect of a decrease in the value of 7 may be partially or completely offset. Thus if, when we
decrease 7 from. 2 to 1, we increase ¥ so as to Leep ¢ constant, we increase the period p and so
improve the ~tab1hty as far as the long oscillation is concerned. With small values of 4 a con-
siderable increase in 4 may be needed to keep ¢ constant when 5 is decreased, but a much smaller
increase in 7 may be sufficient to offset the unfavorable effect of the decrease of 5. The effect
of decreasing 7 may also be offset by decreasing z; for, if we decrease z so as to keep ¢ constant,
the period p is seen to be increased. This may be seen very clearly in diagram T if we start with
the point £=13.8, p=20.1, y=2, and pass first to the point with the same coorchnates in the part
of the diagram corresponding fo #=1 and then proceed along a line y =constant until the curve
=138 is reached. A comparison of the different diagrams indicates that the general form
and arrangement of the curves is roughly the same for the different sets of values of 2, w, and &.
An exception occurs in the case of the curves for = —1 in diagram Ia. It will be seen that in
this case the curves £ =0 cross the curves {= 1 while in the other diagrams a curve { =0 remains
below the corresponding curve {=1. ,

It is genera]lv assumed that {= 0, since the moment about the center of gravity of the
alrplane due to air forces is zero in horlzontal flight and therefore will not be affected by a
change in speed. It is easy, however, to imagine some arrangement which will make 3/, and
therefore ¢ different from zero. The inclination of a flap held by a spring and exposed to the
air will vary with the speed of the airplane, consequently the force on it will not be propor-
tional to the square of the speed, and so { will be either positive or negative.

Tt will be seen from the diagrams that a positive value of { is generally unfavorable to
stability. When 7 is negative, a machine with a moderately large value of 2 may be an exception
to this rule; but, when X, is positive, the stability can apparently be improved by making ¢
negative.

If this is done with the aid of a flap held by a spring,® changes may also be produeed in
the other resistance derivatives, particularly X, and Z,. We must therefore also study the effect
on stability of changes in £ and 2. Yhis may be done with the aid of diagrams I-V.

s The stability of an zeroplane which has springs in the control conneetions has been discussed imra more rigorous manner by L. Bairstow and
R.Jones. British Advisory Committee for Aeronauties. (R—M No. 210.)

54889—21. 23
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It appears that an increase in £ from 2 to 3 has practically no effect on the position of the
curves {=constant, but it does lower the period; hence an increase in £ seems to be unfavorable.

A comparison of diagrams IV and V indicates that an increase of z from 0.1 to 0.2 lowers
the curves ¢=constant and i on the whole favorable to stability.

The general conclusion then is that, if some kind of a flap held by a spring is to be used
to improve the stability, as far as the long oscillation is concerned, it should be chosen so as
to decrease Z,, increase — X, and make M, positive.

The diagrams may also be used for other purposes; in particular, they may be used to
confirm some of the conclusions in Report 17. It will be noticed that as & point moves toward
the origin along a curve {=constant, the period p inecreases, and so the stability is improved.®
It may then be advantageous to decrease both V' 1f, and — A/, but — 1/, must not be decreased
too rapidly. There is a limit to the ratio of —dy to —dw if we wish the change to be favorable
to stability, and this limiting value may be shown clearly on the diagram by drawing the curves

for which % is constant, in accordance with a suggestion made by Mr. Warner. These curves

are shown in diagrams Ib and Ie. Tt will be noticed that the curves chonstanb are steeper

than the curves ¢t =constant, but are not quite as steep as the curves p=-constant.

A comparison of diagrams I and IT indicates that an increase of w from 2.9 to 3.9 increases
the period p and has more effect on the time of damping ¢ when 5 is negative than when 7 is
positive. When n=2, the time ¢ apparently increases with w; but when n=1, ¢ increases for
small values of ¢, e. g., those less than 13.8, and decreases for large values of #. When 9=0 and
n=—1, { decreases as w increases, the effect being quite marked when 9= —1.

In diagram VI the effect is shown of making & different from zero. It appcars that by
making 8§ positive we decrease the time of damping and produce very little change in the
period. Other things being equal, an increase in § seems to be favorable to stability. It should
be noticed, however, that X, occurs in the expression for V, consequently unless an increase
in X, is balanced by a decrease in Z, the numerical value of ¥V will be lowered and the values
of the quantities depending on V altered. It appears then that the effect of an increase in
X, may be offset by the change in V. It should be observed, however, that, when A7, is
about 3, the percentage change in the value of V is not large, and so the effect of the increase
in 6 should predominate over the cffect of the change in V. In diagram VI ¢ is written in
place of &.

In diagram VII the effect is shown of a change in 6, other things remaining the same.
It appears that the stability is improved by making 6, positive, for the curves ¢=constant are
lowered. By making 6, negative, the time of damping is increased. In particular, if the
speed were not increased, the time of damping would be greater in a vertical dive than in
horizontal flight. This may be seen when the stability of the parachute and helicopter are
studied. (See Report No. 80.)

¢ It should be notieed that the nearer the representative point is to the origin of coordinales; ko more marked is the effect on p and ¢ of
small changes in r and y.
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Lateral oscillations.—When the lateral oscillations are analyvtically independent of the
pitching oscillations the bigquadratic equation which detelmmes the temporal characleristies
of the oscillations is

Ad ) NFw) A+ A F ) =8t w) F2(h ) —Eh =yl =0 (1)
where 7 .
z i
Lp=-' “IZ}I(AZ, Lr= ——gyKAZ, Lv=§KA~
:__ 9 2 r 2 r_$p,
‘h?)_ —TYEKvC: I\’r'z'—ﬂKC; Av'— Z:[ECJ . (2)
Y,=o0, Y,.=o0, Y= —w.

Writing N\*—2ax+6=0 and reducing the above equation to a linear one in X\ we find, on
equating to zero the coeflicients of X and 1, that

glw+n+r+da)=(2+2a) (W+2a) (14 20) + e+ 20) — Ey(w+ 2a) +2(1 — &),
—0(x+2a) (wHn+2a) Fwnt+i—Eyl+a—yi=o. (3)

With the aid of these equations the curves {=constant may be drawn in the (z, ¥) plane
for various sets of values of 2z, ¢, n,.and w. It will be seen from the diagrams that there is a
marked difference between the curves for which £ is positive and those for which £ is zero or
negative.

It has been pointed out recently by Prof. E. B. Wilson ® that in normal flight at a fairly
low angle of incidence the quantity XV, is negative, and that consequently there is no need
for a fine adjustment of the values of N, L,, N,, and L, in order to secure both spiral stability
and stability in the Dutch roll. At larger angles of incidence N, may be zero and even positive,
and then there is more need for a fine adjustment. On this account most of the diagrams have
heen drawn for zero and positive values of £, one diagram being deemed sufficient to indicate
the general arrangement of the curves when £ is negative. It will be noticed that when £ is
negative the period p is rather short but the time of damping ¢ can also be made short and so
the short period is not a great disadvantage. By making £ positive the period can be more
than doubled, but this is offset by the lengthening of the time of damping.

Tt should be noticed that in the diagrams the region of stability is bounded by the curve
t=o0 and the line y=22. If the representative point lies to the left of the curve =, the air-

¢
plane is unstable in the Dutch roll; while if the point lies above the line y=z?n, the airplane is

spirally unstable.” The shape of the curves ¢=constant is very much the same for the different
values of 4, { and 2z used in the diagrams, but the position of the line y=—2§1 varies considerably.

An examination of diagrams VIIT-XIT indicates that it should be possible to construect an
airplane which, when flying at a large angle of incidence, is spirally stable and has a period for
the Dutch roll of about 15 seconds with a fairly short time of damping.

It has been remarked that in a moderately stable airplane the period is not sensitive, com-
paratively large changes in the airplane having small effect on the period and damping.® As
an illustration of this phenomenon it is of some interest to consider the lines along which both
p and ¢ are constant. Such a line is obtained by choosing « and g so that the two equations (8)
are the same. Writing down the conditions

(w+2a)(n+20) +{— 9=—£<wj~2a)_,z(1—) — 8w+ 2a)
—G(w-{—n-i-?a) 92 ¢ 9(w‘n+§)+217 ’

7Cf. 1. C. Hunsaker, Dynammal Stability of Aeroplanes, Smithsonian Miscellaneous Collections (Washington}, Vol.62, No. 5, June (1816}, pp.
55-57.

8 Fourth Annual Report of the National Advisory Committee of Aeronautics. No. 26, Washington (1919).

¥ For these terms see Hunsaker (loc. cit.).

1o Cf. W. 8, Farren, “Full Scale Aeroplane Experiments,” The Aeronsutical Journal, February, 1919, p. 56.
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we have two equations to determine « and & when z, w, §, 7 and { are given. If on the other
hand & ¢, w, «, and 6 be regarded as given, the resulting equations will determine 4 and =z
uniquely. The equation for 7 is :

— (+2a) (w+2a)¢ =56 + 0[Ew(w + 2a) — £ — T+ 1

If w+2e is small, a comparatively small percentage change in ¢ means a comparatively large
percentage change in the value of 4. For example if w=0.1, {=0.6, £=2, w+2a= —.05,

6=27, = 72, 2z=17%2
6=.26, n= .97, z=1.794
§=.25, n=1.233, 2=1.777

In diagram VIII with =1, the equation of the straight line along which p and ¢ are constant
is .0884r+.0241y —.3843 =0; and we have w+2a= —.0241, 6=.4953, {=11.12, p=_8.96.

It appears from the diagrams that the greater the curvature of the curve = constant, the
more rapid is the variation of p as the representative point moves along it. If the curve is
concave to the axis of y, p increases as the point moves up the curve, while, if the curve is
convex to the axis of ¥, p increases as the point moves down the curve.

If we wish an airplane to have resistance derivatives for which the period is not sensitive,
a good plan is to bring the representative point as close as possible to the straight line along
which p and ¢ are constant. When £ is negative this line does not seem to appear on tha
diagram. '

A study of diagrams VIIT-XTI reveals the following properties:

(1) The greater the value of £ the greater seems to be the effect on the damping of a change
in w.
€2} An increase in w decreases the time of damping but does not greatly alter the period.
(3) An increase in 5 decreases the time of damping and increases the period when £=o;
but, when £=1, 2, or 3, the effect seems to be reverse.

(4} An increase in z seems to widen the gaps between the curves {=constant and to greatly
increase the period when #=1 and £=2.

It will be noticed that in diagram XII the numbers on the curves {=constant indicate the

value of %)

(5) The chief effect of a decrease in { seems to be a slight change in curvature of the curves
t=constant.
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APPENDIX TO REPORT NO. 80.
ABILITY OF THE PARACHUTE AND HELICOPTER.
Note 1.

The expressions for H and K in terms of z,, @,, Z3, Y1, ¥y, ¥s may be found as follows:
Writing
fi (’Q’) =y +,) (y +4,) (Y +ye) — 2,2y + Yy — za, (Y +1,) — 22, +Ys),
L) =2,y 4+ 1,) W+ ys) + 2,00 +ya) W+ y) 2y y) Y+ ¥a) — 20357,
we find that

fuly =YD ERU TG LRGN 1) g,

where ) o o L
(@, + 2+ 29 [3(y) = Azyzy(y + ) + Bz, (Y +9,) + O, (y + 9.

The coefficient of ¥ on the right-hand side is the quantity denoted by II.
Again writing ’
L) =(ay+b)fs(y) — K

where a, b, and K are constants to be determined, we may find the value of K by substituting
in the last equation a value of ¥ which makes f,(y)=0. We thus find that

H{y+y,)=2,(Bn—Cm), H(y+y,) =2,(C1— An), H(y+ys) =2,(Am— Bl)
=z, P =2,Q =R

H*E=zz.2{H*— QR —RP— PgQ].
Putting f;(y) =0 in the identical relation connecting f,(y), f,(y), and f,(y¥) we also find that
PR (2P +22Q + 22R) = [H*(P+Q + R) — PQRx,x,75. '

Hence .
H2K(H+i22P +12,2Q + 12l R) = zy,z, (H+4P) (H+1Q) (H +1iR)

or
IPE| B+ 0P+ 70+ 07 R) [~ (4 P+ Q) (B + R,

In this relation the positive signs must be taken for the square roots so that X is positive
when z,, z,, and z, are positive,
Note I1.

In the case of a helicopter rising or falling vertically it may be sufficient to take into ac-
count the fin action and gyroscopic action of the lifting screw.

Writing B '
Q=0, E=X,, F=—iX,, J=iN,, K=N,+iN,

the period equation becomes

MM Ny i) FeQuw iy =0
where
@ N, N,

H y=g—f: Z=g‘%z
A AT A .

r:

X, vV X,
=g W=
370
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Routh’s conditions indicate that for stability the quantities

=Y T,

H=uy? + (y +upwz +uy) —zy +u),
and

K= ’é‘z[ﬂz— Hyzu— (y +u)zy’s :[

must be positive. -
On the other hand we find that

8 3 2, ! A 2.
T= m%;l:ﬂ‘ — Hyzu— (y+ -u):ry-zz:l

so that the conditions K >0 and T>o are equivalent.

The effect of gyroscopic action on stability has been estimated for the case of an airplane
in rectilinear flight and found to be small.** The value adopted for ¥, was ¥,—IQ where [
is the moment of inertia of the propeller about the axis of ¥ and @ its angular velocity about
this axis.

With /=150 pounds—f# and Q=27X1—ég—0:125.8 radians per second, this gave a value of
N, of about 15m for an airplane of mass m=1,300 pounds. In the case of the helicopter, Q is
smaller than for the airplane propeller but I is very much greater if the diameter of the lifting
screw is large. It seems likely, then, that the gyroscopic effect on stability will be greater
than in the case of the airplane.

LT, Bairstow, B. Melvill Jones, and A. W, H. Thompson, British Advisory Commiites’s Report. 1512-13, p. 166, =~




