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Weight, W= mg. 
Standard acceleration of gravity,


g = 9.80Gm/sec. 2 = 32.172ft/soc.2 
w 

Mass, m=—
p 

Density (mass per unit volume), p 
Standard density of dry air, 0.1247 (kg..-m.-

sea.) at 15.6°C. and 760 mm. = 0.00237 (lb.-
ft.-sec.)

K flJfl_JJL7 L S J. 

Specific weight of "standard" air, 1.223 kg/m. 
=0.0763.5. lb/ft.3 

Moment of inertia, rnlc2 (indicate axis of the 
radius of gyration, ic, by proper subscript). 

Area, 5; wing area,	 etc. 
Gap, G 
Span, b; chord length, c. 
Aspect ratio = b/c 
Distance from c. p. to elevator hinge,f. 
Coefficient of viscosity, ii. 

2. GENERAL S 4DYO 'V' 

AERONAUTICAL SYMBOLS. 

1. FUNDAMENTAL AND DERIVED UNITS. 

Metric. English. 

Symbol. -:

Unit. Symbol. Unit. Symbol. 

Length 
Time 
Force

1 
t 
F

meter........................m. 
sec. 
kg.

foot (or mile) .............
weight of one pound....

ft. (or mi.). 
sec. (or hr.). 
lb. 

Power 
Speed ................

P

second .......................
weight of one kilogram........

kg.rn/sec ...............................
rn/sec ........................ m. p. S.

second (or hour)---------

horsepower................
mi/hr ....................

II' 
M. P. H.

3. AERODYNAMICAL SYMBOLS. 

True airspeed, V 

Dynamic (or impact) pressure, q = p V2 

Lift, L; absolute coefficient ( = 

Drag, D; absolute coefficient Cr = 

Cross-wind force, C; absolute coefficient 
a = 

Resultant force, R 
(Note that these coefficients are twice as 

large a the old coefficients L0, D0.) 
Angle of setting of wings. (relative to thrust 

line), iw 
Angle of stabil.izer setting with reference to 

thrust line

Dihedral angle, y
Vi 

Re3nolds Number = p— , where 1 is a irnear di-

mension. 
e. g., for a model airfoil 3 in. chord, 100 mi/hr., 

normal pressure, 0°C: 255,000 and at 15.6°C, 
230,000; 

or for a model of 10 cm. chord, 40 rn/sec., 
corresponding numbers are 299,000 and 
270,000. 

Center of pressure coefficient (ratio of distance 
of C. P. from leading edge to chord length), 
C2. 

Angle.. of stabilizer setting with reference to 
lower wing. (i—i) = 

Angle of attack, a 
Angle of downwash, c 



REPORT No. 184. 

THE AERODYNAMIC FORCES ON AIRSHIP HULLS. 

By MAx M. MUNK.


SUMMARY. 

This report describes the new method for making computatiOns in connection with the 
study of rigid airships, which was used in the investigation of Navy's ZR-i by the special 
subcommittee of the National Advisory Committee for Aeronautics appointed for this purpose. 
It presents the general theory of the air forces on aiship hulls of the type mentioned, and an 
attempt has been made to develop the results from the very fundamentals of mechanics, with-
out reference to some of the modern highly developed conceptions, which may not yet be 
thoroughly known to a reader uninitiated into modern aerodynamics, and which may perhaps 
for all times remain restricted to a small number of specialists. 

I. GENERAL PROPERTIES OF. AERODYNAMIC FLOWS. 

1. The student of the motion of solids in air will find advantage in first neglecting the 
viscosity and compressibility of the latter. The influence of these two properties of air are 
better studied after the student has become thoroughly familiar with the simplified problem. 
The results are then to be corrected and modified; but in most cases they remain substantially 
valid. 

Accordingly I begin with the discussion of the general properties of aerodynamic flows 
produced by the motion of one or more solid bodies within a perfect fluid otherwise at rest. 
In order to be able to apply the general laws of mechanics to fluid motion I suppose the air to 
be divided into particles so small that the differences of velocity at different points of one par-
ticle can be neglected. This is always possible, as sudden changes of velocity do not occur 
in actual flows nor in the kind of flows dealt with at present. The term "flow" denotes the 
entire distribution of velocity in each case. 

With aerodynamic flows external volume forces (that is, forces uniformly distributed over 
the volume) do not occur. The only force of this character which could be supposed to influ-
ence the flow is gravity. It is neutralized by the decrease of pressure with increasing altitude, 
and both gravity and pressure decrease can be omitted without injury to the result. This 
does not refer to aerostatic forces such as the buoyancy of an airship, but the aerostatic forces 
are not a subject of this paper. 

The only force acting on a particle is therefore the resultant of the forces exerted by the 

adjacent particles. As the fluid is supposed to be nonviscous, it can not transfer tensions

or forces other than at right angles to the surface through which the transfer takes place. The 

consideration of the equilibrium of a small tetrahedron shows, then, that the only kind of tension 

possible in a perfect fluid is a pressure of equal magnitude in all directions at the point considered. 


In general this pressure is a steady function of the time t and of the three coordinates of 

the space, say x, y, and z, at right angles to each other. Consider now a-very small cube with 


the edges dx, dy, and dz. The mean pressure acting on the face dy dz may be p. The mean


pressure on the opposite face is then p + óp/óxdx. The X-component of the resultant volume 

foice is the difference of these two mean pressures, multiplied by the area of the faces dydz, 

Preceding Page Blank
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hence, it is —Zdx dy dz. Per unit volume it is -, as the volume of the cube is dx, dy, dz. 

It can be shown in the same way that the other two components of the force per unit volume 

are - and—	 Such a relation as existing between the pressure distribution and the force 

produced by it is generally described as the force being the "gradient" of the pressure, or 
rather the negative gradient. Any steady distribution of pressure has a gradient at each point., 
but if a distribution of forces (or of other vectors) is given, it is not always possible to assign 
a quantity such that the forces are its gradient. 

We denote the density of air by p; that is, the mass per unit volume, assumed to be con-
stant. dr may denote the small volume of a particle of air. The mass of this particle is then 
pdr. The components of the velocity V of this particle parallel to x, y, and z may be denoted 

by u, v, and w. Each particle has then the kinetic energy d T= dr (u + v2 + w2) and the 

component of momentum, say in the X direction, is pdru. The kinetic energy of the entire 
flow is the integral of that of all particles. 

Tf(u2+v2+w2)dr (1) 

Similarly, the component of momentum in the X-direction is the integral 

pfudT------------------------------------ (2) 

and two similar equations give the components for the two other directions. These integrals 
will later be transformed to make them fit for actua.l computation of the energy and the 
momentum. 

It is sometimes useful to consider very large forces, pressures, or volume forces acting 
during a time element dt so that their product by this time element becomes finite. Such 
actions are called "impulsive." Multiplied by the time element they are called impulses, or 
density of impulse per unit area or unit volume as the case may be. 

2. After these general definitions and explanations, I proceed to establish the equations 
which govern an aerodynamic flow. Due to the assumed constant density, we have the well-
known equation of continuity

óu 
+ + - 

ox Oy Oz 

We turn now to the fact that for aerodynamic problems the flow can be assumed to be 
produced by the motion of bodies in air originally at rest. - As explained above, the only force 
per unit volume acting on each particle is the gradient of the pressure. Now, this gradient 
can only be formed and expressed if the pressure is given as a function of the space coordinates 
x, y, and z. The laws of mechanics, on the other hand, deal with one particular particle, and 
this does not stand still hut changes its space coordinates continually. In order to avoid 
difficulties arising therefrom, it is convenient first to consider the flow during a very short 
time interval dt only, during which the changes of the space coordinates of the particles can be 
neglected as all velocities are finite. The forces and pressures, however, are supposed to be 
impulsive, so that during the short interval finite changes of velocity take place. Suppose 
first the fluid and the bodies immersed therein to he at rest. During the creation of the flow 
the density of impulse per unit area may be P, i. e., P =fpdt. The principles of mechanics 
give then

.oP 

0/P 
p
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and similarly in the two other directions
0/P 

V 
= -

--------------------------------(4) 
Oi' P 

w=—I
p 

Hence the velocity thus created is the gradient of (_1). At this state of investigation the 

value of is not yet known. But the important result is that the flw thus created is of the 

type having a distribution of velocity which is a gradient of some, quantity, called the velocity 
potential 4'. 4' is the impulse density which would stop the flow, divided by the density p. 
According to (4)

04'	 04'	 04' 
u=, v=—, w=	 ----------------------------- (5) 

from which follows
4'=f(udx+vd1i+wdz) ----------------------------- (6) 

A second differentiation of (5) gives
Ou Ov etc. 

since both are equal to 	 The substitution of (5) into the equation of continuity (3) gives 

O'4' 024' 024,
---(8) 

(Laplace's equation), which is the desired equation for the potential 4'. The sum of any 
solutions of (8) is a solution of (8) again, as can easily be seen. This is equivalent to the super-
position of flows; the sum of the potential, of the impulsive pressures, or of the velocity com-
ponents of several potential flows give a potential flow again. 

All this refers originally to the case only that the flow is created by one impulsive pressure 
from rest. But every continuous and changing pressure can be replaced by infinitely many 
small impulsive pressures, and the resultant flow is the superposition of the flows created by 
each impulsive pressure. And as the superposition of potential flows gives a potential flow 
again, it is thus demonstrated that all aerodynamic flows are potential flows. 

It can further be shown that for each motion of the bodies immersed in the fluid, there 
exists only one potential flow. For the integral (6) applied to a stream line (that is, a line 
always parallel to the velocity) has always the same sign of the integrant, and hence can not 
become zero. Hence a stream line can not be closed, as otherwise the integral (6) would give 
two different potentials for the same point, or different impulsive pressures, which is not pos-
sible. On the contrary, each stream line begins and ends at the surface of one of the immersed 
bodies. Now suppose that two potential flows exist for one motion of the bodies. Then 
reverse one of them by changing the sign of the potential and superpose it on the other. The 
resulting flow is characterized by all bodies being at rest. But then no stream line can begin 
at their surface, and hence the flow has no stream lines at all and the two original flows are 
demonstrated to be identical. 

It remains to compute the pressure at each point of a potential flow. The acceleration 
of each particle is equal to the negative gradient of the pressure, divided by the density of 
the fluid. The pressure is therefore to be expressed as a function of the space coordinates, 

and so is the acceleration of a particle. Each component of the acceleration, say , has to 

Ott 
be expressed by the local rate of change of the velocity component at a certain point -- and
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by the velocity components and their local derivatives themselves. This is done by the equa-
tion

du ôu	 u óu	 u 
------------------------------------------(9) 

For during the unit of time the particle changes its coordinates by u, v, and w, respectively, 

and therefore reaches a region where the velocity is larger by etc. This increase of 

velocity has to be added to the rate of change per unit time of the velocity at one particular 
point. 

The general principles of mechanics, applied to a particle of unit volume, give therefore 

du óu óu óu on lop ----------------(10) 

Substituting equation (7) in the last equation, we have 

On Ou ày Ow	 lOp -------(11) 

Integrating this with respect to dx gives 

p+(u2+v2+w2)=_p (12) 

The equations for the two other components of the acceleration would give the same equation. 
Hence it appears that the pressure can be divided into two parts superposed. The first part, 

- p , is the part of the pressure building up or changing the potential flow. It is zero if the 

flow is steady; that is, if

--------------------------------------(13) 

The second part,

- V2 (14) 

if the pressure necessary to maintain and keep up the steady potential flow. It depends only 
on the velocity and density of the fluid. The greater the velocity, the smaller the pressure. 
It is sometimes called Bernouilli's pressure. This pressure acts permanently without changing 
the flow, and hence without changing its kinetic energy. It follows therefore that the Ber-
nouilli's pressure (14) acting on the surface of a moving body, can not perform or consume 
any mechanical work. Hence in the case of the straight motion of a body the component of 
resultant force parallel to the motion is zero. 

3. Some important formulas follow from the creation of the flow by the impulsive pressure 
- c1p. I will assume one body only, though this is not absolutely necessary for a part of the 
results. The distribution of this impulsive pressure over the surface of the bodies or body is 
characterized by a resultant impulsive force and a resultant impulsive moment. As further 
characteristic there is the mechanical work performed by the impulsive pressure during the 
creation of the flow, absorbed by the air and contained afterwards in the flow as kinetic energy 
of all particles. 

It happens sometimes that the momentum imparted to the flow around a body moving 
translatory is parallel to the motion of the body. Since this momentum is proportional to the 
velocity, the effect of the air on the motion of the body in this direction is then taken care of by 
imparting to the body an apparent additional mass. If the velocity is not accelerated, no force 
is necessary to maintain the motion. The body experiences no drag, which is plausible, as no 
dissipation of energy is assumed. A similar thing may happen with a rotating body, where
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then the body seems to possess an apparent additional moment of momentum. In general, 
however, the momentum imparted to the fluid is not parallel to the motion of the body, but it 
possesses a lateral component. The body in general possesses different apparent masses with 
respect to motions in different directions, and that makes the mechanics of a body surrounded 
by a perfect fluid different from that of one moving in a vacuum. 

The kinetic energy imparted to the air is in a simple relation to the momentum and the 
V velocity of the body. During the generation of the flow the body has the average velocity --

V during the tune dt, hence it moves through the distance --dt. The work performed is equal 

to the product of the component of resultant force of the creating pressure in the direction of 
motion, multiplied by this path, hence it is equal to half the product of the velocity and the 
component of the impulsive force in its direction. 

The same argument can be used for the impulsive pressure acting over the surface of the 
body. Let dn be a linear element at right angles to the surface of the body drawn outward. 
The velocity at right angles to the surface is then, - dcI/dn and the pressure - p4' acts through 

the distance - d4'Idndt The work performed all over the surface is therefore

(15) 

which integral is to be extended over the entire surface of the body consisting of all the elements 
dS. The expression under the integral contains the mass of the element of fluid displaced 
by the surface element of the body per unit of time, each element of mass multiplied by the 
velocity potential. The Bernouilli pressure does not perform any work, as discussed above, 
and is therefore omitted. 

The apparent mass of a body moving in a particular direction depends on the density of the 
fluid. It is more convenient therefore to consider a volume of the fluid having a mass equal 
to the apparent mass of the body. This volume is

(16) 

2 

and depends only on the dimensions and form of the body. 
The kinetic energy of the flow relative to a moving body in an infinite fluid is of course 

infinite. It is possible, however, to consider the diminution of the kinetic energy of the air 
moving with constant velocity brought about by the presence of a body at rest. This diminu-
tion of energy has two causes. The body displaces fluid, and hence the entire energy of the 
fluid is lessened by the kinetic energy of the displaced fluid. Further, the velocity of the air 
in the neighborhood of the body is diminished on the average. The forces between the body 
and the fluid are the same in both cases, whether the air or the body moves. Hence this second 
diminution of kinetic energy is equal to the kinetic energy of the flow produced by the moving 
body in the fluid otherwise at rest. 

II. THE AERODYNAMIC FORCES ON AIRSHIP HULLS. 

4. An important branch of theoretical aerodynamics deals with moments on bodies mov-
ing through the air while producing a potential flow. Wings produce a flow different from a 
potential flow, in the strict meaning of the word. The wings have therefore to be excluded 
from the following discussion. 

Consider first bodies moving straight and with constant velocity V through air extending 
in all directions to infinity. There can not then be a drag, as the kinetic energy of the flow 
remains constant and no dissipation of energy is supposed to take place. Nor can there be a 

67486-24------2
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lift in conformity with the remarks just made. Hence the air pressures can at best produce 
a resultant pure couple of forces or resultant moment. The magnitude and direction of this 
moment will depend on the magnitude of the velocity V and on the position of the body rela-
tive to the direction of its motion. With a change of velocity all pressures measured from a 
suitable standard, change proportional to the square of the velocity, as follows from equation 
(14). Hence the resultant moment is likewise proportional to the square of the velocity. In 
addition it will depend on the position of the body relative to the direction of motion. The 
study of this latter relation is the chief subject of this section. At each different position of 
the body relative to the motion the flow produced is different in general and so is the momentum 
of the flow, possessiig 'different components in the direction of and at right angles to the direc-
tion of motion. By no means, however, can the relation between the momentum and the 
direction of motion be quite arbitrarily prescribed. The flow due to the straight motion in 
any direction can be obtained by the superposition of three flows produced by the motions in 
three particular directions. That restricts the possibilities considerably. But that is not all,. 
the moments can not even arbitrarily be prescribed in three directions. I shall presently 
show that there are additional restrictions based on the principle of conservation of energy 
and momentum. 

Let there be a ôomponent of the momentum lateral to the motion, equal to K3 Vp, where 
p denotes the density of the air. Since the body is d.vancing, this lateral component of the cj 
momentum has continually to be annihilated at its momentary position and to be created anew 
in its next position, occupied a moment later. This process requires a resultant moment -	 -	 :'	

M=K3V2p----------------------------------(17) 

about an axis at right angles to the direction of motion and to the momentum. In other words, 
the lateral component of the momentum multiplied by the velocity gives directly the resultant 
moment. Conversely, if the body experiences no resultant moment and hence is in equilibrium, 
the momentum f the air flow must be parallel to the motion. 	 '	 - 

Now consides a flow re1atve to the body with constant velocity V except for the disturb- ' fl - 

ance of the body and let us examine its (diminution .of) kinetic energy. If the body changes 
its position very slowly, so that the flow can still be considered as steady, the resultant moment 
is not affected by the rotation but is the same as corresponding to the momentary position and, 
stationary flow. This moment then performs or absorbs work during the slow rotation. It 
either tends to accelerate the rotation, so that the body has to be braked, or it is necessary to 
exert a moment on the body in order to overcome the-resultant moment Thiswork performed 
or absorbed makes up for the change of the kinetic energy of the flow. That gives a fundamental 
relation between the energy and the resultant moment. 

There are as many different positions of the body -relative to its motion as a sphere has 'i 
radii. The kinetic energy. of the flow is in general different for all directions, the velocity V 
and density p supposed to be constant. It has the same value, however, if the motion of the 
immersed solid is reversed, for then the entire flow is reversed. Therefore each pair of direc-
tions differing by 1800 has the same kinetic energy. This energy moreover is always positive 
and finite. There must therefore be at least one pair of directions, where it is a minimum and 
one where it is a maximum. Moving parallel to either of these directions the body is in equilib-
rium and experiences no resultant moment. This follows from the consideration that then a 
small change in the direction of motion does not give rise to a corresponding change of the 
kinetic energy; the moment does not perform any work, and hence must be zero. The equilibrium 
is stable if the diminution of energy of the entire flow is a maximum and unstable if it is a mini-
mum. It can be proved that in addition there must be at least one other axis of equilibrium. 
This is the position "neutral" with respect to the stable direction and at the same time neutral 
with respect to the unstable one. I call these directions "main axes." 

I proceed to demonstrate that the three main axes of equilibrium, are always at right angles 
to each other. Consider first the motion parallel to a plane through one of the main axes and
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only the components of the momentum parallel to this plane. The direction of motion of the 
body may be indicated by the angle a in such a way that a =0 is one motion of equilibrium, and 
hence without lateral component of momentum. The component of mon-lentum in the direc-
tion of the motion may then (that is, when a -=0) be K1p V. When moving at the 
angle of a = 900, the momentuni may be supposed to possess the components K,,p V parallel 
and K3p V at right angles to the motion, and we shall prove at once that the only momentum 
is the former. 

The kinetic energy for any direction cx can be written in the general form 

T=V (Kicosza+K3sin2a+K3cosasjna) 

and hence the resultant moment is 

M=dT/da=V2[(K2_Kj)sifl2a+KacOS2cx]----------------( 18) 

This resultant moment was supposed to be zero at a = 0. Hence K3 = 0, and it follows that 
a = 90° is a position of equilibrium for motions in the plane considered. As for other motions, 
it is to be noticed that the third component of the momentum, at right angles to the plane, 
changes if the plane rotates around the axis of equilibrium. It necessarily changes its sign 
during a revolution, and while doing it M is zero. Thus it is demonstrated that there are at 
least two axes at right angles to each other where all lateral comporents of the momentum are 
zero, and hence the motion is in equilibrium. And as this argument . ho1ds true for any pairof the 
three axes of equilibrium, it is proved that there are always at least three axes of equilibrium 
at right angles to each other. 

Resolving the velocity V of the body into three components, u, v, w, parallel to these three 
main axes, the kinetic energy can be expressed 

(K,u2+K2v3+K3w) 

The differential of the energy 	
+	 + K3wdw) 

is identically zero in more than three pairs of positions only if at least two of the K's are equal. 
Then it is zero in an infinite number of directions, and there are an infinite number of directions 
of equilibrium. The body is in equilibrium in all directions of motion only if all three K's are 
equal; that is, if the apparent mass of the body is the same in all directions. That is a special 
case.

In all other cases the body experiences a resultant moment if moving with the velocity com-
ponents u, v, and w parallel to the three main axes. The component of this resultant moment 
is determined by the momentary lateral momentum and its components, as stated in equation 
17.

In most practical problems the motion occurs in a main plane; that is, at right angles to a 
main axis. Then the entire resultant moment is according to (17) the product of the velocity 
and the component of momentum at right angles to it, giving 

M==V(K2—K,)sin2a---------------------------( 19) 

In general, the three main momenta of the flow, parallel to the respective motion, do not 
pass through one center. Practical problems occur chiefly with bodies of revolution. With them 
as well as with bodies with a center of symmetry—that is, such as have three planes of symmetry—
the relation between the motion and the momenta is simple. It follows then from symmetry 
that the body possesses an aerodynamic center through which the three main momenta pass. 
This means that the body can be put into any straight motion by applying a force at a fixed
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center The force, however, s not parallel to the motion except in the main directions. The 
center where the force has to be applied coincides with the aerodynamic center, if the center of 
gravity of the body does so or if the mass of the body itself can be neglected compared with 
any of the three main additional masses 

Airship hulls are often bounded by surfaces of revolution. In addition they are usually 
rather elongated, and if the cross sections are not exactly round, they are at least approximately 
of equal and symmetrical shape and arranged along a straight axis. Surfaces of revolution 
have, of course, equal transverse apparent masses; each transverse axis at right angles to the 
axis of revolutio is a main direction. For very elongated surfaces of revolution a further 
important statement may be made regarding the magnitude of the longitudinal and transverse 
apparent mass When moving transversely the flow is approcimately two-dimensional along 
the greatest part of the length. The apparent additional mass of a circular cylinder moving at 
right angles to its axis will be shown to he equal to the mass of the displaced fluid. It follows 
therefore that the apparent transverse additional mass of a very elongated body of revolution 
is approximately equal to the mass of the displaced fluid. It is slightly smaller, as near the 
ends the fluid has opportunity to pass the bow and stern. For cross sections other than circular 
the two main apparent masses follow in a similar way from the apparent mass of the cross 
section in the two-dimensional flow. 

The longitudinal apparent additional mass, on the other hand, is small when compared with 
the mass of the displaced fluid. It can be neglected if the body is very elongated or can at 
least be rated as a small correction. This follows from the fact that only near the bow and the 
stern does the air have velocities of the same order of magnitude as the velocity of motion. 
Along the ship the velocity not only is much smaller but its direction is essentially opposite to 
the direction of motion, for the bow is continually displacing fluid and the stern makes room 
free for the reception of the same quantity of fluid. Hence the fluid is flowing from the.bow to 
the stern, and as only a comparatively small volume is displaced per unit of time and the space 
is free in all directions to distribute the flow, the average velocity will be small. 

It is possible to study this flow more closely and to prove analytically that the ratio of the 
apparent mass to the displaced mass approaches zero with increasing elongation. This proof, 
however, requires the study or knowledge of quite a number of conceptions and theorems, and 
it seems hardly worth while to have the student go through all this in order to prove such a 
plausible and trivial fact. 

The actual magnitudes of the longitudinal and transverse masses of elongated surfaces of 
revolution can be studied by means of exact computations made by H. Lamb (reference 5), 
with ellipsoids of revolutions of different ratio of elongation. The figures of k1 and k2 , where 
K= k x volume, obtained by him are contained in Table I of this paper, and k 1 - 1c2 is computed. 
For bodies of a shape reasonably similar to ellipsoids it can be approximately assumed that 
(k1 —k2) has the same value as for an ellipsoid of the same length and volume; that is, if Vol IL3 

has the same value. 
5. The next problem of interest is the resultant aerodynamic force if the body rotates with 


constant velocity around an axis outside of itself. That is now comparatively simple, as the 

results of the last section can be used. The configuration of flow follows the body, with constant 

shape, magnitude, and hence with constant kinetic energy. The resultant aerodynamic force, 

therefore, must be such as neither to consume nor to perform mechanical work. This leads 

to the conclusion that the resultant force must pass through the axis of rotation. In general 

it has both a component at right angles and one parallel to the motion of the center of the body. 


I confine the investigation to a surface of revolution. Let an airship with the apparent 

masses K,p and K2p and the apparent moment of inertia K'p for rotation about a transverse 

axis through its aerodynamic center move with the velocity V of its aerodynamic center around 

an axis at the distance r from its aerodynamic center and let the angle of yaw be measured

between the axis of the ship and the tangent of the circular path at the aerodynamic center. 

The ship is then rotating with the constant angular velocity V/r. The entire motion can be

obtained by superposition of the longitudinal motion V cos of the aerodynamic center, the
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tranverse velocity V sin q , and the angular velocity V/r. The longitudinal component of the 
momentum is Vp. cos . ic,. vol, and the tranverse component of the momentum is Vp sin 4. 
k.,. vol. Besides, there is a moment of momentum due to the rotation. This can be expressed 
by introducing the apparent moment of inertia K'p = lc'Jp where J is the moment of inertia of 
the displaced air; thus making the angular momentum 

k'Jp () 

As it does not change, it does not give rise to any resultant aerodynamic force or moment during 
the motion under consideration. 

The momentum remains constant, too, but changes its direction with the angular velocity 
V/r. This requires a force passing through the center of turn and having the tranverse com-
ponent

= K1 p cos 4V2/r -------------------------------(20) 
and the longitudinal component

Fj=K2psin4V2/r-------------------------------(21) 

The first term is almost some kind of centrifugal force. Some air accompanies the ship, increas-
ing its longitudinal mass and hence its centrifugal force. It will be noticed that with actual 
airships this additional centrifugal force is small, as k, is small. The force attacking at the 
center of the turn can be replaced by the same force attacking at the aerodynamic center and 
a moment around this center of the magnitude. 

M=(K2—K1)psin2V:-----------------------(22) 

This moment is equal in direction and magnitude to the unstal;ie moment found during straight 
motion under the same angle of pitch or yaw. The longitudinal force is in practice a negative 
drag as the bow of the ship is turned toward the inside of the circle. It is of no great practical 
importance as it does not produce considerable structural stresses. 

It appears thus that the ship when flying in a curve or circle experiences almost the same 
resultant moment as when flying straight and under the same angle of pitch or yaw. I proceed to 
show, however, that the transverse aerodynamic forces producing this resultant moment are 
distributed differently along the axis of the ship in the two cases. 

6. The distribution of the transverse aerodynamic forces along the axis can conveniently 
be computed for very elongated airships. It may be supposed that the cross section is circular, 
although it is easy to generalize the proceeding for a more general shape of the cross section. 

The following investigation requires the knowledge of the apparent additional mass of a 
circular cylinder moving in a two-dimensional flow. I proceed to show that this apparent 
additional mass is exactly equal to the mass of the fluid displaced by the cylinder. In the 
two-dimensional flow the cylinder is represented by a circle. 

Let the center of this circle coincide with the origin of a system of polar coordinates II and 
, moving with it, and let the radius of the circle be denoted by r. Then the velocity poten-

tial of the flow created by this circle moving in the direction 4=O with the velocity v is 
= yr2 (cos ) /1?. For this potential gives the radial velocity components 

dcI	 r2 = —v 1 cos * 

and at the circumference of the circle this velocity becomes v cos q. This is in fact the normal 
component of velocity of a circle moving with the velocity v in the specified direction. 

The kinetic energy of this flow is now to be determined. In analogy to equation (15), 
this isdone by integrating along the circumference of the circle the product of (a) the elements 

of half the mass of the fluid penetrating the circle ( cos 	 and (b), the value of the veloc-
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ity potential at that point (—v cos 4,.r). The integral is therefore 

4,v3r3d4, 

giving the kinetic energy rV2. 

This shows that in fact the area of apparent mass-is equal to the area of the circle. 
I am now enabled to return to the airship. 
If a very elongated airship is in trauslatory horizontal motion through air otherwise at rest 

and is slightly pitched, the component of the motion of the air in the direction of the axis of the 
ship can be neglected. The air gives way to the passing ship by flowing around the axis of the 
ship, not by flowing along it. The air located in a vertical plane at right angles to the motion 
remains in that plane, so that the motion in each plane can be considered to be two-dimensional. 
Consider one such approximately vertical layer of air at right angles to the axis while the ship 
is passing horizontally through it. The ship displaces a circular portion of this layer, and this 
portion changes its position and its size. The rate of change of position is expressed by an 
apparent velocity of this circular portion, the motion of the air in the vertical layer is described 
by the two-dimensional flow produced by a circle moving with the same velocity. The momen-
tum of this flow is Svpdx, where S is the area of the circle, and v the vertical velocity of the 

circle, and dx the thickness of the layer. Consider first the straight flight of the ship under the 
angle of pitch . The velocity v of the displaced circular portion of the layer is then constant 
over the whole length of the ship and is V sin 4,, where V is the velocity of the airship along the 
circle. Not so the area 5; it changes along the ship. At a particular layer it changes with the 
rate of change per unit time,

dS 
Vcos4,• 

where x denotes the longitudinal coordinate. 
Therefore the momentum changes with the rate of change 

V2 sin 24, dx 

This gives a down force on the ship with the magnitude 

dF= dx VZ sin 24, ----------------------------(23) 

Next, consider the ship when turning, the angle of yaw being . The momentum in each layer 
is again

vSpdx 

The transverse velocity v is now variable, too, as it is composed of the constant portion V sin , 

produced by the yaw, and of the variable portion V cos 4,, produced by the turning. x = 0 

represents the aerodynamic center. Hence the rate of change of the momentum per unit 
length is

7p .	 dS V	 d 
T	 sin	 cos 

giving rise to the transverse force per unit length 

V2 sin 24, ± j72 cos 4,(S + 

or otherwise written

dF=dx(V2 sin24,	 + V cos4, 5± v'- cos	 -------------- (24
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The first term agrees with the moment of the ship flying straight having a pitch çb. The 
direction of this transverse force is opposite at the two ends, and gives rise to an unstable 
moment. The ships in practice have the bow turned inward when they fly in turn. Then the 
transverse force represented by- the first term of (24) is directed inward near the bow and out-
ward near the stern. 

The sum of the second and third terms of (24) gives no resultant force or moment. The 
second term alone gives a transverse force, being in magnitude and distribution almost equal to 
the transverse component of the centrifugal force of the displaced air, but reversed. This latter 
becomes clear at the cylindrical portion of the ship, where the two other terms are zero. The 
front part of the cylindrical portion moves toward the center of the turn and the rear part 
moves away from it. The inward momentum of the flow has to change into an outward mo-
mentum, requiring an outward force acting on the air, and giving rise to an inward force 
reacting this change of momentum. 

The third term of (24) represents forces almost concentrated near the two ends and their 
sum in magnitude and direction is equal to the transverse cothponent of the centrifugal force of 
the displaced air. They are directed outward. 

Ships only moderately elongated have resultant forces and a distribution of them differing 
from those given by the formulas (23) and (24). The assumption of the layers remaining plane 
is more accurate near the middle of the ship than near the ends, and in consequence the trans-
verse forces are diminished to a greater extent at the ends than near the cylindrical part when 
compared with the very elongated hulls. In practice, however, it will often be exact enough 
to assume the same shape of distribution for each term and to modify the transverse forces by 
constant diminishing factors. These factors are logically to be chosen different for the different 
terms of (24). For the first term represents the forces giving the resultant moment proportional 
to (k2 — k,), and hence it is reasonable to diminish this term by multiplying it by (k2 -.- k,). The 
second and third terms take care of the momenta of the air flowing transverse with a velocity 
proportional to the distance from the aerodynamic center. The moment of inertia of the 
momenta really comes in, and therefore it seems reasonable to diminish these terms by the 
factor ic', the ratio of the apparent moment of inertia to the moment of inertia of the displaced air. 

The transverse component of the centrifugal force produced by the air taken along with the 
Ship due to its longitudinal mass is neglected. Its magnitude is small; the distribution is dis-
cussed in reference (3) and may be omitted in this treatise. 

The entire transverse force on an airship, turning under an angle of yaw with the velocity 
V and a radius r, is, according to the preceding discussion,

p.xdS dF_—dx[(k —ic )V- sin 2+k'V-S cos+1c'V2— - cos -------------(25) 'dx 2 r dx 

This expression does not contain of course the air forces on the fins. 
7. In the first two parts of this paper I discussed the dynamical forces of bodies moving 

along a straight or curved path in a perfect fluid. In particular I considered the case of a very 
elongated body and as a special case again one bounded by a surface of revolution. 

The hulls of modern rigid airships are mostly surfaces of revolution and rather elongated 
ones, too. The ratio of the length to the greatest diameter varies from 6 to 10. With this 
elongation, particularly if greater than 8, the relations valid for infinite elongation require 
only a small correction, only a few per cent, which can be estimated from the case of ellipsoids 
for which the forces are known for any elongation. It is true that the transverse forces are 
not only increased or decreased uniformly, but also the character of their distribution is slightly 
changed. But this can be neglected for most practical applications, and especially so since 
there are other differences between theoretical and ctual phenomena. 

Serious differences are implied by the assumption that the air is a perfect fluid. It is not, 
and as a consequence the air forces do not agree with those in a perfect fluid. The resulting 
air force by no means gives rise to a resulting moment only; it is well known that an airship
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hull model without fins experiences both a drag and a lift, if inclined. The discussion of the 
drag is beyond the scope of this paper. The lift is very small, less than 1 per cent of the 
lift of a wing with the same surface area. But the resulting moment is comparatively small, 
too, and therefore it happens that the resulting moment about the center of volume is only 
about 70 per cent of that expected in a perfect fluid. It appears, however, that the actual 
resulting moment is at least of the same range of magnitude, and the contemplation of the 
perfect fluid gives therefore an explanation of the phenomenon. The difference can be 
explained. The flow is not perfectly irrotational, for there are free vortices near the hull, 
especially at its rear end, where the air leaves the hull. They give a lift acting at the rear 
end of the hull, and hence decreasing the unstable moment with respect to the center of volume 

Constant 
V	 ection 

_Sfero 
x

(k-k) Vsin2ço 
Same as i7 straight flight ut-ide,- pitch 

I	 I 

k'VcosçoS 
Negative centrifugal force 

lii

k' Vfcosç,x 
Fsu. 1.—Diagrain showing the direction of the transverse air forces 

acting on an airship flying in a turn. The three terms are to be 
added together. 

JUIIIIYAU4 iIlIIiAl !IuIii,Il iu•iuuu ul.uulI lI,lIuaI 
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What is perhaps more important, they produce a kind of induced downwash, diminishing the 
effective angle of attack, and hence the unstable moment. 

This refers to airship hulls without fins, which are of no practical interest. Airship hulls 
with fins must be considered in a different way. The fins are a kind of wings; and the flow 
around them, if they are inclined, is far from being even approximately irrotational and their 
lift is not zero. The circulation of the inclined fins is not zero; and as they are arranged in the 
rear of the ship, the vertical flow induced by the fins in front of them around the hull is directed 
upward if the ship is nosed up. Therefore the effectiye angle of attack is increased, and the 
influence of the lift of the hull itself is counteracted. For this reason it is to be expected that 
the transverse forces of hulls with fins in air agree better with these in a perfect fluid. Some 
model tests to be discussed now confirm this
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• These tests give the lift and the moment with respect to the center of volume at different 
angles of attack and with two different sizes of fins. If one computes the difference between 
the observed moment and the expected moment of the hull alone, and divides the difference 
by the ol?served lift, the apparent center of pressure of the lift of the fins results. If the center 
of pressure is situated near the middle of the fins, and it is, it can be inferred that the actual 
flow of the air around the hull is not very different from the flow of a perfect fluid. It follows, 
then, that the distribution of the transverse forces in a perfect fluid gives a good approximation 
of the actual distribution, and not only for the case of straight flight under consideration, but 
also if the ship moves along a circular path. 

The model tests which I proceed to use were made by Georg Fuhrmann in the old Goet-
tingen wind tunnel and published in the Zeitschrift für Flugtechnik und Motorluftschiffahrt, 
1910. The model, represented in Figure 3, had a length of 1,145 millimeters, a maximum 
diameter of 188 millimeters, and a volume of 0.0182 cubic meter. Two sets of fins were 
attached to the hull, one after another; the smaller fins were rectangular, 6.5 by 13 centimeters, 
and the larger ones, 8 by 15 centimeters. (Volume) 2I3 = 0.069 square meter. In Figure 3 both 
fins are shown. The diagram in Figure 2 gives both the observed lift and the moment expressed 
by means of absolute coefficients. They are reduced to the unit of the dynamical pressure, 
and also the moment is reduced to the unit of the volume, and the lift to the unit of (volume) s/a. 

Fi,,s of mode 

:::± 

--.-- u	 0 100 /2° /40 /60 /8° 
Angle of oltock 

FIG. 3—Airship model.	 Flo. 4.—Center of prsure of fin forces. 

Diagram Figure 4 shows the position of the center of pressure computed as described 
before. The two horizontal lines represent the leading and the trailing end of the fins. It 
appears that for both sizes of the fins the curves nearly agree, particularly for greater angles 
of attack at which the tests are more accurate. The center of pressure is situated at about 
40 per cent of the chord of the fins. I conclude from this that the theory of a perfect fluid 
gives a good indication of the actual distribution of the transverse forces. In view of the 
small scale of the model, the agreement may be even better with actual airships. 

III. SOME PRACTICAL CONCLUSIONS. 

8. The last examination seems to indicate that the actual unstable moment of the hull 
in air agrees nearly with that in a perfect fluid. Now the actual airships with fins are statically 
unstable (as the word is generally understood, not aerostatically of course), but not much so, 
and for the present general discussion it can be assumed that the unstable moment of the hull 
is nearly neutralized by the transverse force of the fins. I have shown that this unstable 

moment is M= (voiffine) (k2 - k1 ) V2 sin 2, where (k - k1) denotes the factor of correction 

due to finite elongation. Its magnitude is discussed in the first part of this paper. Hence the 
If transverse force of the fins must be about -a-, where a denotes the distance between the fin and 

the center of gravity of the ship. Then the effective area of the fins—that is, the area of a wing 
giving the same lift in a two-dimensional flow—follows: 

(Volume) (k3 - k1) 
air
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Taking into account the span b of the flns—.-.that is, the distance of two utmost points of a pair 
of fins—the effective fin area S must be

S 

(Volume)(k3_kl)l+2 

This area 5, however, is greater than the actual fin area. Its exact size is uncertain, but a far 
better approximation than the fin area is obtained by taking the projection of the fins and the 
part of the hull between them. This is particularly true if the diameter of the hull between 
the fins is small. 

If the ends of two airships are similar, it follows that the fin area must be proportional 
to (k2 - k) (volume) /a. For rather elongated airships (k3 - k1 ) is almost equal to 1 and con-
stant, and for such ships therefore it follows that the fin area must be proportional to (volume) /a, 
or, less exactly, to the greatest cross section, rather than to (volume) 213 . Comparatively short 
ships, however, have a factor (k2 - k1) rather variable, and with them the fin area is more nearly 
proportional to (volume) 2/3• 

This refers to circular section airships. Hulls with elliptical section require greater fins 
parallel to the greater plan view. If the greater axis of the ellipse is horizontal, such ships are 
subjected to the same bending moments for equal lift and size, but the section modulus is 
smaller, and hence the stresses are increased. They require, however, a smaller angle of attack 
for the same lift. The reverse holds true for elliptical sections with the greater axes vertical. 

9. If the airship flies along a circular path, the centrifugal force must be neutralized by the 
transverse force of the fin, for only the fin gives a considerable resultant transverse force. At 
the same time the fin is supposed nearly to neutralize the unstable moment. I have shown 
now that the angular velocity, though indeed producing a considerable change of the distribution 
of the transverse forces, and hence of the bending moments, does not give rise to a resulting 
force or moment. Hence, the ship flying along the circular path must be inclined by the same 
angle of yaw as if the transverse force is produced during a rectilinear flight by pitching. From 
the equation of the transverse force

V2 
Vol p-= r

Vol(k2 —k1 ) V2 sin 24,


a 

it follows that the angle is approximately

al 
4, 

r - 

This expression in turn can be used for the determination of the distribution of the transverse 
forces due to the inclination. The resultant transverse force is produced by the inclination 
of the fins. The rotation of the rudder has chiefly the purpose of neutralizing the damping 
moment of the fins themselves. 

From the last relation, substituted in equation (25), follows approximately the distribution 
of the transverse forces due to the inclination of pitch, consisting of 

	

V p2ad	 (26) 

This is only one part of the transverse forces. The other part is due to the angular velocity; 
it is approximately

k,2SV2Pdx+1c,Y_fSdx (27) 
rdx	 2	 r 

The first term in (27) together with (26) gives a part of the bending moment. The second 
term in (27), having mainly a direction opposite to the first one and to the centrifugal force, 
is almost neutralized by the centrifugal forces of the ship and gives additional bending moments 
not very considerable either. It appears, then, that the ship experiences smaller bending moments 
when creating an air force by yaw opposite to the centrifugal force than when creating the same
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transverse force during a straight flight by pitch. For ships with elliptical sections this can not 
be said so generally. The second term in (27) will then less perfectly neutralize the centrifugal 
force, if that can be said at all, and the bending moments become greater in most cases. 

10. Most airship pilots are of the opinion that severe aerodynamic forces act on airships 
flying in bumpy weather. An exact computation of the magnitude of these forces is not possible, 
as they depend on the strength and shape of the gusts and as probably no two exactly equal 
gusts occur. Nevertheless, it is worth while to reflect on this phenomenon and to get acquainted 
with the underlying general mechanical principles. It will be possible to determine how the 
magnitude of the velocity of ifight influences the air forces due to gusts. It even becomes 
possible to estimate the magnitude of the air forces to be expected, though this estimation will 
necessarily be somewhat vague, due to ignorance of the gusts. 

The airship is supposed to fly not through still air but through an atmosphere the different 
portions of which have velocities relative to each other. This is the cause of the air forces in 
bumpy weather, the airship coming in contact with portions of air having different velocities. 
Hence, the configuration of the air flow around each portion of the airship is changing as it 
always has to conform to the changing relative velocity between the portion of the airship and 
the surrounding air. A change of the air forces produced is the consequence. 

Even an airship at rest experiences aerodynamical forces in bumpy weather, as the air moves 
toward it. This is very pronounced near the ground, where the shape of the surrounding 
objects gives rise to violent local motions of the air. The pilots have the impression that at 
greater altitudes an airship at rest does not experience noticeable air forces in bumpy weather. 
This is plausible. The hull is struck by portions of air with relatively small velocity, and as the 
forces vary as the square of the velocity they can not become large. 

It will readily be seen that the moving airship can not experience considerable air forces 
if the disturbing air velocity is in the direction of flight. Only a comparatively small portion 
of the air can move with a horizontal velocity relative to the surrounding air and this velocity 
can only be small. The effect can only be an air force parallel to the axis of the ship which is 
not likely to create large structural stresses. 

There remains, then, as the main problem the airship in motion coming in contact with air 
moving in a transverse direction relative to the air surrounding it a moment before. The 
stresses produced are severer if a larger portion of air moves with that relative velocity. It is 
therefore logical to consider portions of air large compared with the diameter of the airship; 
smaller gusts produce smaller air forces. It is now essential to realize that their effect is exactly 
the same as if the angle of attack of a portion of the airship is changed. The air force acting 
on each portion of the airship depends on the relative velocity between this portion and the 
surrounding air. A relative transverse velocity u means an effective angle of attack of that 
portion equal to uf V, where T denotes the velocity of ifight. The airship therefore is now to 
be considered as having a variable effective angle of attack along its axis. The magnitude of 
the superposed angle of attack is u/ V, where u generally is variable. The air force produced at 
each portion of the airship is the same as the air force at that portion if the entire airship would 
have that particular angle of attack. 

The magnitude of the air force depends on the conicity of the airship portion as described in 
section 2. The force is proportional to the angle of attack and to the square of the velocity of 
flight. In this case, however, the superposed part of the angle of attack varies inversely as the 
velocity of flight. It results, then, that the air forces created by gusts are directly proportional 
to the velocity of flight. Indeed, as I have shown, they are proportional to the product of the 
velocity of ifight and the transverse velocity relative to the surrounding air. 

A special and simple case to consider for a closer investigation is the problem of an airship 
immersing from air at rest into ir with constant transverse horizontal or vertical velocity. 
The portion of the ship already immersed has an angle of attack increased by the constant 
amount u/V. Either it can be assumed that by operation of the controls the airship keeps its 
course or, better, the motion of an airship with fixed controls and the air forces acting on it 
under these conditions can be investigated. As the fins come under the influence of the increased
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transverse velocity later than the other parts, the airship is, as it were, unstable during the time 
of immersing into the air of greater transverse velocity and the motion of the airship aggravates 
the stresses. 

In spite of this the actual stresses will be of the same range of magnitude as if the airship 
ifies under an angle of pitch of the magnitude u/ V, for in general the change from smaller to 
greater transverse velocity will not be so sudden and complete as supposed in the last para-
graph. It is necessary chiefly to investigate the case of a vertical transverse relative velocity u, 
for the severest condition for the airship is a considerable angle of pitch, and a vertical velocity 
u increases these stresses. Hence it would be extremely important to know the maximum 
value of this vertical velocity. The velocity in question is not the greatest vertical velocity of 
portions of the atmosphere occurring, but differences of this velocity within distances smaller 
than the length of the airship. It is very difficult to make a positive statement as to this 
velocity, but it is necessary to conceive an idea of its magnitude, subject to a correction after 
the question is studied more closely. Studying the meteorological papers in the reports of the 
British Advisory Committee for Aeronautics, chiefly those of 1909-10 and 1912-13, I should 
venture to consider a sudden change of the vertical velocity by 2 m./sec. (6.5 ft./sec.) as coming 
near to what to expect in very bumpy weather. The maximum dynamic lift of an airship is 
produced at low velocity, and is the same as if produced at high velocity at a comparatively 
low angle of attack, not more than 5°. If the highest velocity is 30 m./sec. (67 mi./hr.), the 

angle of attack 'a! V, repeatedly mentioned before, would be 57O)< 2=380 This is a little 

smaller than 5°, but the assumption for 'ais rather vague. It can only be said that the stresses 
due to gusts are of the same range of magnitude as the stresses due to pitch, but they are prob-
ably not larger. 

A method for keeping the stresses down in bumpy weather is by s1owingdown the speed 
of the airship. This is a practice common among experienced airship pilots. This procedure 
is particularly recommended if the airship is developing large dynamic lift, positive or negative, 
as then the stresses are already large.

Length 
(diameters).

K, (longS. 
tudinal).

K, (trans- 
verse). K K '	 ' K' (rota-

tion). 

1 0.500 0.500 0 0 
1.50 .305 .821 .316 .094 
2.00 .209 .702 .493 .240 
2.51 .156 .763 .607 .367 
2.99 .122 .803 .681 .465 
3.99 .082 .860 .778 .608 
4.99 .059 .895 .836 .701 
0.01 .045 .918 .873 .764 
6.97 .036 .933 .897 .805 
8.01 .029 .945 .916 .840 
902 .024 .954 .930 .865 
9.97 021 .960 .939 .883 

.000 1.000 1.000 1.000 
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Positive directions of axes and angles (forces and moments) are shown by arrows. 

Axis.

Force 
(parallel

Moment about axis. Angle. Velocities. 

Designation. Designa- Sym Pdolt1ve Designa. tT nro°iig Angular. 

axis). 

Longitudinal. X X rolling..... L Y—Z 'I' u p 
Y Y pitching... M Z—X

roll.......
pitch e v q Lateral...........

Normal.......... Z Z yawing...... N X—^Y yaw w r

Absolute coefficients of moment 

L	 M	 N 
CZ=QTS

Angle of set of control surface (relative to 
neutral position), 6. (Indicate surface by 
proper subscript.) 

4. PROPELLER SYMBOLS. 

Diameter, D 
Pitch (a) Aerodynamic pitch, a 

(b) Effective pitch, o 

(c) Mean geometric pitch, g 
(d) Virtual pitch, p. 
(e) Standard pitch, a 

Pitch ratio, p/D 
Inflow velocity, V' 
Slipstream velocity, V6

Thrust, T 
Torque, Q 
Power, P 

(If "coefficients" are introduced all units 
used must be consistent.) 

Efficiency rj = T V/P 
Revolutions per sec., ii; per mm., N 

_I f V Effective helix anle =tan i \2irrfl 

5. NUMERICAL RELATIONS. 

1 IP= 76.04 kg. mtsec.= 550 lb. ft/sec.	 1 lb. =0.45359 kg. 
1 kg. rn/sec. =0.01315 EP

	
1kg. =2.20462 lb. 

1 mi/hr.=0.44704 rn/sk.	 1 mi. = 1609.35 m. = 5280 ft. 
1 rn/sec. = 2.23693 mi/hr.	 1 m. = 3.28083 ft 




