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AERONAUTICAL SYMBOLS
1, FUNDAMENTAL AND DERIVED UNITS

Metric English
Symbol
Unit Symbol Unit Symbol

Length . 28y l FnEbRTL T A MoEaarts oL Ay T m foot (or mile) _____.___ ft. (or mi.)
e rxls v t gecond Sl A mat e @ s second (or hour)_______ sec. (or hr.)
Hgree . L7 F weight of one kilogram.___ kg weight of one pound_._| Ib.

B Oyrer s ey 5 Eg/ 7;1/ L o don A e SO et T T hor/sepower ___________ hp

Sreld o b\ O (ISl T 0 e A D S e m. p. h.

Speed- -~ {m/s -------------------- map. 8. i oy TR Il e ' i pI_)s,

2. GENERAL SYMBOLS, ETC.

W, Weight =mg
g, Standard acceleration of gravity =9.80665
m/s?=32.1740 ft./sec.’

m, Mass= L
)

p, Density (mass per unit volume).

Standard density of dry air, 0.12497 (kg-m—*
s?) at 15° C. and 750 mm=0.002378
(Ab.-ft.7* sec.?).

Specific weight of “standard” air, 1.2255
kg/m®=0.07651 1b./ft..

mk®, Moment of inertia (indicate axis of the
radius of gyration k&, by proper sub-

seript).
S, Area.
Sy, Wing area, ete.
4, Gap.
b, Span.
¢, Chord.

2

%» Aspect ratio.

u, Coefhicient of viscosity.

3. AERODYNAMICAL SYMBOLS

V, True air speed.

¢, Dynamic (or impact) pressure=% pV2.

L, Lift, absolute coefficient OL:(ZLS'

D, Drag, abéolﬁte coefficient OD=§%

D,, Profile dfag, absolute coefficient ODo=q—§
D,, Induced drag, absolute coefficient Opi=q%’,

D,, Parasite drag, absolute coefficient Cp = %{,
O, Cross-wind force, absolute coeflicient
P
c QS
R, Resultant force.
i, Angle of setting of wings (relative to

thrust line). 4 1
i, Angle of stabilizer setting (relative to

thrust line).

@, Resultant moment.
Q, Resultant angular velocity.

pzul y Reynolds Number, where [ is a linear

dimension.

e. g., for a model airfoil 8 in. chord, 100
mi./hr. normal pressure, at 15° C., the
corresponding number is 234,000;

or for a model of 10 em chord 40 m/s,
the corresponding number is 274,000.

C,, Center of pressure coefficient (ratio of
distance of ¢. p. from leading edge to
chord length).

a, Angle of attack.

¢, Angle of downwash.

a,, Angle of attack, infinite aspect ratio.

a;, Angle of attack, induced.

a4, Angle of attack, absolute.

(Measured from zero lift position.)
v, Flight path angle.
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ELASTIC INSTABILITY OF MEMBERS HAVING SECTIONS COMMON IN AIRCRAFT
CONSTRUCTION

By George W. Traver and H. W. MaArcH !

SUMMARY

Two fundamental problems of elastic stability are
discussed in this report, which was prepared by the
Forest Products Laboratory® for publication by the
National Advisory Committee for Aeronautics. In Part
I formulas are given for calculating the critical stress at
which a thin, outstanding flange of a compression mem-
ber will either wrinkle into several waves or form into a
single half wave and twist the member about its longi-
tudinal axis. A mathematical study of the problem,
which together with experimental work has led to these
formulas, is given in an appendiz. Results of tests
substantiating the recommended formulas are also pre-
sented. In Part II the lateral buckling of beams is
discussed. The results of a number of mathematical
studies of this phenomenon have been published prior to
this writing, but very little experimentally determined
information relating to the problem has been available
heretofore. Experimental verification of the mathemat-
ical deductions is supplied in this report.

INTRODUCTION

Designing for the greatest load with a given amount
of material in a compression member generally leads
to the distribution of material at the greatest possible
distance from the neutral axis of the member. The
extent to which such distribution can be carried is
limited by the possibility of secondary failure. Com-
pression members with relatively wide and thin out-
standing parts may fail through local wrinkling or
through twisting about the longitudinal axis at loads
considerably less than those that would be expected

to cause the more common failures of crushing for |

short lengths or flexure for longer lengths. When
such a compression member does fail, a thin, outstand-
ing element may either break up into several waves
(wrinkle) or may buckle into a single half wave, de-
pending upon the length and the torsional resistance
offered by the member of which it forms a part. Such
action has been observed for years. (References 2,
14, 15, 18, and 21.)

Again, the strength of a beam increases more rapidly
with depth than with thickness, and consequently in

1 Professor of mathematics, University of Wisconsin.
2 Maintained at Madison, Wis., in cooperation with the University of Wisconsin

aircraft, where weight is such an important matter,
designers customarily use comparatively deep, narrow
beams. The ratio of depth to breadth, however, has
been kept within certain arbitrary or conventional
limits in commercial practice, because of the well-
known fact that a beam much deeper than it is wide
may buckle laterally and twist before it will break
by bending in a vertical plane. As a matter of fact,
there is for each condition of loading and support a
critical buckling load for such a beam just as there is
a critical Euler load for a long column.

Either buckling or twisting or both are likely to
occur in one member or another of an aircraft struc-
ture, and hence failure of a particular member may
be either in a normal type of bending or compression
resulting from the normal loading or through lateral
buckling, wrinkling, or twisting under stresses having
their origin in the normal loading. Means of esti-
mating the stress at which elastic instahility is likely
to occur have therefore become necessary in the close
designing of the present day, in order to provide
against secondary failure. Realizing this, the Bu-
reau of Aeronautics, Navy Department, financed an
investigation of fundamental phases of elastic insta-
bility to be conducted by the Forest Products Lab-
oratory. Wood was used in the experiments, not that
the problem is limited to any one material, but be-
cause of the convenience with which test specimens
can be made of wood.

The wrinkling and twisting problem has been investi-
gated mathematically for homogeneous, isotropic ma-
terials, and useful results have been obtained, notably
by Timoshenko. (References 17 and 21.) This report
reviews the general theory, adds an analysis that ap-
plies to nonisotropic material such as wood, and dis-
cusses the diminution of the critical stress caused by
the elastic giving of the material at the base of the
flange. The exact mathematical approach to the
problem leads to rather complicated results; through
consideration of test data, however, these results can
be simply expressed for problems of practical interest.

The allied problem of the lateral stability of deep
beams has already been investigated rather fully from
a mathematical standpoint. The results of such work
have been published by Michell, Prandtl, Timoshenko,

5
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and others. (References 9, 11, 13, 17, 20, and 23.)
This report adds experimental verification of the re-
sults already obtained.

TEST MATERIAL

Test specimens were made of Sitka spruce cut in
Oregon and shipped in log form to the Forest Products
Laboratory where the wood was sawed into lumber,
marked, and seasoned. As a result of this procedure
the history of each piece and its location with respect
to others in the same log were known. Part of the
lumber was immediately kiln-dried after sawing and
part was left to air-dry. Specimens were made from
both the kiln-dried and the air-dried stock.

In selecting pieces for test specimens, the usual
Army and Navy specifications were adhered to with
an additional limitation as to knots and pitch pockets
in that none was permitted, no matter how small.

The elastic properties of the material in the varios
planks from which the major test specimens were taken
were determined by testing small control specimens
cut from the same planks and so located as to be
representative. In certain instances it was possible
to accomplish the same result by cutting the control
specimens from uninjured portions of the major test
specimens after the main test had been completed.
In other instances such properties as the stiffness in
bending and the torsional rigidity of major test speci-
mens were determined by a secondary test of the major
specimens themselves either before or subsequent to
the main instability test. In such secondary tests the
stresses were kept well below the elastic limit and
when they were made the usual control tests served
only as a check.
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ELASTIC INSTABILITY OF MEMBERS HAVING SECTIONS COMMON IN AIRCRAFT
CONSTRUCTION

PART I

THE WRINKLING AND TWISTING OF COMPRESSION MEMBERS HAVING THIN, OUTSTAND-
ING FLANGES

METHOD OF TEST

WRINKLING TESTS

Two principal series of wrinkling tests were made on
compression members having thin, outstanding flanges.
In one series, a number of specimens, all having a
single flance of the same size, were tested under a com-
pressive load and the half wave length and the load at
which wrinkling started were recorded. The out-
standing flanges were then reduced in width a given
amount with the thickness left as before and the speci-
mens were again tested. This procedure was con-
tinued until the widths had been so reduced that
wrinkling did not occur.

In the other principal series of tests the width of
flange was kept constant and the thickness was re-
duced after each test. Several specimens were used in
order to obtain reliable averages for the half wave
length and the wrinkling stress corresponding to each
thickness. Figure 1 shows a specimen in the testing
machine.

In addition to the two principal series of tests, a
number of tests were made on built-up U, I, and <4,
sections under axial compression.

TWISTING TESTS

The set-up for the twisting tests is shown in Figure 2.
Extension screws were attached to an ordinary 4-screw
testing machine in which specimens up to several feet
in length could then be handled. This set-up was used
only to obtain maximum load. To obtain a load-

twist curve, a 2-serew machine was used, one that could |

take specimens up to about 12 feet in length without
the use of extension screws. A pointer approximately
3 feet in length was attached to one flange and in some
instances to two flanges. As the column twisted, the
end of the pointer passed over a plane table supported

from the base of the testing machine and when incre- |

ments of load were read by the operator at the balance
beam the position of the pointer was marked and the
load set opposite such marking.

Prior to the twisting test each specimen was tested
in torsion in order to obtain the torsional rigidity of
the member. The stresses were kept well within the
elastic limit during this test.

ANALYSIS OF THE WRINKLING AND TWISTING
PROBLEM

The failure of compression members that contain
wide, outstanding parts, as illustrated in Figure 3,
may be brought about through wrinkling of the out-
standing parts themselves instead of through the
normal failure of the member as a whole, if the out-
standing parts are sufficiently thin. When such wrink-
ling occurs, the outstanding flange may either break
up into a single half wave or into more than one,
depending upon the torsional rigidity of the member
and the fixity of the flanges. If an outstanding flange
projects from a member that is high in torsional stiff-
ness, wrinkling into several waves is likely to occur
if the ratio of the outstanding width to the thickness
of the flange is great. On the other hand, if the
torsional stiffness is not great, the outstanding part or
parts may form into single half waves and twist the
member about its longitudinal axis. The ecritical
values of the stresses at which one or the other type
of buckling occurs are discussed in the following
paragraphs.

WRINKLING

A mathematical approach to the wrinkling problem
is given in the appendix, where it is shown that the
critical value of the compressive stress p for a plate
perfectly fixed along one edge, free along the opposite
edge, and simply supported along the ends to which
the load is applied is given by

.
1= ILEgz
in which % is the thickness of the plate, b its width,
E the modulus of elasticity of the material, and £ a
coefficient depending upon the ratio of the length of
plate @ to the width b.

The appendix shows further that for structural steel
the calculated minimum value of % is 1.16 and corre-
sponds to a ratio of @ to b of 1.6 or a multiple thereof.
(Reference 21.) The theoretical formula for the mini-
mum critical stress for steel would therefore be

(1)

h?

p=1.16E63 (2)
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first assumes perfect fixity at the base of the outstand- | (References 14 and 15.) The reduction of the coeffi-
ing flange, a condition probably never realized in actual | cient from 1.16 to 0.6 can be attributed to the lack of
practice. Consequently a ecritical stress much lower | perfect fixity at the base of the flange. Even when an
outstanding flange and the rigid back from which it
‘ projects are all in one piece, perfect fixity at the base

The mathematical analysis, as already pointed out, at ' represented his experimental results reasonably well.

FI1GURE 2.—The twisting under load in the testing machine
of a compression member having several thin, outstanding
flanges

FIGURE 1.—The wrinkling under load in the testing machine X .
of a compression member having a single thin, oufstanding of the flange can not be assumed. There is an elastic

fangs giving at the base of the plate and also in every device

than that predicted by the theory is to be expected. | used in an attempt to obtain perfect fixity. Hence the
Roark, who used specimens like B and C of Figure 3, | exact coefficient that should be used for steel and other
in which the outstanding flange was clamped between | metals remains to be determined by experiment. A
angles, found that the formula (‘ discussion of the situation for wood follows.
| The appendix shows that, on the basis of the differ-
| ential equation of a nonisotropic elastic plate, such as
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wood, a critical half wave length and a critical stress
may be calculated. The same mathematical work,
however, also shows that the values of the half wave
length and the ecritical stress vary over a wide range as
the inclination of the growth rings to the faces of the
outstanding flange varies from 0° to 90°.

The fact that perfect fixity at the base of the flange,
as at first assumed in the mathematical study, can not
be obtained is true particularly of wood, which further
complicates the problem. The stresses at the base of
the flange resulting from the bending of the flange are
acting perpendicularly to the grain of the wood, the
direction in which wood is weakest.

The appendix shows that the critical stress for a
quarter-sawn flange of spruce perfectly fixed at the

edge is
2

p=0.228E2—2
For a similar flange with growth rings at 45° to the
faces the critical stress is
h2

p=0.117E7;
Because of the elastic giving of the material at the
base of the flange, however, there is a great reduction
in the actual critical stress. Furthermore, this elastic
giving tends to decrease the difference between the
critical stresses for flanges with growth rings at 45°
and 90°, respectively. Tests gave as the reduced

B -
]
i
A B C
il T
B | |2 L. =]
= i i
D E F

Ficure 3.—Typical cross sections of compression members that have
wide, thin, outstanding parts
coefficient 0.07 for spruce flanges, and the expression
for the critical wrinkling stress then becomes
h?
Probably this coefficient may be applied to other
species without appreciable error.

In Figure 4, in which wrinkling stress is plotted
against the ratio of flange width to thickness, are
shown the results of some actual tests. Each circle
represents the average of from 4 to 18 values. The
results have been adjusted by direct proportion to

36276—31——2

correspond to a modulus of elasticity along the grain
of 1,600,000 pounds per square inch. The full line is
the locus of the expression A
p=0.07 1,600,000 2 (5)
No record of the angle between the growth rings and
the faces of the flange, the importance of which has
been mentioned, was made at the time of test, but
full-section blocks from many of the test specimens
were saved and the angle was subsequently measured.
The direction of the rings ranged from 45° to 90°, as it
does in what may be called commercial edge-grain

[ [
/600 ’_4,, — ‘
I
—\ DT 3
< BRI
/200 — o . I
9 i | |
9 el 0.07 x 1600000 x h?
) j f bE
9] 3
00 e
¢ |
V) £ TR s SN L]
EE 400;'7‘ D) ‘7 ‘7" ‘
‘ i W ‘ ‘ ‘ | o ‘ ‘ ’
g i
lial e o] ‘ i :
9] 10 20 30 40 50

Ratio of //ang;’ widith fo thickness. b/h

FIGURE 4.—The relation between the ratio of flange width to thickness and the
wrinkling stress of thin, outstanding flanges
(quarter-sawn) stock. The test specimens, therefore,
represent what would be found in actual practice. The
variation in the test results is accounted for by the
variation in the direction of the growth rings and the
difficulty of determining accurately just when wrin-
kling started.

Since the phenomenon of wrinkling is one to avoid in
good design, it is unnecessary to calculate the critical
stress with extreme precision. Merely a fair approxi-
mation of the critical stress is sufficient to make sure
that for the width and thickness of flange used the
critical wrinkling stress will exceed the primary stress
expected from the normal loads. Slightly superior
design in this regard will seldom mean an appreciable
sacrifice in load-weight ratio.

Length of outstanding flange.

The coefficient £ in the expression for critical wrin-
kling stress is a minimum when the ratio of the length
of plate @ to the critical half wave length ¢ is an inte-
gral number. If the plate is short and a/c is not an
integer, the critical stress may be considerably greater
than that given by the formula because the flange can
not then break into the ideal half wave length. If the
length is great, that is, if a/c is greater than 2 or 3, and
the ratio a/c is not an integer, however, the critical
stress will be only slightly above that given by the




10 REPORT NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

formula, since the plate can then break into a half
wave length very close to the ideal. 1In either case, the
formula will give values on the side of safety. For
greater detail see Tables VI, VII, VIII, XIII, and XIV
and Figures 23 and 24 in the appendix.

TWISTING

It is shown in the appendix that the critical buckling
stress for a long steel plate simply supported along one

tions (87), (88), and (89) of the appendix, is a good,
average figure for this species. This value of the coeffi-
cient probably may also be applied to other species
with sufficient accuracy. The critical stress is then

given by
2
p=0.044FE 23 (7)
If a member with a section like D of Figure 3 is sub-
jected to compressive stress, the outstanding flanges

will usually form into a single half

il [/4" Square fillets
L . i

I+I

32000 ——

wave at a certain critical stress and
in so doing will twist the member
about its longitudinal axis. When
such action occurs, the outstanding

28000 T 6.94'x6.94"x0.624"

E=/90/000 6,/5q. in.

24000 B Bl | A

Column T-26

elements are essentially acting as
plates simply supported on one side
and free along the opposite side, and
| formulas (6) or (7) are used to calcu-
late the critical stress.

20000 o i il B

== /4" Square fillets 1

Members with I, H, or U sections,
such as E and F of Figure 3, likewise
3 may twist under compressive loads if
the torsional rigidity of the section
isnot great. If the torsional rigidity

/16000

is made large by using generous fil-
———— | lets or, as with a U section, by mak-
ing the back considerably heavier

12000

ds

6.936"x6.936"x0506"
£=/90/000 Ib,/5q. Ir:

than the legs, failure through wrin-
kling into several waves may be

brought about and the critical stress

8000 il

in such cases must be computed by
the formulas applying to that phe-

nomenon.

4000

Actually, the rigidity of the mem-
ber may be such that failure will

take place at a critical stress inter-

Axiol compressive load, poun:

mediate between the minimum twist-
|

12000

Column T-10
| | |

: ing stress and the wrinkling stress, as
Column T-1 pointed out in the appendix. It is

T | I
r{}.yw Triangular filets

EEm——

8000

I

7 S ] (SN | [ e

\ 35757030/ 1
£=2000000 Ib,/5q.mn.

’%}: I extremely difficult, however, to cal-
culate accurately the coefficient for
the intermediate conditions. Con-

-

8.96"'%6.96°%X0.37/"
bl @i e 31 E=/ 753Q00 b,/s5q. in.

sider for the moment wood mem-
bers with a section like D of Figure

4000 I

3. With no fillets at the junction of

the four legs, the coefficient 0.044
was found to apply. As fillets were

o 4 8 2 /6 200

Angle of twist at center of column, degrees
FIGURE 5.—The relation between angle of twist at the center of a column and axial compressive load for

various cruciform cross sections

side, free along the other side, and simply supported
at the ends, to which load is applied, is given by
hZ
p=0.385E; (6)
when Poisson’s ratio is taken as 0.3.

For spruce the coefficient of equation (6) becomes
0.044 which, as explained in the discussion of equa-

added, the critical stress increased in
practically the same ratio as the tor-
sional rigidity. A U section, such
as I of Figure 3, will twist at a
stress corresponding to a coefficient of 0.044 if the
back and the legs are of the same thickness. If the
thickness of the back is increased or if fillets are added,
the critical stress will increase in about the same
ratio as the torsional rigidity.

Hence the Forest Products Laboratory recommends
that the critical twisting stress be first calculated for
such sections as D, B, and F of Figure 3 on the sup-

7 8
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position that no fillets are present and that all parts
are of the same thickness. This stress should then be
increased by multiplying it by the ratio of the torsional
rigidity of the actual section to the torsional rigidity
of the assumed section. This rule applies until the
limiting critical stress corresponding to the coefficient
0.07 is reached.

In Figure 5 are shown a number of cruciform sec-
tions, some with and some without fillets. Wood
columns having these sections failed through

Actual tests of the specimens, made prior to the
twisting tests, yielded a ratio of 1.29.

p=2,072X1.26=2,610 pounds per square inch
Area with fillets =7.01 square inches
Critical load P=2,610x7.01=18,300 pounds.

In figure 6 are shown a number of U sections of
columns that failed through twisting about a longi-

twisting about a longitudinal axis. Accom-

panying each section is a graph showing the 28000
relation between axial load and the angle of

T
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twist for the column corresponding to it.
The horizontal dotted lines in these graphs - ;9
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are drawn at the eritical loads calculated in
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accordance with the preceding recommenda-
tions.
For example, the critical stress for column

20000

T-25 (fig. 5) without fillets is given by

——

(0.506)2 /6000

p=0.044 X 1’901’000(3T15)2 /

=2,072 pounds per square inch. /_ £

/2000}}
The area is 6.76 square inches and the criti-

cal load becomes

p=2,072% 6.76 = 14,000 pounds. 6000

As a further illustration, the critical twist-
ing stress for column T-25 (fig. 5) with

: ; 4000
Y-inch square fillets is calculated thus: i

The torsion constant K for the section
without fillets is

K=2X0.318X6.936 X (0.506)%=0.572. /6000

Axial compressive load, pounds

For the section with fillets K must be cal- :
culated in three parts—the first part is the 5.,

[
Column T-40
e, PO

Column T-42

value K, for the square central portion of

) i Ll |

the column section, the dimensions of which
are 1.006 inches on each edge; the second

190" 2.99°X0.295" [ [ [(IER24T0E9F T ]
=/582000 1b,/5G. . £=/562000 1b,/5q. in
]

5

part is the total value K, for the four rec- i

tangles projecting from the square center;
and the third part is the increase K; caused i

] il
=g pd
by the four junctions. (Reference 22, p. 26, ead "Z N el

and 1929 annual report, p. 696.) The junc-

o
S

tions are treated as T junctions and the bar

R,

of each T is taken as half of the square cen- 0
ter. The torsion constant is then the sum
of the parts, which are calculated as follows:

4

1 =——(1;{(?ff) =0.144

K;=2X0.315X2%2.965X (0.506)*=0.484

K;=4X0.15X% (0.629)* =0.094

K —0.722

Then

Torsional rigidity with fillets  0.722 1.96
Torsional rigidity without fillets  0.572 "

4 8 2 0 4 8 2
Angle of twist al center of column, degrees

F1GURrE 6.—The relation between angle of twist at the center of a column and axial compressive

load for various channel cross sections

tudinal axis. Accompanying graphs show the relation
between the axial load and the angle of twist. The
horizontal dotted lines are drawn at the critical loads
calculated by formula (7).

The agreement between tests results and calculated
results as shown in Figures 5 and 6 is considered quite
satisfactory.
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Effect of length.

In arriving at the coefficients 0.385 for steel and
0.044 for spruce, which are used in the critical-stress
formula for free twisting, the length of plate was
assumed as several times the outstanding width. This
assumption gives the lower limit for the critical stress.
As the length is decreased to less than five or six times
the width, these coefficients increase appreciably.
Consequently, if the legs of a channel section, for
example, are supported at intervals as by bracing and
the distance between points of support is less than
five or six times the width of the legs, the actual
critical stress will be higher than that given by the
proposed formulas.

CONCLUSIONS FOR PART I

Thin, outstanding flanges of compression members
under load may buckle into several waves or may

buckle into a single half wave, in which event they

will tend to twist the member about its longitudinal
axis. '

If both the length and the torsional rigidity of the
member are great such flanges will buckle into several
waves (wrinkle) and the critical stress for spruce
flanges is then given by

h2

])=0.07E§
If the torsional rigidity of the member is not greaf,
the thin, outstanding flanges will twist the member.

Under such rigidity the flanges may be regarded as
plates simply supported on three edges and free along
the fourth edge. The critical stress for such a spruce
plate is given by

p= 0.044E%

Although the coefficients ‘n the preceding formulas
were obtained from the test of spruce flanges, the rela-
tions among the elastic constants for the various
species are such that the coefficients may be expected
to apply to all aircraft woods with safety.

Members having sections as shown in Figure 3 will
twist under axial compression if the junction of the
main elements is not strengthened with fillets. If
generous fillets are used or if part of the main elements
of the section are made heavier than the rest, the thin,
outstanding elements may either wrinkle or twist the
member, this depending upon the amount of torsional
rigidity added. Elastic instability, therefore, may
oceur at a stress intermediate between the critical
stresses corresponding to the coefficients 0.044 and
0.07. Intermediate critical stresses may be calculated
by the rules given in this report.

Failure through local buckling can occur only when
the critical stress is less than the stress required to cause
primary failure.

Further conclusions, including calculated coefficients
for steel, follow the mathematical appendix.
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PART 11

THE LATERAL BUCKLING OF DEEP BEAMS

B

METHOD OF TEST
VARIATION OF FACTORS AFFECTING THE BUCKLING LOAD
In order to determine to what degree certain factors
affect the critical load for lateral elastic instability of

The loading device consisted of five parts. A rod

with an upset central portion passed through the beam
at the neutral axis. The upset portion was threaded
at each end so that the rod could be centered in the

FIGURE 7.—The set-up of the test for lateral elastic instability of a single beam under center loading

deep beams, tests were made in which all factors except
one were held constant while the isolated factor was
varied. In these tests the beams rested on two sup-
ports with their ends held vertical and clamped against
lateral rotation but free to rotate in a longitudinal-
vertical plane as the beam deflected. Load was
applied at the center by means of the rod-and-bar
framework shown in Figure 7.

beam by means of two nuts, which were drawn snug
against the sides of the beam during test. Slotted
bars, the lateral positions of which were fixed by V’s
in the upset rod, connected each end of the rod to the
ends of an evener bar and from the center of this
evener bar a tiebar passed through the movable head
of the testing machine and was pin-connected to it
on the under side. All connections other than the
pin connection mentioned were knife-edge.
13
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FIGURE 8.—The set-up of the test for critical buckling load under constant bending moment with
the ends of the single beam held vertical and not restrained laterally

When load was applied by
lowering the movable head, the
beam could buckle freely to one
side or the other. The set-up was
not considered satisfactory until
the beam buckled to one side and
then to the other with theslightest
adjustment of the rod by means
of the two nuts.

TESTS OF SINGLE BEAMS UNDER VARI-
OUS LOADING CONDITIONS

Three different loading and fix-
ity conditions were chosen to dem-
onstrate the applicability of the
formulas recommended for the
calculation of ecritical buckling
loads. These conditions were:
First, constant bending moment
with the ends of the beam held
vertical and not restrained later-
ally; second, constant bending
moment with the ends of the beam
held vertical and restrained later-
ally; and third, a concentrated
load at the center of a beam that
rested on two supports with its
ends both held vertical and re-
strained laterally.

Constant bending moment with-
out lateral fixity was obtained
by considering only the portion
of a beam that was between two
symmetrical loads. A total span
of 14 feet was used and the two
symmetrical load points were 60
inches apart. In order to permit
the beam to swing freely, both
supports and loads were applied
through members, 16 feet long,
that were free to swing and twist.
The beams were wedged into these
long members, which were slotted
and of sufficient rigidity to hold
the beams vertical. The two
loading members were attached
to an evener timber, which in
turn was attached to the mov-
able head of a testing machine
with a tie bar. The set-up re-
quired head room of approxi-
mately 35 feet. A diagrammatic
sketch of this set-up is shown
in Figure 8.

Constant bending moment with
lateral fixity was obtained by using
asymmetrical 2-point loading and
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again considering only the portion of the beam between
the loads. For this condition, improvised extension
wings were put on a 30,000-pound capacity testing
machine that permitted spans up to 16 feet. Load
was applied at two symmetrical points, in some tests
5 and in other tests 6 feet apart. In order to obtain as
complete lateral fixity as possible at the load points,
lateral, horizontal, pin-connected tie rods were attached
to the beam at intervals between the load points and
the supports. In addition, pieces 1% inches thick and
about 6 inches deep were clamped to both sides of the
beam from each load point outward and well toward

the support. Figure 9 shows this assembly.

at the supports but because of resting on ball bearings
were not restrained laterally. Figure 10 shows a
panel before test.

ANALYSIS OF THE LATERAL BUCKLING PROBLEM

A mathematical analysis of the lateral elastic insta-
bility of deep rectangular beams leads to the following
general expression:

FJEIL,GK .
P= EhE T (8)
in which
P =the critical buckling load
E=the modulus of elasticity along the grain

FIGURE 9.—The set-up of the test for critical buckling load under constant bending moment with the ends of the single beam held vertical and restrained laterally

The third method of test, namely, the application
of a concentrated load at the center of a beam resting
on two supports with its ends held vertical, was
identical with the test procedure described under the
heading, Variation of Factors Affecting the Buckling
L(Hl(].

TESTS OF PANELS

Panels consisting of two beams held together with
ribs were tested in two ways. The first method was to
suspend the two beams on hanging supports 16 feet
long and to apply load to each beam at two symmetri-
cal points as just described for the testing of single
heams under constant bending moment with ends
held vertical and not restrained laterally. The second
method was to support the two beams on four ball
bearings and to apply a uniformly distributed load
over the ribs themselves; in doing this strips were
laid on the ribs upon which cans filled with sand were

placed. The ends of the beams were held vertical

I,=the moment of inertia about the principal vertical
axis

@ = the modulus of rigidity in torsion

K = the torsion constant of the section

L =the span

F=a constant depending upon the loading and fixity
conditions.

(References 9, 11, 13, 17, 20, and 23.)

If b is taken as the width of beam and d the depth,
I, in equation (8) becomes
7,-°

ST
and the torsion constant K is expressed as follows:
K=8db® (9)

in which 8 is a constant depending upon the ratio of
d to b. Table I gives the values of 8 for various
ratios of d to b.
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TABLE I

THE FACTOR g8 FOR CALCULATING THE TORSIONAL
RIGIDITY OF RECTANGULAR PRISMS

‘ [
Ratio of 8

Ratio of
B sides, d/b

sides, d/b

00 0. 14058
05 . 14744
10 . 15398
15 . 16021
20 . 16612

0.24012 |
. 24936 [

1

1.

ik 2.

i 3

1 3.

1.°26. 17173 4.00

1. 30 . 17707 4. 50 . 28665
1.35 . 18211 5.00 . 29135
1. 40 . 18690 6. 00 . 2
1.45 . 19145 7.00 . 30332
1. 50 . 19576 8.00 . 30707
1. 60 9.00 . 30999
1. 70 10. 00 . 31232
1.75 20. 00 5

1. 80 50. 00 . 32913
1. 90 100. 00 . 33123
2.00 © . 33333

COMMITTEE FOR AERONAUTICS

Figure 12 shows the results of one representative series
of these tests. The circles represent test values and
the full line is the locus of equation (11). Again the
agreement between actual test results and theory is
considered good.

In the third series of tests, the span L was varied
while all other factors were held constant. The buck-
ling load for this condition reduced to

(12)

In Figure 13 are shown the results of two representa-
tive series of these tests. Again the circles represent
actual test values and the full lines the respective loci
of equation (12) for the two beams selected.

FIGURE 10.—A ribbed panel before test

In the first series of tests to check the relation of the
various factors in the general equation, all factors except
the depth of beam (d) were held constant. The buck-
I'ng load then reduces to

P=Cd+B

in which C is a constant. In Figure 11 are plotted the
results of four series of tests in which d was varied while
all other factors were held constant. The circles repre-
sent the actual loads and the full lines are loci of equa-
tion (10).
factory.

In the second series of tests, the width b was varied
while all other factors were kept constant. The buck-
ling load in this case becomes

(10)

The agreement is considered very satis-

P=CbB

(11)

The effect of the modulus of elasticity in bending
could not be separated from that of the modulus of
rigidity in torsion for the purpose of checking further
the fundamental expression, because when one is
changed the other changes with it, and therefore
neither could be isolated. Moreover, it was impossible
to ascertain experimentally with wood alone the impor-
tance of their combined effect on buckling load because
the range over which their product varies is too limited.
For steel, the modulus of rigidity in torsion is commonly
taken as two-fifths of the modulus of elasticity in
bending while for spruce it is in the neighborhood of
one-fifteenth or one-sixteenth. Since some previous
tests of steel beams have shown excellent agreement
with critical values calculated by the formulas, it
therefore appeared logical to assume that, if tests of
wooden beams also checked values given by the formu-
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las, the moduli of elasticity in bending and of rigidity | Case 1.—A thin, deep, rectangular beam under con-

in torsion are in their right relation in the formula.
(References 6 and 9.)

Following are formulas that apply to rectangular
beams under various loading and fixity conditions.
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FIGURE 11.—The relation between the lateral buckling
load and the depth of beam modified by a torsion cor-
rection factor (d+/B), for deep, rectangular beams
In all cases the ends of the beam are assumed to be
vertical. An end not restrained, in the terminology
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FIGURE 12.—The relation between the lateral buckling load and
the cube of the width of beam modified by a torsion correction
factor (b%+/8), for deep, rectangular beams

used, is held vertical but is not otherwise constrained,
and an end restrained is both held vertical and clamped
against lateral rotation. Figure 14 shows the lateral
deflection of the longitudinal axis for three principal
conditions of restraint.
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FIGURE 13.—The relation between the lateral buckling load and
the span, for deep, rectangular beams

Case 2.—The same as case 1 except that the ends are
restrained.
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FIGURE 14.—The lateral deflection of the longitudinal axis of a single rectangu-
lar beam when the bending in a vertical plane becomes unstable and sidewise
buckling occurs

Caske 3.—A thin, deep, rectangular cantilever with a
concentrated load P at the end.

4/ELGK
L2

Case 4.—A thin, deep, rectangular cantilever with a
uniformly distributed load W.

_129VELGK
— =i Bhes

P=

w
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Case 5.—A thin, deep, rectangular beam supported
at the ends and carrying a concentrated
load P at the middle, with its ends not
restrained.

p_16.9VELGK
Ty

BUCKLING FORMULAS FOR I BEAMS

The preceding formulas require modification when
the beam has flanges, since the lateral flexure of the
flanges then becomes important. Following are some
of the results obtained by Timoshenko. (References

| 7,16, 17, 18, and 20.) Two more symbols are intro-

Case 6.—The same as case 5 except that the ends are |

restrained.

25.9/ELGK

iR i

Case 7.—A thin, deep, rectangular beam supported at
its ends and carrying a uniformly dis-
tributed load W with its ends not re-
strained.

28.3+ELGK
ot

Case 8.—The came as case 7 except that the ends are
restrained.

w3 3‘/51201{

Case 9.—A thin, deep, rectangular beam subjected to
a constant bending moment M and an
axial thrust P/, with its ends not restrained.

1r\/E’I2GK\/] B
m’El,

Case 10.—The same as case 9 except that the ends are
restrained.

2rJELGE [, P'L?

M==——7"—Al 1" i 35T,

Case 11.—A thin, deep, rectangular beam supported
at its ends and carrying both a uniformly
distributed load W and a concentrated
load P at the middle, with its ends not

restrained.
PL2 WL?
1607283 VELGK

Combinations of the preceding cases may be similarly
expressed.

Case 12.—A thin, deep, rectangular beam supported
at its ends and carrying a concentrated
load P at its middle, with lateral support
as by tie-rods, at the middle, and the
ends not restrained. Such a beam
buckles laterally in two half waves.
(Fig. 14, C.)

p_45VELGK
=ERaee

duced. Let
I;=the moment of inertia of one flange about the
prineipal vertical axis
and let
P EIahz
@
2 GKL?

Case 13.—An I beam subjected to a constant bending
moment M, with its ends not restrained.

Cask 14.—The same as case 13 except that the ends
are restrained.

27/ ELGK
L

M=

M= V1+47ia?
Case 15.—The same as case 13 with the addition of an
axial thrust P’.

- w/ELGK P
MMT-\/I'FW \/l_ ZEI

CasE 16.— The same as case 15 except that the ends
are restrained.

27VELGK / Pl?
—eE= it 2\/ '~ 47ET,

Case 17.—A cantilever I beam with a concentrated
load P at the free end.

FJEIzGK
L2

in which values of F for reciprocal values of «? are:

L 0.1 2 4 8 12 16 24 32 40 @
7.

a?
2. 67 62 58 686 40

M=

F:44.3 157 122 9.8 8.0

CasE 18.—An I beam supported at its ends and carry-
ing a uniformly distributed load W, with
the ends not restrained.

FJELGK
L 2

in which values of £, for reciprocal values of «* and for
three differant placements of the load, are:

W=

Lio4 4 8 16 2 8 6 % 160 W o
(1) F:143.2 53.0 42.6 36.3 326 3.5 30.5 29.8 20.2 28.6 28.3
(2 F: 928 36.3 30.4 27.4 26.2 26.2 25.8 26.0 26.2 26.5 28.3
3) F:221.6 782 59.4 43.1 40.7 38.1 36.0 34.4 326 31.0 283
The placements of the load on the beam, numbered to
correspond with the values of F, are:
(1) Along the neutral axis.
(2) On the top.

(3) At the bottom.
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Case 19.—The same as case 18 except that the ends
are restrained.
FELGK
RN
L: 04 4 8 16 32 96 128 200 400 o

o?
F: 488 160.8° 119.2 91.2 73.0 58.0 55.8 53.4 51.2 43.3

w

Casge 20.—An I beam supported at its ends and carry-
ing a concentrated load P at the middle,
with the ends not restrained.

p_FVELGK
T
;12: 0.4 4 8 16 32 64 96 160 320 ©
(1) F: 86.4 31.9 25.6 21.8 19.4 18.3 17.9 17.5 17.2 16.9
(2 F: 51.4 20.2 17.0 15.4° 14.9 14.9 150 15.4 15.7 16.9
(3) F:145.6 50.0 38.2 30.56 255 22.4 21.2 20.0 18.9 16.9

As in case 18 the load is applied:
(1) Along the neutral axis.
(2) On the top.
(3) At the bottom.
Cask 21.—The same as case 20 except that the ends
are restrained.

p_FVELGE
Ll

%2: 0.4 4 8 16 32 64 96 160 320 400 @

F: 268 88.8 65.5 50.2 40.2 34.2 31.8 30.0 285 28.2 259

Cask 22.—An I beam supported at its ends and carry-
ing a concentrated load P at the middle,
with the ends not restrained, and the
beam laterally supported at the middle,
as when two parallel girders have a lateral
connection between them at the middle
of their span.

_F\JEL,GK

£ 1o
a—lgz 0.4 4 8 16 32 9 128 200 400 @
F: 466 154 114 86.4 09.2 54.6 52.4 49.8 47.4 44.5

Cask 23.—An I beam supported at its ends and carry-
ing a distributed load W, with the ends
not restrained, and the beam laterally
supported at the middle of the span.

_ FJELGR
Fir
a—l,: X R 32 9 128 200 400 ®
(1) F: 673 221 164 125.5 100.8 79.4 76.4 72.8 69. 5. 9
(2) F: 586 194 145 112 91.2 73.7 71.5 68.9 66.8 65.9
(3) F:774 252 186 141 111.2 85.6 B8L6 77.0 72.5 ©5.9

Again the load is applied:
(1) Along the neutral axis.
(2) On the top.
(3) At the bottom.

EXPERIMENTAL VERIFICATION OF THE BUCKLING FORMULAS

Time and funds were not available for the experi-
mental verification of the formulas for all the loading

and fixity conditions listed. Over 40 I and rectangular

beams, however, were tested under the following condi-

tions, which represent a considerable range for the
fixity and the loading constant #.

Case 1.—A rectangular beam subjected to a constant
bending moment, with its ends not
restrained.

Case 2.—A rectangular beam subjected to a ¢on-
stant bending moment, with it sends re-
strained.

Case 13.—An I beam subjected to a constant bending
moment, with its ends not restrained.

Cask 14.—An I beam subjected to a constant bending
moment, with its ends restrained.

Cask 21.—An I beam resting on two supports, with a
concentrated load applied at the middle
of the span, and the ends restrained.

The results are shown in Tables II, ITI, IV, and V.
Since the exact fixity conditions assumed in the mathe-
matical analyses are difficult of attainment, the agree-
ment of test results with values given by the formula
is remarkable. We consider this agreement, together
with the agreement for a limited number of metal
beams, conclusive proof that the formulas are appli-
cable to beams under actual service conditions.

A REPORTED DISAGREEMENT WITH EXPERIMENTAL RESULTS

The only experimental record of tests with wood
that has come to the attention of the present authors
is an undergraduate thesis that has been published
as National Advisory Committee for Aeronautics
Technical Note 232, “The Lateral Failure of Spars.”
In this note a wide difference between actual and
theoretical results is reported, the statement being
made that actual loads ranged from one-half to one-
fifth the loads calculated by the formula applying
to the test conditions. Examination of this note,
however, leads to the conclusion that the theoretical
formulas were not correctly applied in two respects,
as follows:

1. The coefficient 16.9, which the authors of the
note used, applies only to the conditions of case 5 of
the present report. Their loading conditions, how-
ever, were those of case 12, which requires a coefficient
of 44.5. In addition, the ends of the test beam were
under light lateral restraint, which would increase
the coefficient to about 50.

2. It appears that they used the moment of inertia
about the principal horizontal axis instead of that
about the principal vertical axis.

Only part of the test results reported could be
checked, since in several instances the beams were
stressed beyond the elastic limit and stress-strain
curves with which to modify the modulus of elasticity
were not available, yet proper work-up of their ex-
perimental data gives results that cheek with pre-
cision the theoretical results.




20 REPORT NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TABLE II
THE CONSTANT BENDING MOMENT REQUIRED TO CAUSE LATERAL BUCKLING AND TWISTING OF THIN,
DEEP, RECTANGULAR BEAMS HAVING THEIR ENDS UNRESTRAINED LATERALLY BUT HELD VERTI-
CALLY ALTHOUGH FREE TO ROTATE IN A LONGITUDINAL-VERTICAL PLANE

STRESSES WITHIN THE ELASTIC LIMIT

|
1 2 3 4 | 5 ‘ 6 7 8 ‘ 9 ‘ 10 ‘ 1n
Buckling moment by—
EIL by— GK by—
Beam Nominal dimensions (inches) L Calculation from columns—
Test

Calculation Test Calculation Test 3and 5 | 3and 6 ‘ 4and 6
o1t 6T P I s e 75, 050 78, 000 60 9, 070 9925 |ot-cinaeas 10, 480
6803000 =5t o oo =& 218, 800 256, 300 60 20, 200 28707 |s= 2o n t 18 850
984, 000 938, 000 175, 900 161, 300 60 21, 800 20, 850 20, 380 22 620
1, 744, 000 1, 667, 000 328, 800 373 200 60 39, 620 42, 230 41, 380 43, 200
3 330 000 | 3,638, 000 547, 000 496,000 60 70, 700 67, 300 70, 300 67, 500

STRESSES BEYOND THE ELASTIC LIMIT
1 2 3 4 5 6 7

Buckling moment by—

Beam Nominal dimensions (inches) CGorxected || @by test | £ | oalmiation
from columns|  Test
3and 4
i b et LIS TNl R X [ 134 by 41 1, 630, 000 389,600 | 60 41,730 42,350
L S A 2by 6. 4,670,000 | 1,059,000 | 60 16,250 | 102800
O R S N Ui by 4 2,103, 000 355,000 | 60 45,250 42, 350
Fe T BT TN R S S ¢ e e S 5,980,000 | 1,088,000 | 60 133, 500 96, 250

All caleulations were made with a slide rule.

E=modulus of elasticity as determined from control tests increased 11 per cent to correct for shear distortion.
E’=secant modulus of elasticity as obtained from a stress-strain curve.

I=moment of inertia of a beam about its principal vertical axis.

G=modulus of rigidity. I

K=torsion constant for the section.

L=length subjected to constant moment.

TABLE III

THE CONSTANT BENDING MOMENT REQUIRED TO CAUSE LATERAL BUCKLING AND TWISTING OF THIN,
DEEP I BEAMS HAVING THEIR ENDS UNRESTRAINED BUT HELD VERTICALLY ALTHOUGH FREE TO
ROTATE IN A LONGITUDINAL-VERTICAL PLANE

1 2 3 4 5 6 v 8 9 10

EI by— Buckling moment by—
: : : . EIL by GK by
Beam Nominal dimensions (inches) h? calculation | test L Oalcnlation
Calculation Test from columns| Test
6and 7

2 by 6 by 34 flange by 34 web 35. 40 921,000 | 2,140,000 | 2,290, 000 124,100 60 32, 550 34, 510

1Y% by 6 by 1 flange by 34 web_ = 35.76 294,000 | 1,006,000 | 1,006,000 [ 126,300 60 19, 710 f
gV‘; b%’ g% l{)y gﬁ ﬂange 1;2' 58 w{)e 2 22. gg 2, Z(llg, % 5, g{lsg' % 5, ggg, % 151, 500 60 63, 100 75, 000
Yy 7 by %6 flange by 346 web_ A 48. X £ g 12,910 60 9, 870 13, 450
1% by 5 by 3% flange by 3¢ web_ 24. 60 225, 000 492, 000 529, 000 15, 380 60 5,770 5, 350
1% by 6 by 34 flange by 3§ web_ & 36. 00 242, 536, 000 545, 000 17,150 60 6, 590 8, 860
1 Ey g gy ;2 ganga gy ;’; weg - gs 71 Sg, gOO zgg, % 332, % 32, 250 60 5,750 6,210
1 by y ange by 38 web_ = 5. 58 59. 050 158, 221, 13, 450 60 3,159 2, 970
% ll;y ;i( gy %? ﬁgnge bg 9§1W6b‘t_)- i gg 32 5(;3, % 13 %g, % 1,022, % és, 400 60 12,070 15,120

i Y 6 flange by 746 web___ - 5 1, 5 19, 2, 320 60 , 945 A
234 by 5V /by 7% flange l;y BeIwen U et 27.67 | 3,209,000 | 5,880,000 | 5,955,000 [ 150,000 60 66, 700 65, 500

All calculations were made with a slide rule.

h=height of beam.

E=modulus of elasticity as determined from control tests increased 11 per cent to correct for shear distortion.
Is=moment of inertia of 1 flange about the principal vertical axis of the beam.

I:=moment of inertia of a beam about its principal vertical axis.

G=modulus of rigidity.

K =torsion constant for the section.

L=length subjected to constant moment.
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THE CONSTANT BENDING MOMENT REQUIRED TO CAUSE LATERAL BUCKLING OF THIN, DEEP BEAMS
HAVING THEIR ENDS RESTRAINED LATERALLY AND HELD VERTICALLY ALTHOUGH FREE TO ROTATE

IN A LONGITUDINAL-VERTICAL PLANE
RECTANGULAR BEAMS

1 2 3 ’ 4 ’ 5 ‘ 6 7 8 ' 9 l 10 J 11
‘ Buckling moment by—
EIL by— GK by—
Beam Nominal dimensions (inches) L Calculation from columns—
Test

| Calculation Test Calculation Test 3and 5 | 3and 6 \ 4and 6
480,200 |-aoutisaos 76, 600 72 15, 850 14,851
3980008 (=1 5 Sevi 75, 050 78, 000 60 | 18,120 16, 74)
984, 000 938, 000 175, 900 161, 300 60 43, 600 36, 050

IBEAMS
1 2 3 4 5 1 6 I 7 8 9 ‘ 10
EI; by— Buckling moment by—
B . g i EL by GK by
Beam Nominal dimensions (inches). h? calculation test L Calculation
Calculation Test from columns| Test
6and 7

__________________________ 2 by 35.40 921,000 | 2,140,000 | 2,290,000 | 124, 100 60 81, 650 55, 900
-| 1% by 6 35. 76 294, 000 1, 006, 000 1, 006, 000 126, 300 60 45, 100 35, 150
-|2by 7 48, 58 412, 000 862, 000 878, 000 12, 910 60 34, 420 25, 380
-| 1% by 6 36. 00 242, 500 536, 000 545, 000 17, 150 60 19, 700 14, 180
-| 1 by 6 by 35.71 ; 262, 000 332, 000 32, 250 60 13, 220 11, 350
-| 1by 6 by 35. 58 59, 050 158, 000 221, 000 13, 450 60 7,780 7,700
_| 2by 7 by 34 flange by 3§ web___ 48. 58 503, 000 1, 070, 000 1, 022, 000 18, 400 60 41, 340 29, 430
.| 1 by 6 by %e flange by %e web..._ ... 35. 95 71, 200 206, 000 219, 500 22, 320 60 9, 360 8, 370
_| 136 by 6 by 746 flange by 746 web_ 35.76 241, 300 551, 000 547, 000 27, 270 60 21, 180 16,610
__________________________ 1% by 6 by 34 flange by 3¢ web________________ 24. 50 197, 000 425, 000 562, 500 13, 650 60 15, 750 11,480

All calculations were made with a slide rule.

h=height of beam.

E=modulus of elasticity as determined from control tests increased 11 per cent to correct for shear distortion.
Iz=moment of inertia of 1 flange about the principal vertical axis of the beam.

I2=moment of inertia of a beam about its principal vertical axis.

G=modulus of rigidity. .

K=torsion constant for the section.

L=Ilength subjected to constant moment.

TABLE V

THE CONCENTRATED CENTER LOAD REQUIRED TO CAUSE LATERAL BUCKLING OF THIN, DEEP I BEAMS
SUPPORTED AT EACH END WITH THE ENDS RESTRAINED LATERALLY AND HELD VERTICALLY

ALTHOUGH FREE TO ROTATE IN A LONGITUDINAL-VERTICAL PLANE

1 2 3 4 5 6 7 ] 9 10 11
Buckling load by—
- : . 5 EI3 by El by GK by 2 ’
Beam Nominal dimensions (inches) h? calculation | caleulation | caleulation L o F
Calculation| Test
1 I e TSRS L ARl L I 1% by 6 by 3¢ flange by 36 web_____________._- 35. 05 189, 800 423, 000 15, 040 82 0. 0328 40. 8 482 400
15 L Mol B 1 by 6 by %% flange by ¥ web___ 34. 69 74, 800 236, 200 23,390 |, 82 0083 30.6 338 405
13 P ML B R 1% by 6 by 3% flange by 3§ web_ 34. 22 184, 500 412, 000 13,010 82 0360 41.8 455 450
GRS i ok CAaEs 2 by 7 by % flange by 316 web_ 47. 61 269, 100 5620000288 Tns s wn 8| A 550
(0120 Hile T NI o B T 1% by 5 by 3¢ flange by 3§ web._ 24. 40 137, 100 299, 10, 080 82 0247 37.3 305 307
M= e L 13 by 5 by 3% flange by 3§ web_ 24. 21 189, 400 414, 200 12,770 82 0268 38.5 416 400
O-2n@bE . ot e 2 by 6 by 7% flange by 7e web__ 34. 57 339, 500 718, 000 22, 960 82 0380 42. 4 810 720
T VS 1% by 5 by 3¢ flange by 3§ web._ 24. 21 190, 500 414, 800 12, 680 82 0271 36.9 418 410
3 (o LSRN ORI < 2 - = 1by 6 by %s flange by 746 web. 35. 05 71, 500 212, 000 20, 220 82 . 0092 311 302 320
T SOOI S A_T 2 by 6 by e flange by 7de web_____________ 35. 05 552, 000 1, 171, 000 26, 150 82 0550 47.8 1,244 9e0

All calculations were made with a slide rule.
h=height of beam. " .
E=modulus of elasticity as determined from control tests increased 11 per cent to correct for shear distortion.
Iz=moment of inertia of 1 flange about the principal vertical axis of the beam.
I:=moment of inertia of a beam about its principal vertical axis.
G'=modulus of rigidity.
K=torsion constant for the section.
L=span.

A EI3h?
=

2GK I} ) ]

F=multiplying factor in the lateral buckling formula, dependent upon a?
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The calculation of a critical load that produces a
fiber stress beyond the elastic limit is possible by
means of the preceding formulas if the modulus for
inelastic deformation is known. Although this modu-
lus is a variable beyond the elastic limit, it may be
obtsined from a stress-strain diagram. Figure 15

in which % is a constant that need not be evaluated
when Figure 15 is available. The modulus below the
elastic limit will be called £ in this report and that
above will be called £7. Although both depend upon
the slope of the line connecting the origin with the
stress-strain curve at the particular stress in question,
L0 is usually spoken of as the secant modulus.

STRESSES BEYOND THE ELASTIC LIMIT
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FIGURE 15.—Stress-strain curves for spruce beams. Values taken from these curves are for use in the equation:
Modulus of elasticity=130.7 k;t;%
shows such a diagram for a spruce beam in bending. The formula proposed by Karman and advocated
From it the required modulus, for a stress either below | by Timoshenko for calculating E”,
or above the elastic limit, may be determined by means | 4EXE,
. O 14
of the formula: 0 VE+ VB (14)
f elasticity = 130.7 == - 13 : : L !
Modulus of elasticity =13 fe X strain 1) in which £, is the tangent modulus on the compression
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side of the beam and £ is the initial modulus, can not
be used for wood. (Reference 16.) It can not apply
to wood because when the maximum load in bending
is reached the stress-strain curve for the compression
fibers has turned downward, which means that /; has
become negative. In fact, before the maximum load is
reached the tangent to the stress-strain curve for the
compression fibers has become horizontal, which means
that the formula would give the beam no stiffness,
whereas it actually is still resisting an increasing load.

Whatever the method used, more than one trial will
have to be made in the calculation of the critical stress
because £ is not known until the stress is known. In
calculating critical loads by simply substituting E’
in the formulas that were developed on the assumption
that the elastic limit was not passed, two further
assumptions are made, as follows:

1. Passing the elastic limit does not affect the
torsion modulus G.

2. The decrease in f£'is constant along the span.

In investigating critical loads, four rectangular
beams were subjected to a constant bending moment
that produced lateral buckling at a fiber stress beyond
the elastic limit. The results appear in Table II.
The corrected values of I, given in the table were
obtained by multiplying the secant modulus E’ by
the moment of inertia 7, of the cross section about its
principal vertical axis. The calculated critical bend-
ing moment for the first beam listed in the second part
of the table (R-110) is about 1% per cent lower than
the test value, while the calculated values for the
second (R-112) and the third (R-113) beams are
respectively 13 and 7 per cent higher than the test
values. The second (R-112) and the fourth (R-114)
beams, which were of the same size, were. made from
adjacent planks cut from the same log. Control tests
showed the material in R—114 to be slightly superior.
Consequently its low test bending moment is difficult
to account for unless the beam had become slightly
warped before test, in which event the actual stress
at failure would be higher than the calculated stress
and the value of £’ lower than that used.

LOAD NOT APPLIED ALONG THE NEUTRAL AXIS

The development of the buckling formulas is
greatly simplified by the assumption that the load is
applied along the neutral axis of the beam, and in
aircraft work usually no material error will normally
be introduced by assuming such an application of the
load. In a few of the cases for which formulas are
given, coefficients are also given for load applied along
the neutral axis, on the compression flange, and on
the tension flange of the beam. For the development
of the formulas for a load placed above or below the
neutral axis, attention is again directed to the work
of Timoshenko and to advanced texts on strength of
materials or applied elasticity. (References 7, 12,
and 18.)

BUCKLING OF BEAMS TIED TOGETHER WITH RIBS

When two thin, deep beams are tied together with
ribs, in addition to carrying whatever direct load is
normally placed upon them the ribs will act to prevent
lateral buckling of the beams. Very often, though,
when the direct load is transferred to the beams from
the ribs, the ribs may be laboring to sustain the load
already upon them and consequently may have no

FIGURE 16.—The test of a panel to show that the tendency of an axially loaded
single spar to buckle is transmitted by the ribs to an unloaded single spar

reserve strength left for any extra load that a tendency
of the beam to buckle would produce.

The first panel test was made to demonstrate the
fact that the tendency of an axially loaded spar to
buckle is transmitted by the ribs to the unloaded spar.
For this test there was made a panel consisting of two
1% by 6 inch spars spaced 55 inches center to center,
four compression ribs spaced 55 inches, and drag
wires in the three bays. No ribs were put in between
the compression ribs. Axial load was applied to but
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one spar, which deflected alternately in and out between
compression ribs as the beam of Figure 14, C, deflected.
The test was stopped at a load of 12,750 pounds with
the panel still uninjured. The deflections were in-
creasing rapidly at that time, and apparently the load
was very near its maximum. Auxiliary ribs were
then put in between adjacent compression ribs, four
in each bay. Figure 16 shows the completed panel
ready for test. Axial load was again applied to but
one spar. The test was stopped at a load of 29,000
pounds, which was very near the maximum.

Under the conditions of the second test, in which
all ribs were in place, the two spars act as one, the
lateral rigidity of the panel being the combined rigidi-
ties of the two spars. Similar tests were made by the
Engineering Division of the War Department, Air
Service, at McCook Field with identical results.

FIGURE 17.—Wing ribs for which the degree of attachment of the ribs to the beams is adjustable

In the next panel tests the beams were subjected to
bending, and load was applied directly to them and
not to the ribs. Two 1 by 6 inch rectangular beams
subjected to a constant bending moment over 60
inches of their length were tied together with four ribs
spaced 12 inches center to center in the 60 inch bay.
Constant moment was applied by using the apparatus
shown in Figure 8, except that double the number of
support and load rods were used. The ribs that-tied
the two beams together were as shown in Figure 17;
they were held in place simply by the friction under
the heads of the bolts, the holes for which were slotted.
Obviously, if the bolts were not drawn tight the beams
could buckle very easily, while if they were drawn
tight twisting was practically prevented. The evener
bar was not pin-connected to the movable head in this
test but was rigidly attached to it, so that if one beam

I

stopped taking load more was thrown upon the other.
When the panel was assembled the bolts holding the
cleats along one beam were drawn up tightly, while
those along the other beam were not. The beam
supported by the less rigid cleats quit taking load at a
moment of 35,530 inch-pounds, while the one with the
more rigid cleats did not buckle until it was subjected
to a moment of 53,620 inch-pounds. The results
show what may happen when the ribs start to fail.
Incidentally, had the beams been held so as to restrict
bending to a vertical plane, each should have carried
65,550 inch-pounds and had they been free to buckle
laterally each was calculated to sustain 21,270 inch-
pounds.

The next panel tested was similar except that the
ribs were glued to the flanges. Load was applied to
the beams as before, and failure occurred when each
beam was subjected to a moment of
55,600 inch-pounds. The calculated
bending moment for each with bending
confined to a vertical plane was 62,800
inch-pounds.

The third and final step was the test
of single bays with load applied to the
ribs alone. (Fig.10.) The panels were
8 feet between supports and the beams
36 inches center to center. Seven ribs
of the lightened plywood type, rectan-
gular in form, extending 12% inches be-
yond each beam and spaced 12 inches
apart, tied the two beams together.
The ends of the beams rested on thrust
bearings and were held vertical during
test. Roller bearings under the ball
bearings at one support permitted
movement as the beam deflected.
Thin strips 7 feet 5 inches long, notched
at the ribs, were laid on the ribs, and
cans filled with sand were placed on
them.

For this fixity and loading the beams, which were
rectangular and % by 4 inches in cross section, should
have buckled laterally at approximately 91 pounds
each if unsupported by the ribs. If bending had been
confined to a vertical plane, 970 pounds should have
been required to break each beam. The ribs when
supported laterally should have been good for 250 to
300 pounds. The preceding values are calculated
ones.

The two beams were supported at the center by a
cross timber resting on two jack screws, with the ribs
supported only by the beams. A load of 735 pounds
was put on the panel and the screws lowered. The
beams remained in a vertical plane throughout their
length. The timber was again brought up against the
two beams to relieve the load and more load was
added. No buckling occurred at 1,155 pounds when
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the screws were lowered. Again the two beams were
supported at the center by the cross timber and more
load was applied. A total of 1,370 pounds was sus-
tained by the ribs with the beams still supported at
the center. This load, however, was approaching the
maximum for the ribs. When the screws were again
lowered the ribs did not have sufficient additional
strength to resist the tendency of the beams to buckle
and they gave way.

The two beams, which were uninjured in this test,
were again used in a second panel. This second panel
was like the first in every respect, but the loading was
somewhat different. In place of the notched 7-foot
5-inch loading strips, short smooth strips that ex-
tended over two and three ribs alternately were used.
Instead of having the long strips with their notches
hold the tops of the ribs in line, strips %-inch thick
and 2 inches wide were laid flat along each side of each
rib and tacked at the ends and center to the short
loading strips. In this test, as in the first, the lower
chords of the ribs were unsupported. Because the
short loading strips permitted freer lateral play in the
beams, this panel failed at a lower load than the first.
A maximum load of 900 pounds was obtained, at which
load the lower part of the ribs buckled until the ribs
lay almost flat against the loading strips.

In the third and final test of this series the bottoms
as well as the tops of the ribs were held in line and the
same beams were used again. Ten rows of 1%-inch
commercial cotton tape were run parallel to the spars
and sewed to the ribs. Two diagonal pieces on both
top and bottom were then sewed to the parallel rows.
Although this taping was hardly comparable with wing
covering, it held the ribs in line quite well. The short
loading strips of the previous test were again used in
addition to the tape.

As previously stated, the lateral buckling load of
each spar when it was unsupported was calculated ag
91 pounds, which is 182 pounds for the panel. The load
required to break each one if bending had been confined
to a vertical plane was 970 pounds or 1,940 pounds for
the panel. Failure occurred at a total load of 1,470
pounds, at which one beam buckled badly and col-
lapsed. The ribs had started to buckle somewhat,
which permitted the one beam to buckle out of a
vertical plane. Greater strength of the ribs or greater
torsional rigidity of the spar would have prevented this
buckling and twisting. A box beam of the same
strength in bending, for example, would not have
buckled at this same load.

The nose of an airplane wing helps to hold the front
or deeper spar in line and the wing covering keeps the
ribs in line. With this support, fairly large ratios of
depth to breadth may be used if the ribs are made with
just a little surplus strength.

Some years ago, after the test of a great many
beams in connection with a study of form factors, the

suggestion was made that the ratio of the moment of
inertia about the principal horizontal axis to the
moment of inertia about the principal vertical axis be
kept low, below 25 if possible. A further suggestion
was that when this value was exceeded special atten-
tion should be given to the factors that insure lateral
rigidity. (Reference 10, p. 16, and 1923 annual
report, p. 390.)  As a result of the present experiments,
the Forest Products Laboratory has learned what
factors are involved in the lateral buckling load and has
concluded that no arbitrary ratio for the moments of
inertia can properly be set and that such a method of
design should not be used.

In previous tests it was practically impossible to
prevent the buckling of I beams having a moment-of-
inertia ratio of 39. In the panel with the 1 by 6 inch
beams just mentioned, for which the moment-of-
inertia ratio is 36, the maximum moment was approxi-
mately 89 per cent of the moment that would have
been required to cause failure had bending been
confined to a vertical plane, and even this percentage
value could not have been obtained if it had not been
for the excess strength of the ribs. In the third test of
the last panel, which had % by 4 inch beams and for
which the moment ratio is 64, the maximum load was
approximately 76 per cent of the load required to
cause failure had bending been confined to a vertical
plane.

In all of the recent tests it is probable that the
beams were receiving less lateral support than the
beams in an ordinary wing panel would receive and the
end fixity was less than that which obtains in the usual
drag bay. With a more or less rigid nose, such as one
of plywood or metal, and ribs slightly over strength,
beams with moment-of-inertia ratios considerably in
excess of 25 can be counted upon for their full bending
strength.

CONCLUSIONS FOR PART II

Deep beams may fail through buckling laterally and
twisting at loads much less than those calculated by
means of the usual beam formula.

There is for each fixity and loading condition a
critical lateral buckling load for a deep beam just as
there is a critical load for a column. :

A mathematical analysis of the problem for various
loading and fixity conditions leads to formulas that
contain the dimensions of the beam, the modulus of
elasticity along the grain, the modulus of rigidity in
torsion, the span, and a constant depending upon the
loading and fixity conditions.

Experimental results confirm the practical appli-
cability of these formulas.

When one spar of an airplane wing or other panel
is subjected to an axial load and the other spar and the
ribs are not loaded, the lateral rigidity of the whole
combination is the sum of the lateral rigidities of the
two spars.

.
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When two deep beams fastened together with ribs
are subjected to bending, lateral buckling of the beams
may or may not be prevented. When one or both of
such beams are heavily stressed and in need of lateral
support, the ribs, if they are not stronger than is neces-
sary to carry the load upon them, can not carry the
extra load that is induced by the tendency of the
beams to buckle.

A fairly rigid nose and ribs slightly overstrength wil]
permit the use of aireraft wing beams that have a rela-
tively large ratio of moment of inertia about the prin-
cipal horizontal axis to that about the principal vertica]
axis.

No arbitrary moment-of-inertia ratio can be used
with certainty. Each particular case must be studied
individually and lateral support must be provided in
accordance with the tendency of the beam to buckle
laterally rather than to bend in a vertical plane.

"Lk This investigation was undertaken as a study in air-
craft design. The conclusions, however, are of general
application, even though some of them for convenience
are worded as if they applied only to aircraft.
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APPENDIX

A MATHEMATICAL STUDY OF THE ELASTIC STABILITY OF THIN, OUTSTANDING FLANGES
UNDER COMPRESSION

INTRODUCTION

In discussing the stability of a column or othcr
compression member having one or more thin, out-
standing flanges, it is necessary to consider not only

PR the conditions for the stability of the
column as a whole but also the stability

] l l 1 l of the flanges themselves. The problem
x - a of the stability of such a flange is essen-
tially that of the stability of a rectan-
gular plate simply supported along the
ends to which the load is applied, free
along one of the other edges, and on the
remaining edge either simply supported,
i | imperfectly fixed, or perfectly fixed, de-
> > pending upon the nature of the section.
Timosheno has discussed this problem
in considerable detail for plates of
isotropic material. (References 17 and
21.) In the following appendix his

= methods will be extended to plates com-
(T ]‘ 1 1 [ posed of a nonisotropic material, such

as wood, which will be considered
to have three mutually perpendicular
Fieure 18—A ree-  planes of elastic symmetry. His anal-
tangular plate : . - o
under ® uniform ySiS for isotropic plates will also be
compressive load gymmarized and some further conclu-
on two opposite e i
edges sions drawn.
EXACT METHOD; BASE OF FLANGE PERFECTLY FIXED

DIFFERENTIAL EQUATION FOR THE DEFLECTION OF A FLANGE
OF NONISOTROPIC MATERIAL UNDER A COMPRESSIVE LOAD

A plate of thickness A, Figure 18, is considered to
lie in the XY-plane and to be bounded by the lines
¢=0, 2=a, y=0, and y=»>. Uniform compressive
loads P per unit length of edge, parallel to the X-axis
are applied to the edges =0 and z=a, which are

z
N> S?
s ¥
/ %
X Py Tz
LS,
O
7,
A

simply supported. The edge y=05 is free while the
edge y=0 is either simply supported, partially fixed,
or perfectly fixed.

The case in which the edge y=0 is perfectly fixed,
a case which rarely or never occurs in practice, is first
treated for both isotropic and nonisotropic material,
making use of the differential equation for the deflec-
tion of the plate from its plane and of appropriate
boundary conditions. A simpler approximate method
based on energy considerations is then applied to the
same case and the results are compared and found to
check in a satisfactory manner. The approximate
method is then applied to the case in which the edge
in question is only partially fixed, the case in which
the edge is simply supported appearing as a limiting
form of partial fixity.

The differential equation satisfied by the deflection
w is obtained {from the following differential equations
connecting the stress resultants 7', S, and N and the
stress couples G and H acting upon an elementary
portion of the plate with edges dz and dy. (Reference
8; art. 326, equations (24), (25), (26), and art. 331,
equations (45) and (46).) The notation used is that
of Love. (Reference 8, art. 294.)

aTl_ a,‘gz,_ @_ al_w 7
dr  dy N N 6z8y+X Y
38, 0T,  w o 0% oy

ON, BNy, ®w_ o Pw o Fw o, Fw

2z oy T B Sy T gyt e e T
OB, 36,y
JaG, , 0H, i
P AL i (16)
Oow 0*w 0w 0w oo
G, ayal,_Gz axay+H1 W'*‘Hg 6_3/2+SI+S-2—0.
Gz
G
(el
Xﬁ 1% \ > @)
H, 5
27

FIGURE 19.—(A) Stress resultants and (B) stress couples on an element of a plate
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In equations (15)and (16) X' =Y'=2Z'=M'=N'=0,
since the components of the external force per unit
area and of the external couple are zero.

To calculate 7y« - - - - . H, it 1s necessary to
express the components of stress X, - - - - - - Xon
terms of the deflection w and the elastic constants.
(Figure 20.) The displacements » and » are given
with sufficient accuracy by

__dw
U= =25
17)
v=—¢ .
oy
The components of strain are
Lo o
T3z fo
2,
ou , O 0*w
Sy o oy

For a more extensive discussion of the components of
strain, see article 329 of reference 8.

Assume that the material of the plate, wood, has
three mutually perpendicular planes of elastic sym-
metry. (Reference 8, arts. 110 and 111.) Denote by

g X
Jdw
z \\\\1 doc

FIGURE 20.—Components of displacement in terms of
deflection
E,, ), and E, Young’s moduli in the directions z, 7,
and z, respectively, by ¢, Poisson’s ratio associated
with contraction parallel to the Y-axis and stress
parallel to the X-axis, and by u., the modulus of rig-
idity corresponding to the directions z and y. Tne
stress components X, Y, and X, are then given by

Jil
Xz & -1 e (ezz = Uyzevu)

_Ee (%0, 0w
1—040,,\ 0z ' ¥ Jy*

VL — Bz (Fw Pw e
V1 — 040\ 0y T2u Gy
62
Xv = Uzy €zy = 2[-‘11/2 axay

By definition o
G- [ X
—hf2

(Reference 8, art. 294.) Then

Fw, @
DGR+ ongs) (20)

where ;
E.h
o ) (21)
In like manner 5
2, 62
G,= — D #-&—a”% ’ (22)
where
% E R}
D,= 12(1 — a,,,dw). (23)
Further, from their definitions,
6 Fw
where
h3
M= Mzy 6 (25)

In the last of equations (16) the quantities G, G,,
H,, and H,, which are expressed by (20), (22), and (24)
in terms of second partial derivatives of w, are each
multiplied by second derivatives of w. Each of these
derivatives may be considered small and the product of
two of them negligible. It follows that

S] == _Sg. (26)

From the first two equations (16) and equations
(20), (22), and (24) it is found that

0w + Fw Pw
0 " 7V 9z0y? d0zdy*

¥ &
=-Dy(gE oz ;gy) I

It is clear from their definitions and (19) that S; and
S, are small. (Reference 8, art. 294.) Also from its
definition and equation (18) 75 is small. Equation
(26) and the first two of equations (15) are satisfied
approximately by taking

N1=_D1

27)

81=SQ=T2=O (28)
and
T, =constant= — P (29)

where P is the load per unit length of the loadeded ges.
The third of equations (15), on making use of (27),
(28), and (29), then gives the differential equation of
the plate:

=Bk 1.4 +°'vz xzay2> Max26y2
—D o ) M 4w —Paiv—()
2\ 9yt tow 8126y dx*dy? Gap |
Or
ot ot 0?
D, a;f”Ka it g tP =0 (30)
where
K=D1¢r,,,+D22cr,,,+2M. 31)




ELASTIC INSTABILITY OF MEMBERS HAVING SECTIONS COMMON IN ATRCRAFT CONSTRUCTION 29
BOUNDARY CONDITIONS where
On the simply supported edges t=0 and z=a of S Xl: 2(K2— D,Dy) + D, P+K>\2i|'
Figure 18, D,
w=0 (32) 3 iadeh . AR
and = ﬁl}z(z{'—’— D) B PE
G =0. (32a) ¥ i

The last condition requires that
0%w 0w
a 7t 0y a5 a 5 =0. (33)

On the fixed edge, y=0,

w=0 (34)
and

ow

‘aTJ=0. (35)

On the free edge, y =0,

and
OH, Pw PO .
N2+ a‘r D <ay —{" Tzy 6I26y> Z.A[ a‘l:«zay’—o.
Rewriting these conditions for the edge y =0,

0w 9w

W+Uryrgc2=0 (36)

and
w :
aJ +(~ 7) a‘l, ay =0, (37)
where
-Al
2—0c=o0gzy+ Tk
that is,
g (2 ‘Try) EZ/ _Zl:zu (1 Uzyo'yz) (38)
SOLUTION OF THE DIFFERENTIAL EQUATION
Conditions (32) and (33) are satisfied by
w=sin ZnaLmj (y) =sin Az f (y). (39)

It will be convenient to replace m=/a by =/c, for if the
flange breaks up into more than a single half wave
each portion of length a/m=c¢ may be considered as a
plate of length ¢ simply supported at its ends. We
shall accordingly interpret X as given by the equation

where ¢ may be either the entire length of the flange or
a portion of this length, as circumstances require.

In accordance with (30) f(y) in (39) must satisfy an
ordinary linear differential equation of the fourth order.
Its solution can be written

f(y) = Cie=a + Coe®? + G5 cos By+ C sin By, (40)

Conditions (34) and (35) are satisfied if the constants
in (40) are so related that we may write

f(yy) = A (cos By— cosh ay)+ B (sin By— g siiib el ) (42)

The substitution of (39) combined with (42) in the
conditions (36) and (37) leads to the equations:

A[(B2+ 02,0\2) cos Bb+ (a?— a,,A?) cosh ab]+
Bl(82+ 0,,)2) sin B+ i (02~ 02)2) ik wb]=0 (45

and

A[B(B*+202—oN?) sin Pb—a(a—2N+oA2) sinh ab]+

B[—B(B2+272—oA?) cos Bb—B(a*—2N+a\?) cosh ab]=0.
(@)

In (44) note that after some reduction

B2+ (2— o)\ = — o N?
a?— (2— o)\ =%+ oy N

In this reduction the following relations were used:

o RN 2M '
az_B-___.,D =9 2 — o= omy b [) -, and Oy Eoy,

(Reference 1, p. 104.) Using the abbreviations
=B Ao\
S=" O\ (45)

the equations (43) and (44) can be written in the form

Alt cos b+ s cosh ab]+ B[t sin 8b + B =S sinh ab] =0

(46)
A[Bs sin Bb— at sinh ab] + B[ — Bs cos Bb— Bt cosh ab] =0.

In order that solutions of the system (46) other than
A=0 and B=0 may exist, that is, that a solution
different from zero of the differential equation (30) of
the form (39) may exist, it is necessary and sufficient
that the determinant of the coefficients of A and Bin
(46) vanish. The result of equating the determinant
to zero is, after some reduction,

ot BisiNT 5
s+ (£2+s%) cos b cosh ab= <——> sin B sinh ab.
(47)
Multiplying this equation through by b4, the terms can
be arranged so that « and 8 occur only in the combina-
tions ab and Bb. We then write (equations (41))
ab=({/TV+V)}

g (48)
gb=(VOV—-V)},
where B K
S ¢ D, (49)
and
1 b
(L= DZK[ s (K?— Di\D;,) + D, Pb?. (50)




30 . REPORT NATIONAL ADVISORY
GENERAL EXPRESSION FOR CRITICAL STRESS

By assigning a value to the ratio ¢/b the quantity
V'is determined. The corresponding value of U can
then be found by solving equation (47). The value
of the critical stress

P
Ll 3

corresponding to this value of ¢/b can then be found
from equation (50). From (50) it follows that

1 b
p=m[KU— 7r2(7<D‘ —Dl)]
K 5 o
~Lap -tz (5 -0) e

2
p=kE, 1y (51)

ELASTIC CONSTANTS OF SPRUCE

The elastic constants to be used in the computa-
tion depend upon the orientation of the planes of
elastic symmetry of the wood in the plate. It will
be assumed throughout the discussion that the grain
of the wood is parallel to the X-axis, the direction
in which the compressive load is applied. Two cases
for the direction of the growth rings of the wood will
be considered, one in which the rings are perpendicu-
lar to the faces of the plate and another in which
they make an angle of 45° with the faces.

In the first case (fig. 21) Young’s moduli £,, £,, and
E, are equal to E;, Eg, and Ej,
respectively, the subscripts L, R,
and 7" denoting the longitudinal,
radial, and tangential moduli, re-
spectively. The values for these
and other elastic constants for
spruce were taken from a report of
the British Aeronautical Research
Committee. (Reference 1, p. 105.)
The values are:

)i

E,=1.95%10°

Ez=0.13%10°

Ep=0.07x10°
Z  ugp=0.104X 10°
sz=0. 072X 10°
zr="0. 005X 10°

or=0. 45
arr=0. 539
orr=0. 559 .
orr.=0. 03
or=0.0194
orr=0.301

o

FIGURE 21.—The cross
section of a quarter-
sawn flange

In the second case, when the growth rings make an
angle of 45° with the faces of the plate (fig. 22), the
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elastic constants K, - - - - - - . . uzy can be com-
puted from those just given by the following formulas:

1 1l 1 1 ORT

B, 05, 15 A, 9B y
e
Oyz= TEEZ (ULR I ULT)J
Ey
Oy = E;/ Oyzy
a3 2prriir .
i brrt Mg
(Reference 8, art. 111.) It is > 0
then found that
E,=0.01875X 10°

oye=0. 00475 =

FIGURE 22.—The cross section

Try = 0.494 of a wood flange the growth
= rings of which make an angle
— = 6
Mry = 0. 0851 X 10°. of 45° with the faces

CRITICAL STRESS FOR A FLANGE OF SPRUCE

Values of k in equation (51), the equation for critical
stress, which result from solving equation (47) for the
cases of growth rings perpendicular to the faces of the
flange and at 45° to the faces, are given in Tables VI
and VII, respectively.

TABLE VI

THEORETICAL CONSTANTS FOR FLANGED COM-
PRESSION MEMBERS OF SPRUCE HAVING THE
GROWTH RINGS PERPENDICULAR TO THE FACES
OF THE FLANGE, CALCULATED BY THE EXACT
MATHEMATICAL METHOD

B
3.40 l 15.42 0. 228540
3.30 15.13 . 228345
3.25 [ 14. 95 . 228057
3.20 14. 82 . 228376
3.10 14. 55 . 220166
3.00 14. 30 ’ . 230577

The minimum critical stress for growth rings perpen-
dicular to the faces of the flange occurs when the half
wave length is 3.25 times the outstanding width of the
flange. This critical stress is equal to 0.228 F,h2/b2.
Ordinarily the length of the column is such that the
flange can not break up into segments the length of
which is exactly 3.25 times the outstanding width.
Under such a condition the stress will be increased as
the valuesin the tableindicate. Considerableincreases
would be found for considerable departures from the
optimum value of the ratio ¢/b. Such departures occur
only when the column is so short that its length is less

than two or three times the optimum half wave length.
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TABLE VII

THEORETICAL CONSTANTS FOR FLANGED COM-
PRESSION MEMBERS OF SPRUCE HAVING THE
GROWTH RINGS AT AN ANGLE OF 45° WITH THE
FACES OF THE FLANGE, CALCULATED BY THE
EXACT MATHEMATICAL METHOD

l c/b U k

| L M S0 e

| 534 14.83 0.117308

| 520 14.78 L117119
5.10 14.76 117113
5.00 14.74 S117118
1.90 14.73 .117227
4.80 14.75 S117539

Consideration of Tables VI and VII shows that the
theoretical critical stress is considerably less when the
growth rings make an angle of 45° with the faces
of the flange (fig. 22) than when they make an angle
of 90° (fig. 21). The chief factor in determining the
variation in the critical stress with variation in the
angle between rings and faces is the ratio K,/E;.
This ratio is nearly constant when the angle made by
the rings with the faces of the flange lies between 20°
and 70°, and hence the results for rings at an angle
of 45° may be taken to apply over this range. When
the rings are parallel to the faces of the flange,
however, the minimum critical stress is found by an
approximate method given later in this report to be

- 0.164 E; I*/b?
for a flange with a perfectly fixed edge. This critical
stress is intermediate between those for flanges with
the rings at angles of 45° and of 90° with the faces.

The theoretical critical stress for a flange with a
perfectly fixed edge is not attained in practice because
the condition of perfect fixity at the base of the flange
is not realized. Later in this report it will be pointed
out more in detail that as the fixity at the base of the
flange decreases the variation of the critical stress with
inclination of growth rings becomes smaller and
ultimately, as the fixity continues to diminish, the
critical stress for a flange with rings parallel to its
faces becomes less than that for a similar flange with
rings at 45°, which in turn is always less than that for
a similar flange with range at 90°.

DIFFERENTIAL EQUATION AND BOUNDARY CONDITIONS FOR A
FLANGE OF ISOTROPIC MATERIAL

The preceding analysis is an extension to flanges
of nonisotropic material of the method that Timo-
shenko used in discussing flanges of isotropic material.
(Reference 17, p. 350.) When the material is isotropic
the differential equation (30) becomes

d*w ow 0w Po*w_

W 2agapt ot o =0 (62)
where e
I
C=13a~o" i

The boundary conditions are given by equations (32)
to (37) after o, and o,, have been replaced with ¢. The

differential equation and the boundary conditions are
then those used by Timoshenko. The critical load is
determined by solving equation (47) where ¢ and s
are given by (45) with ¢,,=o and where a and g are
given by (48) with

V= rzg—; (54)
and
P 2
U= Z,b . (55)

CRITICAL STRESS FOR A FLANGE OF ISOTROPIC MATERIAL

The values of U corresponding to various values of
the ratio ¢/b as calculated by Timoshenko are given in
Table VIII for flanges of isotropic material. In the
third column of this table appear the values of £ in
the formula

h2
p= AEb—z’
where p is the critical stress.. This formula is obtained
at once from equation (55) by noting that

Bl
12(1— )

p——-g and C'=

In the computations ¢ was taken as 0.25.

TABLE VIII

THEORETICAL CONSTANTS FOR FLANGED COM-
PRESSION MEMBERS OF ISOTROPIC MATERIAL,
CALCULATED BY THE EXACT MATHEMATICAL
MSETHOD AND WITH POISSON’S RATIO TAKEN
AS 0.25.

c/b U k
1.0 16.76 1. 490
12 15. 41 1.370
1.2 14. 47 1. 286
1.3 13. 88 1. 234
1.4 13. 45 1. 196
1.5 13. 20 1.173
1.6 13.13 1. 167
1. 635 13.11 1. 165
127 13.15 1. 169
1.8 13. 24 1177
1.9 13.43 1. 194
2.0 13. 67 1.215
2.2 14. 35 1. 276
2.4 15. 21 1. 352

In Table VIII the critical stress is least when the
half wave length is equal to 1.635 times the width of
the outstanding flange. If a, the total length, is either
less than 1.635b or somewhat greater than this amount
the critical stress will be greater, as Table VIII shows.
As a increases toward twice the ideal half wave length
the critical stress begins to diminish, reaching the
same minimum value at ¢=3.27b as at a=1.635b
When the column is long in comparison with the
width of the outstanding flange (the length three or
more times the width) the flange will break up into
waves the half length of which is approximately
1.635b, and the critical stress will then differ but little
from that for this ideal half wave length.
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APPROXIMATE METHOD

DISCUSSION

Approximate results were obtained by Timoshenko
with a method that is based upon energy relationships
and that is an important extension of a method used
by Bryan. (References 3, 4, 5, 19, 20, and 21.) The
deflection of the plate (fig. 18) is expressed as a sum of
terms of the form

w=A1¢0:(x, y)+ Ao, y)+. . . . (56)

the functions ¢, ¢s, . . . . . being chosen to satisfy
the boundary conditions as nearly as possible and the
coefficients A4,, A4y, ... .. being arbitrary. This
expression for the deflection w is then substituted in
the integral representing the energy of deformation of
the plate. The result is a function of the arbitrary
constants Ay, A4, . . . . . The energy is then
equated to the work done by the compressive load P
per unit length acting on the edges z=0 and z=a.
The result is an equation that can be solved for P
in terms of the arbitcary constants A;, 4,, . . . . ..

Whetratioss A,/ Ay, Az(An . . . 2. are then chosen in
such a way as to make P a minimum. If the resulting
stress,

=P

ik

where /4 is the thickness of the plate, is less than the
stress for primary failure of the column of which the
plate is a member, the plate will fail by buckling at the
critical stress p.  For a full discussion of the method,
with examples of its application to simple cases, see
Timoshenko’s paper. (Reference 19.)

The energy of deformation of the plate, under the
assumption that the stress components X, Y, and
7. are negligible, is given by

h
s b 2

Ve ij; J; f(,:Xze”-l— Novey -2 ex)ide dydais S (57)
-3

Substituting the values of the strain components given
in (18) and those of the stress components given in

(19) for nonisotropic material having three mutually |

perpendicular planes of elastic symmetry, the result is

S R d*w L (9w
! —QEJOJ‘ GII/O'III[L ) R 67/ >

 GRIIG) )
+2E,0,, a"j 2 ;”]MM axt;?) dy dz. (58)

For isotropic material this becomes

i 0 a’w 62w 02w 0*w
ff 92T =20 —q) Tt oy
Ske @
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The work done by a compressive load P per unit
length of edge, applied to the edges =0 and z=a
(fig. 18) is given by

m S IMN T

In what follows, the integrations with respect to
in (58), (59), and (60) will be performed between the
limits 0 and ¢, where ¢ is the half wave length of the
deformed surface. In certain cases ¢ will be equal to
a, while in others it will be a fractional part of a.

BASE OF FLANGE PERFECTLY FIXED

The assumed deflection (equation (56)) will be
taken as

w={A,(60%>—4by® +y*) + A, (y° — 10b%>

+20677)} sin - )

The functions of y in the first and second terms of
(61) represent respectively the deflection of a canti-
lever fixed at the end =0 under a uniform load and
under a load that is proportional to 7. Timoshenko
in treating the isotropic plate by this method chose
other functions. (Reference 21, p. 405.) It is not
apparent that either choice possesses any particular
advantages over the other.

Flange of nonisotropic material.

Entering (61) in (58) it follows that for nonisotropic
material

WA 2b°E,

I Bl el et AR ~ 2
V~4803(1 oy [do+di2+ dr2¥ (62)
in which, letting
2
=5 (63)

dy=2.3117*+ =*

|:41.15‘i”—(1%:”@ —3.4320y1]p+28.8§l;p2

d;=16.7887*+ «*
[303'4 “_114(1 %‘Lry‘,’uz), s 25_300”:,,) - 208.3%;! p? (64)
z P

dy=30.4887* + 7

= E
[559.7 ’—"”(LE"’”—?”-’)~ = 50.16%2];) +377.2%" &

z z

and

Pl
g—Alb. (65)
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From (60) and (61) it follows that

2
T=P4“7; A12bg(00+012+(3222) (66)
where
co=2.311, ¢;,=16.788, and c,=30.488. (67)

Equating 7 and V as given by (62) and (66) and solving
for p=P/h,

i 1 d0+dlz+dgzz> h?
P=1272(1— 04y002)p \ CoT €12+ C222 B e (68)
The critical stress p will be a minimum if z is the
larger of the roots of
dp _
d%_o'

Equation (68) may be written

hZ
p=kE:F' (69)

The calculation outlined assumes the ratio ¢/b to be
given and determines the critical stress for this ratio.
By calculating % for a series of ratios ¢/b the ideal half
wave length is found as that which makes the critical
stress a minimum.

In Tables IX, X, and XI, the values of k& for cer-
tain values of the ratio ¢/b are given for flanges of
spruce, the growth rings being respectively perpen-
dicular to the faces of the flange, inclined to them at
an angle of 45° and parallel to them. The elastic
constants for spruce given earlier in this appendix
were used in the calculations. For rings parallel to
the faces, we note that

B, =1895>¢10°

E,=0.07x10°

fisy="0. 072X 10°

o2y =0. 539

oye=0. 0194,
(Reference 1, p. 105.)

TABLE IX

THEORETICAL CONSTANTS FOR FLANGES OF
SPRUCE, UNDER LONGITUDINAL COMPRESSION,
THAT HAVE THE GROWTH RINGS PERPENDICU-
LAR TO THE FACES OF THE FLANGE, CALCULATED
BY THE APPROXIMATE METHOD

c/b k

3.2 0. 228356
3.3 . 228256
3.4 . 228719

|

TABLE X

THEORETICAL CONSTANTS FOR FLANGES OF
SPRUCE, UNDER LONGITUDINAL COMPRESSION,
THAT HAVE THE GROWTH RINGS AT AN ANGLE
OF 45° WITH THE FACES OF THE FLANGE, CAL-
CULATED BY THE APPROXIMATE METHOD

c/b ‘ k

0.116812 |
. 116806
L 117021

5
0

en o

o

),

sl
12
\

TABLE XI

THEORETICAL CONSTANTS FOR FLANGES OF
SPRUCE, UNDER LONGITUDINAL COMPRESSION,
THAT HAVE THE GROWTH RINGS PARALLEL TO
THE FACES OF THE FLANGE, CALCULATED BY
THE APPROXIMATE METHOD

. ¢/b k

\ Ao A

|

[T 0. 16399
{0 a8 . 16381
‘ 3.9 . 16389

The results agree remarkably well with those given
in Tables VI and VII as the result of more exact

analysis.

Flange of isotropic material.

After substituting the assumed deflection (61) in
the integral (59) for the energy of deformation of the
flange in the case of isotropic material and equating
T and V as given by (59) and (60) it is found that

. 1 dy+ diz+ do2?\ NP il
P= 12021 —ad)p E;Jrelzir@%)E*2 (70)
where

B
8=

and expressions for do, d;, d» are found from (64) by
writing
E

E,=E,=E, 0;,=0,,=0, and Py =HE= o0 + o)

The quantities ¢o, ¢;, and ¢, have the values given by
(67).
If equation (70) is written in the form
h?

p=FkE 5 (71)
the value of the minimum # for a given value of the
ratio ¢/b can be calculated as with nonisotropic mate-
rial. A few values in the vicinity of the half wave
length for which the critical stress is a minimum are
given in Table XII; Poisson’s ratio o was taken as
0.25.
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TABLE XII

THEORETICAL CONSTANTS FOR FLANGES OF ISO-
TROPIC MATERIAL UNDER LONGITUDINAL COM-
PRESSION, CALCULATED BY THE APPROXIMATE
METHOD 'AND WITH POISSON’S RATIO TAKEN AS
0.25-

1. 16434
1. 16390
1. 16407

The minimum values of % in Table XII differ from
those of Table VIII by a small fraction of 1 per cent.
The half wave lengths at which the minimum eritical
stress occurs differ by about 1.5 per cent. Plotting
the curve connecting critical stress and half wave
length in the vicinity of the minimum ecritical stress
will show that this difference has little significance.
For steel, with Poisson’s ratio taken as 0.3, a similar
calculation gives a minimum % of 1.1592 correspond-
ing td a value of ¢/b of 1.60.

BASE OF FLANGE IMPERFECTLY FIXED

Discussion.

The condition of perfect fixity assumed in the pre-
ceding sections of this report for the edge of the flange
y=0 (fig. 18) is probably never realized. This is due
to two circumstances, which will be considered sepa-
rately. Both result from the moment induced at the
edge y =0 by the deformation of the outstanding flange
bounded by this edge. This moment causes twisting
of the whole cross section of the column and it also
causes elastic giving of the material along the junction
of the base of the flange and the body of the column.
Both of these phenomena, twisting of the section and
elastic giving at the base of the flange, are accompanied
by a change in the inclination of the flange at its base
from the value zero required by the condition of per-
fect fixity. The twisting phenomenon is easily ex-
pressed in terms of the torsional rigidity of the section.
The elastic giving appears to involve factors that are
best determined experimentally.

Effect of twisting of column.

We proceed to calculate the effect of the twisting of
the column induced by the moments acting along the
edge y=0. (See Timoshenko. Reference 21, p. 400.)

Let ¢ denote the angle of rotation of a cross section
the abscissa of which is z. If elastic giving of the
material is neglected for the present,

ow
=\=-) - 72
¢ <6y y=0 =)
The torsional couple in any section is then

)
M=GK 32 GK(axay

y=0

where @ is the modulus of rigidity of the material and
K is the torsion constant of the section. (Reference 22,

p. 11, and 1929 annual report, p. 681.)
applied per unit length is then

oM Fw
AR GK<ax26y =0

In applying the approximate method, the strain
energy resulting from the twisting of the column (in
whole or in segments) should be added to the strain
energy of deformation of the corresponding portion of
the outstanding flange. The strain energy per half
wave length ¢, resulting from twisting, is

,_(CGK(0¢\:,  GK (¢ dw\?
Vi | (B a5 [ (), e

The couple

If
w=f(y) sin 7%1
=S lrw] 73)
To apply the approximate method let
w= [Ay+A1<1—cos y)] sin ‘H- (74)
It A;=0 the edge y=0 is simply supported. If A=0

the edge =0 is fixed. Hence, by allowing A,/A4 to
vary from zero to infinity, all conditions on the edge
¥ =0 intermediate between those for an edge simply
supported and those for one perfectly fixed can be
satisfied by a deflection in the form given by (74).

It follows from (73) and (74) that

A2
Vi (75)
where
GKr?
i (76)

In calculating V; for a column of spruce the modulus
of rigidity @ may be taken as the mean modulus that
would be given by a torsion test on a cylinder of circular
section. This value may be conveniently taken as
Young’s modulus in the longitudinal direction divided
by 15.6. (Reference 22, pp. 21 and 24, and 1929
annual report, pp. 691 and 694.)

Flange of nonisotropic material.

For nonisotropic material, such as wood, with three
mutually perpendicular planes of elastic symmetry it
follows from (58) and (74) that

Ve E h¥crt l: 4;#21/_(1 ‘Truaw) b
48(1 U'zy‘fuz) l 3¢ i E, 7’c?
3 l/ 1 L “TVI 1 = 1)
F 320 "¢ \4 ~

2
_’_uzy(l Ecrz,,a,,,) 1 FAAlI:b <1 4 8>

z

2\, (I —0n0y.) 8 7))
7r>+ E,
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From (60) and (74)
|:A2 +A12b(~——>+AA B (1—?+ 8)]

T=V+V1

From
using
A, c? J B e
W Ty i
it follows that

e 7!'2 }[{lo l‘([]é"’d) ]E 7
4 121~ aiyoyz) cot+ izt 2 | °b?

ik kE,ZQ (78a)

or

where for convenience the following notation has been
used:

12(1 — 04y0yz) b L,GK b .
€= ( E%hy;y) =12(1— Uzu‘fyr)ﬂ' 2R3 (79)

1 4 I —ou0 €p
d0=3+ pay ( 7o zy yz);fz_*__’,;;

4 L L »2—) ielLE Gts) B
d=1 gL e V=i e+ i -2 (80)
i =§—é 1 #zy 0'11/‘71/1)/3 E
2 O T 0 4 E,; E
CU:%’ cl=1—%+%’ and 62=§—%' (81)

Flange of isotropic material.

For isotropic material equation (78) with appropri-
ate values of do. dy, da, ¢y, c1, and ¢, becomes that given
by Timoshenko, to whom the choice of the form (74)
for the deflection w is due. (Reference 21, p. 401.)

The values of the coefficients d,, d;, and d, are

TS 2
ALEE T
™ ™

4

n
T Fosai, o
=3 7r+”(4 1r)+32
where

e=12(1—a?)7* G]’{f tha- (83)

The constants ¢y, ¢;, and ¢, are unchanged.

The critical stress p is given by
7!'2 1 d0+d12+d22

P=13(1— %) p \ ot 12t 22? b2 (84)
or
h?
p=hkEy- (842)

Application of formulas.

Equations (78) and (84) are of the same form as (68)
and should be used in the same way. For a given e
and a series of values of the ratio ¢/b a series of critical
stresses p are determined corresponding to a suitable
value z. The ratio ¢/b associated with the minimum
critical stress (if there is a minimum) determines the
half wave length ¢ that is ideal for the value of ¢ under
consideration.

For the study of a given column it is more conven-
ient to proceed in another way. The first step is to
construct a table giving k& in the formula for the
critical stress p as a function of the fixity coefficient e,
for each of a series of values of the ratio ¢/b of the half
wave length to the width of the outstanding flange.
Table XIII was constructed in this way for flanges of
spruce and Table XIV for flanges of isotropic material.
The results in these tables are also shown in the curves
of Figures 23 and 24.

The use of these curves in studying a givern. colum.i
is discussed in a later section of this appendix. In
interpreting the curves, it must be borne in mind that
the fixity coefficient e depends upon the half wave
length ¢ and the outstanding width & as well as upon
the thickness A and the torsion constant K.

TABLE XIII

THE COEFFICIENT k IN EQUATION (78a) FOR A
FLANGE OF SPRUCE HAVING GROWTH RINGS AT
AN ANGLE OF 45° WITH THE FACES

c/b € k c/b € k
1 0. 10 0. 868 3 0.10 0. 154
1 05 . 866 3 05 . 147
1 03 . 865 3 03 . 142
1 01 . 864 3 01 . 136
1 00 . 863 3 00 .132
5 10 <113 4 10 117
5 05 .102 7 05 .102
5 03 . 094 7 03 . 091
5 01 . 083 7 01 .073
5 00 075 7 00 . 059
9 10 136 12 10 181
9 05 115 12 05 149
9 03 100 12 03 124
9 .01 074 12 .01 079
9 .00 . 053 12 .00 . 049
15 .10 . 241 20 .10 . 375
15 05 195 20 05 298
15 03 159 20 03 237
15 .01 . 098 20 .01 133
15 .00 . 047 20 .00 . 046




Coe{ ficient k in cri{/'ca/—sfress formula
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Fixity coefficient, €

FIGURE 23.—The coefficient k in equation (78a) for a flange of spruce the growth rings of which make an angle of 45° with the faces
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TABLE XIV

THE COEFFICIENT ki IN EQUATION (84a) FOR A
FLANGE OF ISOTROPIC MATERIAL THAT HAS
A POISSON’S RATIO OF 0.25

|
[ c/b € k c/b € k
1 0. 50 1. 287 2 0. 50 0.673
i 10 1. 273 2 10 . 628
1 00 1. 269 2 05 .622
__________________________ 2 01 .617
__________________________ 2 00 .616
3 50 . 616 4 50 . 660
3 10 . 522 4 10 . 498
3 05 . 509 4 05 . 476
3 01 . 498 4 03 . 467
3 00 . 496 4 01 458
__________________________ 4 00 454
5 .50 . 750 7 50 1. 026
5 .10 . 503 T 10 . 549
5 .05 . 469 /i 05 . 484
5 .02 448 7 03 . 458
5 . 00 . 434 7 01 . 431
.......................... 7 00 .418
10 50 1. 640
10 10 675
10 .05 543
10 .00 409

Flange with a simply supported edge, the limiting case
as the fixity coefficient approaches zero.

As the fixity coefficient e approaches zero in equations
(78) and (84) it is found that the value of z correspond-
ing to a minimum value of p approaches zero. This
should be so for as e approaches zero the edge y=0
becomes more and more nearly simply supported.
The ratio of 4, to A in (74) will then approach zero.
By equation (77) this implies that z approaches zero,
as just noted.

Accordingly the limiting critical stress as e ap-
proaches zero is found to be

Mzy | 10 h*
2 [12(1—0,,0”),, E]E’Iﬂ (85)

by setting e=0 and z=0in (78) and (80). The values
of k given by this formula for a simply supported edge
agree well with those of Table XIII for the fixity
coefficient e=0. As p becomes large p decreases to the

limiting value,
<ﬂ:u> Ez 75" (86)

Using the elastic constants for spruce having the
growth rings at an angle of 45° with the faces of the
flange, (86) becomes

p=0.044 EI b"’ (87)

If the growth rings are perpendicular to the faces of the
flange

p=0.053 B, b2’ (88)
while if they are parallel
2
p=0.037 E, ;% (89)

Thus for a flange with a simply supported edge the
critical stress is less when the growth rings are parallel
to the faces of the flange than when the rings are

- inclined to them at an angle of 45°. For a flange with

a perfectly fixed edge, on the contrary, the critical
stress was found to be less when the rings are inclined
to the faces at an angle of 45° than when they are
parallel to them. The relative variation of the critical
stress with inclination of the rings is less for flanges
with simply supported edges than for those with
perfectly fixed edges.

In practice, the fixity at the bases of the flanges is
small. Consequently the wvariation of the critical
stress with the inclination of the growth rings may be
expected to be similar to that for flanges with simply
supported edges.

From this point on the discussion will be limited to
flanges with growth rings at an angle of 45° to the
faces. The results may be considered to be applicable
to flanges with rings at any inclination except for the
extreme cases of rings nearly parallel to the faces or
nearly perpendicular to them. 1In the first case the
calculated critical stress should be reduced somewhat,
while in the second it should be increased somewhat.
These formulas hold for long flanges. For short ones
the effect of the first term of (85) must be included.

For isotropic material the equations corresponding
to (85) and (86) are

2 1k hz
e [12(1—01)p+2(1+0):|Lbz (99
and
T
T E 1)

With ¢=0.25 equation (91) becomes

=0 4&20 (92)
and with ¢=0.3
hZ
p=0.385E ;- (93)

For short flanges the first term in (90) must be re-
tained.

The results expressed by equations (85) to (93) for
flanges with a simply supported edge at =0 could
have been obtained directly through the approximate
method by assuming, for example, instead of (74) that

This was done for isotropic flanges by Timoshenko.
(Reference 21, p. 396.)
Effect of elastic giving of material at the base of the
flange. '
In obtaining the preceding results the lack of fixity
of the edge y=0 was ascribed to the twisting of the
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column, either as a whole or in segments, in conse-
quence of the moments applied at this edge by the
deformation of the flange. Actually, however, the
material at the base of the flange yields elastically
under the action of these moments so that the angle
of rotation of the section is less than (dw/dy)y o,
the inclination of the flange at its base. Accordingly
equation (72) should be replaced by

ow

4 ﬂ(ay =0

where 7 is some proper fraction. The effect is to
reduce the strain energy V; (equation (73)) resulting
from the twisting of the column. To the reduced V;
should be added the energy of deformation of the ma-
terial at the base of the flange. This portion of the
energy is relatively small. The result is that V3, equa-
tion (73), which was added to V, equation (58), to ex-
press the whole energy of deformation of the flange
and column in so far as it arises from the load on the
flanges, should be reduced. This is equivalent to say-
ing that e as calculated by (79) from the torsional ri-
gidity of the section should be reduced. X

For flanges of wood in which the grain is longitudinal,
such reduction in the fixity coefficient is very great.
This is due to the extremely small relative value of the
modulus of elasticity £ in the direction parallel to the
faces of the flange and perpendicular to its length,
which ranges from ¥; of the modulus in the longitudinal
direction in quarter-sawn flanges of spruce to }o of this
modulus in flanges in which the growth rings make an
angle of 45° with the faces. The tests show that, for
calculated coefficients of fixity of the order of magni-
tude of 2 and above, the critical stress corresponds to an
actual fixity of about 0.01. Corresponding reductions
in the smaller calculated fixity coefficients are ob-
served but the law that the reduction follows has not
been determined.

The practical result of the reduction in fixity because
of elastic giving is that the condition of a simply
supported edge at the base of the flange is closely
approximated when the calculated fixity coefficient is
small. The material is unable to transmit the bending
moment from the base of the flange to the body of the
column, with the result that the flange itself is inclined
nearly as if it were merely hinged or simply supported
at its base and consequently a condition in which
formula (87) is applicable is approached. This
situation will be discussed further in connection with
the study of two flanged columns with the aid of the
curves of Figure 23.

A similar but probably not so great a reduction

occurs in the calculated fixity coefficients of the

flanges of structural steel columns in consequence of
the elastic giving of the material at the bases of the
flanges. Practically no data are available for use in
determining the extent of this reduction.

Examples of the determination of the critical stresses,
neglecting the effect of elastic giving at the bases of
the flanges.

In the following paragraphs will be explained the
procedure to follow in applying the results of the
preceding mathematical analysis, using the fixity
coefficient as calculated from the torsional rigidity
of the section and the dimensions of the flange and
neglecting the reduction in this coefficient that should
be made to allow for the elastic giving of the material
at the base of the flange. The method can then be
applied when the reduced coefficients are known by
substituting in each case for the fixity coefficient e the
reduced fixity coefficient €.

The method will be first applied to a column of
spruce similar to many of those used in the tests. = The
dimensions are shown in Figure 25. The growth
rings in the single outstanding flange will be assumed
to make an angle of 45° with the faces of the flange.
The fixity coefficient is given by

g = _{-045"
6212(1—UIVU”Z)WZE¥KﬁS. 7]
If
Gty b
EoR 156 i
it follows that
K b? o}
A
With the given dimensions /// / 1
1 i 0
where a=¢/b. e= 1066a—2- /’/ ////////// <
4 S
Tt is important to observe that (e 0!
the coefficient e depends upon k——15" N

the half wave length ¢. This co-  Fiure 25.—The cross
efficient was computed for a series section of a wood test

5 column with a single
of possible half wave lengths, the  thin, outstanding fiange
length of the column being 40 the growth rings of
. B . which make an angle
inches, and the quantity &, towhich  of 45 with the faces
the corresponding critical stress is
proportional, was then taken by extrapolation from the
curves of Figure 23. The results are shown in Table
XV. The numbers in the last column of the table are
really estimated, since the values of e concerned are far
beyond the limits plotted on the curves of Figure 23.
Through inspection of this column and the curves in
Figure 23, however, it becomes clear that the flange will
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break into five half wave lengths, the critical stress be-
ing 0.12 E,/*/b?, corresponding to the value 5.33 of the
ratio ¢/b. These values agree well with those calcu-
lated for e=c. Indeed it is apparent from the be-
havior of the portions of the curves shown that the
ordinates rapidly approach their limiting values as e
increases.

The approximate method used in calculating the
curves of Figure 23 gives values of £ that are slightly
too large for the higher values of . High values of ¢,
however, do not occur in cases of practical interest, as
will shortly be seen. The approximate method may
therefore be considered entirely satisfactory.

TABLE XV

VARIATION OF CRITICAL STRESS WITH NUMBER
OF HALF WAVE LENGTHS FOR THE 40-INCH COL-
UMN OF FIGURE 25

Number of k
hi‘(}; ;L?l‘sm < el 3 (estimated)
8 5.00 3.33 96. 1 | 0. 18
7 5.71 3.81 73.4 .13
6 6.67 4.45 53.8 .12
5 8.00 5.33 37.5 .12
4 10. 00 6.67 24.0 .12
3 13.33 8.89 13.5 .14
2 20. 00 13.33 6.0 .20
1 40. 00 26. 67 1.5 .40

Table XV was calculated on the assumption that the
effects of the elastic giving of the material at the base
of the flange could be neglected. This table indi-
cated a minimum critical stress of 0.12 K, h%/b?, corre-
sponding to the value 5.33 of the ratio ¢/b. Actual
tests, however, show that the flange wrinkles at a
stress of 0.07 E,A*/b®. (Part I, equation (5), p. 9.)
This reduction in the critical stress should be attrib-
uted to the elastic giving of the material at the base
of the flange. The curves show that this minimum
critical stress should be attributed to a fixity coeffi-
cient in the vicinity of 0.01 and a ratio of ¢/b of about 7.
This example is very informing, since it indicates a
reduction in the fixity coeflicient from a number of
the order of 20.0 to one of the order of 0.01.

In the example just considered there was only one
outstanding flange. If there are N flanges, the fixity
coefficient as caleulated should be divided by N.

Consider now the section of column T-25, Figure 5,
The length of the column is taken as 120 inches.
The growth rings of the wood will be assumed to
make an angle of 45° with the faces of the flanges.
In accordance with equation (79)

AL
e g K . —=2. 736 (95)

where a=c¢/b. Proceeding as before Table XVI was
constructed with the aid of the curves of Figure 23.

TABLE XVI

VARIATION OF CRITICAL STRESS WITH NUMBER OF
HALF WAVE LENGTHS FOR COLUMN T-25 OF
FIGURE 5

Number of
half wave c a=c/b € k
lengths

8 15. 00 4. 67 0. 1255 0.115
7 17. 14 5. 34 0960 112
6 20. 00 6. 23 0705 107
5 24. 00 7.47 0490 105
4 30. 00 9. 34 L0314 103
3 40. 00 12. 46 . 0176 . 102
2 60. 00 18. 68 . 0078 . 107
1 120. 00 37.37 . 0020 1,120

! Estimated.

The values of £ in Table XVI indicate that at a
critical stress of 0.102 E,h*/b* each flange will break
into three half wave lengths corresponding to a fixity
coefficient of 0.0176. The tests showed that each
flange broke into a single half wave length and the
column twisted at a ecritical stress of about 0.044
ER?[b?, the critical stress for a simply supported edge.
This means that the calculated fixity coefficient has
been reduced nearly to zero by the elastic giving of the
material at the bases of the flanges.

Failure through twisting or wrinkling.

When, as in the example just given, the least critical
stress is associated with a half wave length equal to the
length of the column, the column fails by twisting
about its axis. At the base of each flange, as a result
of the beginning of failure, a torque that is in the same
sense for the entire length of the column is applied to
the column as a whole. If a flange breaks into several
half wave lengths, however, the torques at its base are
in opposite senses in adjoining half wave lengths and
consequently oppose one another.

Practical rules for determining the critical stress, al-
lowance being made for elastic giving of the material
at the bases of the flanges.

In a cruciform section having equal arms and ng
fillets it appears from equation (95) that a change in
the dimensions, b, the outstanding width, and #, the
thickness of the flange, will not greatly alter the cal-
culated fixity coefficient €, since K, the torsion constant
is nearly proportional to b and to A*. (Part I, p. 7.)

Much the same situation exists in other sections,
such as L, U, Z, and T, made up of component rect-
angles, all parts being of equal thickness and having
no fillets. It appears from the data at our disposal
that the flanges of such sections may be treated as
having their bases simply supported. The ecritical
stress for long columns of spruce of such sections may
then be taken as 0.044 £, A?/b* provided that this
stress is less than the one that would cause primary
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failure. If fillets are added to any of these sections
or if the thickness of the back of a channel is increased,
for example, the critical stress will increase. The
exact amount of this increase can not be stated, since
the law by which the calculated fixity coefficient is
reduced through the giving of the material at the
bases of the flanges is not known. Tests indicate,
however, that the critical stress is increased approxi-
mately in the ratio of the torsional rigidity of the
changed section to that of the original section. This
relation may be taken to hold for spruce until the limit-
ing critical stress 0.07 F.h?/b* is attained. From this
point as the torsional rigidity increases the critical stress
remains unchanged.

As the critical stress increases with increasing co-
efficient of fixity at the base of the flange, the type of
failure changes from one through twisting to one
through wrinkling. The distinction between these
externally different types of failure does not appear to
be important, since the one goes over gradually to the
other.

For flanges on short columns the critical stresses
will be higher than those for the long columns just
considered.

As previously stated, the foregoing discussion applies
to flanges of spruce in which the growth rings make an
angle of 45° with the faces of the flange. Flanges of
steel or other isotropic material can be treated in a
similar way through the use of Table XIV and the
curves of Figure 24. Sufficient experimental data for
steel columns, to enable the authors to estimate the
effect of the reduction in the calculated coefficient of
fixity, have not been found in the literature.

CONCLUSIONS

1. Under a compressive load, the critical stress for a
moderately long flange of spruce, perfectly fixed along
its base and of thickness & and width b, is given by

2
p=0.228 K, %2

when the growth rings are perpendicular to the faces
of the flange (fig. 21), by
2
p=0.117 EZ%
when the rings make an angle of 45° with the faces
(fig. 22), and by
h2
p=0.164 E,

when the rings are parallel to the faces. In these
formulas E, is Young’s modulus in the direction of the

grain of the wood, which is taken as the direction of the
length of the flange.

For a flange of steel the base of which is perfectly
fixed the critical stress is given by

hZ

when Poisson’s ratio is taken as 0.3.

2. If the base of the flange is simply supported the
corresponding critical stresses are

h?
p=0.053 K, B2
and
h2
p=0.044 E, 3,
and
h2
p=0.037 E, e
for a flange of spruce and

h?
p=0.385 B

for a flange of steel. Such a condition at ths base of
the flanges is found, for example, in the case of columns
of L, U, Z, T, and = sections without fillets and
having parts of the same thickness.

3. The condition of perfect fixity is not realized in
practice because of the elastic giving of the material
at the base of the flange. Tests indicate that the
upper limit of the critical stress for moderately long
flanges of spruce is given by

p=0.07E;

h2
5
This is an average value from tests of specimens in
which the growth rings were at various inclinations
to the faces of the flanges. For strictly quarter-sawn
flanges the critical stress would be somewhat higher
and for plain-sawn ones somewhat lower. The re-
duction from the values given for flanges with per-
fectly fixed edges should be attributed to the elastic
giving of the material at the bases of the flanges.

Because of the same elastic giving the fixity of
flanges with partially fixed bases is greatly reduced.
For such flanges the critical stress ranges from

h2
P= 0.044Ez Bz
to the upper limit

2
p= 0.07E’£h

b

Both limiting stresses can be increased somewhat for
strictly quarter-sawn flanges and should be reduced
somewhat for plain-sawn ones.
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Tests on steel flanges were not made. As a result
of the elastic giving of the material at the base of the
flange, however, it is probable that the upper limit of
the critical stress will be found to be considerably less
than that calculated for a flange with a perfectly
fixed edge.

4. The critical stresses for short flanges are greater
than those given by the preceding formulas.

5. The critical stresses obtained through use of
these formulas will be of interest only if they are less

than those that would cause a primary failure of the
column under consideration.

Forest Propucts LLABORATORY,
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Positive directions of axes and angles (forces and moments) are shown by arrows

Axis Moment about axis Angle Velocities
Force ;
(paralle ?
Dt Sym- 1 a:k()isi Déatonats Sym- Positive Designa~ | Sym- (]ciggfgg- A
pguaas T i CHEDSLION Lifbof direction tion bol |nent along | APEWAT
axis)
Longitudinal___| X X rolling_ - - —- L Ve TOlltet e ¢ u P
Lateral. . ois Y Y5 pitching____| M Z—X piteh.___.L 0 ) q
Normgl 1< 3.2 Z Z yawing____. N X—Y AW Lol v w r
Absolute coefficients of moment Angle of set of control surface (relative to neu=
i M N tral position), 8. (Indicate surface by proper
0= Oi=5—q O 7o .
gbS qeS qbS subseript.)
4. PROPELLER SYMBOLS
D, Diameter. ; 2 P
S P, Power, absolute coefficien =
p, Geometric pitch. 2 ) coefficient Cp on’DP
2/D, Pitch xatio, C,, Speed power coefficient = V2,
V’, Inflow velocity. LS Pn?
V,, Slipstream velocity. n, Efficiency.
Ik n, Revolutions per second, r. p. s.

T, Thrust, absolute coefficient O’f—‘m ' ' v
] Q ®, Effective helix angle=tan™! (§—>
Q, Torque, absolute coefficient CQ:W ik

5. NUMERICAL RELATIONS

1 hp =76.04 kg/m/s=5501b./ft./sec. 1 1b.=0.4535924277 kg
1 kg/m/s=0.01315 hp 1 ke —2.2046224 Ib.
1 mi./hr.=0.44704 m/s 1 mi.=1609.35 m = 5280 ft.

1 m/s=2.23693 mi./hr. 1 m=3.2808333 ft.






