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FOREWORD

An important limitation upon the development of aircraft structures of minimum weight and
mazimum efficiency is the fact that the results of the basic mathematical theory of elasticity have in
general not been so presented that they can be used by the average American engineer. Further,
the mathematical solutions of many important specific problems are not known and our knowledge
of the physical constants of the materials used is incomplete.  As a contribution toward the improve-
ment of this situation, the Bureaw of Aeronautics of the Navy Department has from time to time
financed work along these lines for presentation primarily from the viewpoint of the engineer. This
report, submitted to the National Advisory Committee for Aeronautics for publication, covers an
investigation of the torsion problem by the Forest Products Laboratory, Forest Service, Department
of Agriculture, undertaken through arrangements between the Navy Department and the Department
of Agriculture. The discussion and the findings, while checked largely by tests of wooden specimens,
apply equally to wood and to metal, due consideration being given to the elastic properties of the
materials used.

The data and the formulas presented apply strictly to the torsion phenomenon. A beam may
fail either in a normal type of bending or by lateral buckling resulting from normal loading, or by
twisting or wrinkling of an outstanding flange under stresses having their origin in the normal
loading. Likewise, a member such as a very thin tube subjected to torsion may fail at a load less
than the theoretical load caleulated by the torsion formulas because of other phenomena, such as
wrinkling, which have their origin in the twisting load. It is necessary either to develop criteria for
freedom from such secondary failures or to apply coefficients to the caleulated strength values to take care
of secondary failure. Technical Note No. 189 of the National Advisory Commiltee for Aeronautics,
which gives formulas for the variation of allowable shearing stress with change in the ratio of diameter
to thickness, indicates one method of approach to this problem. The Army and Navy Standards for
sizes of tubing permit a range in the ratio of diameter to thickness for seamless tubing of about 5
to 43, and tubes of higher ratio can of course be fabricated.

It should be noted that the polar moment of inertia and the polar moment of inertia divided
by the distance to the extreme fiber have no significance in comparing the rigidity and the strength
of sections of different form; in this respect they are not analogous to the use of the moment of inertia
and the section modulus in comparing the bending of beams. It so happens that the rigorous stress

: : : Tc el
Sormulas for circular rods and tubes as given in the report reduce to the common form q= 7’ which s

analogous to the stress formula S= MTO for beams. The beam formula, however, is general, while

the common torsion formula is true only for circular rods and tubes. For members of other shapes
an additional factor must be introduced into the formula when reduction is made to the common
form.

The results of the actual torsion tests of simple sections in Table 111 show large variations
in observed physical properties, which may cause doubt as to the soundness of design values deduced
from the results. Actually part of the material reported on, while acceptable for making tests, is
outside the specified acceptable range for aircraft stock—the test material represented the entire
tree. Later recommendations for design values are based on the specification range and are con-
servative for reasonable variations outside that range. For metals these variations (in the ratio of
“E 1o “ B values) are much less in amount.

Recommended design stresses as furnished by the Bureau of Aeronautics are given in Appendix C.

J. H. TowERs,
Acting Clief of Bureau.
3
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films were used in order to take advantage of a ma
torsion problem and the problem of finding the de
The analogy is discussed in detail in the report.

ent were determined experimentally. I'UILHSIvio, svwp
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flection of a thin membrane under pressure.

1 Originally submitted as “The Torsion of Cylinders and Prisms.”
2 Professor of mathematics, University of Wisconsin.
Note.—R. J. Roark, associate professor of mechanics, University of Wisconsin,
gation, giving especial attention to the soap-film method.
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Our experimental work with beams of irregular sections that have not yielded to mathe-
matical treatment is described. From these experiments and certain mathematical considera-
tions, empirical formulas are set up for irregular sections whose component parts are rectangles.

TEST MATERIAL AND PROCEDURE
DIRECT TORSION TESTS OF BEAMS

The first series of direct torsion tests was confined to rods of simple section, such as the
circle, the square, the ellipse, and the equilateral triangle. The test specimens were made of
carefully selected Sitka spruce and when several were to be compared directly they were cut
from the same plank. The elastic properties of the material in any plank were obtained by
festing small minor specimens cut from the plank and so located as to be representative. These
specimens usually consisted of two bending, two compression parallel to the grain, two specific
gravity, eight shear, and three torsion specimens. The three minor torsion specimens con-
sisted of one piece approximately 1% inches square, one piece 1_by 3 inches quarter-sawn, and
one piece 1 by 3 inches flat-sawn. Four of the shear specimens were tested radially and four
tangentially. All major torsion specimens for this first series of tests were 45 inches long and
the area of cross section was usually less than 2 square inches.

The second series of tests was made on beams of irregular section, such as I, T, L, and U.
These beams were 96 inches long, were cut from clear Sitka spruce planks, and were matched
as deseribed for the first series.

The apparatus for the first two series of tests, which was constructed expressly for these
tests, consisted essentially of an attachment for holding one end of the beam fixed against
rotation and a disk for applying torque at the other end. (Fig. 1.) Rollers at the fixed end
provided for longitudinal movement. The disk, which was 10 inches in radius, turned on
ball bearings. It was rotated by a metal strap attached to and passing around its periphery
and thence up to a yoke attached to the weighing platform of a scale, which was accurate to
one one-hundredth of a pound. The entire scale was bolted to the movable head of a testing
machine and load was applied by raising the head. The usual length over which distortion was
read, called the ‘“gage length’ in this report, was 24 inches for the short specimens and 36
inches for the long specimens. At one end of the gage length a circular metal frame with a
20-inch radius was clamped to the specimen. On the periphery of this circular frame was
attached a steel tape graduated to tenths of an inch. At the other end of the gage length a
rectangular frame was also clamped to the specimen, and welded to this frame was a pointer
that extended to the scale on the circular frame. As the beam was twisted the scale rotated
more than the pointer. Determining the excess movement of the scale by reading the position
of the pointer on it thus yielded the angle of twist over a given gage length directly, the total
angle in radians being the scale reading divided by the radius, 20 inches. The angle of twist
per unit length, in radians, is then this quotient divided by the gage length. Except for tests
made specifically to determine the effect of rate of loading, the rate was varied with the
type of specimen, in order to obtain approximately the same rate of strain in all tests. Such
variation necessitated raising the movable head of the testing machine at rates of from 0.674
inch per minute to 1.40 inches per minute. For tests made to determine the effect of rate
of loading, the speed of the movable head was varied from 0.023 inch per minute to 2.25 inches
per minute.

SOAP-FILM TESTS

The value of soap films in determining the torsional rigidity of a twisted rod and the
stresses in it depends upon an analogy between the torsion problem and that of finding the
deflection of a thin membrane under the action of a uniform load. The mathematical simi-
larity is discussed later in this report, where it is shown that if a soap film is stretched over a
hole in a flat plate, the hole being the same shape as the cross section of the bar and the film
being displaced from the plane of the plate by a slicht difference in pressure on the two sides,
the following relations hold:
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1. The shear stress at any point of the cross section is proportional to the slope of the film
at the corresponding point with respect to the plane of its boundary.

9 The contour lines of the film represent the direction of the resultant shear stress at every
point.
3. The torsional rigidity of the section is proportional to the volume between the soap
film and the plane of the plate.

In order to make use of the analogy it was necessary to d
its contour lines, and the volume of displacement could be determined. The

esign apparatus with which the

slope of the film,

shapes and measuring the angle of twist

FIGURE 1.—Apparatus for applying torque to structural

that used by Griffith and Taylor and described by them in
(British) Reports and Memoranda No. 333, June, 1917.
are proportional to the inclination of the film and the
the film displacement. The rela-
essure on the sides of a film is
hole in the

apparatus was patterned after
Advisory Committee for Aeronautics
As pointed out, the stresses in the bar
stiffness of the bar is proportional to the volume generated by
tions hold for any number of films provided the difference in pr
This condition is readily attainable by making more than one
ay of obtaining actual stress or rigidity values
presents the section being

the same for all.
same test plate; it is evident that the easiest w
is to have a circular hole in each plate in addition to the hole that re
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studied. The rigidity of a circular shaft and its stresses are easily calculated, and having the
two films in the same plate makes it possible to compare torsional rigidities directly by com-
paring volumes and to compare stresses directly by comparing slopes.

In assembling the apparatus, a plate with the experimental hole and a circular hole cut
in it (fig. 2) was clamped between the bottom and the sides of a cast-iron box (fig. 3). The box
bottom, which was 11% inches square outside and 2 inches thick, was supported on leveling

3

5%

4

Miotygr

FIGURE 2.—The soap-film apparatus with the upper part of the box removed to show the per-
forated plate

screws. It was recessed ¥ inch inside of the ¥%-inch bearing surface on which the plate rested.
A square frame ¥ inch thick and 2 inches deep formed the sides of the box; both bottom and
frame were provided with lugs for clamping screws. Over the frame was placed a piece of plate
glass through the center of which a hole had been cut for a micrometer height gage, reading to one

- one-thousandth of an inch, that carried at its lower end a hardened steel needle point. Fixed

axially above the needle point, extending upward from the frame supporting the gage, was a
steel recording point. The position of the gage, at each reading, was recorded by pressing
against it a sheet of paper attached to a board that could be swung down to the horizontal for
this purpose; the board was hinged to the heavy cast-iron base on which the bubble box was
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leveled. Provision was made for increasing the air pressure below the soap films or decreasing
it above them.

With this apparatus contour lines and hence displacement volumes could be determined.
Stress could also be determined, since it is inversely proportional to the distance between con-

Fi1cure 3.—The complete assembly of the soap-film apparatus

secutive contours. A collimator for measuring slope directly was made but time and funds
allotted to the study were exhausted before it was put in use.
The test plates were cut from sheet aluminum approximately 0.05 inch thick. The edges
around the test holes were beveled; the sharp edge was placed upward in the apparatus and
66648—30——2
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great care was taken to keep the plates perfectly flat. When divergences from a plane were
found they were corrected by propping up the plate from below or by putting small weights
on top of it.

With symmetrical sections a complete boundary sometimes was not used. Griffith and
Taylor found that the shape of a symmetrical film was unaltered if the film was divided by
a vertical septum passing through its axis of symmetry. In our work a septum was carried
down about one-eighth inch below the under side of the plate. Figure 2 shows a septum in place.

Best results were obtained with a circular hole about 3 inches in diameter and with the
dimensions of the experimental hole such that the ratios of the heights of the bubbles over the
two holes were between 2 and 1.

In carrying out the experimental work, a film was drawn across the holes with a strip of
celluloid wet with soap solution. The blowing up was done through a burette, the bottom of
which was connected to the lower end of a column of water, through a stopcock, and the top to
the chamber below the test plate. As water was passed into the bottom of the burette, air was
forced out of the top into the apparatus. This method was employed instead of blowing up the
bubbles with air from the lungs because the carbon dioxide introduced by that method was harm-
ful to the bubbles.

The success of the method depends largely on obtaining a soap film that will permit the taking
of a great number of readings. Some difficulty was at first encountered in obtaining a suitable
soap solution. All formulas investigated produced films that would last but a few minutes until
a solution used by Dewar was tried. With this solution we were able to obtain films that would
often last throughout a whole working day. It was made by adding a very small quantity of
triethylamine oleate to a 50 per cent solution of glycerine in distilled water. The triethylamine
oleate was prepared as follows, using 2 grams of triethylamine to 5 grams of oleic acid:

The amine was dissolved in warm water and the oleic acid was slowly stirred in. Excess
amine in the emulsion was expelled by distillation and the water was expelled by subsequent
evaporation on a steam bath. In the preparation an excess of oleic acid should be avoided, since
it 1s not volatile.

Other oleates, such as ammonium, sodium, and potassium, were found by Dewar to be
very successful, but the triethylamine solutions are by far the most resistant to atmospheric
impurities.

DISCUSSION
THE TORSION PROBLEM

If a right cylinder or prism is twisted and held in equilibrium by means of couples applied
at its ends, the portion of the cylinder or prism between any cross section and one end is in
equilibrium under two equivalent couples, one in the plane of the cross section and the other the
applied couple at the end. The couple in the plane of the cross section will be regarded as the
resultant of a suitable distribution of shearing stress, which consists of tangential tractions in
the plane of the section combined with equal tangential tractions along appropriate longitudinal
sections. Since the cylinder or prism is in equilibrium under the action of the couples that are
applied at its ends, the cylindrical surface must be free from traction.

Corresponding to the shearing stresses just referred to, there will be shearing strains of
two types, one consisting of the sliding of the elements of one cross section over those of an ad-
joining section, the other of the relative sliding of different longitudinal elements in the direction
of the length of the cylinder. The first type of strain will be expressed in terms of the angle
through which the plane of the section has been rotated, the angle being assumed proportional
to the distance from one end. The second type of strain, which implies that, in general, the plane
cross sections are distorted into curved surfaces, will be expressed in terms of the displacement
of the elements of a section in the direction of the length of the cylinder. This displacement is
taken to be the same for all sections of a given cylinder or prism.
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If the axis of Z be taken in the direction of the length of the prism and the components of the
displacement of a point parallel to the X, Y, and Z axes be denoted by u, », and w, respectively,
the state of strain just described is a consequence of the following displacement:

u=—TYZ, V=121, w=r1¢(, Y) (1)

where 7 is the angle of twist per unit length and ¢ is a function of # and y only, which is to be
determined.

The % and » components of the displacement together express a rotation about the Z axis
through an angle z7 of a section at a distance z from one end, while the w component expresses
the distortion of each given section from its plane.

From the components of the displacement, the components of strain follow and from these
follow the components of stress. (References 1 and 2.) Itisfound that the X and ¥ components,
X, and Y, respectively, of the shearing stress at a point (z, ) in any cross section, are expressed
by the equations:

X.=6:(52-v) ¥, =6:($2+2) @)

where @ is the modulus of rigidity.
Associated with the stress components X, and Y, which act in the plane of the cross sec-

tion, are the stress components Z, and Z,, which are equal to X, and Y7, respectively, and which
act in longitudinal planes parallel to the ZX and YZ planes, respectively. All other stress com-
ponents are zero as a consequence of the assumed displacements (1). Thus the displacements
taken in (1) lead to a system of stresses of the type described in the first paragraph of this
section.

From the equations of equilibrium of the prism under the state of stress just considered, it
follows that the function ¢ satisfies the differential equation

¢ ¢ _
= tage Y ®3)

over the area of the cross section of the prism.
The requirement that the lateral surface of the cylinder or prism shall be free from traction

leads to the following equation, which must be satisfied by the function ¢ on the curve bounding
the cross section of the prism; namely,
3‘5=y cos (x, v) —x cos (Y, v). (4)

In this equation, » denotes the exterior normal to the bounding curve.
The moment 7 of the couple in the plane of any cross section is expressed in terms of the

function ¢ by the equation
i T=Cr, (5)

where
= 2082 9% _ ?’i’)

(b fo<x+y+xay Y 3n dz dy, (6)
the integral being extended over the area of the cross section of the prism. It is often conven-
ient to replace € in equation (5) by G K where K is the integral by which @ is multiplied in (6).
Thus:

T=GKr. (57)

The problem of determining the torsion function ¢ subject to the differential equation (3)

and the boundary condition (4) may be replaced by that of finding a function ¥ conjugate to ¢
which satisfies the differential equation

o Y
x? i ay2 =0 (7)
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and the boundary condition

n/x—;— (x*+1?*) = constant. (8)

The following relations connect ¢ and y:

e 0%, de iy

ar oy’ ay  ox’ ®)

If we replace ¢ by the function ¥ defined in the following way:

V=g -3 @), (10)

we find from (7) and (8) that ¥ satisfies the differential equation
16 A B\ 4
a2 Tap 20 (11)
subject to the condition
¥=0 @12)

on the boundary of the section, the constant in equation (8) having been chosen to be zero.

From equations (2), (9), and (10), we find that the components of the shearing stress are
simply expressed in terms of the function ¥; namely,

oV el
e e XZ—GT&:/- (13)

Hence the tangential traction at a point in any cross section of the prism has the direction of
the tangent to that curve of the family

¥ (x, y) = constant

which passes through this point. The curves, ¥=constant, are therefore lines of shearing
stress.

Further, the resultant shearing stress at a point in a cross section is equal to

— VN /OV\2 Q¥
NX2F YZZ—GT\/<$> +<@> e (14)

where » denotes the exterior normal to the curve ¥ =a constant that passes through the point
in question. The resultant shearing stress at a point is therefore proportional to the gradient
of the function ¥ at that point.

Further, when written in terms of the function ¥, the expression (6) for the torsional rigidity
becomes—-

C=2G ) S ¥dxdy. (15)

(Reference 3.) That is, the torsional rigidity of the prism is equal to twice the product of the
modulus of rigidity and the volume inclosed between the surface

z=V¥@, y)
and the plane
z2=0.

The solution of the torsion problem for a prism of a given section consists in determining
the torsion function ¢ to satisfy the differential equation (3) and the boundary condition (4).
The torsion problem may be solved equally well by determining one of the functions ¢ or ¥
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from the equations (7) or (11), respectively, each subject to its appropriate boundary condition.

This is the complete theory of the torsion of thin rods. An interpretation of the displace-
ments assumed is that all points on the Z axis remain on that axis and that every cross section
of the rod except the fixed one is twisted about the Z axis. By our assumptions, cross sections
do not usually remain plane but become warped. Figure 4 shows how elliptical, square, rectan-
gular, and triangular sections become elevated in some parts and depressed in others. ~All orig-
inally plane sections become distorted in the same way since w, the longitudinal displacement, is
not a function of z. It is clear, therefore, that the theory does not apply to sections near a
fixed end nor to sections near the point where the torque is applied. That all cross sections
should remain plane would require that w be constant and the only section for which this can
be true is the circular section. Figure 5, which is taken from Bach’s ‘“Elastizitit und Festig-

Note: Confours
are lines of e-
qual longitudi-
nal distortfror.

/ Full lines ir-
) / dicate eleva-
frori.
_Dotted lines
/ndicate de-
pressior.

FIGURE 4.—Plane sections of noncircular rods warped in
torsion

keit,” shows the distortion in an elliptical cylinder and the lack of it in a circular cylinder.
It has been possible to solve the torsion problem rigorously for only a limited number of
sections. The expressions for the torsion function ¢ or the associated function ¢ for the more

common sections are listed below:

(@) Tue CIircLE:

¢=0.
() Tae ELvLiPsE:
Major and minor axes 2a and 2b—
aZ__b?
L S

(¢) TaHE RECTANGLE:

Sides 2a and 20—
2n+ 1)

2 SR
n=om h N i d ks

3 D 32 % deihe 2b . @2n+ D)my
n=0 e T

cosh
lem -
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(d) THE EQUILATERAL TRIANGLE:
Origin at centroid. Side a—
3
DG (3212 3
=—-— (Bzy—17).
V=3, Bry’—y’)
Corresponding solutions are known for a sector of a circle, a curvilinear rectangle bounded by
two concentric circular arcs and two radii, figures bounded by confocal ellipses and hyperbolas,

MGG G
U2

F1GURE 5.—The distortion of plane sections in an elliptical rod and the absence of such distortion
in a circular rod

i figures shaped like a square but with concave sides and either rounded or sharp corners, and a
| section somewhat resembling the section of a railway rail. (References 4, 5, and 6.)

l Formulas for simple sections. .
: : L :

| From the preceding expressions for the torsibn functions, the following well-known formulas

| for torque and maximum stress have been derived:




in which 7, is a factor dependent upon the ratio of the sides.
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Let

T= torque.
9= total angle of twist in radians.
L=length.

G =modulus of rigidity.

g =greatest intensity of stress.

CIRCLE
7 G 20
o T s
r=radius.
ELLIPSE
T na’b’Go 2
@+ L’ 1= rab?

20 =major axis.
2b =minor axis.
EQUILATERAL TRIANGLE

a*+/3G0 20T
80L = Trigr

a =side of triangle.

T=

SQUARE
T— s'Go _4.8087
% S 9=
s =side of square.

RECTANGLE

; Bl 4
T= 3 y = — ¢
T=ab’pG T g~

16 bl
T = ab? 3—»&)%-

2a = long side of rectangle.
9b =short side of rectangle.

The factors g, \, and vy are dependent upon the ratio of the sides. Their values given in

Table I are from St. Venant. (Reference 5.) The maximum stress ¢ occurs at the middle of
the long side. The stress at the middle of the short side is given by

g1
!Zx’:%a‘

Its values are also given in Table 1.
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TaBLE L—Factors for calculating torsional rigidity and siress of rectangular prisms

. Ratio of

‘ | Ratio of ‘
“ sides A & i L& | sides % L2 g ke
\

1. 00 | 3. 08410 | 2. 24923 | 1. 35063 | 1. 35063 2. 50 | 3.35873 | 3.98984 | 1. 93614 0. 59347

| 1.05 | 3.12256 | 2.35908 | 1.39651 |._____ - __ 2.75 (3.36023 | 4 11143 | 1. D508 et Tt ol
1.10 | 3.15653 | 2.46374 | 1.43956 |__________ ' 3.00 | 3.36078 | 4.21307 | 1.97087 |.____—_
1. 15 | 3. 18554 | 2. 56330 | 1.47990 |________ o LGE g o T T i A ol 44545
1.20°(3.21040"| 2. 65788 | 1.51753 | . . 3. 50 ‘ S5 361 218H4 5870007 M togehok IeE s
1.25 | 3.23196 | 2. 74772 | 1. 55268 | 1. 13782 4.00 | 3.36132 | 4. 49300 | 1. 99395 37121
1. 30 | 3. 250385 | 2.83306 | 1. 58544 oA 4.50 | 3.36133 | 4.58639 | 1.99724 | _____
1.36 | 3. 266382 | 2. 91379 | 1. 61594 \ ________ % 5.00 | 3.36133 | 4. 66162 | 1. 99874 29700
1.40 | 3.28002 | 2. 99046 | 1.64430 | _________ 6.00 | 3.36133 4. 77311 | 1.99974 .. ____ ° |
L3508 029 I EINIR3Y 063101067965 |7 = (eloyll il St et et S SR IS T : 22275 |
1. 50 | 3.30174 | 3. 13217 | 1. 69512 - 97075 7.00 | 3.36133 \‘ 4. 85314 | 1.99995 |__________|
1. 60 | 3. 31770 | 3. 25977 | 1. 73889 . 91489 || 8.00 | 3.36133 | 4. 81317 | 1. 99999 | 18564
1.70 | 3.32941 | 3.37486 | 1.77649 | _________ [ 9.00 | 3.36133 | 4. 95985 | 2. 00000 | _________|
1.75 | 3.33402 | 3.42843 | 1.'79325 . 84098 | 10. 00 | 3. 36133 | 4. 99720 | 2. 00000 ‘ . 14858

[ 1. 80 | 3.33798 | 3.47890.( 1.80877 |._________ ‘ 20. 00 i 3.36133 | 5. 16527 | 2. 00000 | .07341

| 1. 90 | 3.34426 | 3. 57320 | 1.83643 | _________ | 50. 00 [ 3.36133 | 5.26611 [ 2.00000 |.~__._____

[ 2.00 | 3. 34885 | 3. 65891 | 1. 86012 . 73945 100. 00 | 3. 36133 | 5.29972 | 2. (810 31010).4] G2 O AT )

" 2.25 | 3.35564 | 3.84194 | 1.90546 |__________ ‘ © ‘ 3. 36133 | 5. 33333 | 2. 00000 ‘ . 00000 ‘

| | |

When letters are used for the full sides and not the half sides, letting ¢ represent the long
side and d the short side, the formulas become

—edin.l _&T
/& Cd BG.L’ q_quZ’
or
ed? 3xd\ 0
T=?(1‘r6 Z)Gz

in which 8= /16, and \ has the same values as before. It can be seen that if %is small, we arrive
at the common approximate formula:

cd® ., 6
1= 5 G =
As the ratio % varies from 1 to « the expression :1)’—2 varies from 0.578 to 0.630.

St. Venant gives the following approximate formulas for the constants, which agree with
exact values within 4 per cent:
3 b
%Y —§<1 o 06 E)M,

16 b b
] ,u—'3~—3.365<1——12—a4 s
Using this value of v

(Ba+1.86)T (Bc+1.8d)T
= SerRnahe L OF g PP
Both are common approximate expressions for the stress at the middle of the long side.
ST. VENANT’S APPROXIMATE FORMULA FOR COMPACT SECTIONS

For fairly compact sections without any reentrant angles St. Venant gives the following
approximate formula for the torque:

AL @
e
in which 4 is the area of the section, J the polar moment of inertia of the section, @ the modulus

of rigidity, and % the angle of twist per unit of length,

A
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Although St. Venant clearly stated that this formula applies only to fairly compact sections
with no reentrant angles, it is often applied to other sections, for example, to sections made up of
component rectangles. Resulting errors may amount to several hundred per cent in extreme
cases. However, when restricted to sections for which it was intended the formula is fairly
accurate.

Formulas for hollow prisms or tubes.

The cross section of a hollow prism or cylinder is bounded by two closed curves upon which,
in accordance with equation (8), the function ¥ must take constant but, in general, different
values. Denoting by ¥, and ¥, the values of ¥ on the outer and inner boundaries, respectively,
and by A4, and A; the entire areas inclosed by the respective bounding curves, the analysis that led

FIGURE 6

to equation (15) for a solid prism or cylinder will now lead to the following expression for the
torque:

T=—2GtV,A,+2GrV, A+ 2GS S (x, y) de dy. (16)

(References 3 and 7.) The integration is extended over the ring-shaped section. If the
ring is narrow we can replace ¥ under the integral sign by the constant

V=g (B, + ). (17)
The last term in equation (16) then becomes
2G V(A — A)=Gr(V,+ ;) (4,—A,).

The expression for 7'in (16) then reduces to

T=2G1An(V;,—¥,) =2G1 AnA¥ (18)
where
A,,,=A°’2*’A", AV =V, — V. (19)

If we denote by ¢ the width of the ring at any place AB (fig. 6), we obtain (equationl4) as
an approximate expression for the average shearing stress at points in AB

A At‘P : (20)
Hence

tq=G7AY, (21)
and (18) becomes

T=2tq Am. (22)

66648—30——3
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If we form the integral of ¢ds around the curve ¥ =¥, which may, if ¢ is not too large, be

taken to be the curve lying half way between the inner and outer boundaries, we find after
some reduction

Sqds=2Gr A,,. (23)
(Reference 8.) Replacing ¢ under the integral in (23) by its value from (22) we obtain

T (ds
ﬂ; P 2A,.G7,
or
_44,°Gr

T (24)
i

We find from (22) as the approximate expression for the stress

T

I’
oy (25)

CIRCULAR TUBES
Ricorous METHOD:

When the inner boundary of the tube is a line of shearing stress of a solid section that has
the same outer boundary as the tube, the rigidity of the tubular section may be obtained directly

by subtraction. : -
- -t

s 100

=.,7rtr<r2+i;)(}ze;; qg= rE
27rtr(r2+z)-

r =mean radius.

= thickness of wall.

T (‘ds

APPROXIMATE METHOD:

2]

0 ——
i =94’

\ 2 \ 2
1r<7‘+£> +1r<7'—£)
j2 2 2/
% 2
ds_ 2ar
T

L)Ge S
2 )7 TS s
167) L 2(++5)

2
T= 27rtr(r2+ %4—

Dropping the square and higher powers of ¢, we have the common approximate formulas

0 v
T=21r7‘3tGI) g=m

ELLIPTICAL TUBES
Ricorous METHOD: =

The rigorous formulas apply only when the inner and the outer ellipses are similar, that
is, when the inner ellipse is a line of shearing stress for a solid shaft having the same outer
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boundary as the tube. The semirigorous formulas, of course, apply whether the ellipses are
similar or not. Let the inner and outer boundaries be the similar ellipses:

2
2'*—%:1)

&

2 2
Sl 4y

Then the inner semimajor axis is ¢ and the outer a(1+%) and the inner semiminor axis b and
the outer b (1+£%).

@’ o

3 o el 2 :
1—a2+b2[(1+k)4 11G7, Q—rabz[(1+k)4_1]

APPROXIMATE METHOD:
Neglecting the square and higher powers of &, the approximate formula (24) gives

T— [‘{172935? q? 2 /A0
a@+bv |"L’ 9= orkab® (1 + k)
ACCURACY OF APPROXIMATE METHOD

It is apparent from a comparison of the preceding formulas for circular and elliptical tubes

that the results from s
s 0
% f—t“ = 4AGT4’
and
=214

are quite accurate for small values of ¢. Usually a commercial tube is made with the thickness

of metal constant, in which case ¢ in f%? becomes constant. While A had best be regarded as

the mean of the areas inclosed by the inner and the outer boundaries of the section, good results
are obtained by drawing a curve midway between the two boundaries of the tube and taking
A as the area inclosed by this curve. The quantity ds is an element of length along this curve.
Further examples follow.
HOLLOW RECTANGLE

Let the outer boundaries be a and'b and let @ be the greater side. If ¢, is the thickness of
the greater side and ¢ the thickness of the smaller side, the sides of the mean rectangle are (a—1t)
and (b—t;) and

A=(a—1t)(b—1t),

fd‘s=2,(l—.t)+2(b_tl),

t & t
L2l ~1Y (0—1)%4 0 S /
L T ey Gp I=ot(a—t) 0—t)

The equation for stress is true only along the sides of the rectangle where the shear lines are
parallel curves. To avoid high stresses at the reentrant angles, the inner corners should be

rounded.
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CIRCULAR TUBE SPLIT LONGITUDINALLY

A tube of mean radius » and uniform thickness ¢, split longitudinally, may be regarded as a
flat sheet, although this fact is not so well known as it should be. If the ratio of 7 to ¢ is great,

the approximate formula for a rectangle may be applied and

T=51g 2mrt) Gz,

p )
e % 7t G j ’

For the closed tube, the approximate formula is"

1' :27T7'3t(17—]0i‘v

and the ratio of the torques for the same o is

L

It can also be shown that for the same maximum stress the ratio of the torques is approxi-
mately equal to
t
3r

The split tube, therefore, is much weaker under torsion and very much less rigid.
Solid sections of irregular shape.

We have now discussed substantially all of the sections for which practical formulas have
been obtained by direct mathematical treatment. There remain such sections as the I, T, U, and
L that have not yet been brought within the range of mathematical analysis. These sections
normally occur in beams or in compression members and not in members designed primarily
to take a torsional couple. Nevertheless, such members are all subject to torsion and the loads
that they will sustain may be dependent upon their torsional rigidity. Because of its importance
in this connection, our investigation has dealt largely with torsional rigidity rather than with
stress.

We will first consider the calculation of the rigidity and later touch upon the matter of
stress.  For any section we can write

el )

T= K@ E
in which Kis a constant that depends solely on the shape and dimensions of the cross section and
involves the fourth power of a dimension (see the preceding formulas for regular sections). This
constant A is usually spoken of as the ‘ torsion constant’ of the section and will be so referred
to in this report. Our problem is to determine a suitable method of calculating K for various
irregular shapes.

Before embarking upon an extended series of tests, it was necessary to make some preliminary
tests of wooden members of simple section in order to determine to what extent certain factors
governed the torsional properties of wood. As a usual thing, the modulus of rigidity associated
with a traction in a radial plane is not equal to the modulus associated with the traction in a
tangential plane. In other words, the elastic constant for a shearing stress acting in a plane at
right angles to the growth rings is not the same as for a shearing stress acting in a plane tangential
to the growth rings. This fact introduces two moduli of rigidity into the problem. There is a
third modulus of rigidity for wood which has to do with the stresses that tend to roll contiguous
fibers past each other, but when a member is twisted about an axis parallel to the grain of the
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wood this elastic constant does not come into play. Our first problem then was to determine
what difference, if any, there was between the radial modulus of rigidity and the tangential mod-
ulus. Other factors pertinent to our test procedure were the effect of moisture content and the
effect of rate of strain. Each of these three factors was studied and a brief discussion of each

follows.

Moduli of rigidity of spruce.

It is shown in Appendix A that a rectangular prism, two of whose axes of elastic symmetry
lie in the plane of the cross section, behaves as a prism with a parallelogrammatic cross section
when these axes are not parallel to the sides and as a prism with a transformed rectangular
section when the axes are parallel to the sides. The modulus for the transformed section in
either case is computed from the two moduli involved. TItis also shown that if @, is the modulus
associated with the plane tangential to the annual rings and ¢, the modulus associated with the

-plane perpendicular to the rings, the relations of Table 11 hold.

TasLe 11

| Sides of trans-

Sides 2a, 2b formed rec- Modulus
tangle ‘

L Sl =i 3 RS LB B : j
Rlaintsawnibeand: = o Lot Bl .2(1 \/ :::’ % | G, \/‘ ;:: i
Quarter-sawn board_____________| 2a \,‘/2:, 2b L (67 \/Z: |

|

It was possible from these relations to determine the value of G, and @, for any plank by
testing a quarter-sawn and a plain-sawn piece cut from that plank. This was done for practically
every piece used. These minor specimens were 1 by 3 inches in cross section. Occasionally
slight season checks, which run radially, caused the quarter-sawn pieces to be less rigid than
their corresponding plain-sawn pieces, whereas with sound material the quarter-sawn piece
should be the more rigid, since G, is greater than &¢,. It was found that for Sitka spruce G, was
about 90 per cent of ,. This means that quarter-sawn rectangular beams of Sitka spruce
with a large ratio of long side to short side will average about 10 per cent more rigid in torsion
than similar plain-sawn beams. Ordinarily no great error will result if the mean modulus as
obtained through the test of a circular section is used in calculating the rigidity of beams. It
may, of course, introduce on the average about half of the difference between the plain and the
quarter-sawn values, or an error of about 5 per cent. It is much easier to make square sections
than circular sections and the difference in mean modulus obtained is practically nil. Square

minor specimens, therefore, were tested as a check against the values obtained from the 1 by 3

inch minor specimens.

As a check against the mathematical analysis given in Appendix A, a few series of tests
were run on beams of rectangular and of elliptical sections with the annual growth rings at
various angles to the axes of the sections. The results are shown in Figure 7. The curve for
the ellipse was calculated by means of the relations given in Appendix A; the circles along the
curve are test values. The curves for the rectangles represent the observations; they agree in
form with a curve calculated for a different ratio of the two moduli.

Effect of moisture content.

In order to obviate the necessity of making moisture adjustr
test specimens were always kept in the same condition. They were nev
fabrication and the time between the testing of the majors and the minors wa
minimum.

A series of tests was made, howev
torsional properties to permit the recommendation of permissible stress

nents, the major and the minor
er separated after
s reduced to a

er, to learn enough about the effect of moisture content on
values for spruce at a
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definite moisture content. Twelve matched square pieces were tested, 3 green, 3 at about 21%
per cent, and 3 at about 7 per cent moisture content. The results are given in Figure 8, which
shows the variation with moisture content of three properties; namely, modulus of rigidity, fiber
stress at elastic limit, and ultimate fiber stress. The results from this small number of tests
were in agreement with relations previously established at this laboratory.

Effect of rate of loading.
As tests were run on members of various sizes, the rate of strain was kept fairly uniform in
order not to introduce this factor into the results. The ordinary test, however, took several
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FIGURE 7.—Variation in torsional stiffness with direction of
annual rings on the cross section

minutes, whereas the duration of stress assumed for aircraft stresses is three seconds. Conse-
quently, in order to recommend, torsional properties of spruce from test, it was necessary to
know something about the variation in these properties with rate of strain. A matched set of
cylindrical specimens was made and equal numbers of them were tested, respectively, at each
of three rates; these rates were in the proportion 1 to 10 to 100. It was found that accompany-
ing a 10 to 1 change in rate there was a 5 per cent increase in modulus of rigidity, a 10 per cent
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increase in ultimate fiber stress, and a 20 per cent increase in fiber stress at elastic limit. The
exponential increase of stress with increased rate of fiber strain has been previously observed
at this laboratory.

Torsion tests of simple sections.

As the next preliminary step before testing wooden beams of irregular section, several
series of tests were made on spruce beams of simple section. Beams with the circle, the square,
the ellipse, and the equilateral triangle as bounding curves of the cross sections were cut from
the same plank. The dimensions and the angle of twist for a given torque as determined by
test were substituted in the rigorous formula previously given for the corresponding sections
and an apparent modulus of rigidity calculated thereby. Four of each type of beam were cut
from each plank. The results are given in Table ITI. The planks were chosen so as to obtain
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FIGURE 8.—Relation between torsional properties and moisture content of Sitka spruce

a wide range in specific-gravity values. Consequently the first two (Table I1I) are below the
minimum specific gravity (0.36) allowable in aircraft construction.

TasrLe IIT
| Moduli of rigidity
Specific =" = == M. of E.
Plank gravity : 1 : Equilateral bending
! Circle | Square Ellipse triangle
6-1-58 ! 0. 322 78, 300 72, 500 ;‘ 75, 800 80, 600 1, 347, 000
6-1-25 } . 344 82, 500 STRBO0RS "es e 3= S0 84, 000 1, 358, 000 |
5-1-49 .426 | 116,500 119,200 | 122,600 121, 800 1, 520, 000
: B i) ~ st

All specimens were 45 inches long and the angle of twist was measured over a 24-inch
gage length. The nominal diameter of the circular specimens and the width of the square
specimens were each 1} inches. The major and the minor axes of the elliptical specimens were
1% inches and 1 inch, respectively, for plank 6-1-58 and 1% inches and 1 inch for plank 5-1-49.
The triangular specimens were 2 inches on each side. An error in grinding the shaper knives
for the set with elliptical section from plank 6-1-25 necessitated the culling of that set. Aver-
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aging the results from the first and the last sets in Table I1I, we find that the apparent modulus
of rigidity for the square is 1.6 per cent lower than for the circle, for the ellipse 1.8 per cent higher,
and for the equilateral triangle 3.8 per cent higher. As pointed out in Appendix A, the direction
of the annual rings with respect to the axes of the section has little effect on the rigidity of
sections whose bounding curve is a square or an equilateral triangle. For the elliptical section,
however, there is some difference. Consequently, the first set in the table was cut with the rings
parallel to the major axis and the second set with the rings perpendicular to that axis. Had the
specimens been longer, it is thought that the results for the triangular sections would have
been somewhat lower. The ends of these specimens were enlarged for the application of torque.
With the circular section such enlargement would make little difference as long as the points at
which measurements were taken were three or four diameters away from the enlargement.
This is because in the circular rod plane sections remain plane. In the triangular rod the tend-
ency of the sections to warp is hindered by the enlargement of the ends with a consequent
increase in stiffness. The same fact is true, although to a less extent, of the ellipse. The rods
with square sections did not have built-up ends. Taking all these factors into consideration,
the agreement as to torsional rigidity as calculated by the rigorous formulas is considered quite
suitable.

Table ITI yields another interesting relation. If the moduli of elasticity in the last column,
which were obtained from minor bending tests, are divided by the corresponding moduli of
rigidity for the circular section given in the third column, the quotients will average 15.6. This
relation for the average of 12 rods checks the relation obtained in 1921 for 20 rods of circular
section that were tested in torsion in connection with another investigation. The mean modulus
of rigidity for the 20 specimens was 100,200 p. s. i., and the average modulus of elasticity 1,569,000
p. s. 1., or a ratio of 1 to 15.6. Hence the ratio for spruce is evidently between one-fifteenth
and one-sixteenth, whereas for most metals it is in the neighborhood of two-fifths.

As a further check, four rods of elliptical section were made with a major axis of 2 inches
and a minor axis of 1% inches and were tested within the elastic limit, and then were cut down
to a 1%-inch major axis and 1Y%-inch minor axis and retested. The apparent modulus of
rigidity in the first case averaged 77,325 p. s. 1, and in the second 78,162, a difference of only
1 per cent. A repetition of this series resulted in a difference of slightly over 1 per cent but
with the results reversed. Sections with equilateral triangles as bounding curves were cut
down in the same way, though in three steps, first with a 2-inch side, then a 1%-inch side, and
finally a 1}4-inch side. The average apparent moduli for four beams were 73,350 p. s. 1. for the
2-inch side, 72,250 for the 1%-inch side, and 72,650 for the 1%-inch side. The maximum
difference is about 1 per cent.

From these tests it appears that dependable results can be obtained by using wood as a
test material.

Torsion tests of irregular sections.

Following these preliminary tests, additional tests were made on beams of irregular section.
Such sections as I, T, L, U, and Z were used with and without fillets at the reentrant angles.
In addition to varying the radius of fillet, the ratio of the thickness of the web to that of the
flange or of one leg to that of the other was varied through a considerable range.

The beams were 8 feet long and the angle of twist was read for a gage length of 36 inches
at the center. The results of these tests will be discussed later in connection with the coordina-
tion of the mathematical and the experimental work in the form of empirical formulas.

The use of soap films in solving the torsion problem for irregular sections.

The value of soap films in determining the torsional rigidity and the stress in twisted
beams depends upon the mathematical analogy between the torsion problem and that of a
membrane, such as a soap film, under a uniform excess of pressure on one side. Attention was
first called to this analogy by Prandtl and very extensive use of it was made by Griffith and
Taylor. (References 9 and 10.) The method is extremely useful in that it offers a means of
determining the torsional rigidity and the stress of important irregular sections that have not
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yielded to mathematical treatment. An apparatus was built and, after it was found to give
results for simple sections that agreed closely with calculated values, tests were made on irregular
sections. The construction of the apparatus and the method of using it have already been
described under the heading “Test Material and Procedure.” The mathematical basis of the
method and a brief discussion of the technic follow. The test results will be be dealt with later
in connection with proposed formulas for irregular sections whose component parts are rectangles.

In presenting the mathematical basis of the soap-film method of test, let a very thin homo-
geneous membrane be stretched under uniform tension 7' over an opening cut in a plane sheet
of rigid material and let the membrane be fixed at the edge of the opening. If a uniform excess
of pressure p per unit area acts upon one face of the membrane, the small displacement z of points
of the membrane will satisfy the differential equation:

2z 9%z
T(a‘ifr@? +p=0, (26)
and the condition that
z2=0 27)

at the edge of the opening.
Let the opening and the section of the prism under consideration be identical in size and

shape. If we let
2= ¥ 28)

in equations (26) and (27), we obtain equations (11) and- (12) for the function ¥. Hence the
function ¥ appropriate to the torsion problem for a section of given shape is proportional to the
displacement z of a homogeneous membrane stretched over an opening of the same shape as the
section. 'The proportionality factor in (28) is determined by means of a film stretched over a
circular opening and under the same pressure as the test film. It follows from equation (15)
that the torsional rigidity of a prism of the given section is proportional to the volume inclosed
by the soap film and the plane of the opening. Further, the contour lines, z=constant, of the
soap film correspond, in accordance with equations (13), to the lines of shearing stress ¥ =con-
stant in the torsion problem. And the slope of the film at any point, as a consequence of equa
tion (14), is proportional to the magnitude of the shearing stress at the corresponding point of
the section.

In employing the soap-film method, an opening that represents the section of the prism to
either a reduced or an enlarged scale may be used. It is necessary only to observe that the
ratio of the torsional rigidities of two geometrically similar sections is equal to the fourth power
of the ratio of corresponding linear dimensions.

To obtain well-defined edges coinciding with the boundary of the cross section, the edges
of the openings were beveled at an angle of 45 degrees. Our experience has been that this does
not entirely eliminate the errors at the edges. The film is not always attached at the upper
side of the beveled edge but frequently hangs at an intermediate point. Even when great care
is used to avoid a surplus of solution, there usually is a layer of solution along the edge of the
film that tends to lower the level in its neighborhood and to make uncertain the actual position
of the boundary. Further, at points where the stress is great and the film consequently is steep,
there is a tendency for the film to run out over the plate.

Errors resulting from edge effects can be avoided by using as boundaries of the cross sections
contour lines other than the actual outline of the opening in the plate. These contour lines, if
taken near the edge of the opening, approximate the shape of the section with sufficient accuracy .
The dimensions of the section bounded by the contour line in question can be measured. In
the tables giving the results of our experiments with soap films, we have included, in general,
data from one or more inner contour lines as well as from the actual outline of the opening. We
have thus increased the number of sections studied. It is our feeling that the results from the
inner contours are more reliable than those from the outlines of the openings. In every case
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an inner contour line of the spherical bubble over the circular opening was used as the boundary
of the comparison cylinder.

There are various ways of finding the volume inclosed by the test bubble. A satisfactory
procedure is to take contour lines at frequent intervals, planimeter the areas inclosed by these
lines, and obtain the volume between the planes at different levels by the average-end-area
method.

For further details in regard to the technic of the soap-film method, the reader should
consult the papers by Griffith and Taylor. In our judgment, the high degree of accuracy that
they attained in certain cases is not always to be expected.

Formulas for irregular solid sections.

Combining results obtained by soap-film tests with known mathematical facts, Griffith
and Taylor developed an empirical method of dealing with solid rods of any section, which is
explained in Appendix B of this report. The method gives results for the torsional rigidity of
fairly compact sections with errors of only a few per cent. For certain sections, however, the
errors are considerable. In their report on the method, they attribute a discrepancy between
their results and those of published experimental work to a want of homogeneity in rolled I and
U sections. Some of our soap-film experimental work on I and U beams, however, fails to
check their formula by as much as 25 per cent and the discrepancy is in the same direction as
that mentioned in their reports, the formula giving results that are too high.

In an extensive investigation of the torsion problem, Constantin Weber developed, on the
basis of the usual mathematical theory, approximate formulas for the torsional rigidity of a
large number of sections and for the maximum stress in these sections. (Reference 11.) Tor-
sional rigidities calculated by his formulas are low in comparison with our test results.

In dealing with such sections as the L, U, Z, T, and I, Weber replaced the given section
by an equivalent rectangular section. To represent the situation at the junction of two rectan-
gles, he chose the length of the equivalent rectangle to secure a certain desired area. Now
changing the length of a rectangular section in a certain ratio does not alter its stiffness nearly
so much as a corresponding change in the breadth. There is essentially an increase in breadth
of section at the junction of two rectangles, for instance, at the corner of an L. This can not be
compensated for by merely increasing the length of the equivalent rectangle in the manner
chosen by Weber. Accordingly, his formulas give values of the torsional rigidity considerably
below those that we have found by means of direct torsion tests and tests made by the soap-
film method. It should be noted that Weber assumed that fillets were always present, their
radii being equal to the width of the narrower of the component rectangles of the sections.

For sections such as I, U, and T, whose component parts are rectangles, the following
approximate method for calculating stiffness is proposed as a result of our study; we shall first
show its derivation.

The problem is to find A in

S el
T—KGL

Now K is a constant that depends solely on the shape and the dimensions of the cross section,
and involves the fourth power of a dimension. Figures 9 and 10 show that at the junction of
two component rectangles there occurs a hump or hill on the soap film. This hump shows that
the rigidity of the complete bar is greater than the sum of the rigidities of the separate rectan-
gular parts. The volume of the soap bubble, of course, represents the rigidity of the entire bar
and the increased volume at the hump in the bubble represents the amount by which the rigidity
of the bar exceeds the sum of the rigidities of its separate rectangular parts.
For an I beam, we write

K=2K1+K2+0

in which Kj is the torsion constant of one flange and K, that of the web, while ('is the term that
is to express the additional stiffness caused by the two junctions of the flanges and the web.
In place of C'we write 2 a D* in which D is the diameter of the largest circle that can be inscribed
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Test-3

Y

Contour Elevations
054-.104 -.154 -.204
.254-.304-.354-.379
Top of Bubble .404

Contour Eleva

rions

004 -.0/18-.038-.053-.068
./38-.173-.]78-.203-.228
Top of Bubble.238

Note:- All Pimensions are in Inches

7est-15

Cortour Elevations
.012-.037-.062-.067-.//2-.137
07232872337 357-377

Top of Bubble .387

FiGURE 9.—Lines of shearing stress for I beams in torsion.

Test-=16:2

]

Contour Elevations
.003-.0/7-.057-.087-117
.128-.167-.187-.2/2

Top of Bubble .237

(From soap-film tests on half sections)
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Test-20

7es1-/8

Corttour Elevations

.0/13-.038-.063-.086-./13 -./133
145-.156-.178 -.198 -.2/18-.230

Top of Bubble-.238

Test-12

|

Contour Elevatiorns
.0/4-.039-.064-.089-./104
3= A59-.497 -.209~.229

Top of Bubbl/e-.239

Note:-All Dimensions are i Inches

7es5t-9-2

|\
G

N

Corttour Elevations
.005-.0//-.0/9-.053
.103 ~.153-.203-.233
Top of Bubb/e.z253

Contour Elevations
008 -.028 -. 058 -.078-.085
.098-.1/18 ~.]138-./48-./58

Top of Bubble ./63

FIGURE 10.—Lines of shearing stress for U and Z beams in torsion. (From soap-film tests on half sections)
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at the junction of the two component rectangles and « is a factor to be determined. We then
have
K=2K+ K+ 2aD".
An examination of Figure 9 will show that the bubble tapers down at the ends of the flanges,
as it normally would in a rectangle, while in the web it behaves more like a part of a long rec-
tangle. For this reason, we shall calculate K, by the normal formula for the rectangle

Kl & (lels,u, or I(l =(l1b13 136 T )\2] (]
‘1
and K, by the formula
gl oy

The factor « for any section depends upon two things; the ratio of the radius of the fillet to the
thickness of the flange and the ratio of the thickness of the narrower component rectangle to

o for L junction of two component rectfongles . |&
.20 i g %’)
1 S8 S ) L50OE B
£2 L o ol Bl 1 b S R ) L1 | Q185 =
I 5 B I O o 0 = B S0
= Lo B b L s o P a6 .75 0|0
5 | 1T T T | 4 425~g i
i B 5 o e o oS e g N S ey g N B B .00 ¢ §
e Pt LT 5
— 9
[ | 3
0 2 4 .6 & T
Rati width of norrow leg
a0, “width of wide leq
o for T junction of two component rectangles
)
&0 i )
el e 1252
A /'00\ =
2 750 v
.20 50 3¢
1 A RNI|=
1 = T 253D
o4 AN A ] 00
e e o
/0 i A 1] [ w
> - 1 L— |
ESERgEP. CocicimsREORERER.
_ CoeREEmmuEREE
2 i i A B 2 Ll S S ) s 1 IS
HHE
o 2 -4 .6 25 .0

 width of narrow component rectangle
Ratio, —wig7h of wide component rectangle

FIGURE 11.—Values of a for computing torsional rigidity of sections whose component
parts are rectangles

the thickness of the wider component rectangle. The values of a for different combinations
of these two factors, which were obtained through a variety of experiments with soap films and
torsion tests of actual beams, are shown graphically in Figure 11. While our experiments were
not extensive enough to prove conclusively that for a given ratio of radius of fillet to thickness
of flange the variation in « is linear for varying ratios of the thicknesses of the two component
rectangles, we feel that such a variation is close enough to the truth to warrant its use. Table
IV shows how K calculated by this simple method for I sections agrees with results obtained by
actual beam tests and soap-film tests.
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TasLe 1V.—Values of torsion constant K for I-beams

[Dimensions are in inches]
ACTUAL TORSION TESTS

2 | | | ‘

bz ) Total | Total | Fillet : | o e 1
£ otal | Tota : > | Test | pose: iffer- . for- iffer-
height | width mc}éus D | D! 2KitEp| 2 ‘ K | formula| ence mula ence

Web Flange ‘ | ‘ K K
dali e e e e S Bl sl S Gl e R R 3 ‘ !
‘ ( ‘ Per cent | | Per cent
0. 500 0. 500 3.46 2. 240 0 0.625 | 0.153 | 0.263 ‘ 0. 300 0. 300 0. 309 +3.0 0321 | +7.0
498 . 498 3.46 2.230 OF . 622 . 150 D] L ER00: .296 | .304 +2.7 . 317 +7.1
501 . 501 3.48 | 2,250 0 .626 | .154 . 266 . 300 .01 | .312 +3.7 325 +8.0
| . 624 . 876 4.00 | 2.740 0 . 987 . 947 1.164 | .214 1467 |7 15(807 =0} 1.416 —2.8
[ . 624 .875 4,01 | 2.740 0. 250 1010655115500+ |5 151161721 2055 1. 600 1. 543 —3.6 1. 634 +2.1
. 625 . 874 4.00 | 2.740 0 . 986 .945 | 1.158 ; .214 1.475 1. 360 -7.8 1. 412 —4.3
. 624 . 874 4. 00 2. 740 . 250 1.104 | 1. 485 | 1.157 255 1. 620 1. 536 —=5.2 | 1.631 ‘ +0.7
623 .872 3.97 | 2.744 0 .990 | 961 1.149 | 214 1. 355 1. 355 0.0 | 1.404 +3.6
624 .873 397 | o 745 . 250 1.103 1. 481 1. 153 . 2565 1.490 | 1.531 +2.7 1. 625 +9.0
622 .872 3.98¢ | 274p . 500 1.224 | 2.245 1. 149 . 296 1. 822 1. 814 —0.5 ‘ 1. 920 +5.4
622 .873 3.97 | 2.746 L7650 | 1,340 3. 305 1. 162 [ 335 2,255 2. 258 +0.1 | 2.356 +4.5
507 1. 045 4.49 | 2.750 .875 | 1.502 5. 085 1. 695 227 2.720 2. 850 +4.7 | 3.132 +15.2
503 1. 045 4.50 | 2.750 L8756 | 1.498 5. 040 1. 693 | 225 2. 695 2. 827 +4.9 3.078 +14. 2
498 1. 039 4.48 | 2760 .875 | 1.492 | 4.950 1. 670 224 | 2.734 2,77 +1.6 l 3.076 +12.5
497 1. 043 4.49 | 2.760 .875 \ 1,492 ‘ 4.950 | 1.689 ‘ 223 ‘ 2,571 2,792 +8.6 3.096 | +20.4
| |
SOAP-FILM TESTS
\ I ‘

& R ‘ 1. 260 ’ 1. 760 } 7.94 5. 510 1.000 | 2.466 36. 95 18. 95 0. 296 29. 30 29. 89 +2.0 3157 | +2.7
; l-Lé.‘)_.. 1. 253 } %38 1 lg. Ug 5. .;517 A 375 | 2.276 26.84 19. 78 . 315 37. 48 ‘%g gi +2.? g':z) §l)(7) +(13 T
14-C2__.| 1.6l y .92 | 5.160 . 950 2. 150 21.38 15. 3 . 315 23.22 22, —b. 2. —1.4
It 5 2. 507 1. 260 ' 10. 03 5.512 1.250 | 2.929 73.55 | 45.71 . 261 66. 06 64. 18 —2.8 64. 45 —2.4
15-C2___| 2.390 1. 050 9. 90 5. 050 1.390 2.820 63. 20 38.92 . 248 54. 60 54. 60 0.0 54.24 —0.7
16-2-*_ 1l “3:980 1. 257 10. 00 5. 510 . 625 1. 885 12. 63 11.24 400 | 13.74 16. 29 +18.5 16.52 | -+20.3
16—2—C14’ 1. 180 1. 180 9.96 5.390 . 640 1.793 10. 45 9. 26 408 12,76 13. 52 +6.0 13. 69 A
16-2—C2.‘ 1. 105 1. 105 9.98 5. 260 . 670 1.718 8.71 7. 56 420 10. 84 11. 22 +3.5 11.38 +5.0

All caleulations were made with a 20-inch slide rule.

C1and C2 indicate that first or second contour of the plate was used as the boundary of the cross section.
D=Diameter of largest inscribed circle at junction of component rectangles.

K=2K+Ky+2aD*.

Ki=torsion constant of flange.

Ksy=torsion constant of web.

Results in column headed “G. and T. formula’” were calculated by the Griffith and Taylor method.
Differences are expressed in per cent of test values.

An examination of the formula discloses the fact that the formula still holds at the limit

where the web approaches zero thickness, since « will also approach zero. At the other limit,

where the flange approaches zero thickness, again approaches zero, but the value K2=%a2623

is somewhat in error because the web can no longer be considered a part of a long rectangle.

From the relations holding for an I beam, we obtain results for & T beam directly. The
T beam has only one junction of component rectangles and consequently only aD)*in the formula.
Also K, must be modified slightly. The web now closes at one end, as it would normally in a
rectangle, and therefore K, is one-half the K of a rectangle twice as long or

Kz = 02b23M;

the value of u corresponding to the ratio 2a+5. Our final result is
K=K+ K,+ aD*.

For sections such as an L, we proceed in the same way. The wider leg is considered as the normal
rectangle and the narrower leg as a part of a long rectangle. An examination of Figure 10 will
show why this is done. Figure 11 gives the proper values for a. For sections made up of L
junctions, such as U and Z sections, we proceed in the same way and add a correction for each
junction.

In applying the soap-film method to U and Z sections, advantage was taken of the sym-
metry of these sections with respect to a line perpendicular to the bar at its middle point; L-
shaped openings in the test plate, having a vertical septum at the ends of one or both legs, were
used. When the legs of the L were of unequal thickness, it was desirable to have a septum at
the end of each leg in order to be able to calculate two types of U or Z sections from a single test.
By means of a simple calculation the effect of the septum at the end, when one is not desired,
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can be removed. Values of the torsion constant given in Table V for U and Z sections were
obtained in this way from L-shaped openings.

The actual torsion tests on wooden beams with L, T, U, and Z sections (Table VI) yielded
apparent values of the torsion constant that were considerably greater than those given by the
soap-film method for the same sections. The excessesin the values thus determined are attribu-
table to two causes:

(1) The stiffening effect of the blocks that were glued to the ends of all beams tested to make
the end sections rectangular. These blocks hindered the warping of the cross sections that
takes place in the twisting of all cylinders or prisms not of circular section. (Fig. 4.)

TaBLE V.— Values of torsion constant XK for U or Z beams

[All dimensions are in inches]

| | |
| | Thickness “ Overall ‘ ‘ P I ‘ ‘
‘ ‘ Fillet | soap | vod | Differ: |,G+20d | pie
Test | End of legs | PR ra%us D Di | ok e [ o8D . | ROE 'I‘.]form- T
[ e engt Vidth - ula K
i | Legs Bar leg bar | ula K
\ s [ e e
i 1 }
; | i Per cent Per cent
5-1..__.| Without septum | 1.498 | 1.495 5.51 7.50 | 0 1.755 | 9.49 15.26 | 0.140 | 16.68 | 16.59 | —0.5 it il
5-1-C1_[ ___- {6 (o) e O 1.390 | 1.390 5.30 7.34 | 0 1.630 | 7.06 12.08 | .140 | 13.34 13.07 —2.0 | 13.85 | +43.9
2o J g ERETE .263 | 1.256| 5.51| 7.56| O 1.478 | 4.77 0.62| .140 | 10.121 10,29 +17 | 10.00| +8.9
I 7=2-C1.|.__.. gl 1.225 | 1.225 5.44 7521 .0 1.435 | 4.24 8.86 | .140 9.39 9. 45 +0.6 9.94 | +5.9
7-2-C2_|.___. do-= o) 1.160 | 1.160 5.36 7.48| 0 1.360 | 3.42 7.48 | .140 8. 06 7.96 | —12| 8.40 | +4.2 |
I L e ] R Okeossizs | 1.006 | 1.008 5.51 7.54 1.00 | 1.515 | 5.27 5.20 | .290 5.98 6.73 | +12.5 7.49 | +25.4 |
9=9-Qldli s cdostis na - . 930 940 5.41 7.48 | 1.04 | 1.451 | 4.43 4.12 | .305 5.31 5. 47 +3.0 6.14 | 4+15.7 |
(LG DIl EPRE [o S e O ' .800 .810 5. 26 7.38 | 1.14 | 1.339 | 3.21 2.65 | .358 3.78 3.80 | +0.5 4.18 | +10.6
JOE i With septum__.  1.508 752+ 1 +6:00 | “11.08 .75 1.660 | 7.59 13.88 | .107 | 14.94 | 14.69 —1.7| 1541 | +3.1
10-C1._|-_--.do .710 | 1.470 5.97 | 11.96 80 | 1.640 | 7. 13.48 | .108 | 14.46 | 14.26 —1.4| 14.16 —2.1
d .580 | 1.450 5.96 | 11.90 90 | 1.600 | 6.55 11.76 | .093 [ 12.78 | 12.37 —3.2| 12.82 | 40.3
1.506 | 1.507 6.00 | 12.06 75 | 2.016 | 16. 50 22.90 | .215| 26.18 | 26.45 +1.0| 28.77 | +9.9
1.450 | 1.470 5.96 | 12.00 79 1 1.980 | 15.38 |  20.80 | . 2201 24.98 | 24.18 —3.2| 26.39) +5.6
1.353 1.373 5.96 | 11.98 90 | 1.905 | 13.17 17.10 | .240 | 20.60 [ 20.26 | —1l.6| 22.15| +7.5
505 1.508.| 6.02 1 12.00 75 | 1.586 | 6.32 13.07 | 072 | 18.80 | ~13.53.} =1-90| S 138 | =126
1.503 | 1L 511 6.00 | 12.02 | 1.50 | 2.280 | 27.02 22.91 .200 | 30.72 | 30.74 0.0 | 34.56 | +12.5
1.450 | 1.460 5.98 | 11.96 | 1.52 | 2.220 | 24.28 20.62 | .300 | 28.40 | 27.90 —1.7| 8135 | +10.4
1.380 | 1.380 5.94 | 11.88 [ 1.56 | 2.153 | 2L 50 17. 64 310 | 25.22 | 24.31 —3.6 | 27.25 ‘ +8. 1
1.133 | 1.506 6.08 | 12.08 75 | 1.820 | 10.97 17.11 | .162 | 18.32 | 18.88 | +3.0| 20.53 [ +12.0
1.040 | 1.460 6.02 | 12.00 78 | 1.760 | 9.60 14.92 | .157 | 16.16 | 16.42 | +1.5| 17.87 | +10.6
.900 | 1.370 5.98 | 11.86 86 | 1.660 [ 7.59 11.66 | .154 | 12.58 | 12.83 ‘ +2.0 | 14.00 | 4+1L3
1. 506 | 1. 507 6.01 | 12.00 38 | 1.896 | 12.92 22.84 | .177 | 23.74 | 25.13 +5.8 | 26.91 | +13.4
1.430 | 1.440 5.93 | 11.96 39 | 1.815 | 10.86 19. 88 178 | 21.60| 21.81| +1.0| 28.13| +7.1
1.330 1.330 5.91 | 11.82 49 | 1.734 | 9.04 15. 96 193 | 17.16 | 17.70 | +3.1 18.75 | -+9.3
1.504 | 1.504 6.00 | 12.00 | 1.12] 2149 | 21.32 22.75 252 | 26.34 | 28.12| +6.8| 31.20 | +18.4
1.420 | 1.440 5.94 | 11.86 | 1.15 | 2.069 1‘ 18. 32 19. 50 261 1 23.36 | 24.28 ‘ +4.0 | 26.90 | +15.2
1.280 | 1.310 5.88 | 11.7 1.25 | 1.944 ‘ 14. 30 i 14. 56 285 | 18.08 | 18.64 ‘ +3.0 | 20.65 | +14.2
| | I | |

All caleulations were made with a 20-inch slide rule.
Legs with septums at ends must be treated as parts of long rectangles. ¢
O1 and O2 indicate that first or second contour of plate was used as the boundary of the cross section.
D=diameter of largest inscribed circle at the junction of component rectangles. .
K=2EK1+ Ki+2a D",

K =torsion constant of one leg.

K»>=torsion constant of bar.

Differences are expressed in per cent of soap-film values.

Results headed G. and T. formula were calculated by the Griffith and Taylor method.
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TasLe VI.—Values of torsion constant K for L, T, U, and Z beams obtained by actual test
[All dimensions are in inches]
L-BEAMS
Thickness Overall K
Fillet IS SRR B T AN
Test radius D D+ Ki+K, @ [
Long Short Long Short R ‘ Test |Eroposed G.and T.
leg leg leg leg formula | formula
Sl i 0. 502 0. 502 3. 249 2.738 0.25 0.674 0. 206 0.211 0. 108 0. 275 0. 234 0.247
L2 . 502 . 502 3.245 2. 750 .25 .674 . 206 .212 . 108 . 275 .234 . 247
L 3. . 500 . 500 3. 247 2.738 0 . 586 L 118 . 209 . 070 272 217 . 224
L4 . 500 . 500 3.242 2. 745 0 . 586 . 118 . 209 .070 . 265 217 224
L5. .312 . 496 3. 250 2.740 .25 . 574 . 109 .126 . 068 . 218 133 . 140
16 .313 . 494 3.232 2.732 .25 .672 . 107 . 124 . 068 . 190 132 . 139
e . 504 .493 3.243 2.727 .25 . 672 | . 204 . 207 . 108 . 284 .229 . 242
N8t Li . 502 . 496 3. 246 2.737 .25 . 668 ] . 199 | . 208 . 108 . 307 221 . 243
|
T BEAMS
[
Thickness | K
Fillet |
Test poiay | Jotal | rediug| D KitK: | o« ;
Fl Web g R { Test | Proposed |G.and T.| Weber
BLge S ‘ formula | formula | formula
B EPRRR RISk T Bl it SIS N A 1
0. 504 0. 504 3. 240 2,755 0 0. 630 0. 158 0.214 0.15 0.274 0. 238 Oi2ddeil =t F i
. 503 . 503 3. 240 2. 754 0.25 L754 . 324 .213 .20 .318 . 278 . 289
. 503 . 503 3. 250 2.752 0 . 629 156 | 213 .15 .275 . 236 . 242
. 503 . 503 3. 240 2.753 26 L 754 323 213 .20 . 312 207 . 289
. 500 . 500 3. 234 2.740 0 . 625 152 . 208 .15 . 261 . 231 . 237
. 504 . 504 3. 231 2.740 .25 L7754 323 | 213 .20 . 204 . 278 . 290
. 501 . 501 3.229 2.740 .50 876 589 | 218 .25 . 396 365 . 345
. 502 . 502 3.230 2.730 .75 936 768 | .210 .30 .473 . 460 413
504 . 504 3. 250 2. 750 (1ot lEn s < - |2 il St T DR | s et e Ran e &=
506 . 506 3. 250 2. 750 0 632 . 217 .15 . 287 . 240 247
504 . 504 3. 250 2. 750 (1N e o e 8 ) P 208 Sl T i DN S SHERTOUE M SRR
504 504 3. 250 2.750 0 630 158 214 15 . 285 238 T o | (IRSSEr S W
U AND Z BEAMS
B | T o e R e e T R ) 7777_7[
Thickness Overall ! K |
| Fillet RGeS e Tl
Test 5 e m(}eius D D+ 2K1+-K» 2a IP d[G s |
engt Jidt TOpPOSe! . an | Weber
Legs Bar leg bar Test | “formula | formula | formula
T s 3 | gy
u 0. 502 0. 502 2. 750 3.750 0 0. 588 0.120 0. 321 0 140 0 408 0.338 ‘ 0 350 :
U . 501 .501 2. 750 3.730 0. 25 . 672 . 204 .319 .215 . 444 . 363 . 390
u . 502 . 502 2. 750 3.740 0 . 588 . 120 . 321 . 140 . 436 . 338 . 349
u . 501 . 501 2.740 3.750 25 .672 . 204 319 . 215 448 . 363 . 390
u . 380 . 379 2. 749 3. 499 25 . 530 . 079 . 142 . 240 . 251 . 161 <172
u 377 . 492 2.743 3.513 25 . 600 . 130 . 203 . 165 .324 .224 . 245
U .377 . 623 2.741 3.514 25 . 692 .229 .323 .121 . 452 . 351 . 376
u 377 . 747 2. 737 3.516 25 . 790 390 . 490 . 096 . 634 . 527 552
U . 495 . 495 2.743 3.752 0 . 580 113 . 308 . 140 L 404 . 324 338
u . 496 . 496 2.738 3.740 .25 . 666 . 197 . 309 .215 .423 . 351 379
u . 495 . 495 2.743 3.753 .50 . 751 318 . 308 . 290 . 468 . 400 446
U . 496 . 496 2.734 3.743 .75 . 838 . 493 . 309 . 365 .al14 . 489 . 550
Z 498 . 498 2.735 3.715 | 0 . .669 . 200 .311 L 215 . 498 . 354 . 381
z 499 . 499 2.736 818 40 . 585 - AXT 314 . 140 . 466 . 330 . 345
Z . 501 . 501 2.734 3.708 | 0 .672 . 204 . 316 . 215 . 488 . 360 . 388
Z . 497 . 497 2.736 3.714 0 . 582 “ 118 .310 . 140 . 461 . 326 . 340
Z .375 . 375 2. 750 3.750 .50 . 610 138 . 141 . 345 . 285 . 189 . 208
yd .375 375 2.750 3.750 | 50 .610 .138 . 141 . 345 . 290 . 189 . 208
Z .375 .375 2. 750 3.750 [ 25 . 525 .076 . 141 . 240 . 248 . 159 170
Z . 376 . 376 2.750 3.750 25 . 526 077 . 142 240 . 254 . 161 171

All caleulations were made with a 20-inch slide rule.

Weber formula assumes a radius of fillet equal to the thickness of the n

T 9 and T 11 did not have web glu

blocks glued at ends to make end sectio
For a discussion of the

Sections.”

ed to flange.
n rectangular.

arrower component rectangle.
They act, therefore, as two separate pieces except for additional stiffness resulting from filler

discrepancy between calculated and test values of K, see concluding remarks under

““ Formulas for Irregular Solid
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(2) The combination of bending and torsion caused by the fact that in many instances the
axis of twist did not coincide with the axis of the figure.

Neither of these causes would be as effective with I beams as with the sections just mentioned.

The soap-film method furnishes the value of the torsion constant K associated with pure
torsion under ideal conditions as to the application of torque at the ends. Usually an actual
beam will have a margin of safety as regards torsional rigidity because of the fixity of its ends.

CONCLUSIONS

The soap-film method proved to be a valuable aid in the solution of the torsion problem for
eylinders and prisms for which no rigorous mathematical solution has been found. Not only is
the method capable of furnishing the torsional rigidities and the stresses with considerable
accuracy but it also gives a visual representation of the actual situation as regards torsional
stresses, a representation that can be readily interpreted by the observer.

From a study of the soap-film tests and the actual torsion tests, it has been possible to
conclude that the torsional rigidity of prisms with sections such as I, T, L, U, and Z, which are
composed of rectangles, is equal to the sum of the torsional rigidities of prisms whose sections are
the component rectangles, corrected by a simple additive term to take account of the increased
stiffness resulting from the junctions of the rectangles.

The formulas developed by C. Weber for such sections were found to be fairly accurate when
the widths of the component rectangles are extremely small in comparison with their lengths, as
with many rolled-steel sections. (Reference 11.) For sections of wooden beams for which the
component rectangles are wider (say the width greater than one-fifth the length), Weber’s
formulas give torsional rigidities that are much too low. His formulas always assume the
presence of fillets, the radii of which are equal to the width of the narrower component rectangle.
With thicker sections, such as those that we have tested, the variation of the torsional rigidity
with the radii of the fillets can not be neglected. In our opinion, the reasoning employed by
Weber in deriving his formulas is open to objections. The errors introduced, however, are
negligible for very thin sections.

Griffith and Taylor developed rules for calculating the torsional rigidities of prisms of any
section. - The application of these rules to sections of the kind that we are considering is rather an
intricate process as compared with the simple computation required by our proposed formula.
The results obtained by Griffith and Taylor’s rules are good for fairly compact sections. For
sections made up of component rectangles, the results calculated by their rules appear to be
somewhat too high.

Our tests show that the torsional stiffness of a beam may be materially increased by the
way in which it is fastened at the ends. Two other factors are important in connection with the
torsional behavior of wooden beams. They are rate of fiber strain and moisture content.
Corrections for their influence on torsional properties were determined. We have concluded
that a third factor, which has to do with the difference between the moduli of rigidity of wood
referred to planes radial and tangential to the annual rings, may, in general, be neglected in
design and a mean modulus used. For Sitka spruce this mean modulus is between one-fifteenth
and one-sixteenth of Young’s modulus parallel to the grain.

SUMMARY

This report reviews briefly the fundamental theory of torsion and shows how the more
common torsion formulas have been developed from that theory. Formulas for solid and
tubular sections that have yielded to mathematical treatment are given, and empirical formulas
are developed for irregular sections whose component parts are rectangles. The empirical
formulas are a result both of direct torsion tests of wooden specimens and of the application of
the soap-film method of investigation to the sections in question. The mathematical analogy
upon which the soap-film method is based is explained.

The effect of a lack of isotropy in wood, caused by the presence of the annual growth rings,
is discussed and is shown to be relatively unimportant.
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APPENDIX A
PRISMS OF NONISOTROPIC MATERIAL

In order to solve the torsion problem for a wooden beam, we shall consider a prism of non-
isotropic material in which there are three mutually perpendicular planes of elastic symmetry,
one of which is perpendicular to the direction of length of the prism. It will be shown that. the
solution of the torsion problem for such a prism can be reduced to the solution of the same
problem for an isotropic prism whose section is obtained by transforming the boundaries of the
original section through a linear transformation and whose modulus of rigidity is expressed in
terms of the moduli of the original material.

Let the axis of Z lie along the direction of the length of the prism and the axes of X and ¥
be axes to which the boundary of the section is conveniently referred. (Fig. 12.) Let the
planes ZX’ and ZY” be the longitudinal planes of elastic symmetry and let &, and G be the

Y YI
0 x x
a«
X!
FIGURE 12

moduli of rigidity associated with shearing strains corresponding to the pairs of directions of
the axes of Z and X’ and of Z and Y, respectively.

We form the same general picture of the state of stress and strain as for the isotropic prism
(p. 10) and accordingly we again assume that the components of the displacement parallel
to the X/, Y’, and Z axes, respectively, are expressed as follows:

g —1y" 7, v=r22, w=r¢ @', y"), 1)

where 7 is the angle of twist per unit length and ¢ is a function of ” and %’ only, which is to

be determined.
As a consequence of the type of displacement given by (1), all of the components of strain

vanish except
Gk dp J
&' =gy T o ﬁ“)

,_u dw_ (3¢ )
s =gzt o Y

(2)

(Reference 1.) These are shearing strains corresponding to the pair of directions zy’ and zx’,
respectively. Then all stress components vanish except the components X’.and Y’, of shearing
stress and these are given by

X', =G €.z, Y ;=G ey (3)
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(Reference 2.) Referred to the axes X and Y, which make an angle « with the axes X’ and
Y,” the stress components are

X.,=G; ey, sin a—G, e, cos a,

Y,=G,e,,cos a—G, e, sin a. 5
Entering the values of ¢,,and 2,,. from (2), noting that
&' =x cos a—y sin «, y' =z sin a+y cos a,
and using the abbreviations
k=G, sin? a+ @, cos? a,
= (G,— @) sin «a cos a, \ (5)
w=_G, cos® a+ @, sin? q,
we find that equations (4) become
( 29 )\ + )\t—u/)
(6)

¢ (')d) )
—T<)\ a]/-*—ul‘ Ay

From the equations of equilibrium and equations (6), we obtain the differential equation which
the unknown function ¢ must satisfy; namely,
3 ¢> ) 32¢ o

This equation for the determination of ¢ corresponds to equation (3), page 11, for an iso-
tropic prism.
The requirement that the lateral surface of the prism shall be free from traction leads to

the following condition, which ¢ must satisfy on the curve f (x, ) =0, the boundary of the
cross section:

(Eoa)E B ®
= (=) & =) L
After the change of independent variables
where i ety K
5=J€'»€2, =2 (10)
the differential equation (7) becomes ; .
%ﬁ%‘ﬁ:o. (1)

If the equation of the boundary f (z, %) =0 is transformed into

& n)=0 (12)

by the change of variables (9) the boundary condition on ¢ in equation (8) becomes

5 St

96 OF 9¢ 9F\ 9F _oF
5(6545 CEETS e {15)
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If we let
J b ¢’ =d¢, (14)
this condition reduces further to

d¢’ OF  9¢’ 9F __9F ,oF

g ot T an on Mot tan’ e
or
a /’
% =1 cos (& )~ £ cos (1, v), (16)
where » denotes the normal to the new boundary.
From (12) and (14)
¢’ | 0%’ <

The solution of (17) subject to the boundary condition (16) corresponds to the solution of the
torsion problem for a prism whose section has the new boundary (12) and which is composed of

isotropic material.
It will now be shown that the torsional rigidity of the original prism can be expressed in

terms of the torsional rigidity of the transformed prism. For the couple 7" we have
T=f J (¥x—Xy)de dy.

Entering for X, and Y, their expressions in terms of ¢ (equation 16) and changing the variables
of integration to ¢ and 7 by equations (9) we obtain

(i d d : 2
T:%” e (e52—n%5 (g4 ) |de dn, (18)

where the integration is now extended over the area of the transformed cross section. It follows
at once from equations (18) and (10) that the torsional rigidity C of the original prism is given by

ST T R
0=%ff(s (,f; ~n—a‘%+g-’-i— nl)dg dn. (19)

The right-hand member of this equation is the torsional rigidity of an isotropic prism whose
cross section is obtained from that of the original prism by the transformation (9) and whose

modulus of rigidity is

G _(Gusina+ Gy cos )’ )
i a6
'LINES OF SHEARING STRESS AND INTENSITY OF SHEARING STRESS IN A NONISOTROPIC
PRISM

Let ¥’ be a function associated with the transformed isotropic prism as the function ¥ was
with such a prism in equation (10), page 12, that is, let

o
Y=y -5 @+,

where ¢’ is a function conjugate to ¢’. It follows that

e ol O
AZAIK (')7’]’
v v 9V
P e ag)
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If we now express these components in terms of the variables z and ¥, using equations (9),
and let
g =00 (G e = e, 9),
we obtain simply
o g

= rK——) = — 71Kk 9
TK 3y Yo TK (21)

X. ar

It follows that the curves, ¥(x,y) =constant, are lines of shearing stress and that the intensity
of the shearing stress at any point is equal to
(A4
— 2
L (22)

v denoting the normal at the point in question to the curve ¥(z,7)=constant, which passes
through that point.

Applications to certain nonisotropic prisms with simple cross sections.

To take a typical example, let us suppose that the material is wood. It will be assumed that
the plane X’0Z, Figure 12, is parallel to the annual rings which are considered to lie in planes.
The moduli ¢, and @, (equations (3)) are sometimes called the tangential and the radial moduli,
respectively.

(@) Tae CIrCLE:

Let the axes 0X” and OX coincide so that a=0. After the transformation (9) the circle
becomes an ellipse with the semi-axes

a G2 and a.

G

On letting «=0 in equation (21) the modulus of rigidity of the transformed elliptic section is
found to be

_(_} = Gl %;'
The torsional rigidity of the original circular cylinder is equal to that of the transformed isotropic
elliptic cylinder. We find (p. 15).
GG,

O=WGI+(_EG. (23)

On comparing this result (equation (23) ) with that on page 21, we see that the torsional
rigidity of the given nonisotropic circular cylinder with moduli &, and @, is equal to the torsional
rigidity of an equal isotropic circular cylinder with the modulus,

26,6
G+G,

[t has sometimes been erroneously assumed that this quantity is the mean modulus for a section
of any shape.

(b) Tae ELripsE:

The annual rings make an angle « with the X-axis. The section of the transformed cylinder
is obtained by using equations (9). The transformed secticn is an ellipse whose axis can be
found. Entering these axes and the modulus as given by (20) in the expression for the torque
of an elliptic cylinder, page 15, we find as the torsional rigidity of the transformed section and
consequently that of the original section

Oz'mSGng

ol o b | 4 2
K+mp Al (24)
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where m=% and « and u are given by equation (5). If

=2 and Gl T O.gGg,

SRS

we obtain
727G,

46 sin? at4.9 cos’a

Denote by C, and Oy, respectively, the values of ' when a=0° and 90°, respectively. Then

Coo _
A 1.065
and if
W Cao _
=3, o =1.087.
If G,=0.8G,, we find that
%:’=1.142- when %=2,
Coo _ - o _
and 00—1.195 when b—3.

The torsional rigidity of an elliptic cylinder in which the annual rings are perpendicular to the
major axis is greater than that of an equal cylinder of the same material with the rings parallel

to the major axis.

(¢) Tue RECTANGLE:
Let «, the angle between the annual rings and the X-axis, equal zero.
The equations of transformation (9) become

_ G,
s \/G“

NN

The rectangle with sides 2¢ and 2b is transformed into another rectangle with sides

G,
2a\/§l and 2b.

The modulus of rigidity of the transformed isotropic rectangular prism is, in accordance with (20)
Gy
G, G,

Then by the formula on page 15 the torsional rigidity of the transformed section is

_gape [18_,0 G
(6] Glab {3 )\a Gz ’ (25)
in which X is to be taken from Table I by replacing the ratio of the sides by

a |G

bV G,
This result is in direct agreement with that of St. Venant, who obtained formulas for the cases
in which «=0° and «=90°.
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If «=90°, we find that the rectangle is transformed into a rectangle with sides

2a \/g‘) and 2b

and that the modulus of rigidity of the transformed isotropic prism is

@y

Entering these results in the formula for an isotropic rectangular prism on page 15, we
again obtain St. Venant’s result for this case.

If ¢,=0.8G, the torsional rigidity of a quarter-sawn board whose sides are in the ratio 3 to
[ is 18 per cent greater than that of a plain-sawn board of the same dimensions.

2
B
B A
A
0 X
c
c D
D
FIGURE 13

In general, the rectangle with sides 2a and 2b and vertices ABCD is transformed into a
parallelogram A’B’ ("D’ whose vertices are at the points

(6a,b—~a), (—da, b+~a), (—éa,—b+ ya), and (6a, —b—~a) respectively.
(Fig. 13.) The sides are
A’B’ =2a+/v*+ & and

A'D’'=2b

The modulus of rigidity of the prism of transformed section is given by equation (20). The
acute angle between adjacent sides of the parallelogram is found from the equation

tan 6= -
¥
The torsional rigidity of the transformed isotropic prism whose section is a parallelogram is
calculated by the approximate formula
At —
Ol
where 4 is the area of the section and J is its polar moment of inertia. This formula is quite
accurate at the extremes a=0° and «=90° if the ratio of the sides is 3 to 1. The use of this
approximate formula to compute the torsional rigidity of the transformed prisms appears to be
justified, since the angles of the parallelograms into which the rectangular sections are transformed
differ but little from right angles. If the ratio of the sides of the rectangle is different from 3 to 1
the factor 41 in the denominator should be replaced by a different number so chosen that the
formula gives results that agree well with the exact values for a=0° and a=90°.
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(d) THE EQUILATERAL TRIANGLE:
By the transformation (9) the equilateral triangle (fig. 14) with vertices A, B, and C at

b
B

) FIGURE 14
the points

a a =
@0, (% § V) and (0,0)
is transformed into a triangle with vertices at
5 i :
(6a, —va), [;’ (\/3~7)%J, and (0, 0),
respectively. Table VII gives the lengths of the new sides "B’ and ("A’ and their included

angle 0" = A’(" B’ corresponding to various values of the angle o, a being the angle made by the
planes of the annual rings with the X-axis, for wood. It was assumed that

Gl :08G2
TaABLE VII
\‘ a ) v Modulus C'B'|a C'Alla | (84 \ C/K
l & | o ’ ‘
y 0 1] 8 0 0. 716G, 1. 031 1811 S ES R 0. 1928
7Y% IS5 . 032 . 719G, 1. 016 15116 58 126 | 93
[ e1D 1. 101 . 062 . 734G, 1. 000 1. 103 59 52 . 192
2214 1. 077 . 085 . 772G, . 984 1. 080 61 20 s il 02
30 1. 052 . 102 . 808G, . 970 1. 056 62 A bIE 1924
45 . 994 L . 906G, | . 950 1. 001 64 45 ‘ . 1918

The torsional rigidity ' used in the last column of Table VII was computed by the formula

At —

0= 3=70, (27)
where A, J and @ have the same meaning as on page 42. This formula, which is exact for
the equilateral triangle, was thought to be sufficiently accurate for the computation of the
rigidity of the slightly distorted transformed sections. According to the computed values
the torsional rigidity does not vary appreciably with the angle « made by a plane of symmetry
(the plane of the annual rings, for wood) with one of the bases. This result is not surprising in
view of the symmetry of the section.

THE SOAP-FILM METHOD OF SOLVING THE TORSION PROBLEM FOR PRISMS OF NONISO-
TROPIC MATERIAL

The torsion problem for a prism of nonisotropic material having perpendicular longitudinal
imetry has been reduced by the linear transformation (9) to the torsion
problem for an isotropic prism of a transformed section and a given modulus of elasticity. The
soap-film method may accordingly be used when the transformed section is such that a rigorous
mathematical solution of the torsion problem for this section is not available.

planes of elastic syn
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It follows from (19) in the way in which (15), page 12, was obtained from (6), page 11,
that the torsional rigidity of the original prism, which is the same as that of the transformed
prism, is given by

¢ % rrvdan 28)

This means that the torsional rigidity of the prism is proportional to the volume inclosed by
the surface z=W’ (¢, n) and the plane z=0, the function ¥ (¢, n) vanishing on the boundary of
the transformed section. Now ¥’ (£, 4) is proportional to the ordinates of a soap film stretched
over an opening of the shape of the transformed section of the prism, the film being under a
uniform excess pressure on one side. The proportionality factor can be determined from (28)
and the previous discussion of the soap-film method. !

The contour lines of the soap film stretched over the transformed section‘are the curves
W’ (£, 1) =constant. These curves when transformed by (9) become the curves ¥ (x, y) = constant,
the lines of shearing stress of the original nonisotropic prism. This follows immediately from
equations (21). From the distance between adjacent curves ¥ (x, y)=constant, we can, in
accordance with (22), estimate the intensity of the shearing stress at a given point.
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APPENDIX B
THE GRIFFITH AND TAYLOR FORMULAS FOR TORQUE AND STRESS

Method of calculating torsional rigidity.

The method of Griffith and Taylor, which gives fairly accurate results for many sections,
is summarized in this appendix. For a comparison with our results see the discussion in the
body of the report. 5

We may write for any section

T=GK7,

in which
T'=the twisting moment.

G =the modulus of rigidity.

K =the torsion constant.

%= the unit angle of twist.
For a circle
4
=7
which may be written
o Ay
K= 5 K=oy

in which A =the area. In general, then, let us assume that

A
K= 5 (828
in which O is called the equivalent torsional radius of the section. To determine the twist
for a given moment, we must then find C for the section in question. Checking C for an equi-
lateral triangle against C for its inscribed circle, we find that, while the area for the triangle is 65
per cent greater, C'is only 10 per cent greater; this shows that projecting corners add but little
to torsional stiffness. The first step, then, in getting the correct C for the section under con-
sideration is to round off any projecting corners with an arc of suitable radius. The radius of
such an arc depends upon the angle through which the tangent to the boundary turns in passing
around such a corner, and also upon the radius of the largest circle that can be drawn in the sec-
tion touching the boundary at more than two points. Let a be the angle through which the
tangent passes in turning a corner; for the corner of a square it is 90 degrees, for the apex
of an equilateral triangle it is 120 degrees, and so on. Let b equal the radius of the largest
circle that can be drawn in the section and call » the radius of the arc for rounding off the corner.
Table VIII gives the ratio of » to b.
45
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TasLe VIII

a® 7 a® n “

180° b || 180° b ;

|

0.0 1. 000 0.6 0. 375 |

#1 . 930 7 12705 |

0 . 850 o] £210° |

e . 750 .9 i7oR|
= . 625 1.0 . 155

.5 500521l 8 e e e S =l |

| ‘

In this way we make a new figure with all the outward corners rounded off
Let
A, =the area of the new figure.
P, =the perimeter of the new figure.
Then our first approximation of C'is
2A1

012 P1

Our second approximation is obtained as follows:
Let
A =the area of the original section.
P =the perimeter of the original section.
b= the radius of the largest inscribed circle.
24
71 i 75 ®

Then the square of (; as obtained by the first approximation must be multiplied by a factor A
taken from Table I1X.

TasLE IX
b b
h ’ A h }\
1. 00 / 1. 000 0. 70 0. 897
.95 . 998 . 65 . 848
. 90 . 994 . 60 . 793
. 85 . 984 . 86 . 132
RO . 966 . 50 . 667
| s . 938 A SRE O s £
e SR S0 | \
We have then
A
K= \C}?

Sections in which more than one circle touching the boundary in three points can be drawn
require special treatment. They must be divided into component sections. A value of (' for
each component is then calculated and the results added to obtain a € for the whole section.
In dividing a section into component parts, the following rule is used: Imagine a circle of vary-
ing radius to move inside the section. There may be several positions where the circle and
the boundary have three or more points of contact, and between each pair of such positions there
will be a position of the circle where its radius is & minimum. Draw the division lines through
the points of contact of these minimum circles. When the section includes long, narrow portions
bounded by lines parallel or nearly so, such as the web of an I beam, the division lines should
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be drawn at a distance from the commencement of the parallel portion equal to half its thick-
ness. (For further details see Figure 15 and the calculation it accompanies.) Slightly tapering
flanges of I beams should also be treated in this way. When such divisions have been made the
preceding method is applied to each part separately, and the results are added. Two im-
portant instructions must be remembered, however: In the perimeter of each component part do
not include the division lines, and do not round corners formed by the junction of a division line and
a line of the original boundary.

As an illustration of the method, the calculation of the torsion constant for I beam No. 7 of
Table 1V, page 30, follows:

The first step is to divide the section into seven component parts as shown in Figure 15.
The division lines are placed by moving half the thickness away from the commencement of

— 2o ———— ——:]
s CIRE SRS /o 2B it
762 5 /0 62"
e S ZORE e IS ‘r*r
Tl s e & o
7 5 S e = t_-%r
o] e GY;
&
sy %
% 2l
Ny
Q
Or ------ "2t 3
o P / J
? | 9
. : : Jaas
N M L V.

FIGURE 15.—Section of test specimen I-7 show-
ing component simple sections

parallel portions. The next step is to round off the corners. The tangent turns through 90
3 ; il

degrees at all corners. Therefore, in accordance with Table VIII 318 equal to one-half. Table

X gives the remainder of the calculations. All calculations were made with a 20-inch slide rule.

TasLE X

' | 24 (&% 24

Part l A P 27 b ﬁ A J 4, P, } T,l K
B.C.F. G, R,S.| 0.625 | 2.00 | 0.625 \ 0. 3125 | 0.500 | 0. 667 J 0. 625 ' 2.00 | 0.625 |o0. ggﬁ
St TR S S R L o e i d b i R RS i L g O !
AR 310 | 174 | 8564 | .250 | .701| .89 | .3033 | 1633 . 73715 | . 0192
O DIE, Fo: O T e lp 5k TR R el RN 0192
(SOl Rl st e e e T SRS RN Sl WA o Jis SRR ISR [(5E0199
0.P,M, N S T e R R S AT AN 0192
R.G, H, Q 080 | '3.92 | .500 | .250 | .500 | .667 | .980 |3.92 | .500 | .0817

D T e il R 8 PN M I | 3213
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Method of calculating stress.

Two formulas are given for calculating maximum stress. For compound sections, the
formulas may be applied to each component part separately. Where there are no reentrant
angles, the following formula is used:

206G 5t b
J=5= 7‘:;64 [1+0.15 (1—;717——,))]
Loy

in which 7 is the unit angle of twist % and p is the radius of curvature of the boundary at the

point in question. The maximum stress will usually occur at one of the points of contact
of the largest inscribed circle. An exception may occur if the boundary is more concave at
some other part than at these points of contact.

When the twisting moment is known and the angle of twist is not, - may be obtained, of

course, from—
T= KGr.

Where the boundary is concave, the following formula is recommended:

=A2bG{4 1+0.118 log, e Bl e

L) | P p ™
1+
A?

in which « is the angle turned through by the tangent in turning around the reentrant portion.
It must be remembered that for reentrant angles a is negative.




APPENDIX C

DESIGN VALUES FOR AIRPLANE MATERIAL

Recommended design values for wood for use in connection with the formulas of this
report are given herewith. For metal, the allowable shearing stress values at present specified
should be used for ¢ except where better data are now available (as in Technical Note Number
189 of the National Advisory Committee for Aeronautics). For steels for which values are
not now available, 10,000 pounds per square inch added to half the ultimate tensile strength
gives a value that may be used for the ultimate shearing stress in torsion. The values for

wood follow.
Spruce, G = 1—5E—5~ — %Q= 84,000 pounds per square inch.
Spruce, 45° plywood, G, =5G =420,000 pounds per square inch.
Spruce, ¢=1,000 pounds per square inch.
Spruce, 45° plywood, ¢=2,370 pounds per square inch.
49
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Positive directions of axes and angles (forces and moments) are shown by arrows

Axis Moment about axis Angle Velocities
Force
(parallel Thisip
Desionati Sym- Yo a)gis% Designa- | Sym- Positive Designa- | Sym- | (compo- i
eHgnaLon bl fjsE a0 tion bol direction tion bol |nent along | #P8Y Ak
axis)
Longitudinal .| X X rolling___._ A X ) Y———>Z\ | xoll-Z____ P U P
Tateral. . N:. Y ¥ pitching____| M Z—— X | pitch_____ (] U} q
Normal = -2 Z Z yawing_____ N X——Y | yaw_____ W w r
Absolute coefficients of moment Angle of set of control surface (relative to neu-
s ol L M 1l i\ tral position), 8. (Indicate surface by proper
YR oS M geS 3 s subscript.)
4. PROPELLER SYMBOLS
D, Diameter. T, Thrust.
P., Effective pitch. @, Torque.
Py Mean geometric pitch. P, Power.
Ps, Standard pitch. (If “coefficients” are introduced all
Py, Zero thrust. units used must be consistent.)
D, Zero torque. n, Efficiency=1T V/P.
p/D, Pitch ratio. n, Revolutions per sec., r. p. s.
V’, Inflow velocity. N, Revolutions per minute, r. p. m.
Vs, Slip stream velocity. ®, Effective helix angle=tan™" (2—V)
Trn,
5. NUMERICAL RELATIONS
1 hp=76.04 kg/m/s=>550 lb./ft./sec. 1 1b.=0.4535924277 kg
1 kg/m/s=0.01315 hp 1 kg=2.2046224 1b.
1 mi./hr.=0.44704 m/s 1 mi.=1609.35 m = 5280 ft.

1 m/s=2.23693 mi./hr. 1 m=3.2808333 ft.
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