
J\ERO.& ASTRO. LIBRARY 

NATIONAL ADVISORY COMMITTEE 
FOR AERONAUTICS 

REPORT No. 334 -:/ C -~ 

THE TORSION OF MEMBERS HAVING SECTIONS 
COMMON IN AIRCRAFT CONSTRUCTION 

By GEORGE W. TRAYER and H. W. MARCH 

FOI' sale by the Superintendent or Documents, Washington, D. C. _ _ _ _ - _ - - - - - - P rice 25 cents 



AERONAUTICAL SYMBOLS 

1. FUNDAMt:NTAL AND DERIVED UNITS 

Length ____ _ 
Time ______ _ 
Force _____ _ 

Symbol 

l 
t 
Ii' 

Metric 

Unit 

rneter ___________________ _ 
second __________________ _ 
weight of one kilogram ____ _ 

Symbol 

m 
s 
kg 

English 

Unit 

foot (or mile) ________ _ 
second (or hour) ______ _ 
weight of one pound __ _ 

Symbol 

ft. (or mi.) 
sec. (or hr.) 
lb. 

PoweL_____ P kg/m/s ____________________________ _ horsepoweL _________ _ hp 
Speed ________________ {km/hr --------- ---- ---- -- - k. p. h . mi./hr. --- - - -- - --- ---m/s______________________ m. p . s. ft./sec. _____________ _ 

m. p. h. 
f. p. s. 

2. GENERAL SYMBOLS, ETC. 

W, Weight, = mg 
g, Standard acceleration of gravity=9.80665 

m/s2 = 32.1740 ft.jsec. 2 

m, Mass = W , g 

p, Density (mass per unit volume). 
Standard density of dry air, 0.12497 (kg-m-4 

S2) at 15° 0 and 700 mm = 0.002378 (lb.­
ft.-4 sec. 2

). 

Specific weight of "standard" au, 1.2255 
kg/m3 = 0.07651 Ib./it.3 

m7c2
, Moment of inertia (indicate axis of the 

radius of gyration, 7e, by proper sub­
script). 

S, Area. 
Sw, Wing area, etc. 
G, Gap. 
b, Span. 
c, Chord length. 
b/e, Aspect ratio. 
j, Distance from C. G. to elevator hinge. 
fJ., Coefficient of viscosity. 

3. AERODYNAMICAL SYMBOLS 

V, True air speed. 

q, Dynamic (or impact) pressure=~p V2 

L, Lift, absolute coefficient OL= q~ 

D, Drag, absolute coefficient OD= ~ 
0, Cross-wind force, absolute coefficient 

o 
Oe=q§ 

R, Resultant force. (Note that these coeffi­
cients are twice- as large as the old co­
efficients Le, Dc·) 

1-,0, Angle of setting of wings (relative to thrust 
line) . 

it> Angle of stabilizer setting with reference to 
thrnf't, line. 

'Y, Dihedral angle. 
VZ 

p - ,Reynolds Number, where l 18 a linear 
fJ. dimension. 

e. g., for a model airfoil 3 in. chord, 100 
mi./hr. normal pressure, 0° C: 255,000 
and at 15° C., 230,000; 

or for a model of 10 cm chord 40 mis, 
corresponding numbers are 299,000 and 
270,000 . 

Op, Center of pressure coefficient (ratio of 
distance of C. P. from leading edge to 
chord length). 

(3, Angle of stabilizer setting with reference 
to lower wing~ = (i,- iw) . 

a, Angle of attack. 
~, Angle of down wash. 
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FOREWORD 

An important limitation upon the development oj aircrajt structures of minhnum weight ([ nd 
maximum efficiency is thejact that the results of the basic mathemat~'cal theory oj elasticity hare ill 
general not been 80 presented that they can be '11. ed by the az'el'age American engineer. Further, 
the mathematic'al solutions oj many impm·tant spec1fic problems are not known and 01ll' kn01r1edge 
oj the phy 'ical conlitants of the materials u ed i incomplete. As a contribution toward the imjJl'ore­
ment oj this it1lation, the Bureau oj Aeronautics oj the Nal'Y Depal'tment has jrom time to time 
financed work along these lines jor pl'esentation primal'ily fl'om the 1.·iewpoint oj the engineer. This 
report, ubmitted to the rational Adtvi.sol'Y Committee jor Ael'onautic for publication, coters ([n 

investigation oj the torsion problem by the Forest Products Labomtory, Forest Service, Department 
oj Agriculture, underta7cen through armngement. between the Navy Department and the Depa1'tment 
oj Agriculture. The di cussion and the findings, while checked largely by te ts oj wooden ISpecimens, 
apply equally to wood and to metal, due considemtion being given to the eZa tic properties oj the 
materials used. 

The data and the jormula pre ented apply tl'ictly to the tor ion phenomenon. A beam may 
jail either in a normal type oj bending 01' b.y lateral buckling resulting jrom normal loading, or by 
twisting 01' wrinkling oj an outstanding flange under tres es having their o1'igin in the normal 
loading. Li7ceuvi.se, a member such a a very thin tube subjected to torsion may jail at a load less 
than the theoretical load calculated by the to!'sion jormulas beca1.llie oj other phenomena, liuch a8 
wrinkling, which /Wl'e their origin in the twi ·ting load. It is necelSsa1'Y either to duelop criteria }Ol 
jreedomjrom such 'econdaryjailures 01' to apply coefficients to the calculated strength l'aZues to talce c((rp 
oj secondary jailure. Technical 1\ ote No. 189 oj the NationalAdvi ory Committee jo/' Aeronautioi , 

which gives jorm ula jor the variation oj allowable 'hew'ing 8t1'e88 witA change in the ratio of dia meter 
to thickness, indicate one method oj approach to thi problem. The Army and Navy tandard. jor 
sizes oj tubing permit a range in the ratio oj diameter to thic7cnes jor seamless tubing of about 5 
to 43, and tubes oj higher ratio can oj course be jabricated. 

It should be noted that the ]Jolar moment oj inertia and the polar moment oj inertia dil'ided 
by the distance to the extreme fibeT hare no signijicance in comparing the rigidity and the strength 
oj sections oj d~fferent JOTm; in this respect they are not analogous to the use oj the moment oj inertia 
and the section modulu in comparing the bending oj beams. It so happen that the rigorous . tress 

jormulas jor circular l'ods and tubes as given in the report reduce to the common jorm q = 7), which ilS 

MC 
analogous to th~ stre s jormula S = T jor beams. The beam jm'mula, howel'er, is general, while 

the common tor ion jormula is true only jor circular 1'ods and tubes. Fo1' member oj other hapes 
an additional jactor must be introduced into the jormula when reduction is made to the common 
jorm. 

The result o} the actual tor ion te t oj imple ection in Table I I I how large variationlS 
in observed physical properties, which may cause doubt as to the soundness oj de ign values deduced 
jrom the results. Actually part oj the material reported on, while acceptable jor making tests, is 
outside the specijied acceptable range jor aircrajt tack-the test material represented the entire 
tree. Later recommendations jor de ign values are based on the pecijication range and are con­
servative jor rea onable variation out ide that range. For metal these variations (in the ratio of 
"G" to " E" values) are much le in amount. 

Recommended design tres e a jurni hed by the Bureau oj Aeronautic aTe given in Appendix C. 

J. H. TOWEHS, 

Acting Cllief oj Blll·eall. 
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INTRODUCTION AND PURPOSE 

ER R A T A 

l~ATIO"~AL ADVISOrtY COlnnTTE~ FOR AE20NAU rcs . 

TECHlHCAL REP O T 10 . 334 . 

THE TORSI01~ OF l,~EMBErtS HAVI1 G SECTI01 S 

COlQ·;iON IN AIRCRAFT CONSTRU0TION . 

Page 13, bottom - Ohange formula to re ad as follovvs : 

(2 ,,3 n~oo 
<P = - xy + 4l/~ \ L.J 

\n .l n=o 

rl~lUltJ~ J.ll .LQlU.LUT.L ...... ;0.....0.--. ----0- - - ,L 

cosh (2n + l)na 
2b 

sin (2n + 1 )ny 
2b 

rate of loading and of moisture content were determined experimentallY· .I' W· ull~U.llV" , oV~.t' 
films were used in order to take advantage of a mathematical similarity that exists between the 
torsion problem and the problem of finding the deflection of a thin membrane under pressure. 
The analogy is discussed in detail in the report. 

I Originally submitted as "The Torsion of Cylinders and Prisms." 
• Professor of mathematics, University of Wisconsin. 
NOTE.-R. J. Roark, associate professor of mechanics, University of Wisconsin, collaborated with the authors in certain phases of this investi­

gation, giving especial attention to the soap-tUm method. 
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Our experimen tal work with beam o[ irregular ection that have not yielded to mathe­
matical treatment i de cribed. From these experiment and certain mathematical con idera­
tions, empirical formula are et up for i.rregular ection who e component parts are rectangles. 

TEST MATERIAL A D PROCEDURE 

DIRECT TORSION TE T OF BEAMS 

The first erie of dire t tor ion te t was confined to rod of imple section, uch a the 
circle, the quare, the elIip c, and the equilateral triangle. The te t pecimens were madr o[ 
cal'dlllly selected itka prllce and when everal were to be compared directly they were cut 
[rom the ame plank. The cIa tic pl'opertie of the material in any plank were obtained by 
te ting mall minor pecimens cut from the plank and 0 located as to be representative. The e 
spreimens u lIally com~isted of two bending, two compre ion parallel to the grain, (,wo specific 
g"l'ftyity, eight , hear, and three torsion pecimens. The three minor tor ion pecimens con-
i ted of one piece approximately n~ inche square, one piece 1 .. by 3 inches quarter-sawn, and 

one pi ce 1 by 3 inches flat- awn. Four of the shear specimen were te ted radially and four 
tangentially. All major tor ion pecimens for this fir t serie of te t were 45 inche long and 
the area of ero ect ion wa usually less than 2 square inches. 

The second series of tests wa made on heams of irregular ection, uch a I , T , L, and U. 
The c heam \\'ere 9G inches 10nO', were cut from clear itka prllce plank, and were matched 
as de crihed fo], the first series. 

The apparatus for the fir t two !'eJ'ie of test, which \Va constructed expre ly for the e 
te ts, consi ted e sen tiaIly of an attachment for holding one end of the beam fixed against 
rotation and a disk for applying torque at the other end. (Fig . l. ) Rollers at th fixed end 
provided for longitudinal movement. The disk, which \Va 10 inche in radius, turned on 
hall bearings. It was rotated by a metal trap attached to and pa ing around its periphery 
and thence up to a yoke attached to the 'weighing platform of a scale, which was accurate to 
one one-hundredth of a po lind. The entire scale wa bolted to the movahle head of a te ting 
machine and load \\'as applied by raising the head. The usual length over " ,hich distortion was 
read, called the "gage length" in this rcport, \\Tas 24 inches for the hort pecimens and 36 
iuche for the long specimen. At one end of the gaO'e length a circular metal frame with a 
20-inch radius was clamped to the specimen, On the periphery of this circular frame was 
aLtached a steel tape graduated to tenth of an inch. At the other end of the gage length a 
rectangular frame was a180 clamped to the pccimen, and welded to this frame wa a pointer 
that extended to the scale on the circular frame. As the beam wa t\,j,sted the scale rotated 
more than the pointer. Determining the excess movement of the scale by reading the po it,ion 
of the pointer on it thus yielded the angle of twist over a givcn gage length directly, the total 
angle in radians bing the scale reading di ¥ided by the racti liS, 20 inche. The angJe of iwi t 
pCI' Ul1lt length, in radians, is then this quotient divided by the gage length. Except for tests 
made pccifically Lo determine the effect of rate of loading, the rate wa varied with the 
type of pecimen, in order to obtain approx.i.mately the same rate of train in a ll te ts. uch 
Yal'iation nece itatedrai ing the movable head of the testing machine aL rate of from 0.G74 
inch per minute to 1.40 inche pel' minute. For te t made to determinr the efl'ect of rate 
of loading, the peed of the movable head was varied from 0.023 inch per minu te to 2.25 inches 
pel' minute. 

OAP,FILM TESTS 

The value of oap film in determining the .torsional rigidity of a twi ted rod and the 
stresses in it depends upon an analogy between the tor ion problem and that of finding the 
deflection of a thin membrane under the action of a uniform load. The mathematical imi­
larity i di cus ed later in this report, where it is shown that if a oap film i tretcheel over a 
hole in a flat plate, the hole being the ame hape as the cro ection of the bar and the film 
being eli placed from the plane of the plate b~y a light cliO'erence in pre SUJ'C on the two ide, 
the following relation hold: 
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l. TIH' hear tre at any point of the cro s secLion is proportional Lo the lope of the film 
at the corre pondinO' point with respect to the plane of its boundary. 

2. The contour line of the film represent the direction of the resultant shear stre at every 
point. 

3. The torsional rigidity of the ection is proportional to the volume between the soap 
film and the plane of the plate. 

In order to make II e of the analogy it " 'as neces ary to design apparaLu with which the 
slope of the film, it contoUl' lines, and the volume of eli placement could be drtermined. The 

FI GU RE i.-.lpparatus for applying torquo to structural shar es and n.casuring the angle of twist 

apparatus wa patterned after that used by Griffith and Taylor and described by them in 
Advi ory Committee for Aeronautics (British) Report and Memoranda TO. 333, June, 1917. 
As pointed out, the stresses in the bar are proportional to the inclination of the film and the 
tiffness of the bar is proportional to the volume generated by th film displacement. The rela­

tions hold for any number of film provided the difference in pres me on the sides of a film is 
the same [or all. This condition i readily attainable by making more than one hole in the 
same test plate; it is evident that the ea ie t way of obtaining actual tre s or rigidity values 
is to have it circular hole in each plate in addition to the hole that represents the ection being 
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studied . The rigidity of a circular shaft and its stresses are easily calculated, and having the 
two films in the same plate makes it possible to compare torsional rigidities directly by com­
paring volumes and to compare stresses directly by comparing slopes. 

In assembling the apparatus, a plate with the experimental hole and a circular hole cut 
in it (fig. 2) was clamped between the bottom and the sides of a cast-iron box (fig. 3). The box 
bottom, which was 11 % inches square outside and 2 inches thick, was supported on leveling 

FIGURE 2.-The soap-film apparatus with the upper part of the box removed to show the per­
forated plate 

screws. It was recessed X inch inside of the %-inch bearing surface on which the plate rested. 
A square frame % inch thick and 2 inches deep formed the sides of the box ; both bottom and 
frame were provided with lugs for clamping screws. Over the frame was placed a piece of plate 
glass through the center of which a hole had been cut for a micrometer height gage, reading to one 
one-thousandth of an inch, that carried at its lower end a hardened steel needle point. Fixed 
axially above the needle point, extending upward from the frame supporting the gage, was a 
steel recording point. The position of the gage, at each reading, was recorded by pressing 
against it a sheet of paper attached to a board that could be swung down to the horizontal for 
this purpose; the board was hinged to the heavy cast-iron base on which the bubble box was 
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leveled. Provision wa made for increa ing the air plessure below the oap films or decrea ing 
it above them. 

With this apparatus contour lines and hence displacement volumes could be determined. 
Stres could also be determined, since it is inverse1y proportional to the di tance between con-

}' lG URE 3.-The complete assembly or the soap-film appara tus 

secutive contours. A collimator for measuring slope directly was made but time and funds 
allotted to the study were exhau ted before it was put in use. 

The test p]fites were cut from sheet aluminum approximately 0.05 inch thick. The edges 
around the test holes were beveled; the sharp edge was placed upward in the apparatus find 

6664 -30--2 
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great care wa taken to keep the plate' perfectly flat. 'Yhen divergences from a plane were 
founel they were corrected by propping up the plate from below or by pu tting small weight 
on top of it. 

'Vith ymmetl'ical ections a complete boundary sometimes was not u ed. Griffith and 
Taylor fOllnd that the shape of a ymmetrical film was unaltered if the film was divided by 
a \"Crtical eptum passing through its axis of symmetry. In Ollr work a septum \Va, carried 
down about one-eighth inch below the under side of the plate. Figure 2 sho,," a eptll m in place. 

Be t re ults were obtained with a circular hole about 3 inche in diameter and with the 
dimen ions of the experimental hole such that the ratios of the height or the bubbles over the 
two holes were between 2 and l. 

In carrying out the experimental work, a film was drawn acro the holes with · a strip of 
celluloid wet with oap solution. The blowing up was done throuo-h a burette, the bot.tom of 
\\·hich wa connected to the lower end of a column of water, through a stopcock , and the top to 
the chamber belo\\" the t~st plate. As water wa pa sed into the bottom of the burcttc, air was 
rorced out of the top into the apparatus. This method was employed in tead of blowino- up the 
bubble with air from the lungs because the carbon dioxide introduced by that method wa harm­
rul to the bubbles. 

The succe s of the method depends largely on obtaining a oap film that will permit the taking 
or a great number of readings. orne difficulty wa at first encolmtered in obtaining a suitable 
soap ollition. All formulas inve tigated produced film t.hat would last but a few minutes until 
It solution u ed by Dewar was tried. With this solution we were able to obtain film that would 
orten last throughout a whole working day. It wa made by adding a very mall quantity of 
triethylamine oleate to a 50 per cent solution of glycerine in di tilled water. The triet.hylamine 
oleate was prepared as follows, u ing 2 gram of triethylamine to 5 grams of oleic acid: 

The amine was dissolved in warm water and the oleic acid was slowly tirred in. Exces 
amine in the emulsion wa expelled by distillation and the water wa expelled by ub eq Llcnt 
evaporation on a team bath. In the preparation an excess of oleic acid should be avoided, ince 
it is not volatile. 

Other oleates, such a ammoni um, odium, and potassium, were found by Dewar to be 
very ucce sful, but the triethylamine solutions are by far the most resistant to almo pheric 
impurities. 

DISCUSSIO 

THE TORSION PROBLEM 

If a right. cylinder or prism is twisted and held in equilibrium by means of couplc applied 
at it ends, the portion of the cylinder 01' prism between any cross section and one end is in 
equilibrium under two equivalent couples, one in the plane of the cros section and the other the 
applied couple at the end. The couple in the plane of the cross section will be regarded a the 
re ultant of a uitable distribution of shearing stress, which con ists of tangential traction in 
t he plane of the section combined with equal tangential tractions along appropriate longitudinal 
sections. Since the cylinder or prism is in equilibrium under the action of the couples that are 
applied at its end, the cylindrical surface must be free from traction. 

Corresponding to the shearing stre e ju t referred to, there will be shearing train of 
two types, one consi ting of the sliding of the elements of one cross section over tho e of an ad­
joining section, the other of the relative sliding of different longitudinal element in the direction 
of the length of the cylinder. The first type of train will be expre sed in terms of the angle 
through which the plane of the cction has been rotated, the angle being assumed proportional 
to the distance from one end. The econd type of strain, which implie that, in general, the plane 
cro s sections arc di torted into urved surfaces, will be expre sed in terms of the di placement 
of the clements of a scction in the direction of the length of the cylinder. This displacemcn t i, 
taken to be the same for all sections of a giyen cylinder or pri m. 
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If the axis of Z be taken in the direction of the length of the prism and the component of the 
di placement of a point parallel to the X, Y, and Z axe be denoted by u, v, and w, re pectively, 
the state of strain just described i a consequence of the following displacement: 

U= --ryz, v=-rZX, W=-rcf>(x, y) (1) 

where -r is the angle of twi t per unit length and cf> is a function of x and y only, which j to be 
determined. 

The 11 and v components of the di placement together express a rotation about the Z axi 
through an angle Z-r of a ection at a di tance z from one end, while the W component expresse 
the di tortion of each given section from its plane. 

From the components of the di placement, the components of strain follow and from the e 
follow the component of tre . (References 1 and 2. ) It is found that the X and Y component, 
X. and Y z , respectively, of the shearing tre at a I oint (x, y) in any cro s section, are expressed 
by the equations: 

Y =G-r(acf> +x) 
• ay 

(2) 

where G i the modulus of rigidity. 
As ociated with the stre component X. and Y z, which act in the plane of the cro ec-

tion, are the tre components Z x and Z y, which are equal to X . and Y ., re pectively, and which 
act in longitudinal plane parallel to the ZX and YZ planes, re pectively. All other stress com­
ponents are zero as a consequence of the assumed displacement (1). Thu the di placement 
taken in (1) kad to a ystem of tre ses of the type described in the fir t paragraph of thi 
section. 

From the equation of equilibrium of the prism under the tate of tres just considered, it 
follows that the function cf> satistie t,he differential equation 

a2cf> a2cf> ax2 + ay2= O (3) 

over the area of the cros section of the prism. 
The requirement that the lateral urface of the cylinder or prism hall be free from traction 

lead to the following equation, which mu t be sati tied by the function cf> on the curve bOllndino­
tlw cross section of the prism; namely, 

~~ = y cos (x, v) -x co (y, v). 

In this equation, v denotes the exterior normal to the bounding curve. 
The moment T of the couple in the plane of any cro section is expre 

function cf> by the equation 
T =O-r, 

where 

(4) 

ed in term of thc 

(5 ) 

(6) 

the integral being extended over the area of the cro section of the pri m. It is often conven­
ient to replace 0 in equation (5) by G K where K is the integral by which G is multiplied in (6). 
Thus: 

T = GK-r. (5') 

The problem of determining the torsion function cf> ubject to the differential equation (3 ) 
and the boundary condition (4) may be replaced by that of finding a function if; conjugate to cf> 
which atisties the diITerential equation 

(7) 
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and the boundary condition 

1 
if; - 2 (x2 + y2) = constant. 

The following relations connect 4> and if;: 

a4> aif; -= - , 
ax ay 

If we replace 1{; by the function'll defined in the following way: 

we find from (7) and ( ) that'll sati fies the differential equation 

a2'll a2'll 
ax2 + ay2 + 2 = 0 

subject to the condition 
'll = 0 

( ) 

(9) 

(10) 

(11 ) 

(12) 

on the boundary of the ection, the con tant in equation ( ) having been cho en to be zero. 
From equation (2), (9), and (10), we find that the components of the hearing tress are 

simply expressed in term of the function'll; namely, 

Y = -Gr a'll, 
z ax 

a'll 
X z= Gr ay' (13) 

Hence the tangential traction at a point in any cro section of the prism ha the direction of 
the tangent to that curve of the family 

'll(x, y) = constant 

which pas es through this point. The curves, 'll = con tant, are t,herefore line of hearing 
tre s . 

Fmther, the resultant shearing stre s at a point in a cros ection i equal to 

(14) 

where v denotes the exterior normal to the curve'll = a constant that pa se through the point 
in question. The re llitant shearing stress at a point is therefore proportional to the gradient 
of the function'll at that point. 

Further, when written in terms of the function'll, the expression (6) for the torsional rigidity 
becomes--

O= 2GJ J'lldx dy. (15) 

(Reference 3. ) That i , the torsional rigidity of the pri m is equal to twice the product of the 
modulu of rigidity and the volume inclo ed between the surface 

z= 'll (x, y ) 
and the plane 

z= o. 

The solution of the torsion problem for a pri m of a given section consi ts in determining 
the tor ion function 4> to satisfy the differential equation (3) and the boundary condition (4). 
The tor ion problem may be solved equally well by determining one of the functions 1{; or 'll 
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from the equations (7) or (11), re pectively, each subject to its appropriate boundary condition. 
This is the complete theory of the torsion of thin rod. An interpretation of the displace­

ments assumed is that all points on the Z axis remain on that axis and that every cross ection 
of the rod except the fixed one is twisted about the Z axis. By our assumptions, cros sections 
do not usually remain plane but become warped. Figure 4 shows how elliptical, square, rectan­
gular, and triano-ular ection become elevated in orne parts and depressed in others. All orig­
inally plane section become distorted in the same way since w, the longitudinal displacement, is 
not a function of z. It i clear, therefore, that the theory does not apply to sections ncar a 
fixed end nor to sections near the point where the torque is applied. That all cross section 
should remain plane would require that w be constant and the only section for which this can 
be true is the cirr.ular section. Figure 5, which is t.aken from Bach' "Ela tizitat und Fe tig-

Nofe: Confours 
are lines aT e-

pression. 

FIGURE 4.-Plane sections of non circular rods warped in 
torsion 

keit," how the distortion in an elliptical cylinder and the lac.k of it in a circular cylinder. 
It has been possible to solve the torsion problem rigorously for only a limited number of 

sections. The expres ions for the torsion function cf> or the associated function if; for the more 
common sections are listed below: 

(a) THE CIRCLE: 

cf> = o. 
(b) THE ELLIP E : 

Major and minor axe 2a and 2b-

(c) THE RECTA GLE: 

Sides 2a and 2b-

n -OO • h (2n+ 1)7rX - in . (2)3 "'\l n 2b. (2n + l)7rY 
cf>= -xy+4b- -; LJ(-l~ (2n+l)7ra SIll --2b- . 

n=O h cosh '2b 
(t1il 
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(d ) THE EQ ILATERAL TRIANGLE: 

Origin at centroid . Side a-

olTe ponding olu tion are known for a sector of a circle, a curvilinear rectangle bounded by 
two concentric circular arcs a,ud two mclii, figures hound d by confocal eHip e and hyperbola, 

a 
FIGURE 5.- The distortion of plane sections in an elliptical rod and the ahsence of such distortion 

in a circular rod 

figures shaped like a quare but with concave side and either rounded or sharp corners, and a 
ection omewhat re embling the section of a railway rail. (References 4, 5, and 6.) 

Formulas for simple sections. ,.-
From the preceding expre sions for the tor ion funcLion , the following well-known formulas 

for torque and maximum tre hav been derived: 



or 
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Let 
T = torque. 

e = total angle of twi t in radians. 

L = length. 

G = modulus of rigidity. 

q = greate t inten iLy of stress . 

CIRCLE 

7· = radius. 

ELLIPSE 

r 7ra3b3Ge 
T=(a-2 +bZ)L' 

2(~ = major axi . 

2b = minor axi . . 

EQ ILATERAL TRIA TGLE 

T=a4,/'3Ge, 
80L 

20T 
Q=7' 

a = ide of triangle. 

SQUARE 

4.80ST 
g= 83 

8 = ide of square. 

RE TANGLE 

T b3 G e = (~ jJ. L' 

T = ab3 (16 - A!?"') G~· 
3 a L 

2a = long side of rectangle. 

2b = short ide of rectangle. 

The factor jJ., A, and 'Yare dependent upon the ratio of the sides . Their value giycn in 
Table I arc from St. Venant. (Reference 5.) The ma)..'imum tres q occur at the middle of 
the long side. The stress at the middle of the short side i gi,en by 

'YIT 
'11= jJ.b3 

in which 'Yl i a factor dependent upon the ratio of the sides. It values are also given in Table J. 



16 REPORT NATIO AL ADVISORY COMMITTEE FOR AERO AUTICS 

T ABLE I. - Factors Jar calculating torsional rigidity and stress of rectangular prisms 

Ratio of 
sides 7 

1. 00 \ 3. 0 410 2. 24923 1 1. 35063 1. 05 3. 12256 2. 35908 1. 39651 
1. 10 3. 15653 2. 46374 1. 43956 
1. 15 3. 18554 2.56330 1. 47990 
1. 20 3. 21040 2. 657 8 1. 51753 
1. 25 3.23196 2.74772 1. 55268 
1. 30 3. 25035 2. 3306 1. 5 544 
1. 35 3. 26632 2. 91379 1. 61594 
1. 40 3. 2 002 2. 99046 1. 64430 
1. 45 3. 29171 3. 06319 1. 67265 
1. 50 3. 30174 I 3. 13217 1. 69512 
1. 60 I 3. 31770 3. 25977 1. 73 9 
1. 70 3. 32941 3. 37486 1. 77649 
1. 75 3. 33402 3. 42843 1. 79325 
1. 0 3. 33798 3. 47 90 1. 80 77 
1. 90 3. 34426 I 3. 57320 1. 3643 
2. 00 3. 34 5 3. 65891 1. 6012 
2. 25 3. 35564 3. 4194 1. 90546 

7 1 

1. 35063 

1. 137 2 

. 97075 

. 91489 

.8409 

.73945 

I 
I 
I 

I 

I 

I 

-
Ratio of 

A-sides 

2. 50 3. 35873 
2. 75 3. 36023 
3. 00 3. 3607S 
3. 33 -- - ------
3. 50 I 3. 36121 
4. 00 3. 36132 
4. 50 3. 36133 
5. 00 3. 36133 
6. 00 3. 36133 
6. 67 3. 36133 
7. 00 3. 36133 
.00 3. 36133 

9. 00 3. 36133 
10. 00 3. 36133 
20. 00 3. 36133 
50. 00 3. 36133 

100. 00 3. 36133 
00 I 3.36133 

J.L 7 I 71 

3. 98984 1. 93614 O. 59347 
4. 11143 1. 95687 ----------4. 21307 1. 970 7 ---- - -----

--------- --------- .44545 
4. 37299 1. 98672 ----------4. 49300 1. 99395 . 37121 
4. 58639 1. 99724 ----------4. 66162 1. 99 74 .29700 
4.77311 1. 99974 __________ , 

- - ------- _ _ _ _ _ _ _ _ _ . 22275 
4. 85314 1. 99995 __________ 
4. 91317 1. 99999 . 1 564 
4. 95985 2. 00000 -- - -------4. 99720 2. 00000 . 14 5 
5. 16527 2. 00000 .07341 
5.26611 2. 00000 ----------5. 29972 ~: ggggg ,--.-00000 -- , 5. 33333 

When letters are u ed for the full sides and not the half ides, letting c represent the long side and d the short side, the formulas become 

or 

T=cd
3
(1 _ 3X ~)a! 

3 16 c L 
in which {3 = JL/16, and X has the same values as before. It can be seen that if ~is small, we arrive c at the common approximate formula: 

T =cd
3

a!. 
3 L 

A h . c . f h . 3X . f s t e ratlO d vane rom 1 to co t e expresslOn 16 vanes rom 0.578 to 0.630. 
St. Venant gives the following approximate formulas for the con tants, which agree with exact values within 4 per cent: 

Using this value of. 'Y 

Both are common approximate expressions for the stress at the middle of t.he long ide. 
ST. VENANT' APPROXIMATE FORMULA FOR COMPACT SECTIONS 

For fairly compact sections without any reentrant angle t. Venant gives the following approximate formula for the torque: 

in which A is the area of the section, J the polar moment of inertia of the section, a the modulu 
of rigidity, and f the angle of twist per unit of length, 
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Although St. Venant clearly stated that this formula applies only to fairly compact ecLions 
with no reentrant angle , it i often applied to other section, for example, to ections made up of 
component rectangle. Re ulting error may amount to everal hundred per cent in extreme 
cases. However, when re. tl'icted to ections for which it was in tended the formula i fairly 
accurate. 

Formulas for hollow prisms or tubes . 
The cros section of a hollow prism or cylinder i bounded by two clo ed curve upon which, 

in accordance with equation ( ), the function \]( mu t take con tant but, in general, different 
value. Denoting by \](0 and \](i the value of \]( on the outer and inner boundarie , ]'e pectively, 
and by Ao and Ai the entire areas indo ed by the respecti ve bounding curves, the analysis that led 

FIGURE 6 

to equation (15) for a olid prism or cylinder will now lead to the following expression for the 
torque: 

(16) 

(References 3 and 7.) The integration is extended over the ring-shaped ection. If the 
ring is narrow we can replace \]( under the in tegl'al sign by the cons tan t 

The last term in equlttion (16) then becomes 

The expres ion for Tin (16) then reduce to 

(18) 
where 

(19) 

If we denote by t the width of the ring Itt any place AB (fig. 6), we obtain (equatioll14) as 
an approximate expre sion for the Itverage shearing stre at points in AB 

Hence 

and (1 ) becomes 

66648-30--3 

L1\]( 
q= Gr . 

t 

tq = GrL1 \](, 

T = 2tgAm • 

(20) 

(21) 

(22) 
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If we form the integral of qds around the curve 'It = 'ltm which may, if t is not too large, be 
taken to be the CUl've lying half way between the inner and outer boundaries, we find after 
some reduction 

f qds = 2Gr Am. 

(R eference .) Replacing q under the integral in (23 ) by its value from (22) we obtain 

or 

T~ff' 

We find from (22) as the approximate expres ion for the stre s 

RIGOROU METHOD: 

T q= - . 
2tAm 

CIRC LAR T BE 

(23 ) 

(24) 

(25) 

When the inner boundary of the tube i a line of hearing stre s of a solid section that has 
Lhe same outer houndary fl the Lube, the rigiC\iLy of the tubular section may be obtained directly 
by ubLraction. 

ApPROXIMATE METHOD: 

r = mean radius. 

t = thickness of wall. 

T 
q=ZtA' 

A = 7r (r + ~) 
2 

+ 7r (r _ ~) 2. 
2 

JdS = 27rr, 
t t 

Dropping the square and higher powers of t, we have the common approximate formulas 

ELLIPTICAL TUBES 
RIGOROUS METHOD: 

The rigorous formulas apply only when the inner and the outer ellipse are imilar, that 
i , when the inner ellipse is a line of shearing stress for a solid shaft having the same outer 
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boundary as the tube. The semirigorous formulas, of course, apply whether the ellipses are 
similar or not. Let the inner and outer boundaries be the similar ellipses: 

Then the inner semimajor a}"'1s is a and the outer a(l + k) and the inner semi minor axi band 
the outer b (1 +k). 

2T 

ApPROXIMATE METHOD: 

eglecting the square and higher powers of k, the approximate formula (24) gives 

T 

ACCURACY OF APPRO", 11\1 ATE METHOD 

It is apparent from a comparison of the preceding formulas for circular and elliptical tube 
that the results from 

and 

T.Jds = 4AGi, 
A t L 

T 
q=2tA 

are quite accurate for small values of t. Usually a commercial tube i made with the t.hickness 

of metal constant, in which ca e t in J~s becomes constant. While A had best be regarded a 

the mean of the areas inclosed by the inner and the outer boundaries of the section, good results 
are obtained by dmwing a curve midway between the two boundaries of the tube and taking 
A as the area inclosed by this curve. The quantity ds is an element of length along this curve. 
Further examples follow. 

HOLLOW RECTANGLE 

Let the outer boundaries be a and ·b and let a be the greater side. If tl is the thickness of 
the greater side and t the thickness of the smaller side, the sides of the mean rectangle are (a - t) 
and (b-t 1) and 

A= (a-t)(b-t l ), 

Jds = 2(a-J) + 2(b -t l ), 

t tl t 

T 

The eqnation for stress is true only along the sides of the rectangle where the shear lines arc 
parallel curves. To avoid high stresses at the reentrant angles, the inner corners should be 
rounded. 
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IRCULAR T BE PLIT LONGIT DINALLY 

A tube of mean radiu r and uniform thickne t, split longitudinally, may be regarded a a 
flat sheet, although this fact i not 0 well known a it hould be. If the ratio of r to t i great, 
the approximate formula for a rectangle may be applied and 

1 8 
T ="3 (27rrt3

) G L' 

2 8 
=3 mPG1 , 

For the closed tube, the approximate formula is 

T =27rr3tG!.., 
L 

and the ratio of the torque for the same 1 is 

It can al 0 be hown that for the same maximum tre the ratio of tbe torque 
mately equal to 

The plit tube, therefore, i much ,,"eaker under tor ion and Yery much Ie rigid . 

Solid sections of irregular shape. 

approxl-

We have now di cu cd ubstantially all of the sections for which practical formula have 
been obtained by direct mathematical treatment. There remain uch ection as the I , T , U, and 
L that have not yet been brought within the ranO"e of mathematical analysi. The e ection 
normally OCCUI" in beams or in compre ion members and not in member de igned primarily 
to take a tor ional couple. eyerthclc s, such member are all subject to tor ion an 1 the loads 
that they will ustain may be dependent upon their tor ional riO"idity. Becau e of it importance 
in thi connection, our inve tigation ha dealt largely with torsional rigidity rather than with 
stees . 

\Ve will first con ider the calculation of th e rigidity and later touch upon the matter of 
tre . For any section we call write 

in which K is a con tanL that depend oIly on the bape and dimension of the cro ection and 
involve the fourth power of a dimen ion ( ee the preceding formula for r gular ection). Thi 
con Lant Ki usually poken of a the "torsion con tant" of the ecLion and will be 0 referred 
to in thi report. Our problem i to determine a uitabl method of calculating K for variou 
irregular hape . 

Before embarking upon an extended eric of te t ,it was nece ary to make some prelinlinary 
te ts of wooden members of simple ection III order to deL rmine to what extent certain factor, 
governed the torsional propertie of wood . A au ual thing, the modulu of rigidity a ociated 
with a traction in a radial plane is not equal to the modulu a ociated with the traction III a 
tangential plane. In other word, the ela tic con tant for a hearing tre s acting in a plane at 
right angle to the O"rowth ring i not the arne a for a hearing tre a ting in a plane tangential 
to the growth ring. Thi fact introduce two moduli of rigidity into the problem. There i a 
third modulu of rigidity for wood which ha to do with the tre e that tend to roll contiguou 
fibers pa t each other, but when a member i twi ted about an axi parallel to the grain of the 
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wood this ela tic constant does not come into play. Our first problem then was to det('rmine 
what difference, if any, there was between the radial modulu of rigidity and the tangential mod­
ulus. Other factor pertinent to our te t procedure were the effect of moi ture contcnt and the 
effect of rate of strain. Each of the e three factor was studied and a brief di cus ion of each 
follow. 

Moduli of rigidity of spruce. 

It is hown in Appendix A that a rectangular prism, two of who e axes of clastic ymmctry 
lie in the plane of the cross sectioJl, behayes a a prism with a parallelogrammatic cros ertion 
when these axes are not parallel to the sides and a a pri m with a transformed rectangular 
ection whell the axe are parallel to Lhe ide . The modulus for the transformed s('ction in 

either ca e is computed from the two moduli ill\'ohTed. It is al 0 hown that if G1 i the modulu 
a sociated with Lhe plane tangential to the annual rings and aT the modulu a ociated with the 
plane perpendicular to the ring, the relations of Table II hold. 

Sides 2a, 2b 

Plain-sawn lJoUl'c1 __ _ 

Qllart('l'- awn \)o!lrcL 

TABLE II 

ide of tran -
furm I rec­

tangle 
Modulus 

It wa pos ible from these relation to determine the value or G, and Or for any plank by 
te ting a quarter-sawn and a plain- awn piec cut from that plank. Thi wa done for practieally 
every piece used. The e minor pecimens were 1 by 3 inche in cros section. Occa ion ally 
light season checks, which run radially, cau ed tho quul'ter- awn pieces to be Ie rigid than 

their corre ponding plain-sawn pieces, whereas with ound material the quarter- awn piece 
. hOllld be the more rigid, since GT i greater than Gt. It wa found that for Sitka spruce at was 
about 90 per cent of GT • This means that quarter-sawn rectangular beams of . itka spruce 
with a large ratio of long side to short side will average about 10 per cent more rigid in torsion 
than similar plain-sawn beams. Ordinarily no great error will re ult if the mean modulu as 
obtained throllgh the test of a circular section i u ed in calculating the rigidity of beams. It 
may, of COUl' e, introduce on the avel'aO'e about half of the difference between the plain and the 
quarter- awn values, or an error of about 5 per cent. It is much ea ier to make quare section 
than circular section and the difJ'erence in meun m dulu obtained is practically nil. quare 
minor specimens, therefo]'!', were tested a a check again t the value obtained from the 1 by 3 
inch minor specimen . 

As a check against the mathematical analysis given in Appendix A, a few serie of tests 
were run on beams of rectangular and of elliptical eetions with the annual growth rings at 
various angle to the axes of the ections. The result are shown in Fiaure 7. The curve for 
the ellipse wa calculated by me-ans of the relation given in Appendix ; the circle along the 
curve are to t Yalue". The elll'Y(' for the rectangle repre ent the ob ervations; they agree in 
form with a curve calculated for a clifferent ratio of the two moduli. 

Effect of moisture content. 
In order to obviate the nece ity of making moistu re adju tment , the major anel the minor 

te t specimens were always kept in the same condition. They were never separated after 
fabrication and the time between the te ting of the major .anel the minors was reduced to a 
mlmmum. 

A series of tests was made, however, to learn enough about the efrect of moi ture content on 
tor ional properties to permit the recommendation of permi sible stre s values for . pruce at a 
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definite moisture content. Twelve matched square pieces were tested, 3 green, 3 at about 21 Yz 
per cent, and 3 at about 7 per cent moisture content. The results are given in Figure 8, which 
shows the variation with moisture content of three properties; namely, modulus of rigidity, fiber 
tress at elastic limit, and ultimate fiber stress. The results from this small number of tests 

were in agreement with relations previously establi hed at this laboratory. 

Effect of rate of loading . 

As tests were run on members of variou izes, the rate of strain was kept fairly uniform in 
order not to introduce thi factor into the results. The ordinary test, however, took several 

106 

Sdka Spruce 
"13" Rcctanqle 

v 

1000 15 30 45 60 75 9.J 

Anqle l3efween Rine;s and Lont{ Side - Oeqrus . 

• Creen Chestnut 
I "d ffectanqle 

06 .,..... 

04 

102 

lv, o 0 ~ 6 W ~ ~ 

Anq/e l3etwecn Rlne;s and Lone; 5Irfr:-Oe'lrees 

II 0 

10 8 
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4 

10 '2 

Sitka Spruc/! 

{
J" Major Ax IS 

Ellipse I~i Mmor AXIS 

V 

10 0 15 30 45 60 75 90 
Anqle f3t:fwet'n Rimj'S and Major AXls-Oee;rees 

FIGURE 7.-Variation in torsional stilIncss with direction of 
annual rings on the cross section 

minutes, whereas the duration of stress as umed for aircraft stresses is three seconds. Conse­
quently, in order to recommend torsional properties of spruce from test, it was necessary to 
know something about the variation in these properties with rate of strain. A matched set of 
cylindrical specimens was made and equal numbers of them were tested, respectively, at each 
of three rates; these rates were in the proportion 1 to 10 to 100. It was found that accompany­
ing- a 10 to 1 change in rate there was a 5 per cent increase in modulus of rigidity, a 10 per cent 

l 
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increa e in ultimate fiber stress, and a 20 per cent increase in fiber stress at ela tic limit. The 
exponential increa e of stress with increased rate of fiber strain has been previou ly ob erV'ed 
at this laboratory. 

Torsion tests of simple sections , 

As the next preliminary step before te ting wooden beam of irrcO'ular section, everal 
series of tests were made on spruce beams of imple section. Beams with the circle, tbe square, 
the ellip e, and the equilateral triangle as bounding cun-es of the cross sections \\'ere cut from 
the same plank. The dimensions and the angle of twist for a giyen torque as detcrmined by 
test were sub tituted in the rigorous formula preyiou ly gi,~en for the corresponding sections 
and an apparent modulus of rigidity calculated thereby. FoUl' of each type of beam were cut 
from each plank. The 1'0 ults arc giycn in Table III. The planks wero cho en 0 as to obtain 
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FIG URE S.-Relation between torsional properties and moisture content 0 1 Sitka spruro 

a wide range in pecific-gravity values. Consequently the fir t two (Table III) are below the 
minimum specific gra,~ity (0.36) allowable in aircraft construction. 

TABLE III 

Moduli of rigidity 

All specimens were 45 inches long and the angle of twist was measured over a 24-inch 
gage length. The nominal diameter of the circulaT specimens n,nd the width of thc squaTe 
specimens were each 1.% inches. The major and the minor axes of the elliptical specimens were 
1}f inches and 1 inch, respectively, for plank 6-1-5 and 1% inches and 1 inch for plank 5- 1-49. 
The triangular specimens were 2 inches on each side. An error in grinding the shapeI' knives 
for the set with elliptical section from plank 6- 1- 25 necessitated the culling of that set. A ver-
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aging the results from the fir t and the last set in Table III, we find that the apparent modulus 
of rigidity for the quare i 1.6 per cent lower than for the circle, for the ellipse 1. per cent higher, 
and for the equilateral triangle 3. per cent higher. A poi.nted out in Appendix A, the direetion 
of the annual rings with re pect to the axe of the section has little effect on the rigidity of 
ections ,d10 e bounding curve is a quare or an equilateral triangle. For the elliptical ecLion, 

however, there i ome difIerence. Con equently, the frr t et in the table wa cut with the ring 
parallel to the major axis and the econd et with the ring perpendicular to that a:xi. Had the 
specimens heen longer, it is thought that the result for the triangular ection would have 
been omewhat lower. The end of these pecimens were enlarged for the application of torque. 
With the circular ection uch enlargement w'ould make li ttle difference a long as the points at 
which mea urement were taken were three or four diameter away from the enlargement. 
Thi i becau e in the circular rod plane ection remain plane. In the triangular rod the tend­
ency of the ections to warp is hindered by the enlargement of the end with a con equent 
increa e in sti[ness. The ame fact i true, although to a Ie extent, of the ellip e. The rod 
with quare sections did not have built-up end. Tabno- all the e factor into consideration, 
the agreement as to torsional rio-idity a calculated by the rigorou formulas is con idered quite 
suitable. 

Table III yields another intere ting relation. 1£ the moduli of ela ticity in the last column, 
which were obtained from minor bending te t , are divided by the corre ponding moduli of 
rigidity for the circular section given in the third column, the quotient will average 15.6. Thi 
relation for the Iwerage of 12 rods checks the relation obtained in 1921 for 20 rod of circular 
section that were te ted in tor ion in connection with another investigation. The mean modulu 
of rigidity [or the 20 pecimen was 100,200 p .. i., and the average modulu of ela ticity 1,569,000 
p. s. i ., or a ratio of 1 to 15 .6 . Hence the ratio for spruce is evidently between one-fifteenth 
and one- ixteenth, wherea for most metals it is in the neighborhood of two-fifths. 

As a further check, four rod of elliptical section were made with a major axi of 2 inche 
and a minor axi of 1}~ inches and were tested within the ela tic limit, and then were cut down 
to a 17~-inch major a"is and l}~-inch minor axis and rete ted. The apparent modulu of 
rigidity in the first ca e averao-ed 77,325 p. . i ., and in the econd 7 ,162, a difference of only 
1 per cent. A repetition of thi serie re ulted in a difference of lightly over 1 per cent but 
with the re ults reversed. ections with equilateral triangles as bounding curves were cut 
down in the same way, though in three tep, fir t with a 2-inch side, then a l %-inch ide, and 
finally a n~-inch side. The average apparent moduli for four beam were 73,350 p . . i. for the 
2-inch side, 72,250 for the l %-inch ide, and 72,650 for the I X-inch ide. The ma"imum 
difference is about 1 per cent. 

From the e te t it appear that dependable re ult can be obtained by u ing wood a a 
te t material. 

Torsion tests of irregular sections. 

Following the e preliminary te ts, ftdditional te ts were made on b ams of irregular ection. 
nch ection as I , T , L, U, and Z were u ed with and without fillet at the reentrant angle . 

In addition to varying the radius of fill et, the ratio of the thickne of the web to that of the 
flange or of one leg to that of the other was varied through a con iderable range. 

The beams were feet. long and the angle of twist wa read for a gage length of 36 inche 
at the cen tel'. The result of t hese test will be discu ed later in connection with the coordina­
tion of the mathematical and the experimental work in the form of empirical formulas. 

The use of soap films in solving the torsion problem for irregular sections. 

The yalue of soap films in determining the tor ional rigidity and the tre in twi ted 
beams depends upon th mathematical analogy between the tor ion problem and that of a 
membrane, sllch a a oap film, under a uniform exce s of pres ure on one ide. Attention wa 
fir t called to thi analogy by Prandtl and very exten ive u e of it wa made by Griffith and 
Taylor. (R eference 9 and 10.) The method i extremely useful in that it offer a means of 
determining the tor ional rigidit.y and the tre of important irregular sections that have not 
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yielded to mathematical treatment. An apparatus was built and, after it was found to give 

results for simple sections that agreed closely with calculated values, tests were made on irregular 

sections. The construction of the apparatus and the method of using it have already been 

described under the heading "Test Material and Procedure." The mathematical basis of the 

method and a brief discussion of the technic follow. The test results will be be dealt with later 

in connection with proposed formulas for irregular sections whose component parts are rectangles. 

In presenting the mathematical basis of the soap-film method of test, let a very thin homo­

geneous membrane be stretched under uniform tension T over an opening cut in a plane sheet 

of rigid material and let the membrane be fixed at the edge of the opening. If a uniform excess 

of pressure p per unit area acts upon one face of the membrane, the small di placement z of points 

of the membrane will satisfy the differential equation: 

(26) 

and the condition that 
z=o (27) 

at the edge of the opening. 

Let the opening and the section of the prism under con ideration be identical in size and 

shape. If we let 

z=L'lr 
2T 

(28) 

in equations (26) and (27), we obtain equations (11) and- (12) for the ftmction 'lr. Hence the 

function'lr appropriate to the tor ion problem for a section of given shape is proportional to the 

displacement z of a homogeneous membrane stretched over an opening of the same shape as the 

section. The proportionality factor in (28) is determined by means of a fJm tretched over a 

cu:cular opening and under the same pressure as the test fJm. It follows from equation (15) 

that the torsional rigidity of a prism of the given section is proportional to the volume inclosed 

by the soap fJm and the plane of the opening. Further, the contour lines, z=con tant, of the 

soap flim correspond, in accordance with equations (13), to the lines of shearing stress 'lr=con­

stant in the torsion problem. And the slope of the fJm at any point, as a consequence of equa 

tion (14), is proportional to the magnitude of the shearing stress at the corresponding point of 

the section. 
In emplo:ying the soap-fJm method, an opening that represents the section of the prism to 

either a reduced or an enlarged scale may be used. It i necessary only to observe that the 

ratio of the torsional rigidities of two geometrically similar sections is equal to the fourth power 

of the ratio of corresponding linear dimensions. 

To obtain well-defined edges coinciding with the boundary of the cross section, the edge3 

of the openings were beveled at an angle of 45 degrees. Our experience has been that this docs 

not entirely eliminate the errors at the edges. The fJm is not always attached at the upper 

side of the beveled edge but frequently hangs at an intermediate point. Even when great care 

is used to avoid a surplus of solution, there usually is a layer of solution along the edge of the 

film that tends to lower the level in its neighborhood and to make uncertain the actual position 

of the boundary. Further, at points where the stress is great and the film consequently is steep, 

there is a tendency for the film to run out over the plate. 

Errors resulting from edge effects can be avoided by using as boundaries of the cross sections 

contour lines other than the actual outline of the opening in the plate. These contour lines, if 

taken near the edge of the opening, approximate the shape of the section with sufficient accuracy . 

The dimensions of the section bounded by the contour line in question can be measured. In 

the tables giving the results of our experiments with soap fJms, we have included, in general, 

data from one or more inner contour lines as well as from the actual outline of the opening. We 

have thus increased the number of sections studied. It is our feeling that the results from the 

inner contours are more reliable than those from the outlines of the openings. In every case 

66648-30--4 
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an inner contour line of the spherical bubble over the circular opening was used as the boundary 
of the comparison cylinder. 

There are various ways of finding the volume inclosed by the test bubble. A satisfactory 
procedure is to take contour lines at frequent intervals, planimeter the areas inclosed by thesc 
lines, and obtain the volume between the planes at different levels by the average-end-area 
method. 

For further details in regard to the technic of the soap-film method, the reader should 
consult the papers by Griffith and Taylor. In our judgment, the high degree of accuracy that 
they attained in certain cases is not always to be expected. 

Formulas fo r irregular solid sections . 

Combining results obtained by soap-film tests with known mathematical facts, Griffith 
and Taylor developed an empil'ical method of dealing with solid rods of any section, which is 
explained in Appendix B of this report. The method gives results for the torsional rigidity of 
fairly compact sections with errors of only a few per cent. For certain sections, however, the 
errors are considerable. In their report on the method, they attribute a discrepancy between 
their results and those of published experimental work to a want of homogeneity in rolled I and 
U sections. Some of our soap-film experimental work on I and U beams, however, fails to 
check theIr formula by as much as 25 per cent and the discrepancy is in the same direction as 
that mentioned in their reports, the formula giving results that are too high. 

In an extensive investigation of the torsion problem, Constantin Weber developed, on the 
basis of the usual mathematical theol'Y, approximate formulas for the torsional rigidity of a 
large number of sections and for the ma~:imum stress in these sections. (Reference 11.) Tor­
sional rigidities calculated by his formulas are low in comparison with our test results. 

In dealing with such sections as the L, U, Z, T , and I , Weber replaced the given section 
by an equivalent rectangular section. To represent the situation at the junction of two rectan­
gles, he chose the length of the equivalent rectangle to secure a certain desired area. ow 
changing the length of a rectangular section in a certain ratio does not alter its stillness nearly 
so much as a corresponding change in the breadth. There is essentially an increase in breadth 
of section at the junction of two rectangles, for instance, at the corner of an L. This can not be 
compensated for by merely increasing the length of the equivalent rectangle in the manner 
chosen by Weber. Accordingly, his formulas give values of the torsional rigidity considerably 
below those that we have found by means of direct tor ion tests and tests made by the soap­
film method. It should be noted that Weber assumed that fillets were always present, their 
radii being equal to the width of the narrower of the component rectangles of the sections. 

For sections such as I , U, and T , whose component parts are rectangles, the following 
approximate method for calculating tiffness is proposed as a result of our study; we shall first 
show its derivation. 

The pro blem is to find K in 
(J 

T = KGr 
o.w K is a constant that depends solely on the shape and the dimensions of the cross section, 

and involves the fourth power of a dimension. Figures 9 and 10 show that at the junction of 
two component rectangles there occurs a hump or hill on the soap film . This hump shows that 
the rigidity of the complete bar is greater than the sum of the rigidities of the separate rectan­
gular parts. The volume of the soap bubble, of course, represents the rigidity of the entire bar 
and the increased volume at the hump in the bubble represents the amount by which the rigidity 
of the bar exceeds the sum of the rigidities of its separate rectangular parts. 

For an I beam, we write 

in which K, is the torsion constant of one flange and K2 that of the web, while C is the term that 
is to express the additional stiffness caused by the two junctions of the flanges and the web. 
In place of C we write 2 a D4 in which D is the diameter of the largest circle that can be inscribed 

1 
I 
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Test-3 

Contour U~yaflons 
.054-.104 -.154 -. .204 
.)54 -. 304 -. 354 -. J 79 
Top of /3ubb/e .404 

ConTour EI~vatlons 
.004 - .018-.038 - .053-.tM8 
.138 - ./73 -.178 -.203-. .2.28 

Top of /3u.b.b/e . .238 

Note :- All t7imt'nslons art' in Inches 

Test-15 

Contour E/~vdTions 
.0/2 - .037-. 062 -. 087-.11,2-.137 
.187 -.237-.287- . 337-. 357-.377 

. Top o f /3ubble .387 
FIGURE 9.-Linos o( shearing stress (or I heams in torsion. 

Test-16-2 

contour ElevatIons 
.003- .017- .05 7-.087-.//7 
.128- ./67-./87 -. 2/2 

Top of fJub.ble . .237 
(From soap-film tests on half sections) 
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Contour Elevations 
.013-.038-.063-.088-.113 - ./33 
.145-.156 -.178 - : 198 - .218-.230 

Top of tJubblc - .,z38 

Test-18 

contour Elevations 
.014 - .039- .064 - . 089-./04 
. 1/9 -./59-.197 - .209 -.229 

Top of Bubble -. 239 

Note :· A/1 t7lmensions are in Inches 

contour Elevations 
.005-.011 - .019- .053 
.103 -.153-.203-.233 
Top of fjubble . 253 

FIGURE lO.-Lineso(shearing stress (or U and Z beams in torsion. 

Tcst-9-,l 

contour Elevations 
.008 -.028 -. 058 -.078-.085 
.098-.118 -.138-.148 -.158 

TOp of 8uphle .163 

(From soap-film tests on huJC sections) 
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at the junction of the two componen t rectangles and a i a factor to be determined. We then 
have 

An examination of Figure 9 will how that the bubble taper dO'wn at the ends of the flange, 
a it normally would in a rectangle, while in the web it behaye more like a part of a long rec­
tangle. For thi reason, we hall calculate KI by the normal formula for the rectangle 

T:r b 3 K b 3 (16 bl ) .ll.1 = all}J.or I = a l I 3 - A
al 

• 

lind K2 by the formula 

The factor ex for any ection depend upon two things; the ratio f the l'adiu of the fillet to the 
thickne s of the [lange and the ratio of the thicknc s of the nalTo\yer component rectangle to 

.2 0 

CL .10 

o 

d for Ljunction of two component rectangles ..... tt­
v.9i 

'-
-f- . I-f- f- i-f-
f-+- I- I-f- 1- ~- l..-I..-- t:::--
f-f-1- H-I- - I- v t::;t::: f.-:l..- ~ 

L.-

I-i- I-- L.- V ..- l- I..--
I--: :::.-t;;;: 1-1- :'-1- :-f.:.=P 

k:;~ i:'=:p- ::-:::-1-1- l-I---
.c . 4 .6 .8 

R t · Width of narrow leg 
a 10, Width of wide leg 

I..--

t:~ 

I 1.50~ ~ 

.-< 1 

us ..... . ~ 
.00 Q "­
.75 ft) 0 
.50.~ .c: 

",.-

I--
1---1-

.c5~ b 

.D0ll: ~ 

.2.' 

..... 

1. 0 ~ 

ex for T junction of two component rectangles 
.~ ~W~~ 

1.25 .::;:: 2' 
1.00 .... .Q 

I V 

.20 

.10 

o 

-

./V 

v::i:;:: ~::::: V 
~ 

- :;::: ! 
;...---~ 

~ r:~ 
I--I-- ~ ~ t::: 
I--I--V 1¢j ~ t:"-

V 

""" ~ 
p- I- i--+- f--f--

V 
V 

V 
./ --./ !.--

!.--/I I-
f--

I--

I--

vr V 
V 
X 
Y 

/ / 

Y ..-
Y 
.....-1--

i I-t-

"-.'<... 
.750 ..... 

(f) 0 
.50 'J .c: 

'5 ..... 
. 25 0 ~ 
.OO~ S 

§ 
&? 

.c .4 .6 .8 1.0 
Width or narrow component rectangle 

Rafio, Width of wide component rectangle 

FIG URE ll.- Vnlucs of a. for computing torsional rigidity of sc('tions whose compollC'nt 
parts arc rectangles 

the thickness of the wider componen t re tangle. The values of ex for different com binabons 
of Lhe e two factor, which were obtained through a variety of expcriment with oap film and 
torsion te t of actual beam, arc hown graphically in Figure 11. While our experiments werc 
not exLensive enough to prove conclu iveJy that for a given ratio of radius of fillet to thicknes 
of flange the yariation in ex i linear for va ryinO' ratios of the thickne es of the two componenL 
rectangle , we feel that uch a variation is dose enough to the tJ'U th to warran tits u e. Table 
IV shows how K calculated by thi imple method for I ection agree with re ult obtained by 
actusl beam te ts and soap-film te t . 
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TABLE IV.-Values oj lorsion conslanl K Jor I-beams 

Thickness 

Test 
"Web 

l-L .... I 0.500 
I ...... .49 
1-9...... . SOl 
l - IL... .624 
I-I L ... _ .624 
l-IL... .625 
l -1L... .624 
l -1L... .623 
l -1L... .624 
1-16..... .622 
1-11--.. .622 
I-I . •... .507 
l-lL... . 503 
J-2L.. . .49 
1-2L... .497 

3. . . ... 1. 260 
lL..... 1. 755 
14- L. 1.650 
15._.... 2.507 
15- 2... 2.390 
16-2 . _ .. 1.260 
16-2-01. 1. 180 
16-2-02. !.l05 

Flange 

0.500 
.49 
.501 

76 
. 875 
.874 
. 74 
.8i2 
.73 
.872 
.873 

1. 040 
1. 045 
I. 039 
1. 043 

1.760 
1. 255 
1.100 
1. 260 
1. 050 
1. 257 
1. 1 0 
J. 105 

Total 
height 

3.46 
3.46 
3.4 
4.00 
4.01 
4.00 
4.00 
3.97 
3.97 
3.9 
3.97 
4.49 
4.50 
4.4 
4.49 

Total 
width 

2.240 
2. 230 
2.250 
2.740 
2.740 
2. HO 
2.740 
2.744 
2. H" 
2.745 
2.746 
2.750 
2.7SO 
2.700 
2.760 

7.94 5.510 
10. 03 5.517 
9.92 5.160 

10.03 5.512 
9.90 5. 050 

10.00 5.510 
9.96 5.390 
9. 9 5.260 

Fillet 
radius 

R 

o 
o 
o 
o 
0.250 
o 
.250 

o 
. 250 
.500 
.750 

75 
75 
75 
75 

1.000 
.b75 
.950 

1. 2.10 
1. 390 
. 625 
. 640 
.670 

,\1\ calculations were made with a 20·inch slide rule. 

[Dimensions are in inches] 

ACTUAL TORSION TEST 

D 

0.625 
.622 
.626 
.9 7 

1.106 
. 9 6 

1.10·1 
.990 

1.103 
1. 224 
1. 340 
1. 502 
1. 49 
1. 492 
1. 492 

0.153 
.150 
.154 
.947 

1.500 
.945 

1.485 
.961 

1.4 I 
2.245 
3.305 
5.085 
5. (HO 
4.950 
4.950 

2a r Test 
J( 

Pro· 
posed 

formula 
J( -,---

O. 263 O. 300 O. 300 O. 309 
. 259 . 300 . 296 . 304 
. 266 .300 .301 .312 

1. 164 .214 1. 457 1. 367 
1.161 . 255 1. 600 1. 543 
1.1' . 214 1.475 1.360 
1. 157 . 255 I. 620 1. 536 
1.149 . 214 1. 355 1. 355 
1. 153 .255 1. 490 1. 531 
1.149 .296 1. 22 1. 14 
1.152 . 335 2. 255 2. 25 
1. 695 . 227 2. 720 2. 50 
1. 693 . 225 2. 695 2.827 
I. 670 . 224 2.734 2. 779 
1. 9 .223 2.571 2.792 

SOAP·FILM TESTS 

2.466 
2.276 
2.150 
2.929 
2. 20 
1. 5 
1. 793 
1.7l 

0.296 
.315 
.315 
.251 
.24 
.400 
. 408 
.420 

29.30 
27.4 
23. 22 
66.06 
54.60 
13.74 
12. 76 
10. 4 

29.89 
28.24 
22.04 
64 . 1 
54 . 60 
16.29 
13.52 
II. 22 

I and C2 indicate that first or second contour of tbe plate was used as the bonndary of tbe cross section. 
D=Diameter of largest inscribed circle at junction of component rectangles. 
J(=2J(,+J(,+2aD'. 
J(,=torsion constant of flange. 
J(,=torsion constant of web . 
Results in column beaded "G. and T . formula" were calculated by the Griffith and Taylor method. 
Differences are expressed in per cent of test values. 

Differ· 
ence 

Per cent 
+3.0 
+2.7 
+3.7 
-6.1 
-3.6 
-7.8 
-5.2 

0.0 
+2.7 
-0.5 
+0.1 
+4.7 
+4.9 
+1.6 I + .6 

+2.0 
+2. 
-5.1 
-2. 

0.0 
+1 . 5 
+6.0 
+3.5 

G. and 
'1'. for· 
mula 

J( 

0.321 
.317 
.325 

1. 416 
1. 634 
1. 412 
1. 631 
1. 404 
1. 625 
I. 920 
2.356 
3.132 
3.07 
3.076 
3.096 

31. 57 
29.17 
22.90 
64.45 
54.24 
16.52 
13.69 
11.3 

DiITer· 
eoce 

I PeT cpnt 
+7.0 
+7. 1 
+ .0 
-2. 
+2. 1 
- 4. 3 
+ 0.7 
+3.6 
+9.0 
+5.4 
+4.5 

+15.2 
+14 . 2 
+12.5 
+20.4 

+7.7 
+6. 1 
-1.4 
-2. 4 
-0.7 

+20.3 
+7.2 
+5.0 

An examination of the formula disclo es the fact that the formula till holds at the limit 
where the web approache zero thickness, since 01 will also approach zero. At the other limit, 

where the flange ",pproache zero thickness, 01 again approaches zero, but the value K~ =~a2b23 
is somewhat in error because the web can no longer be con idered a part of a long rectangle. 

From the relations holding for an I beam, we obtain results for a T beam directly. The 
T beam ha only one junction of component rectanO"le and con equently only OID4 in the formula. 
Also K 2 must be modified slightly. The web now closes at one end, as it ",'ould normally in a 
rectangle, and therefore K2 is one-half the K of a rectangle twice as long or 

the value of J.I. corresponding to the ratio 2a-+-b. Om final result is 

K = KI + K2 + OID4. 

For sections such as an L I we proceed in the same way. The wider leg is considered a the normal 
rectangle and the narrower leg as a part of a long rectangle. An examination of Figure 10 will 
show why this i done. Figure 11 gives the proper values for 01. For sections made up of L 
junctions, such as U and Z section J we proceed in the same way and add a correction for each 
junction. 

In applying the soap-film method to U and Z section , advantage wa taken of the sym­
metry of these sections with respect to a line perpendicular to the bar at its middle point ; L­
shaped opening' in the te t plate, having a vertical sepLum at the ends of one or both leg, were 
II ed. When the leg of the L were of unequal thicknes , it \\'a desirable to have a septum at 
the end of each leg in order to be able to calculate two type of U or Z sections from a ingle te t. 
By means of a simple calculation the effect of the septum at the end, when one is not desired , 
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can be removed. Values of the torsion constant given in Table V for U and Z sections were 
obtained in this way from L-shaped openings. 

The actual tor ion tests on wooden beams with L, T , U, and Z sections (Table VI) yielded 
apparent values of the tor ion con tant that were considerably greater than those given by the 
soap-film method for the same section. The exce e in the values thus determined arc attribu­
table to two causes : 

(I) The stiffening effect of the blocks that were o-lued to the ends of all beams tested to make 
the end sections rectangular. The e blocks hindered the warping of the cro s eclion thai 
takes place in the twisting of all cylinders or pri ms not of circular section. (Fig. 4.) 

1'c51 End of legs 

5--L .... Withoul septum 

tt~~~ I~ ~ ~~ ~g~ ~ ~ =~~~~~=~ 
7-2-CL •.... do .....•.... 
7-2-C2 ..... do .....•.... 
9- 2 .......... do ...•.•.... 
9-2-Cl ..... do .....•.... 
9-2-C2 •... do ......... . 
10 ••.... With septum .. . 
Io-CI ..... do .....•..•. 
lo-C2 ...... cto ••••.••••• 
II •.......... do .... ..... . 
II-Ct. ...... <10 ......... . 
II-C 2 ...... <10 ....•..... 
12 •.. ........ rlo . ••••• .. .• 
13 •....•..... (\0 ••••••••• 
13-CI. ...... do ......... . 
13-C2 ...... do ......... . 
I ........... do ......... . 
I ·-CL ..... . <10 ........•. 
I -C2 . .• ... do ....... . . . 
19 .•...•••.•. <10 ......... . 
19--CI. .... .. do ..... .... . 
19-C2 .... ... do .... ..... . 
20 ........... do ......... . 

2Q-C2 ...... do ..•.. ....• 
2o-CI .•.... dO .......... 

1 

TABLE V.-Values of torsion constant K for U or Z beams 

[All dimensions are in inches] 

Thi~kne~' Overall I 
Fillet Pro· G I ---;----,----,--- . , • , oap posed Differ·.,· am Differ· 

., radiUS D D 2K,+li:, 2n film K form. cnce I , form· cnce 
Legs Dar Ly~th \\b~ih R I ula K ula K 

----------- --- -- ----- ---1--- ---I PeT cent 1--- Per cent 

1. 49 L 495 5,51 7, 50 0 L 755 9. 49 15,26 O. 140 16.68 16.59 -0.5 17,71 +6, 1 
I. 390 L 390 5.30 7.34 0 L 630 7.06 12, OS . 140 13,34 13.07 -2.0 13.85 +3.9 
1.263 1.256 5. 51 7.56 0 1.478 4.77 9,62 .140 10.12 10,29 +1.7 10.90 +5.9 
L 225 I. 225 5, 44 7.52 1 0 I. 435 4.24 6. 140 9.39 9. 45 +0.6 9,94 +5.9 
L 160 I. 160 1 5. 36 7.4 0 I. 360 3.42 7. 4 . 140 .06 7.96 -I. 2 8,40 +4.2 
1.006 1.00 5. 51 7.54 1.00 1.515 5.27 5.20 .290 5.9 . 6.73 +12. 5 7.49 +25,4 
.930 .940 5.41 7.48 1.04 1.451 4.43 4.12 .305 5. 31 5.47 +3.0 6. 14 +15.7 
. 00 .10 5. 26 7,38 1.14 1.339 3.21 2.65 .353 3. 7 3.80 +0.5 4.1 +10.6 

I. 508 .752 6.00 1 l. 9 ,75 1. 660 7. 59 13. .107 14.94 14. 69 I -I. 7 15.41 +3. 1 
.710 L 470 I 5. 97 1 I. 96 ,0 I. 640 7, 24 13.4 , 10 14.46 14.26 -I. 4 11. 16 -2, 1 
. 0 1.450 5,96 11.90 . 90 1.600 6.55 11.76 ,093 12. 78 12.37 -3,2 12. 2 +0.3 

1. 506 1. 507 6.00 12.06 .75 2.016 16. 50 22,90 .215 26, 18 26,45 + I. 0 28. i7 +9.9 
I. 450 I. 470 5. 96 12.00 ,79 1. 9 0 15,38 20. 0 . 220 24.9 24,18 -3,2 26.39 +5. 6 
1. 353 1.373 5,96 11.9 ,90 1.905 13.17 17,10 ,240 20.60 20.26 -1.6 22.15 1 +7. 5 
.505 I. 508 6.02 12.00 .75 1. 6 6. 32 13.07 ,072 13. 0 13,53 - L 9 13.57 -I. 6 

1.503 1.511 6.00 12.02 1. 50 2.280 27,02 22.91 . 290 30, 72 30.71 0.0 34,56 +12.5 
I. 450 I 1. 460 5.9 II. 96 1. 52 2,220 24,28 20,62 .300 28.40 27.90 -I. 7 31. 35 +10.4 
I. 0 L30 5. 94 11. 1.56 2.153 21.50 17.64 . 310 25.22 24.31 -3.6 27.25 +8.1 
Ll33 I. 506 6.08 12.0 .75 1. 820 10.97 17. II .162 18.32 18.8.b +3,0 20.53 +12.0 
I. 040 1. 460 6.02 12.00 .7 L 760 9.60 14.92 . 157 16.16 16.42 +1. 5 17. 7 +10.6 
.900 I. 370 5. 98 11. 6 .86 L 660 7,59 I I. 66 .154 12.53 12,83 +2.0 H.OO +1 I. 3 

L 506 L 507 6.01 12.00 .3 L 96 12.92 22, 4 .177 23.74 25.13 +5, 26,91 +13. 4 
1.430 L440 5.93 11.96 .39 1.815 10.6 19. 88 .178 21.60 21.81 +1.0 23,13 +7,1 
1.3301.330 5,91 11.82 .491.734 9.04 15. 96.193 17.16 17.70 +3.1 18.75 +9.3 
I. 504 I. 504 6.00 12,00 I. 12 2. 149 21. 32 22.75 .252 26. 34 .12 +6. 31. 20 +18.4 
1.420 1.440 0. 94 11.86 1.15 2.069 18.32 1 19.50 , 251 23.36 24.28 +4.0 26.90 1+15.2 
1. 280 I. 310 0. 88 11. 74 1.25 1. 9'14 14.30 14. 56 .285 18. OS 18.64 +3.0 20.65 +11. 2 

All calculations were made with a 20·inch slide rule. 
Legs with septums at ends must he treated as parts of long rectangles. 
0 1 and C2 indicate that first or second contour of plate was used as the boundary or the cross section. 
D=diameter of largest inscribed circle at the junction or component rectangles. 
K=2Kt+K,+2aD' . 
Kt = torsion constant or one leg. 
K,=torsion constant or bar, 
DiITerences are expressed in per cent of soap·film values. 
Results headed G, and T. formula were calculated by the Griffith and Taylor method, 
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TABLE VI.- Values 0/ tOl' ion constant K /01' L , T , U , and Z beams obtained b!J actual te t 

Thickness 

T est 
Long I Shor t 

leg leg 

L 1. .. __ • • . ..•••. 1-o.'502 1~ 
L 2 __ • •••••• • • • •• .502 .50.2 
L 3 __ ........ _ _ .500 .500 
L4 _._ ........ _. .500 .500 
L 5 ...... ___ ._.__ .3 12 . 496 
L 6 _._ ••• • __ •• _.. .3 13 . 494 
L 7 .. _. . ......... . 504 .493 
L . . . . .... . .• .502 . 496 

Test 

~ ~: :.: ::: :: . . ::\ 
T 3 . . . • __ •...... __ 
T4 .....••••.••..• 
T 5 . . .• _. __ ..•••.• _ 

~ L:::.:·:_·:_::I 
T .... __ ....•.• _. 
T 9 __ . __ .....•.•... 
T 10. __ •••• _ •••• • 
T 11. •. . . __ .•.... ' 
T 12 ••• _ •••• ••• • •• 1 

T est 

Thickness 

Flange I Weh 

0..504 
.503 
.503 
.503 
.500 
. 50-! 
.501 
.50.2 
.004 
.506 
.504 
.504 

0..00-1 
. S0.1 
.503 
.50.3 
.500 
. 50-! 
.501 
.50.2 
.504 
. 506 
.504 
.504 

Thickness 

Legs Bar 

1------- ----
U 1. . ........... __ 
U 2 •• • • __ •••• • • • •• 
U 3 .... . . __ .. _ •. __ 
U 4. . .. ____ . ... _ .. 
U 5 •• • •. _._ •• • •••• 
U 6 • • • _. __ ••••• _ •• 
U 7 •••••••••••• • • 
U • ____ • __ ._ ••••• 
U 9_ ... _ .. _ ..... . 
U 10 . . __ •...... _. _ 
U J I .•••••••••• •• 
U 12 • ___ ••••••• -. 
Z 1.. ___ •..••.•.. _. 
Z 2.-. .. . ..••.. . ... 
Z 3 .... __ ._ .. __ .. 
Z 4 •••• _ ••••••• 
Z 5 .. __ •.•...• _ .. _. 
Z 6 . . ...••••.. . .. . . 
Z 7 •.••••• __ __ ••• • • 
Z • • • • ••••••• -. ••• 

o.. So.2 
.501 
.502 
.501 

0. 
.3il 
. 3il 
. 37i 
.495 
.496 
.495 
.496 
.49 
.499 
.501 
.497 
.375 
.375 
. 375 
. 376 

0..502 
. 501 
50Q 

.50 l 

.379 

.4 2 

.623 

.747 

.495 

.496 

.495 
. 496 
.49 
. 499 
.501 
.497 
.375 
375 

.375 

. 376 

Long 
I~g 

3.249 
3.245 
3.247 
3.242 
3.250. 
3.232 
3.243 
3. 246 

Total 
he ight 

3.240. 
3.240. 
3. 2m 
3.240. 
3.234 
3.231 
3.229 
3.230. 
3.250. 
3.250. 
3.250 
3.250. 

[A ll dimensions are in inches) 

hort 
leg 

L·BEA:'1 

Fillet 
radius 

R. 
D 

I 

2.7-3 -~~1~6 
2.750. .25 . 674 .206 
2.73 0. . 6 . II 
2. 745 0. . 586 . II 
2.740. .25 . .174 .109 
2.732 .25 . 572 . 10.7 
2. 727 . 25 . 672 . 204 
2. 737 . 25 . 1i6l\ . I \l9 

Total 
width 

2.755 
~. 754 
2.752 
2.703 
2.740. 
2.740. 
2.740. 
2. 730. 
2.750. 
2.750. 
2.750 
2.750. 

Fillet 
radiu 

R 

0. 
0..25 
0. 
.25 

0. 
.20 
.50. 
. 75 

0. 
0. 
0. 
0. 

T n I~Al\I 

D 

0..6:10 o.. I: 
.754 .323 
.629 .1 56 
.754 .323 
. ()25 .152 
.7.14 . 323 

76 . :;.,9 
. 936 .7 

--':632'" .160 

"':630'l':i58' 

U A)<D Z BEAMS 

Fillet 
radius D 

0..214 
.213 
.213 
.213 
. 208 
.213 
.21 
. 2 10. 
. 208 
. 217 
.208 
.214 

Length Width R 
leg bar 

2.750 
2. no 
2.750 
2.740. 
2.749 
2. 743 
2.741 
2.737 
2.743 
2.7 
2. 743 
2.734 
2. 735 
2.736 
2.734 
2.736 
2.750. 
2.750 
2.750 
2.750. 

3.750 
3.730. 
3. 740. 
3.750 
3.499 
3.513 
3.514 
3.516 
3.752 
3.740. 
3.7S3 
3.743 
3.715 
3.71 
3 70.8 
3.714 
3.750. 
3.750. 
3.750 
3.750. 

0. 
0..25 
0. 
.25 
.25 
.25 
.25 
.25 

0. 
.25 
.50 
.75 

0. 
0. 
0. 
0. 

.50. 
.50. 
.25 
.25 

o.. 
. 672 

.672 

. 530. 

.600 

.692 

.790. 

. 5110 

.666 

.751 
3 

.669 

.58S 

.672 

.582 

.610. 
.610. 
.525 
.526 

0..321 
.319 
.321 
.319 
. 142 
.203 
.323 
.490. 
.3 
.309 
.308 
. 309 
.311 
.314 
.316 
.31G 
.141 
.141 
.141 
.142 

All calculations were ma~e with a 2().incb slide rule. 

0..211 
. 212 
. 209 
.209 
.126 
.121 
.20.7 
.20 

o.. 15 
.20. 
.15 
.20. 
.15 
.20 
.25 
. 30. 

.15 

.15 

2a 

0. 140. 
.215 
.140. 
.2 15 
.240. 
.165 
.12l 
.096 
.1 40. 
.210 
.290. 
.365 
. 2!fi 
. 140. 
.215 
.140. 
.345 
. 345 
.240. 
.240. 

" 

'rest 

0..274 
.31 
.275 
.312 
.261 
.294 
. 396 
.473 
.252 

7 
. 242 
.285 

Te t 

Test 

0..275 
.275 
.272 
.2r.5 
. 21 
.190. 
. 284 
.30.7 

f( 

-Proposed 10 . and ;. 
formula formula 

f( 

0..234 
.234 
.217 
.217 
.133 
. 132 
.229 
. 221 

0..247 
.247 
.224 
.2".A 
· 140. 
· 139 
· 242 
· 243 

I P roposed G and T. Weher 
formula formula formula 

0..23 
.27 
.236 
.277 
.2.11 
. 27 
. :16.1 
.460. 

.240. 

.2'J 

J( 

0..24:1 
.2h9 
.242 
., 9 
.237 
.290. 
. :145 
.413 

. 247' 

.244 

0..23 1 

Proposed 10 . and '1'.1 Web~r 
formul a formula formula 

0.. 338 
.363 
.33 
.363 
.161 
. 224 
. 3i\l 
. S27 
.324 
. 3SI 
.400 
.489 
. 3.14 
.330. 
.360 
.326 
. I 9 
.1 9 
.159 
.1 61 

o. 3SO 
. 390 
. 349 
.390. 
. 172 
.245 
. 376 
.• 152 
.3 
.379 
.416 
. 5.50. 
.381 
.345 
.3 
.340 
.208 

.170. 

.17l 

\.:::::: 

1
--·····\ ------ -

Weber formula assumes a rad ius of fillet eq ual to the tbickness of the narrower component rectangle. 
T 9 and T 1.1 diel not have web glued to fl ange. 'rhey act, therefore, as two separate p ieces except for additiooal sWTness resulting from filler 

blocks glued at ends to make end section rectangular. 
For a discussion of the discrepancy between calculated and test val ues of N , see concluding remark s und er " Formulas for Irregular Solid 

ections," 



TORSIO OF MEMBERS HA VI G SECTlO COMMO IN AIRCRAFT CONSTRUCTIO 33 

(2) The combination of bending and torsion cau ed by the fact that in many instances the 
axis of twist did not coincide with the axi of the figure. 

Neither of these cau e would be a effective with I beams a with the ections ju t mentioned. 
The oap-film method fw-nishe the value of the tor ion con tant K a sociated with pure 

torsion under ideal condition a to the application of torque at the end . Usually an actual 
beam wjJl have a margin of afety as regard tor ional rigidity becau e of the fi;..rity of its end 

CONCL 10 S 

The oap-film method proved to be a valu able aid in the olution of the tor ion problem for 
cylinder and pri ms for which no rigorou mathematical olu tion ha b en found . Jot only is 
the method capable of furni hing the tor ionnl rigidities and the tre e with considerable 
accuracy but it also giye a yisual repre entation of the actual situation a regard torsional 
tre ses, a repre entation that can be readily interpreted by the observer. 

From a study o[ the oap-film test and the actual tor ion test, it has been pos ible to 
conclude that the tor ional rigidity of prism with ection such a I , T , L, U, and Z, which are 
compo ed of rectangles, is equal to the urn of the tor ionalrigiditie of prisms who e ections are 
the component rectano-le , corrected by a simple additive term to take account of the inerea ed 
tiffness )"e ulting from the j unctions of the rectangle . 

The formula developed by . Weber for such sections were found to be fairly accurate when 
the width of the component rectangle are extremely mall in compari on with their lengths, as 
with many rolled-steel section . (Reference 11 .) For sections of wooden beams for which the 
component rectangles are wider (say the width greater than one-fifth the length), Weber' 
formulas give torsional rigidities that are mllch too low. His formulas always a sume the 
pre ence of fillet, the radii of which are equal to the width of the narrower component rectangle. 
With thicker ections, such as tho e that we have te ted, the variation of the tor ional rigidity 
with the radii of the fillet can not be neglected. In our opinion, the rea oning employed by 
Weher in deriving his formula is open to obj ction . The error introd uced, however, are 
negligible for very thin ection. 

Griffith and Taylor developed rule for calculating the tor ional rigidi ties of prisms of any 
section. The application of the e rule to section of the kind that we are con idering is rather an 
intricate proces as compared with the imple computation required by our proposed formula. 
The result obtained by Griftlth and Taylor 'S rule are good for fairly compact ection. For 
sections made up of component rectangle , the re ult calcula.ted by their rule appear to be 
somewhat too high. 

Our te Ls how that the torsional tifl"nes of a beam may be materially increa ed by the 
way in which it i fa tened at the end . Two other factor are importan t in connection with the 
torsional behavior of 'wooden beam. They are rate of fiber train and moisture content. 
Correction for their influence on torsional propertie were determined. We have concluded 
that a third factor, which ha to do with the difference between the moduli of rigidity of wood 
referred to plane radial and tangential to the annual ring, may, in general, be neglected in 
design and a mean modulu u ed. For itka spruce thi mean modulu i between one-fifteenth 
and one- ixteenth of Young' modulu parallel to the grain. 

SUM M ARY 

TIllS report review briefly the fundamental theory of tor ion and hows how the more 
common tor ion formula have been developed from that theory. Formulas for solid and 
tubular ection that have yielded to mathematical treatment are given, and empirical formula 
are developed for irregular ections who e component parts are rectangles. The empirical 
formula arc a re ult both of direct tor ion test of wooden pecimens and of the application of 
the oap-film method of inve tigation to the ection in qu e tion. The mathematical analogy 
upon which the oap-film method i based i explained . 

The eHect of a lack of isotropy in wood , cau ed by the presence of the annual growth rings, 
i di cu sed and i hown to be relatively unimportant. 



34 REPORT NATIONAL ADVISORY COMMITTEE FOR AERONAUTIC 

Reference 1. Love: Theory of Elasticity, art. 8. 
Reference 2. Love: Op. cit., art. 69. 
Reference 3. Love: Op. cit., art. 224. 
Reference 4. Love: Op. cit., art. 222. 

REFERE CES 

Reference 5. t. Venant: De la Torsion des Prismes, chap. IX, 1 55. 
Reference 6. t. Venant: In Navier, Resume de Lecons -- third edition with notps and appendice_ by 

t. Venant. 
Reference 7. Pre cott: Applied Ela ticity, arts. 117 and 11 . 
Reference 8. Prescott: Op. cit., art. 120. 
Reference 9. Prandtl, L.: Phys. Zeitschr. Bd. 4,1903, p. 758. 
Reference 10. Griffith, A. A., and Taylor, G.!.: Technical Reports of the (British) Advisory Committee for 

A ronautics, No. 333, Jun , 1917. 
Reference 11. 'Veber, Constantin: Forschung arbeiten auf dem Gebiete des I ngenieur\Yesens, Heft 249. 

BIBLIOGRAPHY 

AR TI CLE 

J 55. t. Venant: De la Torsion de Prisll1es-Extrait du Tome XIV de Memoire Presentes par diver 
Savants a I' Academie des ciences. 

18 2. Voigt, W.: Allgemeine Formeln fUr die Be timmung del' Ela ticitatskonstanten von Krystallen durch 
di Beobachtung del' Biegung und Dl'illung yon Pl'ismen. Ann . del' Physik u. Chemie (3) 16, (1 2), 
p.294. 

86. Voigt, W.: Ueber die Torsion eines rechteckigen Pl'ismas au homog ner kr)' tallini cher ubsianz. Ann . 
del' Physik u. Chemic (3) 29 (1 6), p. 604. 

96. Bredt: Kritische Bemerkungen zur Drehungsela tiziiat. Zeit chrift des Vereins deut cher Ingenieure, 
1 96, pp. 7 5-813. 

99. Schulz, Bruno : Beitrag zur Torsionsfe tigkeit. Zeitschrift fur Architektur lind Ingenieurwe en, 1 99, 
p.202. 

1901. Autenrieth: Beitrag zur Bestimmung del' grassten Schubspannung im Querschnitt eines geraclen, auf 
Drehung beanspruchten tabes. Zeitschrift des Vereines deutscher Ingenieure, pp. 1099, ' 1901 , 
part 2. 

1903. Prancltl, L.: Zur Torsion von prismati chen Staben. Physikali che Zcitschrift, 4 (1903), p. 75 . 
1904. Prandtl, L.: Eine neue Dar tcllung del' Tor ionsspannungen bei pri mati chen taben von beliebigen 

QueI' chnitt. Jahrc bericht des Deutschen Mathematiker-Vereinigung, 13 (1904) , p. 31. 
1906. Anthes, Hugo : Versuchsmethode zur Ermitilung del' Spannung verteilung bei Tor ion prismatischer 

Stabe. Dinglers Polytechni ches Journal, Bd. 321, pp. 342, 356, 3 ,443, 455, 471. 
190 . Kotter, Fritz: Ueber die Torsion des Winkeleisen . itz ungsberichte del' Koniglich Preu ichen Akademie 

del' Wissenschaften, 190 , p. 935 
1914. Gibson, A. H. , and Ritchie, E. G.: A Study of the Circular-Arc Bow-Girder. Con table & Co., Ltd ., 

London. 
1914. Kommers, J. B.: Torsion Tests of Cast Iron. American Machinist, May 2 , 1914, vol. 40, p. 941. 
1915. Batho, Cyril: Torsional Stresses in Framed Structures. The calculation of torsion stresses in framed 

structure and thin-walled prisms. Engineering, October 15; with discus ion by Ernest G. Ritchie, 
ovember 5, and a reply by Batho, December 17. 

1916. Batho, Cyril: The Torsion of Solid and Hollow Prisms and Cylinders. Engineering, IOV. 24, 1916. 
1917. Foppl, A.: Ueber den elastischen Verdrehungswinkel eines tabs. itzungsberichte del' Konigl. Akademie 

Munchen. 
1917. Griffith and Taylor: The Use of Soap Films in Solving Torsion Problems. Reports and Memoranda 

(New Series), IO. 333, June, 1917. Presented by the uperintendent, Royal Air craft Factory. 
Technical Report of the Advisory Committee for Aeronautics (British) for 1917- 1 ,vol. 3, trength 
of Const., etc. 

1917. Griffith, A. A.: The Determination of the Torsional tiffness and trength of Cylindrical Bars of any 
ections. Reports and Memoranda (New Series), No. 334, June, 1917. Presented by uperin­

tendent, Royal Aircraft Factory. Technical Report of the Advisory Committee for Aeronautics 
(British) for 1917-1 , vol. 3, trength of Const., etc. 

1917. Griffith and Taylor: The Problem of Flexure and Its Solution by the oap-Film Method. R. & M., 
o. 399, November, 1917. Presented by the Superintendent, Royal Aircraft Factory. Technical 

Report of the Advi ory Committee for Aeronautics (British) for 1917-1 ,vol. 3, trength of Const., etc. 
1919. Elmendorf, A., and Grenoble, H. .: Torsion Tests of Built-Up pl'uce and Wrapped Veneer Tubes. 

Forest Products Laboratory Report. 
1921. Trefftz, E.: Ueber die Torsion pl'ismatischer tabe von polygonalem Querschnitt. Mathematische 

Annalen, 1921, Band 82. 



TORSION OF MEMBERS HAVING SECTIONS COMMON I AIRCRAFT CO STRUCTIO 35 

1921. The Moduli of Rigidity of Spruce. Philosophical Magazine, vol. 41, June, 1921, No. 246. 
1921. Weber, c.: Die Lehre der Drehung festigkeit. Forschungsarbeiten auf dem Gebiete des Ingenieurwe ens 

Heft. 249. 
1921-22. Bair tow, L., and Pippard, A. J. Sutton: The Determination of Torsional tre ses in a Shaft of ally 

Cross Section. Proc. In t. C. E., 1921-22, Part 2, vol. 214. 
1921. Southwell: On the Dctermination of the Stresses in Braced Frameworks: Part I, The Effect of Axial 

Loading, Flexure, and Torsion Upon a Framework of Uniform RectangUlar Cro sections. Reports 
and Mcmoranda No. 737 (British). Technical Report of the Advisory Committee for Aeronautics. 

1922. outhwell: On the Determination of the tre ses in Braccd Frameworks. Part II, The Effect of , hear 
Upon a Framework of Uniform Rcctangular Cross Scction. Report and Memoranda ro. 790. 
Technical Report of the Advi ory ommittee of Aeronautics (British). 

1922. Southwell: On the Determination of tres es in Braced Frameworks. Part III, The Effect of Axial 
Loading, Torsion, Flexure, and hear UI on a Braced Tube of any Cross Section. Reports and 
1emoranda No. 791. Technical Report of Advisory Committec for Aeronautics (British). 

1922. Southwcll: On thc Detcrmination of tre es in Braccd Frameworks. Part IV, The Effects of Axial 
Loading, Flexure, Tor ion, and hear Upon a Tubular Cross ection with Taper. Reports and 
Mcmoranda No. 19. Tcchnical Rcport of Advi ory Committee for Acronautics (British). 

1922. Weber, C.: Dic Drehllngsfcstigkeit ,·on Staben. Z ilschrift dcs Vereinc. Deutschcr Ingcnieure, \'01. 66, 
pp. 764-769, Augu t, 1922. 

1923. Weber, C.: Thc Torsional trength of Bars. Mcchanical Engineering, vol. 45, January, 1923. 
1923. Young, C. R., Sager, W. L., and HlIghe , C. A.: Tor ional trength of Rectangular ections of Concrete, 

Plain and Reinforced. Bul. No.3, 1922, Univcrsity of Toronto. 
1923. Wilson, T. R. C.: Tor ion Test of Box Beams. Forc t Products Laboratory Report. 
1924. Young, C. R., and Hughes, C. A.: Torsional trength of Steel I ections, Bul. No.4, ection No.3, 1924, 

University of Toronto. 
1927. De,,·ar, Sir James. Collected Paper of Sir James Dewar. Cambridge University Pres, 1927, vol. 1l. 

Soap Bubbles of Long Duration, p. 1176; tudies of Liquid Films, p. 1206; oap Films and Mo­
lccular Forces, p. 1333; Soap Film as Detectors, Stream Lines and Sound, p. 1334. 

192 . Huber, Karl. Verdrehungselastizitiit und Festigkeit von H6lzern. Zeitschrift des Vereines deutscher 
Ingenieurc, Band 72, Bcrlin, 14, April, 1928, r. 15. 

BOOKS 

Aufgaben zur Theorie clasti cher K6rper. J. J. Weyrauch. 
Soap Bubbles and the Forces Which Mould Thcm. ociety for Promoling Chri tian Knowledge, Lond. (1890), 

C. V. Boys. 
Elastizitiit und Festigkeit. Bach, C. 
Drang und Zwang: Eine h6here Festigkeitslehre fUr Ingenieure. Foppl, A., and Foppl, L. 
Theory of Elasticity. Love. 
The Mechanical Properties of Fluid, Collective Work. Van I 0 trand, 1924. 
Resume des leQons sur l'application de la mechaniquc a l'etablissement des con tructions et de machinep. 3. ed. 

avec des notes et des appendices de t. Venant. 1 64. Navier. 





APPENDIX A 

PRISMS OF NONISOTROPIC MATERIAL 

In order to solve the torsion problem for a wooden beam, we hall consider a prism of non­
isotropic material in which there are three mutually perpendicular planes of ela tic symmetry, 
one of which i perpendicular to the direction of length of the pri m. It will be hown that the 
solution of the tor ion problem for uch a pri m can be redu ed to the solution of the same 
problem for an isotropic pri m who e section is obtained by transforming the boundarie of the 
original section through a linear tran formation and whose modulus of rigidity is expressed in 
terms of the moduli of the original material. 

Let the axis of Z lie along t.he direction of the length of the pri m and the axes of X and Y 
be axes to which the boundary of the section i conveniently referred. (Fig. 12. ) Let the 
planes ZX' and ZY' be the longitudinal planes of elastic symmetry and let Gj and G2 be the 

y Y' 

--~------~k------r-.~---X 

XI 

FIGURE 12 

moduli of rigidity associated with shearing strain corresponding to the pairs of directions of 
the axes of Z and X' and of Z and yI , re pectively. 

We form the same general picture of the state of tre s and train as for the isotropic prism 
(p. 10) and accordingly we again a sume that the components of the displacement parallel 
to the X', V', and Z axes, respectively, are expre ed as follow: 

u= -ry' z, V= rzx', w = r¢ (x', V'), (1) 

where r is the angle of twist per unit length and ¢ is a function of x' and y' only, which is to 
be determined. 

As a con equence of the type of di placement given by (1), all of the components of strain 
vanish except 

(2) 

(Reference 1.) These are shearing strains c.orresponding to the pair of directions zy' and ZX', 

respectively. Then all stre s componenL vanish except the components X' z an d Y' z of shearing 
stress and these are given by 

(3) 
37 



38 REPORT ATIO AL ADVISORY COMMITTEE FOR AERONA TICS 

(Reference 2.) Referred to the axes X and Y, which make an angle a with the axr X' find 
Y,' the stress components are 

X z= G2 ev,. sin a - G, ezx, cos a, 

Y z= Gz ev, z cos a - G, ezx, sin a. 

Entering the values of e ~, .. and P,zx' from (2) , noting thaL 

x' =X co a - y SIn a, y' = x sin a + y cos ex, 

and lIsing thc abbreyiations 

we find that equations (4) hecome 

K= G2 sin2 ex + G, cos2 ex, 

A= (G2 -G, ) in a cos ex, 

J.l = G~ cos2 ex + G, sin 2 ex, 

(4 ) 

( .j ) 

(6) 

From the equation of equilibrium and equation (6), we obtain the differential cquation which 
the unknown function cfJ fiU t satisfy; namely, 

(72. 

Thi equation for the determination of cfJ correspond to eqnation (3), pa.ge 11 , for an iso­
tropic pri m. 

The requirement that the latcrfll surface of the prism shall be free from traction leads to 
the following condition, which cfJ must sati fy on the curve j (x, y ) = 0, the bounclary of the 
cross. ection: . 

( ) 

After the change of independant variables 

~ = o x, 
where 

TJ =Y-,),x , (9) 

0= .,,/GlJ2 A 
(10 ) , ')' =-, 

K K 

the differential equfttion (7) become 
a2cfJ azcfJ 
ae + aTJ 2 =0. (11) 

l[ the equation of the boundary f (x , y) = 0 i transformed into 

F (~, TJ ) = 0 ( 12) 

by t.he change of variables (9) the boundary condition on cfJ in equfttion (8) becomes 

(13 ) 
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If we let 

this condition reduces further to 

or 

cp'=ocp, 

acp' aF + acp' aF _ aF _ t aF 
a~ a~ OTJ OTJ - TJ O~ <; aTJ' 

ocp' 
a-v=TJ cos (~, v)-~ cos (TI, 1'), 

\\'here v denotes the normal to the new boundary. 
From (12) and (14) 

(14) 

(15) 

(16 ) 

(17) 

The solution of (17) subject to the boundary condition (16) corresponds to the olution of the 
torsion problem for a prism whose section has the new boundary (12) and which is compo cd of 
i otropic material. 

It will now be shown that the tor ional rigidity of the original prism can be expres ed in 
terms of the torsional rigidity of the transformed prism. For the couple T we have 

T = f f (Yzx-Xzy) dx dy. 

Entering for Xz and Yz their expre sions in terms of cp (equation 16) and changing the variables 
of integration to ~ and TJ by equation (9) we obtain 

(1 ) 

where the integration is now extended over the area of the transformed cross section. It follow. 
at once from equation (18) and (10) that the torsional rigidity C of the original prism is given by 

(19) 

The right-hand member of this equation is the torsional rigidity of an isotropic prism whose 
cross section is obtained from that of the original pri m by the tran formation (9) and whose 
modulus of rigidity is 

(20) 

LINES OF SHEARING STRESS AND I TE SITY OF SHEARING STRESS I A NONISOTROPI 
PRISM 

Let ~' be a function associated with the transformed isotropic prism as the function ~ was 
with such a prism in equation (10), page 12, t.hat is, let 

~' = >/1' - ~ W+TJ 2
), 

where >/I' is a function conjugate to cp'. It follows that 
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If we now express these components in terms of the variables x and y, using equations (9), 
and let 

we obtain simply 
'l!' (~, 1/) = 'l!' (ox, y - ')'X) = 'l! (x, V), 

d\II 
X = TK - ' 

z ay (21 ) 

I t follows that the curve, 'l!(x,y) = con tlmt., are lines of shearing tre s and that the intensity 
of the shearing stress at any point i equal to 

d\II 
TK dV' (22 ) 

v denoting the normal at the point in question to the curve 'l! (x, y) = con tant, which pas. s 
through that point. 

Applications to certain nonisotropic prisms with simple cross sections , 

To take a typical example, let us suppose that the material is wood. It will be a sumed that 
the plane X'OZ, Figure 12, i parallel to the annual ring which are con idered to 'lie in planes. 
The moduli G1 and G2 (equations (3» are sometimes called tho tangential and the radial moduli, 
respectively. 

(a) THE CIRCLE: 

Let the axes OX' and OX coincide 0 that a = O. After the tran formation (9 ) the circle 
becomes an ellipse wjth the semi-axes 

a~~ and a. 

On letting a=O in equation (21) the modulus of rigidity of the transformed elliptic ection is 
found to be 

0=G
1 

/G 1 • 

-V G2 

The torsional rigidity of the original circular cylinder i equal to that of the tran formed isotropic 
elliptic cylinder. We find (p. 15). 

0 - G1G2 4 
- 7[" G

1 
+ G

2 
a. (23) 

On comparing this result (equation (23) ) with that on page 21, we see that the torsional 
rigidity of the given noni otropic circular cylinder with moduli G1 and G2 is equal to the tor ional 
rigidity of an equal isotropic circular cylinder with the modulus, 

[t ha sometimes been erroneou ly assumed tbat thi quantity is the mean modulus for a section 
of any shape. 

(b) THE ELLIPSE: 

The annual ring make an angle a with the X-axi. The ection of the tran formed eylinder 
is obtained hy using equations (9). The transformed section is an ellip 0 who e axi can be 
found. Entering these axes and the modulus a given hy (20) in the expres ion for the torque 
of an elliptic cylinder, page 15, we find a be tor jonal rigidity of the transformed section and 
consequently that of the original ection 

(24 ) 
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where m=% and K and p. are given by equation (5) . If 

a 
7) = 2 and G1 = 0.9G2, 

we obtain 

Denote by 00 and 090 , respectively, the values of o when a=Oo and 90°, respectively. Then 

~oo= 1.065 

and if 

~=3 
b ' 

If G1 = O. Gz, we find that 

090 h a 
00=1.142wen7)=2, 

and 090 h a 0
0 

= 1.195 w en 7) =3. 

The torsional rigidity of an elliptic cylinder in which the annual rings are perpendicular to the 
major axis is greater than that of an equal cylinder of the same material with the rings parallel 
to the major axis. 

(c) THE RECTANGLE: 

Let a, the angle between the annual ring and the X-axis, equal zero. 
The equations of tran formation (9) become 

T} =y. 

The rectangle with side 2a and 2b is transformed into another rectangle with sides 

2a~~: and 2b. 

The modulus of rigidity of the transformed isotropic rectangular pri m is, in accordance with (20) 

Then by the formula on page 15 the torsional rigidi ty of the tran formed section is 

0=G1ab3 {16_ Al /Gl}, 
3 a-Y G2 

(25) 

in which A is to be taken from Table I by replacing the ratio of the sides by 

This result is in direct agreement with that of St. Venant, who obtained formulas for the cases 
in which a=Oo and a=900 . 
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If ex = 90 0
, we find that the rectangle is transformed into a rectangle with ides 

2a~~: and 2b 

and that the modulus of rigidity of t,he tran formed isotropic pri m is • 

Entering these results in the formula for an i otropic rectangular prism on page 15, we 
again obtain St. Venant's result for this case. 

If 0 1 = O. O~ the tor ional rigidity of a quarter- awn board whose sides are in the ratio 3 to 
1 is 1 per cent greater than that of a plain-sawn board of the same dimensions. 

y 

B ' 
B A 

A' 

0 
X 

C' 

C IJ 

IJ 
FIGURE 13 

In general, the rectangle with sides 2a and 2b and vertices ABOD i tran formed into a 
parallelogram A' B' 0' D' whose vertices are at the points 

(oa,b--ya), (-oa, b+-ya), (-oa,-b+ -ya), and (oa,-b--ya) respectively. 

(Fig. 13. ) The side fLre 
A' B' = 2a.,j-y2 + 02 and 

A'D' =2b 

The modulus of rigidity of the prism of transformed section is given by equation (20). The 
ac.ute angle between adjacent ides of the parallelogram i found from the equat.ion 

o tan 0= ­
-y 

The torsional rigidity of the transformed i otropic prism whose ection i a parallelogram i 
calculated by t.he appro).'imate formula 

where A is the area of the section and J is its polar moment of inertia. Thi formula i quite 
accUTate at the extremes ex = 00 and ex = 900 if the ratio of the ides is 3 to 1. The use of this 
approximate formula to compute the torsional rigidity of the transformed pri ms appears to be 
justified, since the angles of the parallelogram into which the rectangular sections are transformed 
differ but little from right angles. If the ratio of the ides of the rectangle is diiIerent from 3 to 1 
the factor 41 in the denominator should be replaced by a different number 0 cho en that the 
formula gives results that agree well with the exact values for ex = 00 fLnd ~ = 900

. 
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(d) THE EQUILATERAL TRIA GLE : 

By the transformation (9) the equilateral triangle (fig. 14) with vertices A, B, and 0 at 

y 
B 

A 
c~-----~---x 

FIGl."RE 14 

th(' points 

(a, 0), (%, % 3). and (0,0) 

tran formed into a triangle with verti e at 

(oa,-'Ya), [ o2a, C-J3-'Y)%} and (0,0), 

respectively. Table VII gives the length of the new sides 0' B' and 0' A' and their included 
angle 0' = A' 0' B' corresponding to various values of the angle ex, ex being the angle made by the 
planes of the annllal rings with the X-axis, for wood. It wa assumed that 

G1 = 0.8G2 

TABLE VII 

a Ii 'Y Modullls CfBfla CfAf l a Cf CI K 
- - -

0 0 

0 1. 118 0 0.71602 1. 031 1.11 57 08 O. 1928 
71 ~ 1. 115 .032 . 719G2 1. 016 1. 116 58 25 · 1937 

15 1. 101 .062 . 734G2 1. 000 1. 103 59 52 · 192 
22}f 1.077 .0 5 . 772G2 .9 4 1. 0 0 61 21 · 1924 
30 1. 052 . 102 .808G2 .970 1. 056 62 45 .1924 
45 .994 . III .906G2 .950 1. 001 64 45 · 191 

The tor ional rigidity 0 used in the last column of T able VII wa computed by the formula 

A4_ 
0= 45JG, (27) 

where A, J and (J haye the arne meaning as on page 42. This formula, which is exact for 
the equilateral triangle, was thought to be ufficiently accurate for the computation of the 
rigidity of the lightly distorted tran formed sections. According to the computed values 
the torsional rigidity does not vary appreciably with the angle ex made by a plane of ymmetry 
(the plane of the annual ring, for wood) with one of the base. This re ult is not smpri ing in 
view of the ymmetry of the ection . 

THE SOAP-FILM METHOD OF SOLVI G THE TORSION PROBLEM FOR PRISMS OF NONISO­
TROPIC MATERIAL 

The torsion problem for a prism of nonisotropic material having perpendicular longitudinal 
planes of ela tic symmetry has been reduced by the linear transformation (9) to the torsion 
problem for an isotropic prism of a tran formed section and a given modulus of elasticity . The 
soap-film method may accordingly be used when the transformed section is uch that a rigorou 
mathematical solution of the torsion problem for thi ection is not available. 
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It follows from (19) in the way in which (15), page 12, wa obtained from (6), page 11, 
that the torsional rigidity of the original prism, which i the Rrne as that of the transformed 
prism, i given by 

a 20K f f 'It' d~ d1] . (2 ) 

This means that the tor ional rigidity of the prism is proportional to the volume inclosed by 
the urface z = 'It' (~, 1]) and the plane z = 0, the function 'It' (~, 1]) vanishing on the boundary of 
the transformed section. ow 'It' (~, 1]) is proportional to the ordinates of a soap film stretched 
over an opening of the shape of the transformed ection of the prism, the film being under a 
uniform excess pressure on one side. The proportionality factor can be determined from (2 ) 
and the previous di Cllssion of the soap-film method. 

The contour lines of the soap film stretched over the transformed section ' are the curves 
'It' (~, 1]) = constant. These curves when transformed by (9) become the curve 'It (x, y) = constant, 
the lines of shearing stress of the original nonisotropic prism. This follows immediately from 
equations (21). From the distance between adjacent curve 'It (x, y) = constant, we can, m 
accordance "vith (22), e timate the intensity of the shearing stress at a given point. 

REFERENCES 

Reference 1. Love: Theory of Elasticity. art. 10. 
Reference 2. Love: Op. cit.; art. 62, equation (9); art. 105; and art. 110, equation (15) . 



APPENDIX B 

THE GRIFFITH AND TAYLOR FORMULAS FOR TORQUE AND STRESS 

Method of calculating torsional rigidity. 
The method of Griffith and Taylor, which gives fairly accurate results for many sections, 

is summarized in this appendix. For a comparison with our results see the discussion in the 
body of the report. 

We may write for any section 

in which 

For a circle 

which may be written 

T=the twisting momE'nt. 

G = the modulus of rigidity. 

K = the torsion constant. 

f= the unit, angle of twist. 

in which A = the areR. In general, theIl, let us assume that 

A K = - (J2 
2 ' 

in which 0 is called the equivalent torsional radius of the section. To determine the twist 
for a given moment, we must then find 0 for the section in question. Checking 0 for an equi­
lateral triangle against 0 for its inscribed circle, we find that, while the area for the triangle is 65 
per cent greater, 0 is only 10 per cent greater; this shows that projecting corners add but little 
to torsional stiffness. The first step, then, in getting the correct 0 for the section under con­
sideration is to round off any projecting corners with an arc of suitable radius. The radius of 
such an arc depends upon the angle through which the tangent to the boundary turns in passing 
around such a corner, and also upon the radius of the largest circle that can be drawn in the sec­
tion touching the boundary at more than two point. Let ex be the angle through willch the 
tangent passes in turning a corner; for the corner of a square it is 90 degrees, for the apex 
of an equilateral triangle it is 120 degrees, and so on. Let b equal the radius of the largest 
circle that can be drawn in the section and call r the radius of the arc for rounding off the corner. 
Table VIII gives the ratio of r to b. 

45 
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TABLE VIII 

a O r a O r 
1 0° b 1 0° b 

O. 0 1. 000 0.6 O. 375 
· 1 .930 .7 .270 
.2 50 .210 
.3 .750 .9 . 170 
. 4 .625 1.0 . 155 
.5 .500 -------- --- ------

In this way we make a new figure wit,h all the outward corner rounded off 
Let 

Al = tho area of the new figure. 
PI = th perimeter of the new figure. 

Thon our first approximation of 0 is 

Our econd approximation is obtained a follow : 
Let 

A = the area of the original section. 
P = the perimeter of the original ection. 
b = the radiu of the large t inscribed circl e. 

~A 
h=p ' 

Then the square of 01 as obtained by the first approximation mu t be multiplied by a factor" 
taken from Table IX. 

We haye then 

b 
It 

1. 00 
.95 
.90 
· 5 
· 0 
.75 

TABLE JX 

1. 000 
.99 
.994 
. 984 

966 
.93 

i 0. 70 O. 97 

I 
.65 . 4 
.60 . 793 

I . 55 . 732 

I--- '- ~~ --I--- '- ~~~ ---I 

fJ-=:4 ,, 0 2 
1 2 I , 

= A A(~AI)2 . 
2 PI 

ections in whi h more than one circle touching the boundary in thr e point can be drawn 
require special treatment. They mu t be divided into component ection. A value of 0 for 
each component i then calculated and the re ults added to obtain a 0 for the 'whole ection. 
In dividing a . ection into component part, the following rule i L1 ed: Imagine a circle or yal'y­
ing radius to move in ide the ection. There may be everal po ition where the circle and 
the boundary have three or more points of contact, and between each pair of uch po ition there 
will be a po ition of the circle where it radius i a minimum. Draw the divi ion line through 
the point of contact of the e minimum circle. When the section include long, narrow portion 
bounded by line parallel or nearly so, uch a the web of an I beam, the divi ion line hould 
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be drawn at a eli Lance from the commencement of the parallel portion equal to half its thick­
ne s. (For further details ee Figure 15 and the calculation it accompanie.) lightly tapering 
flanges of I beams hould al 0 be treated in thi way. When such divi ion have been made the 
preceding method is applied to each par t separately, and the resul ts are added. Two im­
portant instructions mu t be remembered, however: In the perimeter of each component part do 
not include the division lines, and do not round corners formed by the junction oj a dizrision line and 
a line oj the original boundary. 

As an illustration of the method, the calculation of the torsion con tant for I beam 0.7 or 
Table IV, page 30, follows: 

The fir t tep i to divide the ection into eyen component parts a hown in Figure 15. 
The divi ion line are placed by moving half the thickne away from Lhe commencement of 

.5'-
~ 

0 --------
o p J 

to 
.J... N~----M~--------L~----~K 

FIGt:RE 15.- eclion of test peeimcn I-7 show­
ing component simple sections 

parallel portion. The next tep is to round off th corner. The tangent turn through 90 

degrees at all comer. Therefore, in accorelan e with T able VIII i i equal to one-half. Table 

X gives the remainder of the calculations. All calculations were mad with a 20-inch slide rule. 

Part 

B,e,F, G, R,S 
C, H, I , L , M , P 
A ,B, S, T -
e, D , E , F -
I , J, K , L ---
0 , P, M , N -- -
R , G , H , c -

Total K 

TABLE X 
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Method of calculating stress. 
Two formulas are given for calculating maximum stress. 

formulas may be applied to each component part separately. 
angles, the following formula is used: 

= -'!:!~ [ 1 + 0.15 (7r2

b
4 

- !!..)] q 7r~ A2 P 
1+ A2 

For compound sections, the 
Where there are no reentrant 

in which T is the unit angle of twist I and p is the radius of curvature of the boundary at the 

point in question. The maximum stress will usually occur at one of the points of contact 
of the largest inscribed circle. An exception ·may occur if the boundary is more concave at 
orne other part than at these points of contact. 

When the twisting moment is known and the angle of twist is not, T may be obtained, of 
course, from-

T = KGT. 

Where the boundary is concave, the following formula is recommended: 

2bGT [ { (b) b} 2a] q= 1 + 7rW 1 + 0.11 log. I - p - 0.238 p tanh-:;;:-
A2 

in which a is the angle turned through by the tangent in turning around the reentrant portion. 
It must be remembered that for reentrant angles a is negative. . 

l 



APPENDIX C 
DESIGN VALUES FOR AIRPLANE MATERIAL 

Recommended design values for wood for use in connection with the formulas of this 
report are given herewith. For metal, the allowable shearing stress values at present specified 
should be used for q except where better data are now available (as in Technical ote Number 
1 9 of the National Advisory Committee for Aeronautics). For steels for which values are 
not now available, 10,000 pounds per square inch added to half the ultimate tensile strength 
gives a value that may be used for the ultimate shearing stress in torsion. The values for 
wood follow. 

S G E 1,300,000 84 000 d . h pruce, = 15.5 = 15.5 ' pOUll s per square mc . 

pruce, 45° plywood, G1 = 5G=420,000 pounds per square inch. 
pruce, q = 1,000 pounds per square inch. 

Spruce, 45° plywood, q = 2,370 pounds per square inch. 
49 
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Positive directions of axes and angles (forces and moments) are shown by arrows 

Axis Moment about axis Angle Velocities 

Force 
(parallel Linear 

Sym- to axis) D esigna- Sym- Positive Designa- Sym- (compo-Designation bol symbol tion bol direction tion bol nent along Angular 
axis) 

LongitudinaL __ X X rolling ______ L Y----> Z rolL _____ <J> u p 
LateraL _______ Y Y pitching __ __ 101 Z---->X pitch _____ e v q 
NormaL ______ Z Z yawing ___ __ N X---->Y yaw _____ q, w r 

Absolute coefficients of moment Angle of set of control surface (relative to neu­
tral position), o. (Indicate surface by proper 
subscript.) 

L M 
.. OL= qbS OM= qcS 

fl, Diameter. 
Pe, Effective pitch. 
Pg, Mean geometric pitch. 
ps, Standard pitch. 
Pf), Zero thrust. 
Pa, Zero torque. 
p/D, Pitch ratio. 
V', Inflow velocity. 
V., Slip stream velocity. 

4. PROPELLER SYMBOLS 

T, Thrust. 
Q, Torque. 
P , Power. 

(If "coefficients" are introduced all 
units used must be consistent.) 

7], Efficiency = T VIP. 
n, Revolutions per sec., r. p. s. 
N, R evolutions per minute, r. p . m. 

ct>, Effective helix angle = tan-1 ( 27r-r;,) 

5. NUMERICAL RELATIONS 

1 hp = 76.04 kg/m/s = 550 lb./ft./sec. 
1 kg/m/s=0.01315 hp 
1 mi./hr. = 0.44704 m/s 
1 m/s = 2.23693 mi./hr. 

1 lb . = 0.4535924277 kg 
1 kg = 2.2046224 lb. 
1 mi. = 1609 .35 m = 5280 ft. 
1 m=3 .2808333 ft. 
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