e e R A i DRt i T

REPORT No. 97

oS

GENERAL THEQORY OF THE STEADY
MOTION OF AN AIRPLANE

v

NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS

: WASHINGTON
GOVERNMENT PRINTING OFFICE

1021

3




REPORT No. 97

GENERAL THEORY OF THE STEADY MOTION
OF AN AIRPLANE

IN SEVEN PARTS

v

¥y GEORGE DE BOTHEZAT
Natiowd! Advisory Committee for Aeronautics

10355°—21—1



Page intentionally left blank



CONTENTS.

I TRODIUCTION . ¢ et iens i itarean ot iisat et e ecs e aenanceaa s casecanaanssmsannnssssnncecannn
Parr 1.—PrRELIMINARY.—General statement of the problem
Parr II.—THE Forces AcTING ON AN ATRPLANE.—1. The weight. 2. The forces of air-resistance. 3. The
propeller thrust. A. Properties of the propeller: The functional properties of thrust, power, and efficiency; a
general discussion of the influence of the slipstream on airplane performances; the propulsive efficiency. B.
Properties of the engine: The fundamental characteristics of the aviation engine; laws of variation of power
with revolutions, density, and throttle opening; engine characteristics obtained by propeller tests. C. Properties
of the engine-propeller system: Engine-propeller system properties deduced from properties of engine and pro-
peller; numerical example of application of the method proposed.. .. .v oo crorin ool iiiiaiaiiiiiien i
Parr III.—TeE ArmospaerE.—1. Some general properties of the atmosphere. 2. Discussion of the
standard atmosphere. 3. Calculation of the rate of climb from a Barogram. 4. Infiuence of winds and self-
speed on cockpit pressure

10

22

Parr IV.—Tae Taeory or Sreapy MorioN.—1. The basic equations. 2. The method. 3. Properties of '

steady motion. A. Horizontal flying; B. Climbing; C. Engine throttling and gliding. .. .. .cvnee oot
Parr V.—PerrorMance Prepicrion. 1. Collecting the necessary data. 2. Predicting the performance. .
Parr VI.—Frer Frienr TESTING....cccceeon... e e eme e e eanmametmaeaeeeenaanananan
Parr VIL.—Snmorr DiscussioN oF THE ProBLEM oF SosriNG.—General explanation and quantitative dis-
cussion of the soaring phenomenon. The structure of the wind and the main reason for the frequent occur-
rence of ascending air currents

26
44
54



Page intentionally left blank



REPORT No. 97. P

INTRODUCTION.

I hope it may be interesting to thé reader to learn briefly, as'it were, the lustory of the
method here proposed for the study of steady motion, one which is different from other methods
used. In his course of 1909-1910 at the “Ecole Supeérieurs d’Aeronautique,” M. Paul Painlevé
showed how convenient the drag-lift cuive was for the study of aifplane steady motion. His
treatment of this subject can be found in “La Technique Aeronsutique’” No. 1, January 1,1910.
In my book “Etude de’la stabilité de I"aéroplane,” Pans, 1911, T had ah'ea,dy added to the
drag-lift curve, the curve T call speed curve, which permits a du'ect checking of the speed of the
airplane under all flying conditions. But the speed curve was still plotted in the same quadrant
as the drag-lift curve. Later, with the progressive development of the new seronautical science,
with the continual increasing knowledge about engines and propellers, when seeking a con-
venient method of airplane design that really took account of all the particulars of the subject,
I was brought to add the three other quadrants to the original one quadrant, and thus was
obtained the steady motion chart deseribed in detail in this paper, a method which I have
been using since 1914. This chart is the most convenient method I know for the complete
representation of the airplane steady motion performanc¢e. This method allows an easy survey
of all the mutual interrelations of all the quantities involved in the question and this is accom-
plished—the chart once plotted-—without any computations or graphical tracings. The chart,
therefore, permits one to read directly, for a given airplane, its horizontal speed at any altitude,
its zate of climb at any altitude, its path inclination to the horizon at any moment, its ceiling, its
propeller thrust, revolutions, efficiency, and power absorbed—that is, the complete sef of
quantities involved in the subject, and to follow the variations of all these quantities both for
variable altitude and for variable throttle. At the sambe time, one can follow the variation of all
of the above quantities in flight, as a function of the lift coefficient and of the speed. It is
the possibility of doing this that constitutés the most important property of my steady meotion
chart and makes its use so convenient for any purpose or question connected with steady motion.

T have counsidered it necessary not to limit myself in this paper to the general exposure of
the method proposed, but to give at the same time a general discussion of the main principles
connected with the subject, about which so many misunderstandings are still widespread.

Thus, the question of the interreaction of the airplane and propeller through the slip
stream will be found discussed here. Several authors have talked much about the great
increase of sirplane drag produced by the slip stream. The trouble is that the additional
pressure on the airplane due to the slip stream is an interior force for the airplane system,
and it thus can not be purely and simply added to the airplane drag, which in our statement of
the problem is an exterior force. The way in which the momentum theorem is applled to the
airplane must be well remembered in the present case. The airplane in flight is considered
inclosed in a closed surface invariably connected to the airplane and it is the component along
the flying speed of the fluid momentum that flows out of this surface that measures the drag of
the whole airplane. But in the value of this momentum the additional pressure on the fuselage
due to the slip stream and the additional thrust of the propeller, which is the direct reaction
to the last additional pressure, appear with opposite signs, and thus only their difference affects
the drag. I hope that those who will carefully follow the géneral treatment of this problem
here given, will not have the slightest doubt about the real nature of the question.

I The following report on the Steady Motion of an Airplane was prepared hy Dr} George de Bothezat, aerodynanucal expert for the National

Advisory C ittee for Aeronautics, with the assist of the technical staff and the approval of Major T. H. Bane, of the Engineering Division,
Air Service of the Army, MeCook Field, Dayton, Ohioc

b



6 REPORT NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS.

The question of the properties of the engine-propeller system and its dependence upon the
properties of the engine considered alone and of the propeller considered alone will be found
treated here in the generality demanded by actual aeronautical engineering practice. When a
given propeller is considered by itself, its: :chardcteristics'are functions of the ratio of its trans-
lational speed to its revolutions. When an engine is considered by itself, its power characteristics
are functions of the revolutions and throttle opening. But when a propeller is connected to a
certain engine the propeller’s revolutiors have to ‘adjust themselves to the translational speed
of the engine-propeller system and its characteristics will be functions only of the translational
speed and throttle opening.

These preliminaries to the study of alrplane stgady motion is completed by the discussion
of the questlon of the standard atmosphere. It is the opmmn of the author that this last
question has, in general, been greatly misunderstood. The entire performance of an airplane
depends upon the density and temperature of the air in which the airplane flight takes place.
It is a property of the airplane to be able to reach a certain limiting atmosphanc layer specified
by a certain density, above which the airplane can not fly any more, which ig called its ceiling.
The altitude at which this atmospheric layer can be found is very variable with the meteoro-
logical conditions. Thus the airplane ceiling can not be specified by an altitude value, but
only by a density value. The forces of air resistance depend only upon the density and are
independent—in practical limits—of temperature; the lift, the drag, and propeller thrust
depend only upon density; it is the power of the airplane engine alone that is affected by
temperature. Thus at constant density only the engine power will be influenced by the tem-
perature; and, when se]ectmg a standard law connecting atmospheric temperatures with
atmospheric densities, it is only the selection of standard working conditions for the engine
that will be concerned. The temperature acts on the engine somewhat as a throttle variation.
The last fact understood, it is clear that there is no reason for adopting a fantastic relation
between temperature and densities for engine standard working conditions, and the adoption
of a constant standard temperature for all densities becomes quite natural. It is insuch a way
that we are brought to the general conclusion that, for the standardization of airplane per-
formance, it is the isothermic atmosphere that should be adopted. It is the proposition of
the author to adopt the isothermic atmosphere of zero degrees centigrade as standard atmos-
phere. The tremendous adva,ntages and great simplicity that result from such a selection
will be found discussed in this paper. The isothermic atmosphere of zero degrees centlgrade
has also in its favor the fact that it satisfies all demands quite as well as any other “‘standard
a,tmosphere (See fig. 13.) The public has curiosity about the height at which an airplane
is flying; but, from an engineering standpoint, we can only speak about the density reached
by an airplane.

. Tt is thus beyond discussion that, from the standpoint of aviation engineering, the lsothenmc
atmosphere of zero degrees centlgra.de is the only one that can be reasonably adopted as the
standard atmosphere.

. For some specla,l purposes we need to know the actua.l altitude at which an airplane is
ﬁymg But this is a totally different question, and no ‘‘standard atmosphere” can help us
in such a case to obtain an accurate determination of the altitude. The question of the altitude
determination from the knowledge of the atmospherlc pressure and temperature is a special
questmn in itself, totally independent of the conditions adopted for the standardization of

airplane performances. The foregoing questions are discussed in the first three parts.

In Part IV the general theory of the steady motion of an airplane is developed. After
the basm equations have been estabhshed and the method to be used for their discussion
described, a general survey of the properties, of an airplane in steady motion is given. I call
attention to the detailed dlscussmn of chmbmg phenomenon that will be found here and to the
general formulae established for the rate of climb and time of climb, which quantities, under
the simplest assumptions, appear as hyperbolic functions of the ceiling. It is also shown as a
consequence of what conditions one can derive the law of linear variation of the rate of climb
with altitude as practically observed. The influence of throttle variation on airplane per-
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formance is also submitted to a detailed study and the influence of the mechanical losses of
the engine on the airplane when gliding is discussed.

The complete study of the properties of an airplane in steady motion is made by the same
uniform method, and the complete representation of the entire performance is reached. Tt is
the last fact that constitutes the main advantage of the method developed.

In Part V is discussed the question of the first checking of airplane performances, starting
with a minimum of data available concerning the airplane considered. This question is of great
practical interest, but certainly the performance is predicted only as a first approximation.

Part VI gives the general outlines of the author’s method of airplane free flight testing,
which permits the most complete and rigorous airplane tests. The whole system of airplane
characteristics, including the separate determination of the engine and propeller characteristics
as given by free flights, is obtained from a set of climbs and glides made at constant indicated
air speeds. The horizontal speeds at all altitudes, the best rates of climbs, and the ceiling
are found with great accuracy without the pilot having to fly under these conditions, which
practically can never be reached with complete certainty. On the contrary, the flying at
nearly constant indicated air speeds can be realized by the pilots fairly well and with ease.
That is why the present method of free flight testing is so convenient in practice.

A last part is devoted to the study of the problem of soaring. This question of soaring has
been since long a matter of great interest and discussion. The phenomenon is a direct conse-
quence of the existence in the atmosphere of ascending currents of air, and all other explanations
of it are devoid of any serious foundation. Soaring is only possible if the upward vertical wind
component is equal to or greater than the glider’s rate of descent. Gliders of very small rate of
descent can be built with ease; special attention has only to be paid to their stability and maneu-
verability. On the other hand, as is explained in this paper, it is the opinion of the author
that ascending winds in the atmosphere must be considered as a common occurrence; this being
a result of the instability of the vortex sheets formed between air layers of different velocities,
and which must break into the Karman stable system of quincunx vortex rows. Between such
vortices, traveling in space, we must meet at equal intervals ascending and descending currents.
Direct computations show that the vertical components of these air currents are sensible frac-
tions of the speed difference between the atmospheric layers which have originated these
quincunx vortex rows. We are thus brought to a general understanding of the soaring
phenomenon and the possibility of its practical utilization. The great interest of the practical
realization of soaring airplanes is, I hope, beyond discussion.

At the end of this report is added a sheet of drawings giving a general survey of some fun-
damental characteristics of the atmosphere. I owe to the amiability of Dr. C. F. Marvin the
remarkably complete data concerning the constitution of the atmosphere with altitude.

It is a special pleasure for me to address my best thanks to Mr. W. F. Gerhardt, aeronautical
engineer at McCook Field, and to express my appreciation of the critical judgment he has shown
in preparing most of the figures for this report. This last has givenme the opportunity to discuss
with him many details of this paper, which has helped me to clarify several of them.

Figure 13, relating to the computation of the standard atmospheres has been prepared by
Mr. C. V. Johnson, aeronautical engineer at McCook Field, and I also address him my most
sincere thanks for his kind assistance.

This paper has been written during my stay at McCook Field, when introducing my method
of airplane free flight testing. I am specially pleased to have this opportunity to address my
heartiest thanks to Maj. T. I. Bane, chief of McCook Field, for the interest he has always shown
in my work and for all the necessary assistance he has placed at my disposal for its successful

achievement.
G. pE BorHEZAT,

Aerodynamical Ezpert, National Advisory Committee for Aeronautics.
Dayron, Omro, July, 1920.
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‘ , PRELIMINARY ' - *

Let us consider an:airplane of :any typé or system, which, hkae nmost &ctual airplanes, has
a plane of symmetry and constitutes a rigid system. By eonsidering the airplane to be rigid;
we only mean that we, neglect the variations in the distribution .of weight: produced in the
airplane by its small deformations and by the displacements ofits rudders. The main influence
of these last factors is to produce variations in the forces of air-resistance:

We will say that the airplaneé considered has reached onié of its states of steady motion when
the motion of the airplane proceeds with a speed constarit in magnitude and direction, the plane
of symmetry of the airplane being vertical, and the machine maintaining an invariable orientation
relative to its rectilinear trajeetory.

Lt us consider the aiirplane-moving in & mass of uniform air which in general may have

the velocity v relativé to the earth. “The velocity v is the wind velocity in that part of the
atmosphere whete the airplane is actually flying.

The velocity of the airplane relative to the ground will be. designated by W and called
ground speed or absolute speed, because the earth can be considered, with sufficient approximation,
as an absolute reference system in the present case.

The velocity of the sirplane relative to the air mass contsining it will be designated by 17
and called the air-speed or self-speed.

The velocities ;, W and V are vector quantities and, are therefore characterized by their
magnitudes, directions, and senses. Their magnitudes will be designated by v, W, and V.

Between the velocities v, W, and V there always exists the relation.
W=V (geometrical sum)

which expresses the fact that the airplane, so to say, flies in the wind with its self-speed vV
and is carried by the wind with the velocity v. In case of no wind,

p=0; W=V

The airplane will move with a self-speed of translation ¥, constant in magnitude &nd
direction, when all the forces acting on the airplane have a resultant equal to zero, and when
the resulting moment of these forces; relative to the center of mdss, are also equal to zero.

The last conditions are direct consequences of ‘the theorems of momentum and moments of
momentum.

The forces acting on an airplane are: The weight, 13_; the propeller thrust, Q; the total air
resistance, B. The foregoing forces include all -the forces acting on the sirplane.
The first condition of steady ‘metion of an airplane is expressed by the relation:
P +Q +R=0 (geometrical sum)
Let us designate by I the resulting moment of all the forces acting on the, girplane. The
second condition of steady motion of the airplane is expressed by the relation

M=0
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As we consider only those motions of the airplane for which its plane of symmetry is
vertical, the moment M is always normal ter t@ﬁ@@%@% symmetry.
In the discussion of the conditions that make M=0, two cases must be distinguished:

The first case is when the thrust @ of the propeller passes through the center of mass of

the airplane considered. In this case, as the weight P always passes through the center of

mass, the moment M redilies ziself to the moment of ﬁzéj'wces of mrdrgjs'istance These last forces

are proportional to the square of the self-speed ¥ and the angle of attack a of the airplane, and
for a given state of steady motion of the airplape can be changed only by the displacement
of the elevator, the orientationof which will be supposed fixed by an angle 8. Wecan thl,lg write

. M=mV?¢(a,B)
The angle of attack for which =0 will thus be fixed by the condition:
¢(Q,B) = 0

The function ¢(a, 8) in the flying interval must be a uniform function; thus to each value
of 8, i. e., for each position of the elevator, there must be a corresponding value of the angle of
attack « for which ¥ =0. The curve of o plotted against 8 can be called the ‘curve of the ele-
vator sensitivity We are thus brought to the fundamental conclusion:

When the propeller thrust of an airplane passes through its center of mass—provided the action
of the slipstream on the élevator can be neglected and the mass distribution considered as invariable—
the angle of aitack, for @ state of ‘steady motion of the awplane, can be changed only by displacement
of the elevator.  Any other conditions that can change in the flight can not alter the value of the angle
of attack of the state of steady motion under consideration.

That is why I say that the angle of attack is the variable which the pilot is holding in his
hand.

The second case is when the thrust @ of the propeller does not pass through the center of
mass. This case is far more complicated than the first one. For a discussion of it, I will refer
to my investigations of the question ! and will mention here only the following: In the case of the
propeller decentration, a change in the angle of attack may be produced by acting on the throtile of
the engine, as well as by changing the position of the elevator.

1 shall first give a general survey .of the forces acting on the airplane. I shall afterwards
deduce the consequences which follow from the condition that the resultant of the forces acting
on an airplane is equal to zero-when it has reached & state of steady motion. This will bring us
to those fundamental references without which the understanding of airplane testing is impossible.

We shiall use the metric units exclusively. Their tise has been authorized in the U. 8. Army
by an act of Congress, and in practice tremendous advantages result from the use of these units.

‘We shall use the engineering metric unitsyi. e.,

kilogram-weight; meter; second
In these units; considering the gravitational’:acceleration as equal to g=9, 81 mt/sec?,
a body having a weight equal to09:81 kg. has a-mass equal to unity. For,
1 kilogram-wéight =mass of a kg. Xg.
and accordingly,
mass of a kilogram~weight = !1—]

Thus a body of ¢ kﬂogram-welght will ha,ve & mass eqital to unity. We shall call this last unit
of mass the Newton.

tSee Dr. G.de Bothezat’s “Etude de la Stabilité de I’Aéroplane,” Paris, 1911, p. 164, and “Revue de Mécanique, aofit, 1013.”” *“Théorie
Générale de I’ Action Stabilisatrice des Emp Horizontaux ......” Also, “Introduction to Airplane Stability,” p. 137 (in Russian), Petrol
grad, 1912,
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PART 1L

» ped i

THE FORCES ACTING ON AN AIRPLANE.
£ i > e
1. THE 'WEIGHT.
We shall designate by P the total normal weight that a given airplane is supposed to lift.

The total weight of an airplane always acts vertically and passes through the center of mass of
the airplane. The total normal weight is constituted of the following parts

The structural weight of the airplane. Py
The weight of the engine. Py
The weight of the fuel. P,
The useful weight. ... .. [N ve Py

The sum of the first two constituent weights will be designated by P,,. We thus have.
Pin=Py+Pn 1)

The weight P,,, iz the minimum limit of the total weight of the airplane considered.
The sum of the last two constituents weight will be designated by P,,. We thus have,

Py=P,+P, 2)
The total normal weight is thus equal to.
P=P,u+Pey @3)
For each airplane tested it it useful to noté the value of the ratios:
PofPs PP, PP, Pu/P apd Pun/P="04m, Peu/P = Deu

For large weight-carrying and low-ceiling alrplanes, Pey is close to 50 per cent, and for
small high-spéed and high-céiling airplanes, po, is around 25 per cent.

2. THE FORCES OF AIR RESISTANCE.

We will resolve the total ._a'irfreg,istancezﬁ of the whole airplane into two components:

The drag B, directed along the'self-spéed ¥ of the machine, but always in the inverse sense,
and the lift B, perpendicular to its direction. 'Wé have

Re=R24- R

All experimenters in aerodynamics: fully agree that for the flying range of variation of
the speed V, the drag and the lift:can: be considered as being of the form
B,=kH4V* @
R,=,5A4V* ®)
where A is the arca, 8 is the air density (expressed in Newtons), and k, and k, are the drag

and Lift coefficients, Whmh are functions of the angle of attack only The angle of attack

messured from any fixed reference line in the plane of symmetry of the airplane will be deSIg-
10



GENERAL THEORY :OF ‘THE STEADYMOTION OF AN AIRPLANE. i1

nated by a. Theangle of attack measured: from the zero lift direction will be designated by 4.
To a first approximation, for the flying range of variation of i, the coefficients k, and £,
may be considered as being of the form

k=R (a#* + Bitc) - 6)

The»empiripa; coefficients %, @, b, and ¢ have to be determined from the empirical curves
for k, and Ik, by the method of least squares. Thus, to a first approximation, we may con-
sider the drag R, and the lift B, as being of the form

R,=k3AV?*(@i*+ Ci+c) ®)
R,=ksAV*i ©

The air resistance B here considered, components ‘of which are the drag R, and the Uift B,
s the totdl air resistance of the whole airplane, the propeller or propulsive system excluded.

For all the fundamental conceptions relating to the laws of air resistance, the reader is
referred to the author’s “Introduction into the Study of the Laws of Air Resistance of Aero-
foils,” published by the National Advisory Committee for Aeronautics, Washington, D. C,,
Report No. 28,

3. THE PROPELLER THRUST.

In modern airplanes the propeller thrust is produced by a blade-screw propeller driven
by a gas engine.

We shall call the system composed of the propeller and the engine the engine-propeller
system. Its properties, which are a result of the combined properties of the propeller and
engine used are, however, different from the properties of the propeller considered alone and
of the engine considered alone.

I shall first give a short survey of those properties of the propeller and the engine, the
knowledge of which is necessary for a complete understanding of the properties of the engine-

propeller system.
i A. PROPERTIES OF THE PROPELLER.

Let us consider a given propeller of a diameter D. When this propeller makes N revo-
lutions per second, i. e., when it has the angular velocity 2=2«N, and moves with the uniform
velocity Vm/sec, along its axis, it will produce a thrust of @ klg when a torque of Ol ‘'mi. is
applied to its axis.

The thrust power Ly, or useful power developed by the propeller, is equal to

" . N Lue——,QV 10)
The torque power L,, or power absorbed by the propeller, is equal to
Ly=02 (11)
The efficiency of the propeller is equal to
L,
7= Z_: (12)

‘We will designate by p, and call it the advance per turn, or shorter, advance, the ratio

n=% (13)
The thrust € of apropeller has for its general expression
| Q=dV*F,() =8 N"F'y(w) (14)
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The torque poWer developed hy a propeller-has for its general expression

e

Ly= 8V Fy() = N° Fy (u), ,, . @)
In the last expressions, the quantities _
F{(w)=p*Fi(p), Fg(p)=p’Fy(p)
are functions of the advance y, only. These functions can be considered either as explicit
functions which can be calculited from the screw 'dimensions® #nd its aerodynamical char-
acteristics, or can ‘ba ‘¢ovigidered as empiri¢al functions determined by direct expemnent
Using the values (14) and (15) for'@ and L it is ‘easy to sée that » has for its general
eXpression
Fy(w)
“Fow) (16)
i. e., the efficiency % is a function.of the advance y only.
The thrust , produced and the power L, absorbed by a propeller working at a fized point

have for their general expressions
Q=520 a7

Lo=8NeC, (18)

where C,” and O, are two constants that,represent the limiting values which F,’’ and F,”’ take
when V tends towm'd Zero.

\7? ‘ k ‘_L_a_‘ - “L' ‘
08 5v3) %8 7 vl
NNE 0.8 |e= 14008
< T 7T T TN S, 172 APNCTTN
Qa6 7 /2 vos Lo 006
b : 10 § Ho EN?
Y f S iy 4 O,
S 41T la——08 N os A+ N .02
£ A NSV 1196, & +
oo/ NftHos Woo A ooz
YWITT92 7 Viv
 OZ2 04 06 08 92 o4 06 08
Frp. 7. Advarice. Fig.2. Advarice.

The-deformation of the propeller blades and the deviation of the fluid resistance from the
square law produce some departures from the foregoing laws. But these laws hold perfectly
well when the variations of V and N are limited to certain intervals for which the constants
appearing in expressions (14), (15), (16), (17), and (18) have been specially determined.

For the complete specification of the properties of a given propeller, two characteristic
curves are necessary  We will yse as such.ei‘oher

7(g) and = Fy(p) (19)
or ‘
7(p) and % Ng =F," () (20)

which have the advance v as argument.

The general courses of these curves are represented on figure 1 and figure 2, which cor-
respond to a propeller of the Dorand type tested by G. Eiffel.?

All the foregoing refers to a propeller working in free air. In some cases different bodies
disposed in the neighborhood of the propeller can interfere with the working of the propeller.
As the neighborhood conditions .require a slight generalization of the ordinary conceptions
relating to propellers, I shall consider somewhat in detail the relations that hold in this case.

1 For the explicit expressions of these functions, and methods of their calculations, see pp. 58 and 59 of #“The General Theory of Blade Serews,”
by Dr. G.de Bothezat. Report No. 29, published by the National Advisory C i for A tics, Washington, D. C.
3 @, Eiffel, ““Nouvelles Recherches sur la Résist de I’Air et 1’ Aviation,” Paris, 1014. Atlas, plate XXXIII, propeller No. 11.
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Let s consider any vehicle of locomotion;in our case an sirplane: flying urnder/an angle
of ‘attack™ and a speed V. Imérder to secure the flight of the:airplane, i. e., to-overcome the
air resisténce, it is necessary to supply agéertain amotint of power, which we will call power
utilized L, by the vehicle. For 4 given ‘airplane witl: inveriable loady dt constan ‘altitude
and with motor throttle kept at constant opehing, the power Ly iis-a function of: the flying
speed V only. This is because, as will be seen later, the angle of attack ¢ under such conditions
is s function of the speed V only. The power L, is delivered to the vehicle by a propulsor,
in our case a screw blade propeller. It is self-evident that the power delivered; by the pro-
pulsor to the vehicle is the same thing as the power uiilized by the vehicle. But in order to
make the propulsor able to deliver the power L, to the vehicle, we must always deliver to
the propulsor a power L, greater than L, called
power absorbed by the propulsor.

It is the ratio

71=%:— @2n

which we shall call the efficiency of the propulsor-

It is easy to understand that the same gropulsor
applied to different vehicles will generally show differ-
ent efficiencies on account of the neighborhood con-
ditions interfering with the work of the propulsor.
A propeller must be especially adapted to the vehicle
under consideration in order.to give a high efficiency., . "
In order that we may have.s complete understanding with un Mrgﬁiﬁ;‘; stip stream.
of the circumstances that here occur, let us compare £19.3.
the working conditions of two identical screw-blade
propellers, applied to two airplanes, identical from
the standpoint of air resistance, but in one case with
an unobstructed slipstream and in the other case with
some of the parts of the airplane disposed in the
slipstream created by the propeller. These two
cases, which we will call Case I and Case 1I, are |
represented schematically on Figure 3. o

In Case I, when the airplane has reached a speed

T,
V, the total drag is equal to.B+R’, where R’ js the %
resistance of those parts which in Case IT are in the
slipstream, and the thrust is equal to Q. When a
state of steady motion is reached, applying the
momentum theorem fo the airplane, wé find Cose I
With obstructed stp stream.
Q=R+R' 22) Fig.3.

If weo designate by L%; the power absorbed by the propulsor, the efficiency of the propulsor is
equal to

§

L _(R+R )Y, QY (23)

h= I, = L‘;,

Applying the momentum theorem to the slipstream, we find that the momentum M, com-
municated to the fluid that crosses the propeller, measured in the section 8,”’S,”” where the
exterior pressures on the boundary surface of the slipstream balance, is equal to

Mp/'~Q=R+R (24)

343 * > tys 3
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In Case II the bodies having the air resistance B’ have been brought inside the slipstream.
Their resistance changes then to R’ +AR’, When the same. speed V isireached; the resistance,
of the bodies outside the slipstream will be unaffected, iyt the propeller thrust @, on account,
of changed neighborhood conditions, will have been: changed o a.certain value equal to @d— AQ..

When a state of steady motion is reached, we have T C v B
QraQ=RyR/AR™ VAT ey
andion aceount of (22) ENTIIIS SO R
: it ot i f
AQ=AR' i ’ : (26)‘

Designating by L®, the power absorbed by the propellerin: ﬂns ‘sébond case, wo-have

f iy =BV @n

If in Case IT we had measured the thrust of the propeller in free flight by a thrust meter we
should have found for its value Q+AQ. It is very tempting to take as a measure of the

propeller efficiency the expression
' = Q'l‘AQ)Vl (28)

a .
e »

but this, as it is easy to see, will give an overestimate of the: propeller efficiency, because
(Q +AQ) > (R+R’). Thereis nothing astonishing in' this, because it must not be forgotten that
(Q +AQ) is in reality only an interior force in relativn to our airplaie systern. It expresses
only the stress state between engine-propeller set and airplane fuselage, and-not the resultant
éxterior force securing the propulsion. o

Let us calculate the momentum M, v,’" that crosses a section 8, S,’”’ ‘of the slipstream
taken behind the body of resistance B’ In this case we can not in geneml assume that the
exterior pressure on the outside boundary surface of the slipstream, counted up to the section
$,’" 8,”, balances, and will thérefore designate by =’/ p do the résultant of this exterior pressure
which on account of symmetry is necessarily directed along the slipstream dxis. In the last
expression do is an element of the slipstream boundary surfdce courited up to section 87/, 87,
and p the outside vector pressure considered normal to each correspondmg surface element do.
Applying the momentum theorem to the slipstream counted tp to the section 8, 8,'" we ﬁnd

M, 0/ ~Q+AQ— B/ +AR) +3" §do 29)
or, since AQ=AR’ and @= R+R’
M,v'',=R+2" pde (30)
in general 2"/ p do <R’, thus M, v,/ < M, v/’

It is natural to try to find out in what relation the power LI stands to the power LL
The whole thing depends upon the values of the efficiencies 7, and 5, We have

Lu=7h L£=7I.o L«’:’ (31)
thus,

I immediately remark that by no means is it necessarily true that 7, <1, and it can even happen
that for a given propeller we may get 7,>7,. An examination of the comparative losses that
take place in both cases will show the nature of the question.
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Applying in Case I the theorem of kinetic energy to the slipstream, we find: by
o MV +0)Y 4+ I wf* =45 My WV =Q(V+w) +Cojy
or, since Q= M; v/
QV+0)+ 0o, = V411, My, Eae P @9

where:
%

M, =fluid mass that crosses the propeller disk in a unit of time.
v; =slip velocity in section 87 87
I =moment of inertia of the fluid mass M, insection; £ : i
; =race rotation in section S7 S7
v ==slip velocity in the plane of propeller rotation. = . o
O, = torque acting on the propeller axis. ,
o, =race rotation in the plane of the propeller.

The flow conditions in the slipstreari are assimed uniform for sakg of simplicity.
On the other hand we have,

Li=C 9=Q(V+v)+C o+ p] (34)
where

Q, =angular velocity of propeller rotation.
=losses by impact and friction of the fluid against the propeller blades.

We thus finally find

=VQ 5 M* o241, I 2 Hpt v (35)
and
oo L T Ul My 410, I 4 | @6)

Applying in Case II the theorem of kinetic energy, we ﬁpd
g My (V4ig)* g I w5 ~"15 My VoS5 (V+05) (po-pi) +#(Q+AQ) (V) + Oy wop= (B'+AR") (V+v)

or since @ + AQ= M, vs+ (R’ +AR') - 2" P do and considering 2} p de=xS; (p,~p") where S5 i3
the area of the section S S; of the slipstream, p, the outside pressure, and p; tbe- pressure In
section 87 S, we get: ‘

(@ +AQ) (V+v) + Cp we=V(Q+AQ) +7/, M, ; +1, I7 g7 - 83 (py— pivs + (B’ +AR" v, (37)

where M,, v, I, wg, Cs, v, have meanings analogous to Case 1,87 (V+4;) (po— p=) represents
the work of the resultant extefior pressure 2} P do cons1dered as built up from the work of the
pressures in a section far in front of theé propeller and in section 87 S%, where p; #nd p; are
the corresponding pressures; (V-+7), a mean velocity included between (V +v,) and (V54)
whose product by (R’ + AR’) represents the work correspondmg to that resistance.

But as:
L5 =0, Q= (Q+AQ) (V+v,) +Cy wp+pl (38)

(with 2, and p¥ having meanings analogous to Case I) we ﬁ.nally find:
=V (Q+AQ) s My vif +*/s Is &s"—87 (Pa—P5) Vi + (R' +AR ) Ve +Z75I, or, since AQ = AR’
LE=VQ+y Myvi? 4+, I] 03 + B’ v+ AR’ (V+vy) =Sy (Bo— 94) vs + P @9
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and

_ Ly L7 —1'fs My vy"+']s Iy @5°+ R’ v, + AR’ (V+v;)~87 (po—Ds) Vs + 7]
ﬂS—L‘I‘I T (40)

For the ratio of LI to L we find the value

Ly — Q (Vi) +C e +pk (41)
LT (Q+AQ) (V4w +Cs w92

In general (O, w,+p%) and (O, w,+pY) are of the same order of magnitude; (@+4Q)>@,
but generally v,<v,, 'We thus can not decide & priori between L% % Ixs

I would warn those who think that the losses [R’ v+ AR'(V +v,)] can be estimated easily,
As a matter of fact: First, the velocity in the slipstréam, when some bodies are introduced into
it, is totally changed in comparison with & free slipstreﬁ.m' gecond, the slipstream is not a uni-
form current, but a current of variable velocity along its axis, third, as the slipstream is a stream
with free bounda.nes, the formulae and coefficients of fluid remsta.nce deduced from experiments
in fluids of infinite boundaries can not be applied to it, especially when the bodies considered do
not- have small cross sections in comparison with the cross section of the slipstream.

The efficiency u, will be called free efficiency, and designated in the following by n. The
efficiency 7, will be called propulsive efficiency and designated by n,. We shall designate by f,
and call it neighborhood factor, the ratio of the propulsive efficiency to.the free efficiency.

We thus write:

=11 (42)

It.is understood that the neighborhood factor f can be
=1
=

As has been mentioned already, the free efficiency 7, is a function of the advance p=V/N
only. But as the slipstream created by a glven propeller is also a function of 4 only, the neigh-
borhood factor, for a given propeller and given neighborhood conditions, can be a function of u
only. Thus the propulsive efficiency iust be a function of the advance p only

In airplane testing, it is the propulsive efficiency np that has to be measured in order to evaluate
the propeller in the actual working conditions.

One could raise the following two questions:

a. In what relation does the thrust (Q-+AQ) of Case II stand to the momentum M, v} in
section S; S (see fig. 3)? It is easy to see that

Q+AQ=M, v,+* pdo

where 2’ Pdo is the resultant of the outside pressure on the whole bounda.ry of the slipstream
counted up to the section S;S;. Between the momentum M, ¥, and M, v, we have the
relation: ‘ :
M, vy + (B'+AR) — 2" pdo= M, v+ 2 Pdo
b. What would the momentum in section S, S, be if the whole resistance R-+R! had
been put in the slipstream? It is easy to see from relation (30) that we simply have:

M, vo=2" Pdo
because the resistance left outside the slipstream is in this case equal to zero.

I shall not go into & more detailed study of this important question of the propulsive
efficiency, This would carry us too far into the propeller theory. Those who would like to

#For experimental data referring to the slipstream effect see * The design of screw i)mpellem,” London, 1920, pp. 192-196, by Henry C. Waits.
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have a deeper understanding of the foregoing discussion are refermd to the author’s “Genera.l
Theory of Blade Screws,” previously mentioned. , -

B. PROPERTIES OF THE ENGINE.

Many discussions have been brought about by the question ¢ of how the brake horsepower
L, of a given gasoline engine, as actually used on airplanes, varies with the altitudes. ~ Such
dlscussmns are rather a misunderstanding, because the power L,, does not depend on the altitude,
but depends only upon: S

1. The number of revolutions N at which the engme is runnmg

2. The throttle opening z. -

3. The density 6 and temperature T of the air in which the engine is workmg

4. The quality of the gasoline used.

The question as to how density and'temperature are connected with altitude depends
exclusively upon meteorological conditions, which as known, are variable through the day, as
well as through the year. In the following cha.pter the questio‘r‘l' of the standard atmosphere
will be discussed bneﬂy

Since for a given mass of air, its pressure P, densu:y & and absolute temperature T are
connected by the Claperyon rela.tlon pfé=gR T'where R is the gas constant, the brake horsepower
can be as well considered as a function of the pressure p and temperature 7. But since the
propeller thrust and the forces of air resistance depend on the density 8, it is: more convenient
to relate the power L,, directly to the density 5.

07 v N SO T T 11
. &,7and x Const . & and T Const
¢ 0 N o
v L2000 g S 200 £l NG
H X £ ZRR
g 5 ORINAL POWER g% 1
[\ / . St X
- R 200 H.P af 1200 RFM. é 90 4 =
0 4 o 1
300 voa /E00 od 9300 200 7500 zwo
Fig. 4. R.P.M. Fig. 5. R.AM,

In figure 4 is represented the general course of the brake horsepower curve of a gas engine

as a function of the revolutions N for §, T and z constant. The power L, generally first
increases very closely proportionally to the revolutions, but afterwards, when the piston speed
-becomes too high, the power begins to drop, mainly on account of an incomplete filling of the
cylinders by the carburetted air, whose flow speed is limited by the size of the suction pipes.
This phenomenon is expressed generally by saying that the volumetric efficiency begins to
drop, starting from a certain number of revolutions. The family of brake horsepower curves
for 5 and T constants, but for variable throttle openings z—a typical set of which is represented
in figure 5—show well that the drop of power starting from a certain value of the engine revo-
lutions is due to the drop of volumetric efficiency, because the smaller the throttle opening the
earlier the power. drop starts. In the figure, z,>2,>%,> %, ..

‘Infigure 6 is represented the general course of the power curve of a gas: engme as a functlon
of the density & for N, T and z constants, and which for most gasoline engines is very close to
a straight line. The density 8 (see fig. 6) is the small density at which the motor delivers just
enough indicated power to compensate the mechanical losses, so that the brake horsepower is
zero. For densities less than 8’ power has to be applied to the engine in order to keep it rotating
at a constant number of revolutions; g, indicates the mechanical losses of the engine when 3=0.

- The general shape of the last power curve finds its explanation in the fact that the indicated
horsepower is very closely proporfional to the density ;. and, if the mechanical losses are con-~
sidered as depending only slightly upon the density, the l'mear dependence of the brake horsepower
upon the density, for N, T' and z constants, follows.

10356°—21——2
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o In figure 7 is representsd a family of brake horsepower curves as a function of NN, for
different values of the density 5, but for T' and x constants, with 8,>8,>8,>8 - ... " (Compare
with fig. 5.) o
It follows from the foregoing that as a first approximation the power of a gasoline engine
can be represented by the formula " o ’ coo s ,

Loy=mN(c—¢)) | @

for the range of variation of N and 8 that we meet in aviation practice. ' This last formula
assumes that the engine is used in the interval of the linear variation of the power with the
revolutions, and that the mechanical losses are proportional to the revolutions. For actual
aviation engines the coefficients ¢ and ¢, have for mean values” ’ a

¢=11; ¢,=0.1
so that for average computations, we can write :
L,=mN(116—0.1) (44)

where the coefficient m is fixed by the value of the nominal power of the engine.*
We do not possess actually sufficient experimental data on the question of variation of
the power L, with the temperature 7', the density 8 being kept constant. In some tests the

Lm
200
) N, T and x Const.
¢ “ — - 300 '
23 vV for T 1]
g% 100 / § x and T Const I~
2 v 200 ——
3 “ 53 EmNR
, 4 Q& // 1~ S
oL / S} & § 700 ZA= =S Sz
2 X v '8y
0 N
rig.t aoesoensz‘ﬁ?ie to g/ﬁé;) ' iz, 7 300 9%'0- goo 2/00

variation of the power L, with T was observed for constant pressures. But in this case the
main effect is the change of power produced by the change of density resulting from the tem-
perature variation. It is the change of power with temperature at constant density that
solely interests the seronautical engineer for the study of altitude flight.

Sometimes engines are submitted to the following test: A propeller is fixed on the engine
and this is run at different throttle openings z up to the full throttle z,, and the curve of the
power L, delivered by the engine is plotted as a function of the revolutions. The curve thus |
obtained has the general shape represented in figure 8. The main fact to be noted is that -
this curve is not the characteristic of the engine, but the characteristic of the propeller used,
as tested at a fixed point. It is the curve that corresponds to the equation »

L= Lo=Cy's N*

which is & cubic parabola in N. It is possible by such tests to obtain the characteristic of the
engine if it is tested either with a set of different propellers or with & variable-pitch propeller.
‘Suppose we run a first test with a propeller No. 1 and get the curve L, on which we have
carefully marked the different throttle openings z. Afterwards we run a test with a propeller
No. 2 and get the curve L and so on, If we now join all the points of equal throttle openings

4 The last formula assumes that at sea level the hanical losses consti around 7.5 per cent of the brake ©
giving at sen lovel 200 b , at 25 revolutions per second, m turns out to be equal to 6.2,

. For an engll
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we will get the engine characteristics Ly, at constant density and different thpottla openings «
(See fig. 8.) g $4
The foregoing explanations have been ngen only in.order:to recall- bmﬂy to mmck thoée

engine properties the knowledge of which is necessary for the study of our airplane steady-
motion problem.

- C. PROPERTIES OF THE ENGINE-PROPELLER SYSTEM

As we have seen, the characteristics of a propeller are functions of the “a.dmmce” Y/ N.
The characteristics of an engine are functions of the revolutions N for .and « constant, It
is easy to show that the characteristics of an engine-propeller system@re functions of the flying
speed V alone (for 8 and z constant).

Let us consider an aviation engine with its propeller put on g raifroad car and made to
move along the axis of the engme—propeller system in air of densxty 3. Let us start by con-
sidering the car at rest. For a given throttle opening, if the engineis now set in motion it will
reach a steady working condition at a certain number of revoluticiis N,,, at which the pro-
peller will give a thrust @,. So far as we do not touch the ..
throftle, the revolutions N, and the thrust @, will remain 3?_2 L. L5 | 5
constant. Leb us now allow the car to run at a speed V. : WA
For each different value of the speed the engine will run ab
g, different number of revolutions N and the propeller: will
give a different thrust ¢, but if the car speed and throttle
opening-are kept unchanged, N and:‘@ will remain constant. i
'We thus see that for a given throttle opening = and air At ==
density 8, the revolutions N and the thrust @ of an engine 0 Ul
propeller sef are functions of the translation speed ¥ alone. gy g, %00 ‘90,? A ,{im 2100
The main fact to be noted is that for an engine propeller set
the revolutions have to adjust themselves to the speed V, which makes the thrust @, for 5.
and z constant, depend upon the speed ¥ alone.

Let us now solve the following problem. A propeller is given to us by its characteristic
curves:

& m . r] x’ ’T—-

Horsepower,
Ny

n=F(VIN), L,=8N*F,”

and an engine, by its characteristic curve:
Ly =f(N)

for 5 and = constant. The characteristics of the engine-propeller set have to be found.

Let us first deduce from the L, =f(N) curve, the curve of L,,/5N® as a function of Nfor the
given § and z. This last curve plotied, the following table is computed -

In column I we write selected values of L,,/s N2

In column II we write the corresponding values of N taken from the L,/ N® curve plotted
as a function of N.

Limd N N VIN n 1 4 Lu/s N3 Qs Q
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When a propeller is fied to a given éngine; the power absorbed by the propeller is equal
to the power delivered by the engine and both run at the same number of revolutions (in case
of gearing, the geMg constant has only to be infroducéd) that i I, we liave

Lm L ‘ (,¢1~
3N ON® v

Let us thus read from the L,/ N¢ curve as a function of ‘V/N the values of the advance
V/N that correspond to the selected L;;/8:N* values in Column.I:and write these values of the
advance V/N in Column-TI1. *

”OKL r . ) ST N ‘i“:lw“”
éleoo , (7T 6"2 J/) :
0 | o T ho6 ] lads
a‘. /60 L ,6.7 )
,g 120} A SO //4/ ",0‘72, -
T 80 ,/"///' L
‘g 0 P
7 « ] s KL
0 200 600 1000 00 1800 EE00
Frg. 9. RAM.

In. column IV we shall write the values of the efficiencies 7 that correspond to these same
advances V/N.

Maultiplying Column I1 by Column IIT, we find the value of V (written in Column V) that
correspond to the L,,/5 N® values of Column I

Multiplying Column I by Column IV, we find the value of L,/6N* (L,=useful power)
that correspond to the values of V of Column V

Finally, multiplying Column VI by the corresponding values of N of Column II and dividing
by the corresponding values of V in. Column V, we find in Column VII the values of Q/a 28 8
function of the V of Column V. Finally, the values of

the thrust @ are given in Column VIII. o% Lfsys '/ 2
Thus we are able to plot the curve of @/fé or @ as a a6 —
function of V for given § and z. are
o/4
2 N e %P
N . é_a o, , 5 s SN2 . Redd 3
wol—— 25 . o./0
S 0.68 }—
08} SR IO I - —g08
> 1 N
y06 <77 006
$ 1~ 004
foe A lods 0.96
002
o ,/ - e B A 7 a2 N
] '
_ L ./”7 05 W B 2025 30 3540
O 2 & 6 B [0 12 (4 8 8 20 22 24 Fig. L. R.P. Sec.
Fig. 10. Advearnce. '

For each new values of 6 and z, this computation has to be repeated. Columns I, IIT,
IV, and VI do ot change, and only Columns II, V, VII, and VIII have fo be recomputed.

In such a manner, starting from the knowledge of the propeller characteristics as functions
of the advance V/N and the engine characteristics as functions of W, 3, and #, the character-
istics of the engine-propeller system, such as

Qr Lm Lm; 7, and N
will be found as funetions of V, 3, and z.
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Following is an example of the application of this method. In figures 9 and 10 are repre-
sented the characteristics of the propeller and engine used. In figure 11 are represented the
curves of L, /5N? as a function of N.

7Jorgue Erfciency  Rev. per Sec. 7hrust- densily rofio.
O .08, .06 98 07 D8 . /30%°88 26 2S¢ 3000 2000, 1000
Ln/sn3 7 14 less

10 $E B i
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7 o \ A
\ 0.96
0.95
80 : T . -
v EETENE T . g ’ s . l v
Fig.12. ~ CHARACTERISTICS OF THE ENGINE-~PROFELLER SET. —

In the following table are given the computations which are made for full throttle openings
“and for three different air densities.  The characteristics obtained for the engine-propeller set
are represented in figure 12, on which are plotted the curves of @/3, N, 4, and L, /3N as
functions of V for different densities. It can be easily seen that the sets of these curves can
as a first approximation be reduced to ‘one mean curve for eéach set, which is a consequence
of the fact that the deviation of the motor power from proportionality to air density is not
great. ) :
We now see upon what factors the variation of the propeller thrust in flight depends and
what laws it follows, '

Compuiation of the characteristics of an engine-propeller system.

5 | Labte |oNc T vpe v 1 ¥ Lafts | Q o
1.05 2.5 L |5 o 2.2 | o.0785 325 2650
. 1.0 24.0 1.40 .76 33.6 0760 288 ¢ |' 2850 -
080 26.5 L87 | .81 ). 9.5 0647 224 1830
. 080 30.0 2.20 © 6 65.0 +0396 12 1400
105 | 2o 1,18 .70 2.7 L0735 247 2530
o 1.00 25 | L4 [ .7 32.9 0760 220 2260
+080 26.0 ‘| 187 .81 48.6 .0647 I
.60 2.8 2.20 N 65.1 . 0398 133 | 1360
1.05 2.5 118 2470 26.1 0m5 | wr | 2410
= 1.00 2.0 14D é‘m’f‘ 22 .0760 158 2150
.80 25.5 187 FIRN X 0847 122 1660
. 065 2.2 2.2 78 64.3 .0396 % 1315
. - e
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PART IIL

THE ATMOSPHERE.

1. SOME GENERAL PROPERTIES OF THE ATMOSPHERE.

A short review of those properties of the atmosphere that have a direct relation to the
airplane steady motion will be given here.

The specific weight of air—expressed in kilograms—will be represented by o.

The density of air—expressed in newtons will be represented by &.

We have .

o=gd with g=9, 8lmi/sec

At the pressure of 1 atmospherea~10330 klg/m#? and absolute temperature 7'=273°+15°=

288°, the specific weight and density of air have for mean values

o=1,225 klg, §=0,128 newton.
At the same pressure of 1 atmosphere and zero degrees centigrade (I'=273) we find
0y=1,293 klg; 8,=0,132 newton.
Using the former values, the gas constant B, deduced from Clapeyron’s relation
p=eRT 45)

has for its value
_ p_ 10330
=oT 1,225x288

.Let us consider the atmosphere to be in a perfect static condition (no winds). If we rise
in such an atwmosphere through a distance dH, the pressure p will vary by an amount -dp
equal to

R =29, 27 (46)

—dps=edH 47
or on account of (45)
—dp dH
—o~ BT (48)

(If in this last formula we consider dp/p=0.01, R =29, 27, T'=273 we find d H=~80m¢. This
means that a difference of pressure of 1 per cent in the atmosphere corresponds at 0° centigrade

to a change of altitude of 80 mi.)
1 o id
i P2 6.2
by Po Rf T (49)
"

Integrating (48) we get
where p, is the préssure at the altitude H, and H>H,. This last formula gives the value of the
altitude H from the knowledge of pressure, when the law of variation of the temperature T with
altitude is known. For T=273; p/p,=20.5 and H,=0, we find H=<5,000 mt. In an isothermic
atmosphere of zero degrees centigrade, at the altitude of around 5000 m¢ the pressure is one-
half of the ground level pressure.
22
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2. DISCUSSION OF THE STANDARD ATMOSPHERE.

This question of the law of variation of temperature with altitude has been la.bely 2 matter
of considerable discussion. Numerous so-called standard atmospheres have been proposed,
which are supposed to be some kind of average deduced from different séts' of metéorological’
observations. The Paris “Peace Conference of 1919”’ has even cons1dered it neoesaa.ry to' ﬁx
by interallied agresment, some kind of standard atmosphere.

A careful examination of all the propositions made has brought me to the conclusion that
this question of the standard atmosphere has been somewhat misunderstood.

Let us consider the whole question from a general standpoint and make clea.r for Wha,t.
purpose we need the standard a.tmosphere in aviation.

For each geographical position, at a given hour of a given day, there exists along the vertma.l
drawn through the place considered, a certain distribution of pressures and temperatires.
This distribution of pressures and temperatures depends upon the meteorological conditions
and is variable through the whole year. The variations of this pressure and temperature are
very important. It is well known that the same pressures and temperatures can be met at
levels where altitude differences can amount to several thousands of meters. If a certain mean
distribution of pressures and temperatures is adopted, the deviation from this mean distribu-
tion can also make up actual altitude differences of the order of a theusand meters.

On the other hand for an airplane, the forces of air-resistance, the propeller thrust, and the
power of its engine are all functions of the air density and decrease with this. It is a property
of the airplane to be able to reach a certain limiting small value of the air density, at which the
airplane can still fly level, but is unable to climb any more. This limit of density is called the
ceiling density 5. The aviation engineering problem consists in ﬁndmg for each airplane its
ceiling density. But the question, at what altitude this density 8, is located is purely a meteo-
rological question. The distribution of densities in the airis greatly different and the same den-
sity can be met on different days at very different altitudes. The question of the relation of
densities and altitudes stand outside the aviation engineering problem and is merely a question
of public curiosity. Technically speaking, we can only say that a given airplane has the ability
to reach a certain density 8. The smaller this density §., the greater is the climbing capacity
of the airplane considered. There is no reason for expressing this density in altitude figures,
because density already completely specifies the question. There is only one fact that must
still be taken into account. The power of the airplane engine, at a given density, depends
somewhat upon the temperature. When we speak of airplane performances, they must thus be
referred to a certain temperature. In the selection of this temperature, we must be guided only
by convenience and simplicity. There are no reasons to adopt a temperature variable with the
altitude, but there are many reasons for adopting a constant temperature at all altitudes.

It is easy to see that, exactly speaking, it is rather standard conditions for engine werk
that we have to select than to adopt a standard atmosphere. If we make the temperature
variable with altitude, in other words, with density, this would mean that the standard con-
ditions adopted for engine work consist of a special temperature for each density. This
introduces a very troublesome element in engine-power computations, which is neither neces-
sary nor demanded by any reason. On the conftrary, a constant temperature for all densities
is & natural condition, demanded for the sake of simplicity of the standard conditions adopted.

We are thus brought to the conclusion that from the standpoint of aviation engineering
the only standard atmosphere that can be reasonably adopted is the ssothermic atmosphere.

The proposition of the author is to adopt for aviation engineering, as a standard atmosphere,
an atmosphere of constant temperature in its whole mass equal to zero degrees centigrade.

The advantages of such a convention are as follows:

1. In all questions of design and performance prediction all temperature corrections are
totally eliminated.

2. In airplane testing the only correction to be made is the temperature correction of the
engine power and reduction of the performance to this corrected power. This correction is
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quite simple, since we redice each of the quantities to the same temperature independent of
the altitude.

3. If we compare our isothermic a’nm,osphere of zero degrees centigrade with the mter—
allied standard atmosphere and with the atmosphere of an average winter and summer day,
the isothermic atmosphere gives a general idea of the altitude quite as good as does the inter-allied
standard in the sense that the altitude departures for the winter and summer day from the
isothermic atmosphere and from the inter-allied standard are of the same order of magnitude.
(See fig. 13.)

It is thus evident that everythmg speaks in favor of the lsothernuc atmosphere of zero‘

degrees centigrade.

In all aviation engineering all data, computamons and performanoes ghould be expressed
exclusively in densities of the isothermic atmosphere. The altitude language has to be used
for the general public only. The

; \ T T I 1T T ; i
e e SR
Q. hfer-A//zed ST1DA T e o omn e - .
] A [sorhermiic almosphiere. | unnecessary GomthB‘tIODS-l
s000 \“\ : For some special problems we
% ; N |* peed to know the actual altitude of
3 000 RN , an airplane. But in such cases no
e AN B standard atmosphere can be of any
; \ N belptous. If we want to deduce with
“Qg' 5000 _ A Q : some accuracy the actuq.l altitudefrom
3 LY pressure measurements on an airplane,
X 4600 NN , we have to record when climbing the
' N | laws of the actual variation of pressure
[T YR AR R NR and temperature with altitude.
1000 || WTER AL LTED STANGARD IR \\ Methods or ingtruments for quick
o L 0'02 | 010 7 l o<l7 v § 010 Ty ‘32\ 0‘;4 computation, Witt.l a certain accuracy,
Figl3. ) " Density tNewtan/ir®) ’ of the actual altitude from such rec-

ords can be developed.
As a general conclusion T will say: It is fitted to the purpose to adopt for aviation engineering
the isothermic atmosphere of zero Hegrees centigrade as standard atmosphere.

3. CALCULATION OF THE RATE OF CLIMB FROM A BAROGRAM.

The vertical component U of the air speed V of a climbing airplane is generally called
rate of climb. If in an element of time d¢ an airplane climbs & height dH, its rate of climb is
equal to

dH ‘ :
U= (60)
or on account of formula (48) ;
_BT —dp_ _-dp
TTp dt T dt 6D

By this last formula the rate of climb of an airplane can be found from the flight barogram,
which gives the pressure p as a function of the time#. At each moment of time the slope of the
tangent to the barogram curve at the point considered gives the value of —dp/d¢ and the value
of the specific weight follows from the corresponding values of pressure and temperature.

1 The suthor is of the opinion that the scales of altimeters and barographs ought to be graduated in pressure units, pressure being the quantity
that theseinstr tsrealiy ‘The author can not understand why it is considered “from a practical standpoint” preferable to have
the pilot read the wrong eltitude (the altitude scale of an altimeter being purely conventional) than to read the evact pressure. Veéry little practice
would be required from pilots to accustom themselves to express thelevelreached in the atmospherein p efigures. This would be, physically,
perfectly correct and would avoid a great deal of misunderstanding.

o
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4. INFLUENCE OF WINDS AND SELF-SPEED ON COCKPIT PRESSURE.

Let us consider briefly what influence the atmospheric winds can have on the observed
pressures. Counsider two air masses at nearly the sa,me a.ltitude, in which the Bernouilli constant
has the same value, one mass ha.vm;g no, spee her having a speed of 10 meters per
second which is itself a strong wind. gg w1§ under such conditions that the pressures
in these two air masses are related by tlm eqpation

5.»3
pl Pz 2
or ¥ SR #esd b
n? 0125)(20
Py Pr=g= 5 =6,25klg/me’

At ground level with p = 10330 Elg/m# this gives’

_ 6,25

The differetice between p, and p, thus appears to be of the order of 0.059, of the atmospheric
pressure, which corresponds at ground level to a difference of altitude of around 4 meters, At
an altitude where the pressure would be 10330/2 (around 5,000 meters) the difference between
p, and p, would be double and this would still correspond only to a difference of altitude of
8 meters. We are thus brought to the conclusion that ordinary winds will affect-only slightly
the calculation of altitude from pressure distribution.

A much more marked influence is that,of the variation of the airplane speed ¥V upon the
measurements of pressures as made on an airplane. The difference between the static pressure
p at the level where the airplane is flying and the pressure p’ in the cockpit is very closely equal to

Ve
- P_‘-”

An airplane in climbing can have its speed reduced to about half of its horizontal self-
speed; that would give for the cockpit pressures p’, and p’, corresponding to the two cases, a
difference of

Py -9/ =0, 1550

This is the difference between the ““corrections’ which are necessary in the two cases in order
to determine, from the cockpit readings, the real static pressures. With V250 meters per
second, at ground level, this can be about 1%, of the atmospheric pressure, or 80 meters difference
in altitude. Such differences have to be taken into account when pressure observations are made
in the cockpit, at different values of the speed. The last circumstance may make it desirable
to use special devices allowing the direct observation in the airplane of the static pressure,
instead of the cockpit pressure.
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PART IV.
THE THEORY OF STEADY MOTION.

1. THE BASIC EQUATIONS.

" All of the properties of the airplane steady motion are a direct consequence of the fact that
in steady motion all the forces acting on an airplane mutually balance.

In order to express the last condition let us consider an airplane in steady flight and draw
from its center of mass vectors paralle]l to the main quantities involved in the problem. This
will facilifate a determination of the angular relations. In this manner, on figure 13, have
been represented:

G; a reférence line, mvana,bly connected with the alrplane wings, from whlch the
angle of attack is measured.
V the self-gpeed.
4 the angle of attack.
v the angle of inclination of the flying pa.th to ‘the horizontal, counted positive for
climbing.
P the total weight of the airplane.
R the total air-resistance.
R, the drag—component of R along the speed V.
B, the lift — component of R along the normal to the self-speed.
@ the propeller thrust.

Airplanes are generally built in such a way that for horizontal flying in normal conditions,
the thrust @ is directed along the speed V. The angle of attack that corresponds to those
conditions will be designated by i,.

The vertical component of V, designated by U in figure 14, is called the rate of climb.

U=V 8invy (52)
26
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Let us now project all the forces acting on the airplane on the direction of the speed V and
the normal to it. The conditions of steady motion will then be expressed by

SR

R, =@ Cos (i—3,)—P Sinvy - (83)
R,=P Cos v—Q Sin Gi—i,) (54)

in which equations, we have: |
B,=k, 3 AV? (55)

R,=k,5 AV? + (56)
where . , : ,
k,=drag coeflicient.
k,=I1ift coefficient.
_ &=air density at flying level. .
A=area of the airplane wings.

To these two equations (53) and (54) must be added the fundamental relation that connects
the engine with the propeller.

Lo (5,8, N) =L, =5N3T"(-]‘\f,) 67

which expresses the fa.ct tha.t in steady flight the power L,, delivered by the engine—sa function
of z, 8 and N—is always equal to the power L, absorbed by the propeller—a functlon of N, 8
and V/N.

The detailed discussion of the fundamental equations (53) and (54) is greatly complicated
by the complex laws, fixed by the relation (57) governing the variation of the thrust @ in flight,
which we have considered in full detail in the foregoing.

-In order to allow a better survey of fundamental properties of the airplane in steady motion,
without complicating the question by those factors that have only a slight influence on the
quantitative value of the results and do not affect at all their general meaning, we shall make
the following simplifications in equations (53) and (54).

I shall first remark that, on the one hand, we do not possess any reliable information as to
the laws of variation of the propeller thrust for the case when the self-speed ¥ makes a certain
angle with the propeller axis, and on the other hand, since the angle (i —1,), as we shall see later,
can take only small values in normal flying conditions, we shall consider it to be a sufficient
approximation to assume - .

= @ Cos (1—13,)=Q
Q Sin (i —i,)=0

It must be further noted, that in normal flying conditions, the angle of the flying path to the
horizontal does not usually take large values. A1t seldom exceeds 15°, taking larger values only
in steep. dives and s’oeep glides, which must be considered separately. We thus assume

‘ Sin 7~7, ‘Cos y==1.
Introducing these smphﬁca.tnons in the equations (53) and (54) we gef,
i Byl 8 AVI=Q—Py 5 (58)
L Bk AV=P )  (59)

The s1mp11ﬁca,t.10ns we have made aﬁect principally the value of the self-speed V, which we
shall calculate from the equation V=+Pfk, 5 A instead of the more exact relation
V=+Cos vyPJk, 6 A. But it is easy to see that for y < 5° we have Cos v > 0, 96 and the error
made in the speed will be less than 1 — /0, 96220, 02, that isless than 2 percent. In any case,
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when necessary, once the self-speed: ¥iobtained: by equation (59) and the value of ¥ known,
it is always possible to correct its valué by taking it-equal to V +0os .

For the study of the airplane in steady motion, it is more convenient to consider, instead
of the relations (58) and (59), the'system of équations:

’ P
k, V2= A " " (62;)
. ke
o =}Q),_»_ = (61)

which follow directly from the last.
With the same approximation, the rate of climb U has for its value #

U=V~ (62)

It is from the system of equations (60) and (61) that we shall deduce all the properties of
an airplane in steady motion. Once all
of the mutual interrelations of all the
quantities involved in the problem are
» | perfectly established, all quantitative
corrections, when demanded, can always

\ e fhy carve.
Qfp curves.

058
(4
,02\\ #r | be made post factum and in our state-
@Yo R | ment of the problem, are only necessary
' L4 e e g in the case of steep climbing or gliding
@sa= 3 flights.
%4 7 N J[H 2_, L ')’r*/y & We shall start by the study of the
2 ,

Spece steady motion of an airplane of con-
peeT 2, stant total load weight P and eonstant
% | wing area 4, the engine working all the
time at full throttle opening.
For this study we shall meke use
of a graphical interpretation of the equa-
Joe Jeae el | tions (60) and (61) which conisists of the
foui guadrants /s following:
the specifrc./aad,
»=rlsa

Specitric
thrust
curves.

2. THE METHOD.

The lift coefficient k, will he
adopted as fundamental variable, As
the lift coefficient k, is a function of the angle of attack only, under the restrictions made, its
value can be changed in flight only by a displacement of the control stick.

The four quadrants formed by two stidight lines intersecting at right angles will be desig-
niated respectively by I, I, ITT, and IV ‘(See fig. 15.)

In quadrarit TV, the hotizéntal axis"¥ill be sdopted as k, axis, and the downward vertical
axis as V axis, and the speed V will be plotted in this quadrant as a function of the lift coefficient
k,, according to equation (60). We obtain a system of hyperbola-like curves having P/s A as
parameter, which allow oneto read directly the value of the:speed V that corresponds:to each
value of the lift coefficient when the value of P/3 A4 is known.

Tt is important to remark that when the ratio PfsA has the same value, independently of the
special values that P, & and A have, to each %, corresponds the same speed V. On account of
this we shall use the special symbol p to represent the ratio P/6A and shall call it specific load.

5] 3]

P 6t

Fig. /5.

zs!f
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It will be seen from all that folléws that the specific load ¢ is the fundamental parameter of
the whole problem. of steady motion. ! i

The curves of V as a function of k, with p as parameter will be called speed curves. ¥tis
eesy to see that the speed curvies—in. the approximmation used in the problem:simply represent
. mathematical relation independent of the.special airplane considered, -that is; the same
family of speed curves corresponds to any sirplane.. ‘The last propesty of the speed:curves is a
consequence of .our selection of variables: A set of apbed:curves:for p having the values p,
(ground level) p,, p;-. ... is schematically represented in.quadrant IV of figure 15.

‘We have :seen, when examining in the foregoing. -chapters. the iproperties:of the engine-
propeller system, that the thrust ¢ given by such: set:is; for areonstant throftle opening, a
function of the speed V and density 8. In the study.of the: sirplane in steady motion, for the
sake of uniformity, we shall consider, instead of the thrust @, the quantity @/6Ay-which weghall
call specific thrust and designate by ¢, i. e,y Co R

%
LIS ST

g=QpA. (63)

Tt'is easy to see that the specific thrust g will dlso b, 1654 éonstant throbtls opening, a function
of the speed V and density 8, or, in othdr words, a functio‘n of ¥ and of the specific load p=P/s4
8s P and A are constants of the airplane considered. 'We shall plot iri quadrant IIT the curves
of the specific thrust p=P/[84 as a function of the selfzspesd 'V with 'the specific load p= =P[6A
as parameter, the horizontel axis being the ¢ biis. A &8t of such specifie thrust curves is repre-
sented in figure 15, with the parameter p having. the same values p,, py, P2 2s in quadrant
IV. We have learned in previous chapters how to deduce this family of curves from the
properties of the propeller and engine used on the; airplane .considered. The specific load
curves allow us to deduce directly the value of the propeller thrust that corresponds to-each
flying speed.

Knowing the laws of variation of the thrust @ as:a function of the.speed. V, it is.easy to
deduce the laws of variation of the: thrust @ as a function of the lift coefﬁclent k,. TFor this
purpose, let us consider the equation

Q=:Q__/5_4=ﬂ=.y (64)

and interpret it as a family of straight lines passing through the origin with ¢ as abscissa, y as
ordinate, and p as parameter, and plot these straight lines in quadrant I of figure 15, giving
successively to p the values p,, p;, Pa-- and using the {rertma.l axig as the y=Q/P axis. We
shall call these last lines transfer lines.

This system of transfer lines once plotted in quadrant I, it is easy to trace directly in
quadrant I, for each given value of the spegific load p, the curve of the ratio /P as a function
of k, that corresponds to a given curve of ¢=@/5A as a function of V' Each two corresponding
points.of two corresponding curves in. quadrants III and T lie on the two diagonal vertices of:a
rectangle whose sides are parallel to the axes and whose two other yertices are located one on
the speed curve in quadrant IV, the other on. the trapsfer line in guadrant IT, corresponding to
the same value of the specific loa.d 2 (See ﬁg 15,) Im such a Way we can deduoe in quadrant
I, from the specific thrust curves of quadrant IIT, the curves of Q/P as a function of ky with p
as parameter, which give us the laws of variation of the thrust as g function of the lift coefficient.
A set of such curves of @/P as a function of ky, for the same values p,, Py, P2 - of the specific
load, is represented in quadrant I of figure 15. 'We tiow ‘see that the chart represented on this
ﬁgi:re has the property that each four corresponding poiiits in the four quadranis I, II, III and
IV lie on the vertices of a rect l,ewithztsszdesgamlleltothe ages.

Let ts finally plot in quadrant T, in additibn to ths'Q/P ciirves'ss a funétion of %,, the
curve of the drag-lift ratio k./k, as a function, of k,. As the drag and lift coefficients are
functions of the angle of attack only, the ra.tm{c [kes, can be considered as a function of %, only
The general shape of the k./k, curve as a function of k, is represented in figure 15.

P8 I Erreiys N ag ixa t
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If we now remember equation (61), we see that the diffeence of the ordinates of the QP
and %k, curves, for a given value of p, give directly the airplane path: inclingtion ¥ (sée
figure 15). o

‘We have thus succeeded in representing on the chart in figure 15:all the:characteristics
of the airplane in steady motion and their fundainental interrelations. The transfer linés of
quadrant IT and the speed curves of quadrant IV .do not depend-pn the special type of airplane
considered and thus are merely mathematical intermediaries. On the conirary; the curves
of quadrant T and IIT constitute the chapacterigbics: of the aivplane considered. Quadrant T
with the k,/k, curve taken alone constitutes the chardcteristic of the airpline slone. Quadrant
II1, with the specific thrust curves, constitutes the charactéristic of the engine-propeler system.
Quadrant I, with the %,/k, and @/P curves.eonstitutes the characteristic' of the airplane<enginé-
propeller system.

In Quadrant I, for a given value of &, and p, we can read the values of k;/ky, Q/P and v.
In Quadrant IV we can read the corresponding values of the speed V; in Quadrant ITI we can
read the corresponding value of the specific thrust @/3A. 'We are at liberty to extend to the
left Quadrant III, and plot, as had been done in figure 12, all the other characteristics of the
engine-propeller set; and thus we shall obtain a complete graphical representation of the whole
set of quantities involved in the steady motion of an airplane.

In order to make ourselves familiar with the above described chart, we shall discuss with
its aid, in their general outline, the properties of the airplane in steady motion.

3. PROPERTIES OF STEADY MOTION,

All the curves of our basic chart represent quantities that can be measured directly, that
is why all these curves can be considered as being deduced experimentally from direct tests.
But for many purposes, it is convenient to have also analytical expressions, even if only to &
first approximation, of all the curves of the four quadrants of the chart. Thatis why, deducing
' the following the properties of an airplane in steady motion by the aid of the chart, we shall
at the same time follow all the fundamental relations by the use of ‘the following approximate
equations.

‘We have already seen that the speed curves of Quadrant IV have for their equations

by Vi=p (65)

The shape usually obtained for the specific thrust curves of Quadrant I11, allow us to use
for their representation, with a sufficient approximation, an equation in the form of

Q =q=¢;—~qV? (66)

the whole set of curves being represented by a single méan citve. The constant coefficients
¢, and ¢, are, as a first approximation, characteristic coefficiénts of the engme-p‘ropeller set.
These coefficients ¢, and ¢, can be deduced from the mean speclﬁc thrust curve by the method
of least squares. A justification of the last relation (66) will be found in the note at the end of
this report. ‘

By using equation (66) one sees that the ratio 'Q/P is equal to

Q_@pa_ 9 _Zo=UY" «V?
2 T , ©7)

and on account of relation (65), we.find for the @/P curves of Quadrant I, the equation

P o R °
the specific load p=Pf5A being the parameter of this family of curves.
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Rewriting equation (68) in the form

9= k,,(% _’% (69)

it will be seen that the curves represent a family of equilateral hyperbolas having for asymptotes
the @/P axis and a line parallel to the axis, with its ordinate equal to

95= P_g_;,% (¢(1)]

that is, proportional to the density 3. (See fig. 16.) , ' When & varies, the curves (69) merely
move up or down, their ordinates changing proportionally to the density 8.

a/P o e ko
" P, ’
fom", pz

Z
%
Ky,
i Fig. 16

As, according to the approximate relations (8) and (9), the lift B, is a linear function of the
angle of attack, and the drag R, is a quadratic function of the same angle, we can consider

Rk, 8 AV"(r k,,+t+{-); (71)
£
¥
that is, adopt for the k,/k, = R,/R, curve, the approximate equation
%=r Ty +t+7-=Y, (72)
) Y

which represents a hyperbola, whose equation written in the form
rkA+Q—y) ky+o=F(y, k)
shows us that the center of this hyperbola has its coordinates given by

of
b_k,,=2r ky+t—y=0

that is, is located at the point %,=0; y=i, and that the angular coefficients of the asymptotic
directions are given by
rkp—y ky=ky (v ky—1y)=0
that is, are equal to
ky=0 and y/k,=7r

The hyperbola (72) is represented on figure 17, on which the coefficient ¢ is assumed to be
negative, as most generally is the case.

e
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The minimum of k,/k, is given by T R R gy

S Y g
Lo r’FW?E
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y/m= r

ks
( )mm—zt+21/ra

If We now remember that in the expression (71) it is the coefficiont o that depends ma.mly
upon the parasite resistance of the airplane considered, we see that the center and the asymptotes
of the hyperbola (72) are independent of the parasite resistancé, and that with variable o this
hyperbola moves in and out between its invariable asymptotes. -

that is, takes place for

and is equal to

";i

A. HORIZONTAL FLYING.

A horizontal flight of the airplane considered,
at a level specified by a given value of the specific
load p=P/[5A is only possible so far as the cor-
responding Q/P ‘curve intersects in quadrant I with
the k./k, curve, begause only for such points of
intersection can:we:have y=0. Tt is easy to see
from figure 18 ‘that there will be i general two
such points of intersection, to which correspond
two different values (&), and (ky,)2 of the lift co-
efficient. Tn quadrait TV we can read the two

/ t*ZV_ /

V—’At anc'/g r

ot valués V, and V, of the speed that correspond to
l these values of the lift. One of these speed values
1 % Fig.17: - ig greater than the other (V,>7V,). The greater

*5?

value V, is called high speed, the smaller value V2
low speed In guadrant 111 we ‘car read: the cor-
responding values Q,/64 and Qz/SA of the specific thrust (L,),/84 and (L,),/6A4 of the power
available; (L),/84 and (Ln),/84 of the power delivered; n, and 4, of the propulsive efficiency
and finally N, and N, of the revolutions. If desu*ed the power reqmred can also be plotted,
together with the power available. o

Most airplanes can not fly at the low speed state of steady motlon characterlzed by the
values (by)y; Geafln)s; Va; @i Ny 1125 (Lu)a; (Lin). because they do not have sufficient rudder
areas to still keep control of the machine at this low speed.

‘When the aurpla.ne is considered flying at different mcreasmg altxtudes, the density &
decreases; that is, the value of the specific load p increases, the @Q/P curve moves down and
there will be a moment when it will become tangent to:the k,/k, curve; that is, will have with
the last only one point of intersection (see fig. 18). The value of the specific load that cor-
responds to this Q/P curve is the largest value p, at which level flying of the airplane is still
possible; and impossible for any larger value. The airplane has reached its ceiling, determined
by the ceiling specific load p.. In quadrant IV we can read the. Speed. V. at the ceiling, and
in quadrant IIT, all the other ceiling characteristics.

It is easy to see and trace on the chart in quadrant IV the curve of the horizontal speeds
at all altitudes. For this purpose it is sufficient to project on the corresponding speed curves
the points of intersection of the k,/k, curve in quadmnt T with the @/P curves (see fig. 18).
The speed curve to which this last curve is ‘tangent gives again the value of the specific load p,
‘at the ceiling.. The point at which these two curves:are ta.ngent separates the hlgh speed states
of steady motion from the low speed states. P TS

k4
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Making use of our approximate equations (68) and (72), we may find the values of the
horizontal speeds at all altitudes from the condition @/P =Fkz/ky, that is

oS G 2z L . .
e Ty r 7‘,""+t+k’, SR ST O % (73)
or [ ot SR A A S
Lok (-aterg=0 0 0 @
Replacing %, by its value from (65) we get - g N
| Vie+g)+ Vlp—g)+rpf=0 ()
From which equation we find for the horizontal high speeds, the values: '~
e @—tp), [G—pPr . j
Vl 2(0._‘_%) + 4(6 +ql)z (a' + !ll) (76)
and for the horizontal low speeds, the values: .
* 2(c+q,) Vilo+q,)? (o+gq) -
The ceiling is given to us by the condition ) ’
V=V, o 78)
that is, : : ,
Qo—tp) P : ,
1oty Gre) : 79
or )
(qo—tp»=4(c+q)rp* C o (80)

I shall remark here that the quantity ¢p is in general small (on ‘account of ¢ béing small)
in comparison with ¢,, so that, as a first approximation, we can replace the condition (80) by
_ the approximate condition

_ : gi=4(o+q)rp V' (81
from which we find: ' '
pom L G 82)
8. A 2+/r(c+q,)
and finally for the ceiling density we get the value '
‘ _2Pr(e+g,) '
0= Ag, o | , (83)
With the same approximation (¢220) the ceiling speed V, has for its value
2 ... ___lo___ : ;
_ ) e
and the corresponding value of the lift coefficient is equal to
: : . : T (
o= Beym/ 72 ... )
It is easy to see that this last ceiling lift value is somewhat larger than the value of the lift
o
(ky)m = ‘J T (86)

at which k,/k, is a minimum.,
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It is worth notice that the power required for horizontal flying
R, V=kpAV*= Ppmzu—;’ﬁgl?pm(ﬂc,,m +0ky—5R)

has a minimum for a lift value (k,), given by

ak . 8,,) 12k, 1 — 3/2ak ~51-0

(k,,),.=a\/§}‘ o @)
Usually ¢, is of the same order of magnitude as ¢, thus (k,),, being greater than (k,)m, has a
value close to (k).

As has been mentioned already, the ceiling of an airplane is characterized by the value Pe
of the specific load, but the ceiling density 3, depetids upon the weight P, thatis, upon the loading
of the airplane. The loading of each airplane can be increased up to such a value that its ceiling
will be dropped to the ground level. The value of this limiting load P, is given by

P Py ¢ :
38
oA TaA ARt )

where &, is the ground level air density. Hence.

and equal to

—p_ QosoA
, P, 8‘, 24r(c+q,) : (89)

Itis of interest to add to the specific thrust curves of quadrant III, also the two families of
the following curves.

In the first place, the curves of RB,/34 as a function of V with p as parameter. Since
R./R,=k,/k,, we obtain these curves directly on the chart by transferring the k,/k, curve of
quadrant I to quadrant III by the aid of the speed curves of quadrant IV, and transfer lines
of quadrant II. Each speed curve and straight line corresponding to a given value of p will
allow us to get one B./84 curve in quadrant IV for the same value of p (see fig. 18). Since

By pA VA vl 1+ ) and b, V=,
£

these B,/3A curves have for their approximate equation

o = Vi(rky? + 1y +0)

or &
H=Tﬁ+pt+dm (90)

With p as parameter, this equation represents a family of hyperbolas whose envelope is given
by the relations

5;1 rgi-{-pt-%-aV’
.a(RggA.) 2;? +t=0

__ Vz( t’) ©1)

In the second place, the curves of B,/54 as a function of V but with %, as parameter. In
order to plot these curves in quadrant ITI, it is sufficient to transfer the k,/k, curve of quadrant I

and has for its equation
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to quadrant ITI, keeping for:each traced curvelk, constant, and makingusé of ‘all the speed
curves of quadrant IV, and transfer lines of qua,drant II for each value of %, Itisinsucha
way that these curves have.been traced on figure 18." These curves have for thelr apprommate
equation

Vbt ‘+:;>' T g
B Y
and represent a fa,mﬂy of pa,rabolas Wlth the honzontal axis ad the axis of symmetry and p as
parameter. The parabola that corresponds to the minimum of (r &,2+1 k,+ o), that'is; to' the
minimum of B, for a given V, which takes place for .

k ~1 .
[R : . LR S VT Qi v B e il ke s s

and is the outelmost of all the other parabolas of the fa.mlly 'This hmltmg parabola is the
envelope of the family of hyperbolas defined by equation (90). (See fig. 18.)

The point in which a @/6A curve cuts a R,(6A curve with p as parameter gives us the hori-
zontal speed for the corresponding value of p, and the B,/5A curve with k, as parameter passing
through that point gives the corresponding value of k

has for its equation

B. CLINIBING

If, starting from a given state of horizontal flying, the pilot by moving his stick varies k,
(see fig. 18) we can immediately see on the chart what value the path inclination v will teke
We shall be able easily t6 follow on the chart how v, 'V, @, Ly, Ly,', and Nwill vary with variable
k, but constant p. A decrease of &, will bring us to negative values of v, the airplane will go
down. An increase of k, will cause the airplane to climb. The path inclination 4 will pass
through a maximum and decrease again until we réach the slow’ speed horizontal flight. Since
for each value of &, we know the correspondmg values of v and V; it is easy to compute the rate
of climb
U=~V

We can trace in quadrant, IV the rate of climb curve as a.funetion of k,, plotting U on the ¥
axis (but on a different scale). Insuch a way the U curves on the cha,rt of figure 18 have been
obtained for different values of p.

The maximum rate of climb decreases with i mcreasmg speclﬁc load untll it becomes equal
to zero at the ceiling.

Let us calculate the value of U using our apprommate equations. We have (with t==0)

=% ks (Qo 91) (ﬂc +k) ©3)

[q"k—-rk”—(a+ql)] .‘ R (;)4)

or

and with &, V?=p the rate of climb is found equa.l to "

-y_—[qk e~ (a+q,):| T

N
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The rate of climb will be a maximum for

- g.g:o 4
g RN ¢4
that is , L
ke Lop, 30t g
vVipr? i &

which gives

or, on account, of (82), I A

k*—ﬁ[ 1+\/1+3 ] (96)

This value of &,, when introduced in (95), will give the maximum value of the rate of climb
U corresponding to each value of the specific load p.

The value of k, at which the “‘best climb”’ takes place in general increases with the
altitude and reaches its largest value at the ceiling. But the ceiling value of k, is generally
not greatly different from all the set of values given by (96); and since, on the other hand, a
function does not change much near its maximum the rate of climb computed will not be
greatly different from its maximum if it is assumed to take place at a constsmt lift equal to the

ceiling value,
_ |7t
(o=

with which the ceiling will always be reached.
The rate of climb, with %, having this value, is equal to

a

U=Z—)l73—bp‘/” L On.
where
Cooggrtt )
T +g)? «/(k o b=2r (a+g,)*"—2r1/'“‘<k,,>o (98)
since; on account of (82) and (85), we have - - - C e
o o=2Palle)er .. (99):
we can put, the expressmn 97) of the rate of chmb m the form S ’ » ' o ‘” ’
U= ’\/27"90(1/170 Ip— 1/p/po) e (100)
. The rate of climb at ground level is equal to L .
\'27'%( VPl Do~ 'Vpolpo) (101)

Let us ca,lculate, under the condition of a climb with Ic,,—— (Ic,,)c the tlme of chmb t ;from
ground level, characterized by the value p, of the specific load, up .to the level of specific load

p<Pc
*According to the relations (45) and (47), we have for an isothermic atmosphere

vne dp=doRT= —odH
where here p is the atmospheric pressure. A Thus

dH= —‘—ZERT
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But, since

a=tE_LLap 4 102
U pU . (102)
Making use of the value (97) for U and integrating, we get

. L4 d:
=R e

Substituting p¥2 =2 we get

t= ZRTf P

(Jab + b2) (//ab — bz,)
4‘ lf’°(r be) (Yab + bay)

On account of (98) and (82) we ha.ve
Vab =bz,— by/p.= +2rg,

or

and thus

T, (4 AR (L~ Vpdp) (103)
V2rgy?° (1 — pIpe) (1 + +pol Do)

Taking account of (102) we finally have:

b=

RT (1+ vp/po) (1 ~ Vpo/po)
t= (Jpc/po Volpo 9o — Volp) (L vpp0) (104)

The last two formulae give us the time of climb in an isothermic atmosphere of temperature T,
from ground level up to the level of speclﬁc load p. For p=p, the time of climb turns out to

be infinite. There is nothing atonishing in this last fact because the reaching of the ceiling
is an asymptotic phenomenon.

Formula (104) a.pphed to the‘ isothermic atmosphere of zero degrees centigrade T= 273°’

and the time ¢ expressed in minutes, gives

Jﬂ"’.’ 5T — 5T 1g.. At VRIPD) (1= VpolDo)
e AL T L e VPP (1 + Vpolpo) (105)

Let us finally find the direct relatlon between the rate of climb U—with k,= (k,).—and
the altitude H in the isothermic atmosphere.
Acc_ordmg to (102) we have

. aH-RTL (106)
Integrating this last relation, from ground level up to the altitude of specific load p, we get .

H=RTlgL (107)
Po
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The ceiling altitude is equal to-

H,=RT lggf (108)
“Subtracting (107) from (108) we find:,
(H.—H)=RTlg pJp==2 (109)
where z is the altitude below the ¢eiling.. From this relation we got
NpTp =T JpTp.= R (110)

Substituting these last values in (100) we find
2 —2 )
U=+2rq, e”R_T—em]=21/2rqoSinh§%—T -1

Developing Sinh in series, and keeping only the first term, which is a sufficient approximation
even for the highest altitude actually reached, we find:

U_%L’%‘:LI?EZ_%JT_% (112)
For the ground level
U,— _H 1/2rqa (113)
We thus also have
U- 0(1——) , (114)

The two formulae (1 14) and (1 12) show us tha.t as a first approxnna,tmn, the rate of climb
is a linear function of the altitude H. S

As a result of long experience in the measurement of rates of climb of airplanes, in free
flight, it has always been observed that the rates of climb appeared to be linear functions of
the latitude. . This fact brings us to the conclusion that all the assumptions we have madein the
foregoing really constitute an approximation practically fully sufficient and that, to the approxi-
mation with .which we actually measure rates of climb, the climbing takes place as if the
atmosphere was isothermic. One can thus see that the isothermic atmosphere appears to be
quite as good as any other standard atmosphere, but in addition the isothermic atmosphere
has all the advantages of being the simplest conventional atmosphere.

It is. easy to. deduce from formula (114) the time of climb as a funcflon of the altitude.
We have,

o d=G=~H H-H v (115)
and integrating we get: . . : :
. : _H, H, .
AL L ey - (116)
The formula: . L
. H, H, . ‘ -
tmm=0, 0384 Flg,oﬁ——_—ﬂ ) (117)

gives the time of climb in minutes, from ground level up to the altitude H< H,. If we take
conventionally H=0, 95 H, we find

s
tmin=0, 057~ a 18)

o~
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We will get the exact expression for the time of climb in an-isbthermic-atmosphers; if weé
use in equatlon (115) the value (111) of the rate of climb. We thus obtain
R Wy
dH "~
9-\/21‘ ,,Slnh——lm NPT B ITERES BN S ERIRTIES N B

) . 2RT’
and integrating we find: ) RUER

d( 2R7H) zRT' oy t’gh(—f’?)f JORTE TS RN & S gty
H—H 1/27‘ H,
 SinhoRT tgh( 4R_'Il‘g)

EEHIRT H%.*« PR ST BT

U,= 21/2rg,, Smh 2RT
we'finally find: ) T ; . S

2RTsmhzlzT tgh(z}RT)
o‘ o t h( 4RT : (NS TN (R

This last formula gives the exact’ valde of the time, of climb in an isothermic atmosphere of
absolute temperature7, from ground level up to the altitude H < H, where U, is the rate of
climb at the ground, and the whole climb is supposed made at a constant.value. of the lift
coefﬁclent, k, equal to its ceiling value (k).

dt=

or, since

|| .

2

)

C. ENGINE THROTTLING AND GLID]NG

Until now we have considered the flight of the airplane at full throttle opening and varlable
altitide. Let us now consider the flight of: thé airplane at constant altitude, for example close
to the ground level, but with variable throttle. Returning to our chart, we see that the k./k,
curve of quadraiit I'is'not affected by’ the thirottle; the speed ‘curves of quadrant IV and trdnsfer
lines of quadrant II are also unaffected by the throttle but the specific thiust curvesof quadrant
II depend directly upon the thtottle opening. Proceedinig as was indicated in' the: chapter
deahng with the engine-propéller system, it will be easy to compute the curves: of speclﬁc thrust
as a function’ of the spedd fordifferent throttle opemngs 3, (Full throttle); &, o4, z, c 22 A
set of such specific thrust Gurves have beeti represented in figure 19. A’ vhriation 6f the throttle
means a variation of the engine powér, which brings withit a shlftmg of the 5peclﬁe‘ thrust curves.
For a giveii speed the speciﬁc thrust’ drops’ wheri the throttle is reddced: ' In thie’extension of
quadrant’ TIT have beén’ plottedz ‘the curves of L84, L,/sA;%, and N, cbrrespendmg to ‘the

different throttle openings ,, &,, %, @5, #,y --.. ... Quadrant TIE and extension'thus-: ‘give us
now s complete represéntation of the ehgine-propeller system characteristics for variable throttle
openings.

. Once the set of specific thrust curves Wlth vdriable throttle is established, it is easy to
plot in quadrant I the corresponding @/P éurves, maklng use of the speed curve and transfer
line of the altitude considered, the throttle opening being now our paramieter! " The' chart
thus .completed, the mﬂuence of the engme throtthng on the flight of the airplane becomes
self-evident.

Let us consider the airplane first flying at full throttle opening z,, at a certait ‘value of
k,, the inclination of the ﬂymg path to. the horigontal having the value v. (See fig. 19.)
The corresponding value of the speed is given by the speed curve of quadrant IV, and the
other flying characteristics. can, be read: from quadrant ITI and extension. If we now, begin
to throttle the engme, the pa,th inclination will successwely ztake ‘t.he values 71),§ oY a,nd for
the throttle opening z,, for example, the, flight will already be horizontal. The speed will
not be affected—provided the action of theishp—stream on the rudders can be neglected, as has
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been already: explained—because for invariable ¥, and the same altitude, characterized by
the value p; of the speécific load, we read the same speed: on the saie speed curve. . But all
the other flying characteristids, vary with the throttle, asican be seen directly from quadrant
IIT and extension.: For the throttle opening z; the path inclination v, will be negative; that is,
we will be descending with fotor on.: For each altitude there is a throttle opening, for which
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the Q/P curve is tangent in quadrant I to the kz/k curve (curve in dashes on ﬁg 19) At
this throttle opening, the altitude considered is the ceiling. For any smaller throttle opening,
the airplane will always be descendmg -

Let us now consider the engine power to be cut off, the airplane can only be descending;
it is said to be gliding. When gliding, the propeller generally works as a windmill and thus



42 . REPORT NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS,

will give us a negative thrust. We can plot for the altitude considered the —@Q/P curve on
the negative extension of the axis of quadrant I (see fig. 19); we shall then be able to read,
for each value of k,, the exact inclination ¥ of the’ airplane gliding trajectory, between the
k;ifk, curve and this ~@/P-curve.! The gliding speed will be read in quadrant IV on - the
same speed curve. Forlarge values of ¢/, corresponding to small values of k,, we shall get a
more accurate value of the speed in gliding by taking for 1ts value V +/Cos 77, as hasbeen already
explained. The rate of descent is- equa.l to .
, , U'=vy !

and can be computed easily for each value of k,, as V and 4* are known. The curve of the

rate of descent has been plotted in dashes in quadrant IV of ﬁgure 19, ‘using for it the same

scale as for the rate of climb. It is easy to see that the minimum of the rate of descent U’

does not coincide with the minimum of v, the last being a minimum for % /lc mlmmum, the

value of &, that ma,kes U’ a minimum being larger than the one that makes v’ minimum. We

Nnow see tha,t if an airplane is gliding at a certain value of k,, and if we slightly open the throttle,

it is not the speed that is changed but only the gliding path; the angle'y is decreased, and the

rate of descent is reduced in proportion.

We can transfer the — @/P curve of Quadrant I as well as the —@Q/34 curve of Quadrant 11T,
by the aid of the speed curve and transfer line, using for that purpose the negative extension
of the specific thrust axis. The —Q/é4 curve thus obtained is represented by a thick line on
figure 19. By the aid of this last curve we can deduce the mechanical losses of the engine when
the law of variation of the engine revolutions with the speed in gliding is known. Such a curve.
of the revolutions in gliding as a function of V is represented by a thick line at the end of the
extended Quadrant III. The fact is, that when gliding, the propeller generally rotates at a much
less number of revolutions than its regular number of revolutions and thus works as a windmill,
with a relatively high value of the advance V/N. But under such conditions, the efficiency
of o’ of the propeller, working as a windmill, will be very closely equal to

-, NH

TV
where H is the qﬁeotwe propeller pitch.?” Thus, if for a given value of the gliding speed V we
know the corresponding —@/64 and N, we have the power absorbed by the propeller working
as a windmill equal to @V, and the power delivered by the propeller to the engine and absorbed
by the last as mechanical losses L equal ‘to

(120)

L=9'QV (121)
or

Leyv2_nal : (122)
The curve of L/64 is represented in the extension of Quadrant HI1 by a thick line. 1f in addition
we assume the meehamca.l losses L to be proportional to the revolutlons, that i 1s, we put L=fN,

we geb :
Q=f/H : (123)

The negative thrust given by the propeller when gliding would then appear to be constant at all
speeds. Practically, the negative thiust in a glide does not appear to vary greatly.

If we wish, when gliding, the propeller thrust to be exactly equal to zero, we must adjust
our throttle in sueh a way that the ratio V/NH is nearly equal to unity, because, as is known,?
for V/NH=21 the propelller thrust is equal to zero. The propeller revolutions will then vary
proportionally w1th the speed accordmg to the relatlon

N=V/H o (124)

11 owe this last remark to my assistant, Mr. W. F. Gerhardt, aeronauticalengineer at McCook Fisld.
3 See “ (eneral Theory-of Blade Serews,” by Dr. G. de Bothezat, Chapier IT.
# For an exact discussion of this question see: ¢ General Theory of B]ade Screws,” above mentjoned, Chapter IT.

i
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where H is the propeller pitch. The curve of I as a function of V will be a straight line—repre-
sented in dashes at the end of Quadrant III extension of figure 19. When gliding under such
conditions, our Q/P curve will be reduced to the k, a.xls, as its ordinates will all be equal to zero,
The inclination of our gliding path will now be measured simply by the ordinates of the curve
(see fig. 19). We thus see thaf when ghdmg the propeller acts as if the airplane drag was
increased, and power has to be applied in order to eliminate this effect. .

One can now see how oomplete a picture of the properties of an airplane in steady m,otlon
is given by the chart developed in this paper, and with what ease this chart allows us to follow
the variations and mutual inter-relations of all the quantities involved in the problem.

The approximate equations we have deduced for all the curves of the chart may be used
in many cases for a first checking; but attention must be paid to all the assumptions made in
deducing these approximations. The approximate equations applied under carefully considered
limitations give very good results for some problems, but for any general and broad discussion
connécted with the study of an au'plane in steady motion the general method of the chart must’
be used. :
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. . PERFORMANGE. PREDIGTION. TN
“Prediction of airplane perfoi'mance idat i)i’esent ‘baséd mote or less on wind tunnel tests.

The purpgse of this cha,ptél“is to ‘show'how stch! ei'formé.ncé prediction can be based ‘chiéfly’
on (fata obtained, from those free flight ﬁésts to ‘Wblch tm'planes are usual’ly submitted. -T shall
tﬁus,‘ “the first place, sﬁov@‘ how to dedudé ?rom regular free flight ‘tests the data heeéssa.ry*for*
performa.nce predlctlon and m the secoﬁd Place, show hbw to use these ds.ta o ordér t?o predlct‘
theperformance L Bl Pt i

‘ RY conmcme THE NECESSAERY DATA. )

i afiegss -
We ha.ve seen, in the foregomg cha,pter that as a ﬁrst. a.ppruxma,tlon, conmdermg tz;()

the whole; airplane; performange .depends .upon. the fg}u; coefficients 7, g, g, and ¢,.: Two, of

these coefficients, » and ¢, characterize the airplane itself; the two other coefficients, ¢, and %

characterize the engme-propeller system. All the free flight characteristics can be expresse({ a,

~ functions of these four coefficients.

Among the relations deduced in the foregoing chapter, we had:

The high horizontal speeds at all altitudes

2

Vi= (125)

P
2(a+q1) 4(«r+q1)’ (e+q,)

-5 +q1)[1+‘/ _4 ("”‘)] : . (126)

where p=P/4A is the specific load which defines the altitude considered.
The ceiling value for the specific load

or

P__ g
Po A2 —\/1'(; ) (127)
The rate of climb
-, LPLP—VpIP. w/p/po _ )1 128)
pn/ Po— Po/ Pe
where U, is the rate of climb at ground level, equal to
Uy=2rgy (DI Po— VP Do) ’ (129)
From relation (127) we get
P _4e+qirp? ‘ 130
Po* g5 (130)
Substituting in (126), and since
2 Qo 21' x4
Vo= T2o+q) (131)
we find: ‘ .
V2=V [1+ V1= (p/po)] (132)

For a given airplane the minimum information that we can have about it is the knowledge
of its horizontal speed V, at ground level, its rate of climb U, at ground level, and its ceiling H,.
4
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Let:us try to find the expressions. for the four: coeflicients 7, 4, .¢,, and. g, as functions of these
last quantities V,, U,, and H,. We shall then be able to compute the four characteristic
coefficients r, o, ¢, and ¢, from the ordinary freaflight, tests.

. When the ceiling H, is known, We can compute tt the cejling §1{Jecgﬁ(}:‘ 19?4)1 .pqqflf?im.s the relaqign

ERERE

Pe driaabioenan L 2T
P ) AR e R T Toaides i;: : Hg; !Iﬁz‘l’)g!po Fyriniovail PR g ” e ;,\ ;(133)
Whl(‘,h gmes B . (AR R B (PRSI IEEE A N3 N zi ‘:;sa‘3¢2i15: soprd o tie ot BERH 43 “ ety
’ ; . : I ' - "'.; : ’ Z‘o—p ?CE@ T o MR T ;i ’L=;‘J *z'*'v Y -'j '?. ,“(13)4)

" Knowing' p,, we find <7 TP SEO T s et A RN

Vz [ERT L]

V==t (135)
Koowing 7. we find ¢ 14 VT (/pe;
owing V., we g

(ey)o= Vza Gey)o=7% T T ase)

[

Knowmg Ppo and U, from (129) a.nd (131), we ﬁxfid o
e ; U . 27. V v, Lot
1/21' e IR
q“ VPo/Pa Vz)o/:eo SR

and solvmg these two equatmns m ke and qo, We find: - - fi

g s
. ; €137)
22’0['\/?0/170 ‘\/Po/Pq] T T
and '
Uepo (138)

2= Vol+/pef Po '\/po/ Dol
and knowing ¢, from (131), we get

Pl o

(e+g)= 2V ? 2Vo"[1/po/po VPo/Pel ' 139)

, It is clear that if only three conditions are given us which we have assumed to be the values

of V,, U, and H, we can find only three relations contémmg r, o, ¢y, and ¢, as functions of
Vo, Uy, and H,, and we have just found the expressions for r, ¢, and (¢+¢,) in terms of V,,
U, and po. A fourth condition has thus to be put forward in order to specify fully the problem.
But it must be remarked that so far ds we intend to predict only the horizontal self-speeds at
all altitudes, the rates of climb at all altitudes, the ceiling and the;time.of climb, we do not
need to know separately the coefficients o and.g, because, as.can be seen from the relations
(125), (128), (133), and (117), the quantities, V, U, H,, and. tmm are functions only of r, g,, and
(o+¢,). . But as soon as the propeller efficiency 7, for horizontal flying at ground level is known,
we shall immediately be able to ﬁnd ql and thus know the sepamte values of ¢ and q1 . In
eﬁect we have ; et

S )aoAV,, S e

where L, is the power delivered by the ‘enginé for hbrizotital flight at grotnd level, which in
a.ny case must be consulered as a knoWn quaﬂtfty‘ From the ‘last relatmn wo get du'ectly

Cod o go Mol il £, "LoLD
£ Vo 5°AV" Vz "o~ VPo

or, since 7oL, =@,V where Q, is the propeller thrust for horizontal:flying at ground level,
and using the notation

L - _—_@QE,Q—”?‘ -
, Y=y, P
/0
we finally get
' q‘._;&:;_'?l’;& o (141)
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TThe value of the coefficient ¢, once found, we can find the value of o by the a.ld of relatmn (139)
Thus, when we know:

Vox Uo; Hy; o, ﬂﬂd 'Ly

‘We can deduoe mmedlately the values of the characteristic coefficients "o g and q, that
correspond to the airplane considered. ‘

Unfortunately the propeller efficiency is the qua.ntlty that most generally is the least known
among the quantities affecting airplane performance. That is why it may be of interest to
attempt to check this efficiency, when unknown, even only to a first approximation.

We have seen in the foregoing that the value of the lift coefficient at which the ceiling

is reached
(y)o= ‘/'”;9'

(ku)m—‘J 2 and (ku)n‘— &

r

is generally included between

that is, included between the lift value at w]:uch ku/ky is minimum and the lift value at which
ky/k,’ is & minimum (“power required minimum”). Itisclear on the other hand that the value
of ¢, depends upon the propeller of the engine-propeller system considered. There is advantage
in selecting such a propeller as would give us g, =27, because we would then. have (ky)o= (k))w,
the power required would be a minimum at the ceiling and the highest ceiling would be reached
with the power available. But it is difficult to expect that each airplane is fitted with the best
climbing propeller and that is why in general ¢,<2s. Let us designate by n the ratio

Gy : (142)
o‘ . .

It is easy to see that for high ceiling airplanes the ratio n will be close to the value 2, and for
average ceiling machines closer to 1. By making in (139) the coefficient ¢, =no we get

Pl .
2Vt Divalzo— VPulpe] (143)
_nple (144)

b= SVt + DiVelpe— Vodpe) _

It is by estimating the value of n that one can decide to a first approximation upon the
relative values of ¢ and ¢,. It must be remarked that it is only the value of the propeller
efficiencies that will be affected by the value adopted for n, because all other performance char-
acteristics, as has already been mentioned, depand only upon (¢r+q,) and thus are independent
of the value of n.

Let us designate by N, 9, and L’y the number of revolutions, the propeller efficiency and
power delivered at ground level for k,= (k,)o—at that moment the alrpla,ne is climbing with the
rate of climb U, and has the self-speed V; let us designate by N”,9,” and L?n the number of
revolutions, the propeller efficiency and power delivered at the cellmg and by N, the number of
revolutlons for horizontal flying at ground level; and let us try to find the expressions for 7,
7', and 7” in terms of the characteristics of the alrplane performance. We ha.v‘e

ol =kz)o 8 AVS= ((7;:;0 (fy)o 8y AV Vo= ((%‘;OPVD

VS

=(kz)o 8 AVE+P y V= (kZ)oPVOP Ve

(ky)o

1 L= (k) 8 AV = ﬁ"%v’ V.

+PU0,



GENERAL THEORY OF THE STEADY: MOTION OF ‘AN ATRPLANE. 47

-On account of * P Ce e b e i e 2t

ﬂzz_)g_.y

t:,; ]IO? s PN

Vgi (k!l)o V 3

-o

(k”)o =P, Do, 11;0» Vz...Vz&’ (k,,) y

and - . - foue 2 ,(g,,% ‘; T SO U PR
NLOpO FOSTNE SO PO TS DU SR BERSLINS I u\v{;_r i

o S : Na‘Pé P LN S A
Qi i v o o T FEE RS T E R o E
we find SRR o * -

FRRERE RS PVoy¢ ’E et Fas b ,»';tv'fy ch Pppio¥olor 4 v;.i*él‘s*
[SPRE T . Sl ;‘.‘p" fL’d SR s e e et ol }(145&)

y ooty PRIEEN Araigact, it CEEL oo TR O P B

Ei ’ PVoyoW/Po/Pc +P Uo
Non o Lﬁ (146a)

L'.,,=-1V Ly Liwss =gl

N, "L'»Z")o' S v . (147a)

On account of , ;

Yo=1(ky)o+ (ka) TPO"‘G-ZO ’ yo——'I‘(ky)o (ko';)' Tpo ,‘a;,V:‘ .

and replacing » and - by thelr‘va.lué_s (137) and (143)&' we ﬁnd:

no¥PiIZ°n; D (145b)

Tr=g D (146b)

N, PUop;
0

W= (147b)

where

Po=

(1+-\/1;v—.zo4)‘1/zr Py : 4;1_,__\/——1__204] ,
22,(1—22) L1+41—z" = l+n
' m
T il
P T
n+2
o 2(1+mn)
2(1—27)
and

o= AP

The curves of p,, p’, and p” as functions of 2, for #=1 and n=2 have been represented on
figure 20. It is easy to see from this figure that in the foregoing formulse the value of n hasa
sensible influence on the value of p,, a somewhat, less influence on p”, but that o’ turns out to
depend only very slightly upon n; especially for small ‘values' of z¢?, that is for airplanes of high
ceilings. Thus by the aid of formula. (145b) it is difficult to check the efficiency #,; by the aid of
formula. (147b) the efficiency 2” can be checked only to a rough approximation; but the eﬁi—
ciency %’ can be fairly well predicted by the aid of the formula (146b).

~
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Thus from the general knowledge of the airplane performance it is onlythe ‘propeHer
efficiency #’ at the best rate of climb that we are able to check.

Some engines show abnormal de\hatlons for "their power: from ?he ‘pioportionality to the
revolutions and density. For stich engines, in the expression of the powers L’y and L'y 88
depending upon L, special correction factors have to be introduced in order to take accéunt
of these abnormal deviations. T

We thus see that in the questlon of airplane perform&nce prediction, it is the quantities
connected with the power unit that will be predicted with less accuracy than all the other
ﬂymg characteristics and this exclusrvely on account of the fact that exact information con-
cerning the engine-propeller system is in general lacking.

‘A last remark has to be made concerning the coefficients 7 and o. 'The drag of the airplane
wings considered alone cah, to a ﬁrst approxmatlon, be ta.ken equal to

b 6AV2(rk 2+s)

where r and s are two characteristic coefficients of the wings that can be deduced by the method
of ‘least squares from the experimental drag-lift curve. The drag of the airplane parasite
X (S

o./,; T " (/}? i
0.3} - _ SEHAE I - L P
{4 2 “ 2 }
22 . N S B 1 EEk] B ¥ SRS : 2"05 et
a5t \ 1 \
07—\ S N \\g—> Loz
) /r___ I\\ -l - B 1 '- ?Q‘Q\\( | )
g NS T - =
09274 = - ; = A9
Lela LA ENGEE
2 4 o0 2 4 6¢ 2 4 6

0
Fig.2o.

resistance considered alone can be taken equal to k8aV? where o is the equivalent area of the
- parasite resistance and k=0,64 the coefficient of air resistance for'the orthogonal motion of &
flat plate. The drag R, of the whole airplane will then appear. to us as equal to

=84V (k2 + 0) =8AV2(rk,2 + 8) + kdaV?
=5AV2(rk,,2+s+?c%)
We thus see that : _
o=8+0,647 (147)
. The coefficient r thus appears to depend chiefly, to a first' approximation, upon the wing shaibe
alone, the coefficient o to depend chiefly upon the ratio

@ _equivalent area of parasite res:sta.nce
wing: area SR

Kl_mwing & we cin dedtice the value of tile ratio a/A, when the viili,ig of s will be vk’how)n\ ‘( '

{ I '%= 56(c—8) S e

[ - v mt oy N
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Summing up the foregoing, we can say: The data obtained from average airplane tests,
which usually are

The horizontal speed at ground level V,,’

The rate of climb at ground level T,

The ceiling H,,
allow us to deduce the values of the four characteristic coefficients of the airplane in steady
motion, when the efficiency 5, of its propeller is known. Otherwise, only by estimation can
we evaluate the separate values of ¢ and g,. These characteristic coefficients are equal to

e . U,V § go= : Uopo NN
22’0[’\/?0/ Po— ’\/Po/ Pa] Ve[ ’W/Po/ Do~ VPo! Do)
R — L

2V PpelPo— VPolpel

1
9= W (QO - 'yopo) .

with
S PR ) S ¥ 7 I I / S
Po=5A" Vo y)e PV Po P Vo= i orpon
and
% 1,56(c —s)
Making use of the notations:
o= ‘\/Po/pc?= V8o/do i (149)
2’ 150
-2+ Yl—z (150)
A+ +1-2"" .
Qo 2e(1—25) (151)
_Q+4T=25"
"1+Qx— 22 (1 — 2 ) (152)
We can write
OUO
1= Vp 5 o™= U{] G103 (‘-"""‘Qn)'— (‘Tx‘f‘%) (153)

In order to simplify the computation of the coefficients r, g, and (o4 ¢,) we have drawn on
figure 21 the curves of r,, ¢o, and (o, +¢,) as functions of 2?=po/po=380/8,, which allow us to
read directly the values of these coefficients once the ceiling to which the airplane considered
can climb is known.

Proceeding as above described, we can compute from observed performa.nces the charac-
teristic coefficients of the airplane’s steady motions and thus collect values of these coefficients
deduced from actual free flight tests.

Having deduced from tested airplanes the values that the characteristic coefficients can
actually take, the prediction of performances is made as follows.

2. PREDICTING THE PERFORMANCE.

Two cases have to be distinguished:
In the first case, the airplane is considered as already built and tested, and .the values of
Vs, Us and H, experimentally found. The prediction of the complete performance is requested ¥
Knowing H, we compute
~H, —H,
=Po/po=€FT =50

10355°—21——4
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Having found the value of 22 we compute the ceiling flying speed ~ ' "

V2=__IPL' A R R I o ‘
T T e e )
The horizontal speeds ab all altitudes are then found to be equa.l o s;’ |

21_|_ﬂ‘/1 = st . g

1+_‘/1 2t N —
with 22=p/p, each altitude consider:d bemg defined by the value of the corresponding speclﬁc
load

Vi V’(l+1/1 &)=V,

k gig¥s) |
o/ < .

AN (k

N 77N\

0'77 - }/c%c \w\\~

[~ - r!
\,\\\\\ g
0.9 @rg ==
) L’ ‘ re
o/ 03 05 o7 09 I 1.3 1.5

Fig. 2/,

The rates of climb at all altitudes are equal to

(1—2%)z, ;
=0, 0=y, (1-4).

The time of climb up to any altitude is equal to
‘ . H, H
Afterwards, by the aid of the formuls (141) and (153) the four coefficients o, 7, q, a.nd q,

will be computed.
The propeller efficiencies 5" and »'* are computed by the aid of the formule (146a)

and (147a).
The propeller’s efficiency for the best climb at ground level is equal to

N PV,;(yczo_l_ U\

N, L vty
-The propeller efficiency at the ceiling is equal to
\ ‘ » - pIIP Vc

1 = L,
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Finally, the whole performance chart can be traced to a first approximation. The speed
curves of -quadrant IV and transfer lines of quadrant II are only: geometrical intermediaries
and can be traced at once. The coefficients r and ¢ being known, the %./k, curve of quadrant
I can be plotted. The coefficients q, and g, being known, the specific thrust curves of quadrant
IIT can be plotted, the whole strip of curves being replaced to a first approximation by a single
curve. Further, by the aid of the transfer lines and speed: curves, the Q/P curves of qubdrant
I can be traced. Afterwards, in extension of quadrant I11; the Li/sA curve cari'be pldtted.
Finally, by three points (3, V,), @', V), (0"’, V,) the eﬂiclency curve can be traced and thus the
L,/5A curve deduced. In such away, from the kriowledge of V,, U,, H,, L,; and n, all the possible
conclusions concerning the steady motion of the airplane considered will have been drawn.

In the second case, only drawings of the airplane considered are supposed to be available.
It can be either an airplane in the process of design, or an airplane about which flying data are
not available. The prediction of the complete performance is requested.

The values of the coefficients » and o are first estimated by comparison with other similar
airplanes. Two airplanes having the same wing-profile will have very closely the same values
of r. The value of ¢ will be taken equal to

o=840, 64;;Z
where the equivalent area @ of the parasite resistance has to be estimated and s taken from
data concerning the wings used on the airplane considered.

Further, the power L, and the airplane weight P must be known and one must decide
upon the value of the efficiency 4,. As we have

ﬁoLo = (kr)y 3,AV,? and p, =5§“‘1 =)o Vo
we find:

—1y2 .
s (N PY SRR (15d)

This last relation will give us the value of (k,), and thus the value of the self-speed V,
that is compatible with the power available and drag offered by the airplane considered.

The eagiest way to get a solution of equation (154) is to plotfirst the k,/k, curve as function
of k,—as we can do from the knowledge of the coefficients r and c—and to plot afterwards
the curve of k,/k,%? as function of k,, by dividing the ordinates of the k,/k, curve by the
corresponding values of /=

The smallest abscisse of the k,/k,2 curve corresponding to the ordinate equal to

Mo L
Ppo"z

will give us the value of (k,), to which corresponds the high honzontal speed V,, which we will
be able to read directly if only previously in our so-called quadrant IV, the speed curve p,=k, V2
has been traced (see fig. 22).

Having found V, by the aid of the k,/k,** curve, let us consider the relation

WL et /L,=P Vy+ PU,
from which we find '
% WL,—PVy

(155)
P

Uo=
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As has been explained, there is. advantage in taking (k,).22(ky)x, that is (k,). equal: to the
%, that corresponds to the minimum of the k,/k P2 curve: Makmg this last selectmn, we ha.ve

) (lep)u
z -
V=T VT O %
and a.doptlng Y certa,m va.lue for »’.we can calculate U, by the a.ld of (155). ' P

When flying at the ceiling, we have . .

7’ L "~1]\$, v’ L, 2— (kz)cﬁ AV’a.nd pc‘_(kﬂ)c ch

and we find -
CL N_ oy 4 \
Nn L] Lo n_; (km)c . .-{156)
PpiE (k)P
PREDICTION OF THE FLYING SPEED
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Assuming (k)= (k,)x and deciding upon the value the efficiency 7'’ may reach, we get
Po____ PPp, [ (k)u TR
(% )ﬂrs T as7)

which relation gives us the value of the celhng Knowing p, we find the ceiling self-speed,
V., since

2 Pe
V= &) - (158)
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It is in such a way that an estimation of the values of V,, U, and p, can be reached. The
characteristic coefficient q, can now be easily found by the aid of formula (153), and the value of
g, by the aid of the formula (141). Finally, we have to verify, by the aid of the formula

oy 2% o

how far the assumption (k,)e= (k,)u holds.

The checking of the rate of climb U, and ceiling p, by the aid of the last method gives good
results because we have to deal with v_alues of funétions close to their minimum, where they do
nof vary much, the differences between yu and v,, and between (&, )u/(k,)u®? and (ky)of (ky)o®?
being in fact only very slight.

In all the preceding discussion, I had chiefly in view to point out the real nature of the prob-
lem of the performance prediction and to show by what concatenation of ideas we can be brought
to its solution. Special attention must be paid to the role the k,/k,** curve plays in the finding
of the self-speed V, from the knowledge of the power available 7, L,, and the meaning of the
minimum (k,)M/(k,)u% of the k,/k,*’? curve for the ceiling of the airplane considered.

The standpoint adopted in all this chapter was the prediction of the performance, starting
with the knowledge of the smallest amount of data available concerning the airplane considered.
But when for a given airplane, we know its k,/k, curve and possess all the data necessary in
order to plot the specific thrust curve of the airplane’s engine-propeller system; then the simplest
way to predict the performance is just to draw, for the case considered, our performance chart,
which will give the most complete performance prediction of the airplane considered. It is this
question of finding from free flight tests these two fundamental curves—the k,/k, curve and the
specific thrust curve—that we will consider in the next chapter.
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PART VL

FREE FLIGHT TESTING.

The performance chart we have developed in the foregoing gives a complete representation
of the performance of an airplane in steady motion. A complete free flight test of an airplane
must thus consist in getting all the data necessary in order to establish such a chart. The speed
curves of quadrant IV and transfer lines of quadrant II being only geometrical intermediaries,
it is oply the curves of one of the quadrants I or III that we have to establish, because the
curves of these quadmnts mutually correspond to one another by the aid of quadrants IT and IV.
We shall show how to obtain from actual free flight tests the %,/k, curve and the @/P curves of
quadrant I.

Let us consider an airplane equipped with the following mstruments An air speed meter,
a barograph, a strut thermometer. The barograph will be consisdered to be calibrated in pres-
sure units, which is the only reasonable calibration of these instruments when used for free
flight testing. In order to control, to a certain measure, the power of the engine, a tachometer
must also be available. The test can be made either at full throttle or at any reduced throttle.

The airplane so equipped must make two or three climbs, at different indicated air speeds,
but the last must be kept constant in each case all through the climb; also, on the way down,
after each climb, it must make two or three glides. Each glide must also be made at different
indicated air speeds, but constant for each glide. The glides will be done partly with the throttle
completely closed and partly with the throttle so adjusted that

14
VE=!

In thede last glides the propeller thrust will be practically equal to zero.
The indicated air speed is proportional to the quantity

e
2
But since P=2£k,8AV?, we have
2P
LAY V3
-~ A._2""

So that, if we keep 6V%/2 constant, that means that our glides or climbs take place at a constant
value of the lift coefficient, and this is independent of our altitude.

Let us first consider the data furnished by the glides, made under the condition V/NH=1.
The barograms obtained from those glides will give us the value of the pressure at each moment,
and taking account of the corresponding temperatures, we can find the values of the densities
o for each moment of the glide and thus can deduce the actual self speeds V from the knowledge
of the indicated air speeds and the calibration curve of the speed meter used. Further, the rates
of descent can be deduced from the glide-barograms, which, as has been shown in Chapter 111,
are equal to

dp . :
U= —o-£ & (51)

b4
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where o =g is the corresponding specific weight of the air and dp/dt is the angular coefficient of
the tangent to the glide barogram curve at the point considered. Knowing V and §, or the
specific load p=P/[s4, we find from the relation k,=P Cos v/V?, the corresponding value of
k,. Since,for the glides under .the condition V/NH 1, we have Q=0 and thus —vy= kzﬂc,,
— UJV, the point in quadrant 1 with the coordinates k, a.nd U}V will be & point of the k,/k,
curve (see figs. 18 and 19).. Proceeding in the same way for glides made, at different indi-
catoed air speeds, we find a set of points of the k,/k, curve. The author has convmced himself
by the actual use of the above deseribed method that it is easy to get pomts of the k,/k, curve
for values of k,> (k,)m by making glides at sufficiently low self-speeds. These glides have
only to be made at heights sufficient for the safety of the pilot. -

. When proceeding, as above described, with the glides made with the tbrottle completely
closed, we get a certain k,’/k’, curve. The difference of the ordinates ¢f this lést curve and
the %k, curve will give us the —@/P curve, which transferred in quadrant III by the aid of
the speed curves and transfer line will give us the —@Q/sA4 curves, by the aid of which we can
estimate the mechanical losses of the motor, as has been already shown in the foregoing. (See
fig. 19.)

If now we proceed in a similar manner with the climb barogram, and recorded indicated
air-speeds; that is, deducing from them the corresponding 3, V and v we obfain from each
barogram a set of values of 4 corresponding to a constant- value of k,, for different values of
the specific load p=P/6A4 for which we can adopt a set of standard values. If now we plot
these values of v in quadrant I, starting from the k,/k, curve and join all the points that
correspond to equal values of the specific load, we get the family of the Q/P curves, with v as
parameter, since @Q/P =k,/k,+~ in each climb. These @/P curves, transferred in quadrant
111 by the aid of the speed curves and transfer lines will give us the set of specific thrust curves.

By tracing the rate of climb curves in quadrant IV the ceiling will be checked, and, as
described in the foregoing, the whole airplané performance can be deduced with ease from the
Imowledge of the k,/k, curve and the specific thrust curves.

If when making the last tests the airplane were equipped with a torque meter, then by
recording the torque and the revolutions we would know the power delivered at each moment
by the engine and we then could trace in extension of the quadrant I11, of our chart, the L,/s4
curve. As the L,/sA=QV/sA curve can be directly deduced from the Q/&A curve of quadrant
IT1, the knowledge of the L,/sA curves will allow us to immediately deduce the efficiency
curves. It isin such a way that from free flight tests the propulsive efficiencies can be deduced.
It is easy to deduce from the efliciency curves and the Ln/64 curves, by the aid of the revo-
lution curves as function of the self-speed V, the efficiency curve as well as the L,/ N° curve
as function of V/N, and thus to get from the free flight test the complete characteristics of the
propeller. It is also from the Ly/64 curve that the engine power characteristics as function
of N for different values of the density & and throttle z can be deduced.

One can now realize how important it is to use a torque meter in free flight tests. A
torque meter, giving us a continuous control of the power, will make the test perfectly reli-
able in the sense of knowledge of the power really developed by the engine; and besides,
the torque meter will allow us to obtain, in addition to the complete characteristics of the
airplane, the complete and separate characteristics of the propeller and of the engine.

The chart (fig. 26) annexed at the end of this paper gives the characteristics of a Vought
airplane as actually obtained from free flight tests by the above described method. For all
the details concerning such test the reader is referred to the McCook Field (Dayton, Ohio)
Report No. 1242, “ A report showing the use of the de Bothezat performance chart for expressing
-the performance of the VE-7 airplane P-113, from data oblained in actual flights,’ by Mr. C. V.
Johnson and W. F. Gerhardt.

I wish finally to call atiention to one more important question connected with free-flight
testing. The power of the engine is affected by the air temperature, and it is thus necessary
to reduce the power of the engine, and thus the whole performance, to some standard tempera-
ture, if we wish to get results that can be compared with other tests. For reasons that have
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been discussed in Chapter IV, it is the isothermic atmosphere of zero degrees centigrade thdt
we adopt as standard, and thus the whole performance has to be reduced to zero degrees
centigrade. Itis ewdent that one has to take account of the temperature to find the valie of
the densities from the pressures given by the barograph, but how must we take into a,ccount
the influence on the performance of the power variation due to the temperature '

‘At a constant density, the engine power depends upon tempera.ture That is; at’ the
same density but at the temperature of zero degrees centigrade the engine wotild give a slightly’
different power from that in the actual flight. Let AL, be this positive or negative increment
of the power due to temperature difference at constant density. On account of the fact that’
the drag and lift of the airplane depend only upon densu;y, neither %, nor %, nor V—because’
P=kSAV:—will be affected by the temperature; that is, neither the %,/%, curve, nor the
speed curves. The increment of power ALy, will act on the performance as a slight change of
throttle and it is only the values of /P or @/3A that will have to be corrected. As é and V
remain the same, the efficiency 5 will remain the same, and the variation AL, of the power
available will be proportional to the variation of the power delivered, but as L,= V@ and
V remain the same, we have

ALy=9ALy = VAQ

Tnoe correction to be applied to the thrust thus simply turns out to be equal to
nAL
AQ= =

and the correction to be applied to the @/P values turns out to be equal to

AQ ﬂALm
PV

The power correction ALy, due to temperature at constani density has to be determined
by special tests of the engine.

Those who have followed carefully the methods and questions of principles discussed in
this paper will not meet the slightest, trouble in making the most complete and rigorous airplane
free—ﬂlght tests.
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PART VI

SHORT DISCUSSION OF THE FROBLEM OF SOARING.
'We have until now, peid exclusive atteition to the airplene self-speed V. This means
that we have considered the a.lrpla,ne flight from a system of coordinates that had, relauvely

to the ground, a speed constant in ma.gmtude and direction—and equal to the wind speed v.
Let us now follow the airplane flight from a system of coordinates invariably connected to the
ground. As we have already mentioned, at the beginning of Chapter I, the ground or absolute

speed VT’ of the airplane is at each moment equal to
W=V+v (159)

-

-
™ e P

-
S

£ig.23. TSl -

INFLUENCE OF WiIND
0” THE AIRPLANE GLIDING TRAJECTORIES

Let us consider a gliding alrpla,ne and for the sake of simplicity neglect the negative pro-
peller thrust. Let us draw from the center of miss & of the sirplane a vector V equal to its
gliding self-speed at the moment considered and making the angle v (the actual airplane path

inclination) with the horizontal. (See fig. 23.) If the wind speed » at the moment considered
and the point of the atmosphere where the airplane is actually gliding is equal to zero, then

W=V (160)

But, since for gliding the angle ¢ turns out to be always negative (see equation (61), Chap. IV),
the absolute speed W can under those conditions only be a descending speed. We are thus
brought to the general conclusion:

In those parts of the atmosphere where there is no wind g glider can only be descending.

Let us now consider the airplane gliding in a wind having a magnitude equal to v. Let
us draw from the end of the vector V (see fig. 23) a circumference having a radius equal to ».
Three cases can be encountered. ;

87
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In the first case the described circumference cuts the horizontal in two points A and B.
Pt

In this case when the wind of magnitude v has a direction included in the angle AVBE, the

absolute speed W of the airplane w1ll be e1t§hez: hom;ontal or ascending. For any other wind

direction the absolute speed W will be descendlpg
In the second case the described circumference is tangent to the horizontal. In this case

‘only for the wind blowing directly upwards can the absolute speed W be horizontal.
In the third case’the described 'citvuihfererice’is disposed entirely 'below the horizontal.

In this case the absolute speed W will always be descending independent of the du'ectlon of
the wind. : L
We are thus brought to the followmg fundamental conclusmn

%

The absolute speed. W of any ghde'r in o state. o_f steady motion, be 'c,t an worplane or a bwd
‘can be ascendmg or horizontal only in ascending wind, and provided the vertical component vy
of the last is larger than the rate of descent U.

The so-called phenomenon of soaring is thus only poss1ble in an ascending wind, for which

v, > U (161)

The smaller the rate of descent U the sma,ller may be the vertical wind component v,
necessary for soaring.

Let us discuss briefly those conditions that make the rate of descent & minimum.

One can see from equation (95) of Chapter IV that for @ =0 the rate of descent is equal to

U — pl/z(,.kyllz + ok, ~32) = — p2=Z kk?' o ' (162)

and has a minimum gi'ven by the condition

o=~ ()= — 112k, 8ol =0
4 i/

which gives

2

r

Tain=— 112[ (3" " (3,)3,4] (164)

The rate of descent U is thus a minimum for the _same value (ky)u of the lift coefficient
for which the k,/k,* curve has a minimum.
‘We shall mtroduce the notation

- l:(&T)”‘1 (3 6)3/4] 4:/5‘31(30')11'4 | ’ o (1'65)

and call it the soaring constant of a ghder, because it depends only upon t.he aerodynamical
properties of the glider consider. We can thus write

ky=)u= (163)

and

&

" Ua=84/5 f—‘ > ’ (166)
where Uy represents the magnitude of the rate of descent at its minimum.

The rate of descent Uy will be the smaller, the smaller P/A is, that is, the wind loading of the
considered glider, and the smaller the soaring constant is.
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As has already been remarked, the coefficient r depends chiefly upon the wing profile and
its value is included in narrow limits. But the ratio ofr depends upon the value of the ratio a/A
and can be greatly reduced by reducing the drag of the parasite resistance and i mcreasmg the
wing area. In figure 24 has been represented the curve of

—~=4/3(3” B ‘ (1767)

as function of the ratio o/r, which allows a quick checking of the value that the soaring constant

S=r S' . (168)
can have.
Taking for average values o/r=0, 2 and r=~0, 1 from figure 24, we find §'=1, 2 and S=0, 12
and if we take P/A=8 Elg/m#* this would make, with §=1/8, the rate of descent equal to

Unm =0, 12+/6 4220, 96 mi/sec

It is thus quite possible to realize gliders with a rate of descent less than 1 meter per second,
especially on account of the fact that the ratio ofr can be made still less than the average value
we have adopted. A rising wind with a vertical component equal to 1 meter per second would
thus be sufficient to secure the soaring of such glider.

20

E—
.8 ,’/

A1
1.6 )

S’

14
1.2

ol
sl

0.6

s £L
s=$-2(5)*

o4

a.2

hlo.

Q az 04 0.6 08 (0 12 14 /6
Fig. 24

The gliding of such glider would take place at a va,lue of

(ky)m ~0 77.

and its self-speed would be equal to

V= \/lc A 1/077—9 2 mifseg

This would be the low speed of the glider; its high speed could be made around 20 mi/sec which
was thespeed of the early airplanes. High cambered aerofoils can give lift values up to (k,)=20,8.
We are thus brought to the conclusion that it is quite possible to build gliders having a very
low rate of descent. Such gliders must have a high cambered aerofoil, a low self-speed, a small
drag, and a smallloading per unit of area. Special attention must only be paid o secure the com-
pletestability and maneuverability of the glider at its lowestspeed, by the aid of sufficient stabiliz-
ing surfaces and rudders. Such a glider, having a low rate of descent, will soar in any ascending
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wind whose vertical’ component is equal to or grea,(;er than the minimum rate of descent of the
o'hder : E i 55

"'The fact that the soaring oﬁ bn‘dsgls very often obﬁerved in some regions shows tha.t in thdse
regions ascending winds, whose vertical component has a sufficient value to secure soaring, must
be a common phenomenon

.1t is the opinion of the author that th? mam reason for the frequent occurrence of ascending
winds is the following:

As is known, winds are generally variable with altitude, that means the dlﬂ’erenb layers of
the atmosphere have different velocities. Tt even sometimes happens that two air layers have
opposite speeds; as a result of this speed dlﬁ'erence, a vortex sheet must be formed between them.?
But such vortex sheets being unstable, as is kmown, they must break into a system of vortex rows.

v. Karman ? has shown that among all 'possible vortex rows, it is the system of quincunx
vortex rows that constituté a stable ‘configuration and the unstable vortex sheets seem most
generally to break into such quincunx vortex rows. In figure 25 a system of such quincunx
vortex rows is diagrammatically represented.

Fi'g 25. Y THE STRUCTURE OF THE WiND
BUILOING OF QUINCUNX. VORTEX ROWS
BETWELN AIR LAYERS OF DIFFERENT VELOCITY

We are thus naturally brought to the conclusion that as'a consequence of the speed differ-
ence between air-layers, a formation of vortex rows in quincunx must take place between such
layers. The ordinary atmospheric wind thus appears to us in its structure to be made up of
wind layers separated by quincunx vortex rows traveling between the air layers.

It seems also that the unequal heating of the ground by the sun rays acts greatly in favor
of the formation of such traveling qiuncunx vortex rows. :

Once the formation of such atmospheric-quincunx vortex rows is a,dm.ltted it is easy to
conceive that we must meet in the atmosphere in some places ascending currents, in cther
places descending currents. It'is the ascending waves of, the atmospheric quincunx vortex
rows that makes soa.ring possible, and it is in these waves that birds soar when they meet them.
It is by remaining in the boundaries of such ascendmg wave, or by gliding from one ascending
column into another, that birds'éan maintain soaring.

It is of interest to 'check the mean vilue thit 'the vertical wind component in the ascending
column produced by a system of qmncumc vm*tex rows can have. Let us consuier such a

1 See the authot"s Inttoductmn to the Study oﬂ:he Laws ofAu- Resistanee of Aerofoils,” Chapter 11T, Report No. 28 of the National Advisory
G ttee for Aer ‘Washi ,D.C. H
2 geo fhe above-mentioned Report No 428, Py 46, note IV,, = -
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quincunx vortex row and adopt.as.mean value, of :the verfical wind compcnent the. vertical wind
value at the middle of the linejoining two:consecutive voxtacgs ta.ken one in eachrow, (Fee fig, 25).

+ If worefer one of therows to a system of X,0 ¥ axes, the origin. being in the,middle between two
of the vortices, the X axis directed along the vortex row and,the. Y axis perpendicular to.theilast,
if 21 is the distance between two consecutive vortices in one row and d the distance between the
two rows, then the point adopted as the onehaving the mean vertical wind component will have
the coordma.tes @2, d/2), and the vertmal wmd component produced §by one row yvﬂl be found
equal to:* :

£33 %%

) .
gvlfl-/ltg” L

‘Where I is the intensity of oach of tha vortices of the row. " The’ vertma.l Wmd component
produced by both rows and which we Wﬂl dcmgnate by v,, W111 have 2 doublc va;lue and this
will be equal to ;

o PR ' - [ PO

V=g~ 1I"d 2 i ;.:; crtes ‘_ A (170)

But accordmg to Karman for the stable qummmx vortex row system the ratxo dlzl has the value

a . . | :
2l=0283 o | A | (171)

.

Substltutmg this last value in (170) we get Ny !

_I_ S : 172)

-

Such would be the mean value of the vertical Wmd component produced by asystem of atmos-
pheric quincunx vortex rows. By the aid of this last relation, when two of the three quantltles
¥, 21 or I are known, the third one can "be estlmated I; fc, exa.mple we know the values ol
v, and 27, we can find the value of

21

1 =m‘vn

of the intensity of the vortices of the rows; in other words, the value of the circulation arcund
each vortex.

‘When a vortex sheet breaks into vortices, the intensity of each vortex is very closely equal
to the speed differences in the two layers between which the vortex sheet was formed, multiplied
by the distance between the vortices. 'When the vortex sheet between two atmospheric layers
breaks into a quincunx vortex row, we evidently first have the formation of one row, with
vortices at a distance /, but this soon goes over info the stable quincunx vortex system by the
upward or downward displacement of one-half of the vortices of the row, with a distance between
vortices in each row equal to 2. If we thus call w the original speed difference in the two
vortex layers which have given rise to a system of quincunx vortex rows, the intensity I of
each of such vortices will thus be equal to

1=l

and substituting in (172) we find

Tw
2452 =0 12w

33ea the author’s “ Introduction to the Study of Laws of Air Resistance of Aerofoils,” p. 51,
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Another casé can also happen. We can imagine the quineunx vortex rows formed by»an air
current appearing in an air mass, having theé same velocity in the whole current. - The quincunx
vortex rows will then be formed from two vortex sheets. The vortices formed from ea.ch sheet
will remain in the same level and we will ha.ve R

IZhlJ

where w is the speed difference between the air current and the Test of the surrounding’ atmos—
phere. In such a case, we have

p o oo

vy =0.24w

We are thus brought to the remarkable conclusion that the mean vertical wind component
produced by a system of quincunz vortes rows, resulting from the breaking of the vortex sheets between
atmospheric layers, can have values from ono-e'z,ghth to one-quarter of the speed difference between the
atmospheric layers that have originated these quincuns vortex rows.

As speed differences of a few meters per second are easy to conceive between a,tmosphenc
layers, 8scendmg wind currents of somewhat smaller values must be a frequent phenomenon,
as the soaring of birds undoubtedly prove.

As a general conclusion of this discussion, one can see that the realization of gliders able fo
soar in average atmospheric conditions must be considered as perfectly possv,ble and as presenting
the greatest interest..

Such a glider must be conceived, as has already been explained, as an airplane well stream-
lined, with high cambered wings, small wing loading and small speed and thus small power.
By the aid of its engine the airplane will reach that altitude where the formation of the system
of quincunx vortex rows has taken place, and once in the ascending current will soar in it and
by continuously turning around will remain in it. In an airplane specially built for soaring,
the pilot will very easily feel the ascending current by the upward acceleration that it will com-
municate to the airplane. Even in actual high-speed airplanes, pilots have a very clear feeling
of the upward and downward currents. When strong enough, the pilots describe them as the
so-called ““ bumps,” and ““air holes.”” The bumps are, exactly speaking, strong ascending currents
and the holes strong descending ones; But I mention once more that the building of such soaring
_airplanes will be met by complets fa,{lure, if the conditions of their maneuverability and stability
are not considered with sufficient, attention.
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THE APPROXIMATE EQUATIONS OF THE CHARACTERISTICS OF THE ENGINE-PROPEILER SYSTEM.

In the foregoing has been given the method of deducmg the chgmctemstms of the engme-
propeller system from the empirical curves of the engine and propener charactenstlcs It is
desirable in several instances to possess also approximate equations of the characteristics of the
engine-propeller system because they allow a better survey, even if only to a first approxima-
tion, of the relations that held between the quantities involved in the question. The approxi-
mate equations of the different characteristics of the engine-propeller system can be easily
deduced when approxiraste equations for the charactéristics of the propeiler and engine have
been properly selected.

For the propeller, as a very good apprommatmn of the characteristics, for the range of the
flying interval, the following equations can be adopted:

For the thrust

"‘* Q=hSN2D? (1—12) (173)
For the power
Ly=h WONH'D? (1 h’x’) s ‘ (174)

where Ty, et and B? are three constants that cha.ractemze the propeller consniered N the number
of revolutions per second; H the zero thrust p1tch D the propeller, diameter; = V/NH the
relative pitcht).

We will call h, the thrust coefficient, het the power coeﬁiczent and hz the pztch coefficient, the
last named being selected for reasons that will appear later.

The zero thrust pitch H considered above is defined. by the condition tha.t, V/INH=1 for
Q=0, that is H is taken equal to the advance V/N, for which the thrust @ disappears, The
value of H has to be deduced from the Q/5 N? curve plotted against V/N, which curve inter-
sects the V/N axis at the point V/N=H.

The coefficients hq, k!, and #* must be deduced from the empirical curves of

6—1\7[%71—)5;‘7}0 (1—:6) (175)
and I :
SBT=ht (1—We?) (176)

plotted against z=V/NH by the method of least squares.

B

1 Yny my general theory of blade screws I have established the following formulss (see relation (114)'p. 48):

Q=000 M rte o 48)
where AQ is the partial thrust. & the air density. AS the tus to which cor ds the thrust AQ. © the angular velocity of the propeller
rotation=2xN. pi/az a di ionless quantity function of 2= V/NH only. rig? (¢-+8) a quantity nearly equal to the pitch of the blade section
considered.
. Integrating the above relation it will be easy to see that the: result must be of the form

Q=M8N’H’D'I(x)
On the other band the function f (z) turns out to be, in general, véry closely & linear function of-z; with f (£)=0 for z=1; - 'We thuscan wﬂte'
i Qodus N3ED? (1~2). ‘

The formula (173) is thus justified. It is from sindilar considerations that the formula (174) also rollows

EHEN
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It will be éasy to convince oneself that the equations (175) and (176) will generally be
able to represent the experimental curves with good accuracy.
Makmg use of the equations (173) and (174) we find for the eﬂicmncy n of the propeller the

expressmn 70
_._:— ..m am
The efficiency 7 is equal to zero for

2=0, and z=1 : B

ar.d reaches its maximum y, for

on _hy (1—22) A —k%*) +2hP2* (1~ :c) =0

b:c ho (1 —h?e? )
that is
Rzt —2z4+1=0"
which relation gives
;,a=2m;-n;1 | , 178)
5 ,
LJ_/E%__T‘_ (179)

where %, is the value of x that corresponds to 7 =nm.

Tt is the last relation (179) that has to be used for finding the value of 2, the coeflicient
h? being found by the method of least squares from the empirical curves (175) and (176) of the
thrust and power. One must avoid checking the value of z,, from the curve of the efficiency 7,
because it is always difficult to find accurately from an empirical curve the value of the abscissa
that corresponds to the maximum of the relation (178) which shows that h’ is a function of z;
alone. That is why I have called %? the pitch coefficient. '

The maximum, of y=1y, is thus equal to

| = | (180)
and we also have : '
o 29y
0 .2 lm 181
| — (81
and finally
__2 Nm & (1—2)
T A=) (182)

Let us find the expressions of the thrust and power coefficients %, and k', as function of
the power absorbed by the propelier. Wehave
Lo=NW SNSHED? (1 hPa?)
For the propeller working a% its maximum efficiency we will have
L) =W SNLHD? (1—hPan) (183)

where (L), and Ny, are the power absorbed by the propeller and its number of revolutions
for y=19y. It must be remembered that in general, (L,)n as well as Ny, are functions of the
translational speed of the propeller because, when 9=79, wehavez=ay,; thatis, V) Npy= Hzp
which relation fixes only the ratio of the translational speed Vy, to the number of revolutions Ny,
corresponding to the condition of the maximum efficiency 5,. But when the propeller con-



GENERAL THEORY OF THE: STEADY MOTION OF AN ATRPLANE. 65

sidered is connected to a gwen engine, then the characteristies.of the-engine:prapeller system
as it has been already shown in this report, are functions—for each value of the densﬂ;y aﬁg
throttle opening—of the translational speed V of the engme-prope]ler system alone. "Th
case there will be only a smgle value N= N, of the'revolutions and L, = (Ly)m of the power
absorbed at which—for a given densﬂ‘.y and throttle opening—we will have n=n, if only th8
maximum efficiency can be reached in the given: ‘working conditions of the engine-propeller
system.

From (183) we find

i

(L T LA & BT sy hasd '{z“iz;p;,gf
’a/m
. o ,hlo 2 (1—2w) BN“’,,.H”D“ o , (184
and on account of (181) oy S
) Py f ﬂm(La)m
‘ ho= Tl —15) 6N HEDP (185;?;

'We also have 7

P ety N (1'—37#&0’

ng(La)m ’Nng—‘——'——z O=20) (186)

For the engine power we will adopt as a first approximation, ’ . . .
Lustm N5 o ‘ S asy)

considering that the engme is used in the mterva,l at whlch 1ts power is stﬂl proportlons.l to
the revolutions and giving one the hberty of making when necessary a correction for the devia~
tion of the power from its propormonahty to the densmy
, When a given propeller is connected to a given engine for each state of stea,dy condltlons
the power absorbed by the propeller must be equal to the power delivered by the engme,
that is, we must have
_ L.,-—Lm
or . . T

L,
A=W D* (1 - "”X”)‘azvs -1

From the last relations we find the law of variation of the revolutions N as function of the
speed V for the engine-propeller system under consideration. We thus find—

i

N’-’(l g H”)-h' o (188)
o BV Ve
m
4 : N”—z?‘ys—w"—"““(l mxﬂozvz)
or finally putting . . et
o~ PRI (189)
we get h’l}‘*‘ :
c
and , A . , N
RV . ,
N=— 1+—V~, 191)
we also have , ( _:
e - Vv _ . 1 . 5 . , v,
NI e\ 5 [T e T (192)
#(1+:) "\/ 1+7

The expression (191) is the equation of the strip of ‘the révolution curves of figure 12. When
no allowance is made for the deviation of the engine power from its proportionality to the density
the whole strip of curves is replaced by one mean curve.

10355°—21——5
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- Lot us now find the equation of the specific thrust curve.
We have ; ;
- - Q‘=7ba5N’H’D? (1-2)
or ,

Q hoBD‘ (1—2z)

Substituting for z its value (192) we find,

Q=11+ ;) (i- —71:;) |

Q=h DV [h’(1+§—2)-h\/ 1+ {7] | (193)

The last relation gives us the law of variation of the thrust @ of the motor-propeller set in
function of the speed V. '

or

On account of the fact that for the flying interval the quantity %, varies between com-

paratively narrow limits, we can develop the radical \/ 1 +T(/i7' in serie neglecting the terms of
higher order and thus simplify the relation (193). - 'We can thus take

1+ pazetBys.
where « and 8 are two constants. On account of (187); (178) and (184) the value of (189)
of ¢ can be written

_2(1 —%m)
m—1 Vn
and thus

14 __2(;1_%) ¥V
VT 2x,—1 V2

For most propellers z, is mcluded between 0.7 and 0.8, and in the flying range the ratio 7—
can hardly come out of the limits

1/2< I;, <2
Cdnsequently the ratio ¢/V? will be usually included between the limits
1/2<73<8

For the last interval of variation of ¢/V? one can take with a good approximation a=1.3;

8=0.21 and thus
1/ + 72184021 7,

H
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Making use of the aﬁproximate expréssioxi of the radical ‘/ 1+ T% the relation (193) can be

written

Qehar [ (1473)- 1o+ 87)

or
Q=h 3D [ch{f—BY—F (a—h) V7] (194)
We thus find for the specific thrust the expression ‘ ‘
=2 L (b -y~ @RI . (195)

The approximation, adopted in this report for the specific thrust as béing of the form

q=9—0LV? . ) (196)

is fully justified, and we find
go=ohoD? MO (9m)
g=ho0p MM (198)

since the relations (175) and (176) constitute a good approximation for the propeller thrust and
power characteristics, the possible deviation of the specific thrust curve—for a given density
and throttle opening—from the law (196) must be chiefly due to the deviation of the engine
power from its proportionality to the revolutions.

Substituting in the last expressions of g, and ¢, for the constants C, b, and & their values
(189), (185 and (178) we find

0 m La, m m LB m
=54 z (Vm)' ;g = 5% "___—I(,ms) (199)

with

c _2y2%— 1B, 0= (am — 2%m~ 1) 1/2;’1:,,,—1
° V28— 1 T (1~2m)

In order to easily check ¢, and ¢, curves of these oqeﬂibients as functions of z, can be traced.
We thus find for the specific thrust curve the general equation

" Le)m V2
q=i%=g°~%v2=n61§.v,)n (Co_cxw (201)

(200)

The thrust curve of the engine-propeller, represented in figure 12, for the approximation
of a single strip, has for equation

-4 (e 72
with
Qm___ﬂm %}}a)m (203 )

m
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., Let us furthar ﬁnd the equatmn of the efﬁclency curve of the engme~propeller set,, We
have: ~ . ;
QV het (1— @)
R QWP

Substituting for » its value (192) we get

H 1

' h V? ¢
. "’ hl [h\/l'*‘vg 7?} ’

and on account of T% being small we find

R

' n*—“m F"Tﬁ—w] (204) -

Substituting for hy, k!, h and ¢ their value’s (185), (184), (178) and (189) we find '’

o Mm T (T —ay 28, —1) 1/2:1:,,.——1 1%
" Bem—1 2 1=z ,,a] (205)
set‘ging
(xm"a ’\/23!111— 1)'\/2wm—1___c ’, (206)
1% - t
‘we finally get :

= «\/2::: (2B o' Va? )

The last equation gives the important law of vanastlon of the efﬁclency Ul of the engme-propeller
system as funetion of the speed V.
" Let us finally find -the equation of the power of the engme—propeﬂer system. ~'We have

N3 (l—hzmz) (Ln)m

Lo+ 2Ny (I =2y)
After corresponding substitutions we find ‘
: V 286(l—2m) V
La. = (La) m[a '\/ 2%y —1° + '%E(é—_z'iz Vm] (207)

The relations (191), (202), (206) and (207) are to first approximations, the equations of the
main characteristics of the engine-propeller system.

L
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