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Length ______ _ 
Time ________ _ 
Force _______ _ 

Symbol 

l 
t 
F 

AERONAUTICAL SYMBOLS 

1. FUNDAMENTAL AND DERIVED UNITS 

Metric 

Unit 

meter _________________ _ 
second ___ _____________ _ 
weight of one kilogram __ _ 

Symbol 

m 
s 

kg 

English 

Unit 

foot (or mile) ________ _ 
second (or hour) ______ _ 
weight of one pound __ _ 

PoweL_ _ _ _ _ _ _ P kg/m/s_ - __ - - _______ - - - - ___ __ _ __ _ _ horsepoweL _________ _ 
Speed __________________ {km/h ______ - - - - -- -- - -- - - k. p. h . mL/hr. ______________ _ 

m/s____________________ m. p. s. ft./sec. ______________ _ 

2. GENERAL SYMBOLS, ETC. 

Symbol 

ft. (or mi.) 
sec. (or hr.) 
lb. 

hp 
m. p. h. 
f. p. s. 

W, Weight=mg mk2, Moment of 
radius of 
script). 

inertia (indicate axis of the 
gyration k, by proper sub-g, Standard acceleration of gravity = 9.80665 

m/s2 =32.1740 ft./sec.2 

m, Mass = W 
g 

p, Density (mass per unit volume). 
Standard density of dry air, 0.12497 (kg-m-4 

S2) at 15° C. and 750 mm=O .002378 c, 
(lb .-ft . -4 sec.2) . b2 

Specific weight of "standard" air, 1.2255 S ' 

Area. 
Wing area, etc. 
Gap. 
Span. 
Chord. 

Aspect ratio. 

kg/m3 =0 .07651 Ib ./ft.3
• fJ., Coefficient of viscosity. 

3. AERODYNAMICAL SYMBOLS 

V, True air speed. Q, Resultant moment. 

q, 

L , 

D, 

c, 

Dynamic (or impact) pressure=~ p V2. 

Lift , absolute coefficient OL= q~ 

Drag, absolute coefficient GD = ~ 

n, Resultant angular velocity. 
Vl 
~ ,Reynolds Number, where l is a linear u 

dimension. 
e. g., for a model airfoil 3 in. chord, 100 

mi./hr. normal pressure, at 15° C., the 
corresponding number is 234,000 j 

or for a model of 10 em chord 40 mis, 
the corresponding number is 274,000. 

Center of pressure coefficient (ratio of 
distance of c. p. from leading edge to 
chord length). 

Profile drag, absolute coefficient GDo = ~s 

Induced drag, absolute coefficient GDt=~S 

P arasite drag, absolute coefficient Gnp = ~S 
Cross-wind force, absolute coeffic~ent o a, 

OC= qS 

Angle of attack. 
Angle of down wash. 

Resultant force. 
~w, Angle of setting of wmgs (relative to aj, 

thrust line). 
Angle of stabilizer setting (relative to 

R, 
Angle of attack, inllnite aspect ratio. 
Angle of attack, induced. 
Angle of attack, ab olute. 

(Measured from zero lift position.) 
Flight path angle. thrust line). '1, 
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REPORT No. 382 

ELASTIC INSTABILITY OF MEMBERS HAVING SECTIONS COMMON IN AIRCRAFT 
CONSTRUCTION . 

By GEORGE W. TRAYER and H. W. MARCH 1 

SUMMARY 

Two jundamental problems oj elastic stability are 
discussed in this report, which was prepared by the 
Forest Products Laboratory 2 jor publication by the 
National Adm ory Committee jor Aeronautics. I n Part 
I jormulas are given jor calculating the critical stress at 
which a thin, out tanding flange of a compression mem­
ber will either wrinkle into everal waves or jorm into a 
single half wave and twist the member about its longi­
tudinal axis. A mathematical study oj the problem, 
which together with experimental work has led to these 
jormulas, is given in an appendix. Results oj tests 
substantiating the recommended jormulas are also pre­
sented. In Part II the lateral buckling oj beams is 
discussed. The results oj a number oj mathematical 
tudie oj thi phenomenon have been published prior to 

this writing, but very little experimentally determined 
iriformation relating to the problem has been ava1,7,able 
heretojore. E'J.:perimental verification oj the mathemat­
ical deductions is supplied in this report. 

INTRODUCTION 

Designing for the greatest load 'with a given amolmt 
of material in a compression member generally leads 
to the distribution of material at the greate t pos ible 
distance from the neutral axis of the member. The 
extent to which such distribution can be carried is 
limited by the possibility of econdary failure. Oom­
pression members with rclaLively wide and thin out-
tanding parts may fail through local wrinlJing or 

through twi ting about the longitudinal axis at loads 
considerably less than those that would be expected 
to cause the more common failures of crushing for 
short lengths or flexure for longer lengths. When 
such a compression member docs fail, a thin, outstand­
ing element may either break up into several wave 
(wrinkle) or may buckle into a single half wave, de­
pending upon the length and the torsional re i tance 
offered by the member of which it forms a part. Such 
action has been observed for year. (References 2, 
14, 15, 1 ,and 2l.) 

Again, the strength of a beam increase more rapidly 
with depth than with thicknes , and consequently in 

1 Professor of matbematics, University of Wisconsin. 
2 Maintained at Madison, Wis., in cooperation with the University of \\,iscomin 

aircraft, where weight is such an important matter, 
designers cu tomarily use comparatively deep, narrow 
beams. The ratio of depth to breadth, however, has 
been kept within certain arbitrary or conventional 
limits in commercial practice, because of the well­
known fact that a beam much deeper than it is wide 
may buckle laterally and twist before it will break 
by bending in a vertical plane. As a matter of fact, 
there is for each condition of loading and support a 
critical buckling load for such a beam just as there is 
a critical Euler load for a long column. 

Either buckling or twisting or both are likely to 
occuI' in one member or another of an aircraft truc­
ture, and hence failure of a particular member may 
be either in a normal type of bending or compression 
resulting from the normal loading or through lateral 
buckling, wrinkling, or twi ting under tre es having 
their origin in the normal loading. Means of esti­
mating the stress at which cIa tic instability is likely 
to occur have therefore become necessary in the close 
de igning of the present day, in order to provide 
against secondary failure. Realizing this, the Bu­
reau of Aeronautics, avy Department, financed an 
investigation of fundamental phases of cIa tic insta­
bility to be conducted by the Forest Products Lab­
oratory. \\ ood was u cd in the experiments, not that 
the problem is limited to anyone material, but be­
cau e of the convenience with which te t specimens 
can be made of wood. 

The wrinkling and twisting problem has been investi­
gated mathematically for homogeneous, i otropic ma­
terials, and useful re ults have been obtained, notably 
by Timoshenko. (Reference 17 and 21.) This report 
review the general theory, add an analysis that ap­
plie to noni otropic material such as wood, and dis­
cusses the diminution of the critical stre caused by 
the clastic giving of the material at the ba e of the 
flange. The exact mathematical approach to the 
problem leads to rather complicated results; through 
consideration of te t data, however, the e 1'e ult can 
be simply expre ed for problem of practical intere t. 

The allied problem of the lateral stability of deep 
beams ha already been investigated rather fully from 
a mathematical tandpoint. The results of such work 
have been publi hed by Michell, Prancltl, Timoshenko, 
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and others. (References 9, 11, 13, 17, 20, and 23.) 
This report add experimental verification of the re­
sults already obtained. 

TEST MATERIAL 

Tes specimen were made of Sitka spruce cut in 
Oregon and shipped in log form to the Forest Products 
Laboratory where the wood was sawed into lumber, 
marked, and seasoned. As a result of this procedure 
the history of each piece and its location with respect 
to others in the same log were known. Part of the 
lumber wa immediately kiln-dried after sawing and 
part wa left to air-dry. Specimens were made from 
both the kiln-dried and the air-dried stock. 

In selecting pieces for test specimens, the usual 
Army and Navy specifications were adhered to with 
an additional limitation as to knots and pitch pockets 
in that none was permitted, no matter how small. 

The ela tic properties of the material in the VariO"13 
planks from which the major test pecimens were taken 
were determined by te ting small control specimens 
cut from the same plank and so located as to be 
representative. In certain in tance it wa possible 
to accomplish the ame result by cutting the control 
specimens from uninj ured portions of the maj or te t 
specimens after the main test had been completed. 
In other in tances such properties as the stiffness in 
bending and the torsional rigidity of major test speci­
mens were determined by a secondary test of the major 
specimens themselves either before or subsequent to 
the main instability te t. In such secondary te ts the 
stresses were kept well below the elastic limit and 
when they were made the usual control tesls sen' ed 
only as a check. 

( 
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REPORT No. 382 
ELASTIC INSTABILITY OF MEMBERS HAVING SECTIONS COMMON IN AIRCRAFT 

CONSTRUCTION 

PART I 

THE WRINKLING AND TWISTING OF COMPRESSIO N MEMBERS HAVING THIN, OUTSTAND­
ING FLANGES 

METHOD OF TEST 

WRINKLING TESTS 

Two principal .crics of wrinkling tcs ts were made on 
comprc ion members having thin, outstanding flange. 
In one crics, a numbcr of specimens, all having a 
single flange of the arne size, were te ted under a com­
pre ive load and the half wave length and the load at 
which wrinkling started were recorded. The out­
standing flanges were then l' duced in width a givcn 
amount with the thickness left as be[orc and thc spe i­
mcns were again tested. This procedure wa con­
tinued until the widths had been so reduced that 
wrinkling did not occur. 

In the othcr principal serics of te t the width of 
flange wa kept constant and thc thicknes wa 1'­

duced after each test. Several pecimen were used in 
order to obtain reliable averages [or the half wave 
length arid the wrinkling stress carre ponding to each 
thickne s. Figure 1 show a pecimen in the te ting 
machine. 

In addition to the two principal series of te ts, :l 

number of te ts were made on built-up U, I , and +, 
sections under axial corn pres ion. 

TWISTING TESTS 

Thc set-up for the t'\\'isting tests i hown in Figure 2. 
Extension screws were attached to an ordinary 4- crew 
testing machine in which specimen up to everal f et 
in length co uld then he handled. This et-up was u ed 
only to obtain maximum load. To obtain a load­
twi t curve, a 2- crew machine was used, one tha t co uld 
tak SPCCilllC'llS up to ftbout 12 feet in length without 
the usc of cxtension crcw. A pointer approximately 
3 [cct in lcngth was attached to one fi anO'e and in some 
instances to two flange. As the column twisted, the 
end of thc pointer pa sed ovcr a plane table supported 
from the base of the testing machine and when incre­
ments of load were read by thc operator at the balancc 
beam Lhe po ition of the pointer was marked an(l thc 
load set oppo ite such marking. 

Prior to the twisting test each specimen was te tecl 
in torsion in order to obtain the tor ional rigidity of 
the member. The stresses were kept well within the 
elastic limit during this te t. 

ANALYSIS OF THE WRI KLI G AND TWISTING 
PROBLEM 

The failure of compres ion memb 1'S that contain 
wide, outstanding parts, as illustrated in Figure 3, 
may be brought about through wrinkling of the out­
standing parts them Ives in tead of through the 
normal faillU'e of the member as a whole, if the out­
standing parts are sufficiently thin. When such wrink­
ling OCCUl' , the out tanding flange may either break 
up into a ingle half wave or into more than one, 
depending upon the tor ional rigidity of the member 
and the fixity of the flange . If an outstanding flange 
projects from a member that is high in torsional stifl'­
ne s , wrinklinO' into everal waves i likely to occur 
if the ratio of the outstanding width to the thicknes 
of the flange i great. On the athol' hand, if the 
tor ional stiffness i not grcat, the out tanding part or 
parts may form into ingle half waves and twist the 
memb l' abou t it 10nO'itudinai axi. The critical 
values of the stresses at 'which one or the other type 
of buckling OCClli'S are discus ed in the following 
paragraph. 

WRIN l{LING 

A mathe:rn atical approach to the wrinkling pro blem 
is given in the appendix, where it i h wn that the 
c.-iti al value of the ompre sive stres p for a plate 
parfectly fixed along one edO'e, free along the opposite 
edge, and simply supported along the end to which 
the load is applied i given by 

h2 

p=kEb2 (1 ) 

in which h i the thickness of the plate, b its width. 
E the modu lu of ela ticity of the material, and k a 
coeffielent depending upon the ratio of the length of 
plate a to the width b. 

The appendix shows further that for 'tructural steel 
the calculated minimum value of k is l.16 and corre­
sponds to a rati.o 01' a to b of l.6 or a multiple thereof. 
(Reference 2l.) Th e theoretical formula for the mini­
mum cri tical stress for steel would therefore be 

(2) 

7 
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The mathematical analysi ,a already pointed out, at 
fir t assumes perfect fnity at the base of the out tand­
ing flange, a condition probably never realized in actual 

Conscqurntly a critical trcs mu ch lower 

FIGURE I.-The wrinkling under load iu the testing machine 
of a compression member having a single thin, outstanding 
flange 

than that predicted by the theory is to be expected. 
Roark, who used specimens like B and C of Figure 3, 
in which the outstanding flange was clamped between 
angles, found that the formula 

71,2 
p = 0.6E7Jz (3) 

represented his experimental results reasonably well. 
(Reference 14 and 15. ) The reduction of the coeffi­
cient from 1.16 to 0.6 can be attributed to the lack of 
perfect fixity at the ba e of the flange. Even when an 
outstanding flange and the rigid back from which it 
project are all in one piece, perfect fixity at the ba e 

FIGURE 2.-The twisting under load in the testing machine 
or a compression member having several thin, outstanding 
flanges 

of the flange can not be assumed. There is an ela tic 
giving at the base of the plate and also in every device 
u ed in an attempt to obtain perfect fixity . H ence the 
exact coefficient that hould be used for teel and other 
metals remain to be determined by experiment. A 
discussion of the situation for wood follows. 

The appendix shows that, on the basis of the differ­
ential equation of a noni otropic ela tic plate, such a~ 



ELASTIC INSTABILITY OF MEMBERS HAVING SECTIONS COMMON IN AIRCRAFT CONSTRUCTION 9 

wood, a eritical half wave length and a eritical stre s 
may be calculated . The same mathematiea! work, 
however, also. hows that the values of the half wave 
length and the critical stress vary over a wide range a 
the inelination of the growth rings to the faces of the 
olltstanding Hange varies from 0° to 90°. 

The fact that perfect fixity at the base of the flange, 
as at first assumed in the mathematical study, can not 
be obtained is true particularly of wood, which further 
complicates the problem. The stresses at the base of 
the flange re ulting from the bending of the flange are 
acting perpendicularly to the grain of the wood, the 
direction in which wood i weakest. 

The appendix shows that the critical stress for a 
quarter-sawn Hange of spruce perfectly fixed at the 
edge is 

h2 

p= 0.228E p 

For a similar flange with growth rings at 45° to the 
face the critical stre s i 

h2 

p= 0.117Ep 

Becau e of the elastic glvrng of the material at the 
base of the :flange, however, there is a great reduetion 
in the actual critical stre . Furthermore, this elastic 
giving tend to decrease the difference between the 
critical st1'e es for Hanges with growth rings at 45° 
and 90°, respectively. Tests gave as the reduced 

T 
A B 
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c 

+L H...J n r 

i r I I 

o E F 

FIGURE a.-Typical cross sections of compression members tbat have 
wide, thin, outstand ing parts 

coefficient 0.07 for spruce Bange, and the expre IOn 
for the critical wTinkling stress then becomes 

h2 

p = 0.07Ep (4) 

Probably this coefficient may be applied to other 
specie without appreciable error. 

In Figure 4, in which wrinkling stress is plotted 
against the ratio of flange width to thickness, are 
shown the results of some actual tests. Each circle 
represents the average of from 4 to 18 values. The 
results have been adjusted by direct propor tion to 

36276-31--2 

corre pond to a modulus of elastici ty along the grain 
of 1,600,000 pounds pel' square inch. The full line is 
the locus of the expression 

. h2 

p = 0.07 X 1,600,000 P (5) 

No record of the angle between the growth rings and 
the faces of the flange, the importance of which has 
been mentioned, was made at the time of test, but 
full-section block from many of t he test specimens 
were aved and the angle wa sub equently measured. 
The direction of the rings ranged from 45° to 90°, as it 
does in what may be called commercial edge-grain 

1600 

0 

o \ 

p = 007x 1.60.0.000 x 11 < 

.\ b? 

\ 
\ 10 

I" 
"" 1'-... 0 

1- I , 
o 10 20 30 40 SO 

Rafto of flange Width to Ihlckness. b/h 

FIGURE 4.-'rhe relation between the ratio or flange width to tbickness and the 
wrinkling stress of thin, outstanding fianges 

(quarter-sawn) stock. The test specimens, therefore, 
represent what would be found in actual practice. The 
variation in the test r esults is accounted for by the 
variation in the direction of the growth rings and the 
difficul ty of determining accurately just when wrin­
kling started. 

Since the phenomenon of wrinlding is one to avoid in 
good design, it is unnecessary to calculate the cri tical 
s tre s with extreme preci ion. M erely a fair approxi­
mation of the critical stre s is sufficien t to make sure 
that for the width and thickne s of fl ange used the 
critical wrinkling stre will exceed the primf!.ry stress 
expected from the normal loads. Slightly superior 
design in this regard will seldom mean an appreciable 
sacrifice in load-weight r atio. 

Length of outstanding flange. 
T he coefficient Ie in the expression for critical wrin­

kling st1'e s is a minimum when the ratio of the length 
of plate a to the critical half wave iength e is an inte­
gral number . If the plate is short and ale is not an 
integ 1', the critical stress may be considerably greater 
than that given by the formi.ua because the flange can 
not then break into the ideal haH wave length. If the 
length is great, that is, if ale is greater than 2 or 3, and 
the ratio ale is not an integer, however, the critical 
stress will be only slightly above that given by the 
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fo rmula, since the plate can then break into a half 
wave length very close to the ideal. In either case, the 
formula will give values on the side of safety. F or 
greater detail see Tables VI, VII, VIII, XIII, and XIV 
and Figures 23 and 24 in the app endix. 

TWISTING 

It is shown in the appendix that the critical buckling 
stre s for a long steel plat e simply supported along one 

32000 

---- --- ~ ~ 
I---~ 1/4" (quo~e fillets --

28000 
/ I=} I 

--j ...--=:: -S.94"x694"xOB24" 
£ = (90(000 Ib/sq. in 

I{ 
N OOO 

Column T-2S 

t ions (87), ( 8), and ( 9) of the appendix, i a good, 
average figure for this species . Thi value of the coeffi­
cien t probably may also be applied to other species 
with sufficient accuracy. The critical tre I S then 
given by 

h2 

P = 0.044E[j2 (7) 

If a member wi th a ection like D of Figure 3 is sub­
jected to co mpres ive stre , the out tanding flange 

Column T-25 

- - -

-

-

-

--

-

will usually form in to a ingle half 
wave at a certain critical tre and 
in so doing will twist the member 
about its longitudinal axis. When 
such action occur, the out tanding 
elemen t are e entially acting a 
plates simply upported on one side 
and free along the oppo ite ide, and 
formulas (6) or (7) are u d to calcu­
late the cri tical tress. 

20000 -~ 1/4" Square ftllels 
1 

MembeI with I , H , or U ections, 
such a E and F of Figure 3, likewi e 
may twi 1, under compre ive load if 
the tor ional rigidity of the section 
is not great. If the torsional rigidity 
is made large by u ing generous fil­
lets or, as wi th a U ection, by mak­
ing the back con iderably heavier 
than the legs, failure through wrin­
kling into several wave may be 
brought about and the critical tre 
in such case mu t be computed by 
the formulas applying to that phe­
nomenon. 

I BOOO 

11)/2000 
1) 

§ 
o 
Q.. 

-g 8000 
.Q 
III 

.~ 
~ 4000 

~ 
8 
Cl 
'j( 0 
"'<: 12000 

8000 

4000 

o 

L I 
y 
--- ---

4 

f" 

V + 
S. 93B "x 693S"x o 50S " 
£ =(90(000 Ib/sq Ir, 

Column T- IO Column T-I 
I =} ? 1/4" T n6ngu+r ft!~e ls\ 3.57"x3.57"x0301" _ 

I 
f: = 2.00QOOO Ib/sq In 

t - --.--: 
=} S.9S"x 69S"x 0 3 71" 

£ =1.752.000 Ib/sq. in. / 
I 

8 12 16 200 1 8 
Angle of Iwis l 01 center of column. degrees 

ctually, the rigidity of the mem­
ber may be such that failure will 
take place at a cri tical stre s inter­
mediate between the minimum twi 1,­

ing stre s and the wrinkling tre ,a 
pointed out in the appendix. It is 
extremely difficult, however, to cal­
culate accurately the coefficient for 
the intermediate conditions. Con­
sider for the moment wood mem­
bers with a section like D of Figure 
3. With no fillets at the junction of 
the four legs, the coefficient 0.044 
wa found to apply. A fillets were 
added, the critical tress increased in 
practically the same ratio as the tor­
sional rigidi ty. A U section, such FIGURE 5.-The relation between angle o( twist at t he center o( a column and axial compressive load (or 

various cru ciform cross sections 
as F of F igure 3, will twist at a 

stress corresponding to a coefficient of 0.044 if the 
back and the legs are of the sam thickness. If the 
thickness of the back is increa d or if fillets are added, 
the critical stress will increase in about the same 
ratio as the torsional rigidity. 

side, free along the oth r ide, and simply supported 
at the ends, to which load is app1jed, is given by 

h2 

P = 0.385E fi2 

when Poisson's ratio is taken as 0.3. 

(6) 

F or spruce the coefficient of equation (6) becomes 
0.044 which, as explained in the discussion of equa-

H ence the F orest P roducts L aboratory recommends 
that the critical twisting stre s be firs t calculated for 
such sections as D , E, and F of Figure 3 on the sup-

i 

J 
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position that no fillets are present and that all part 
are of the same thickness. This stress should then be 
increased by multiplying it by the ratio of the torsional 
rigidity of the actual section to the torsional rigidity 
of the assumed section. This rule applies until the 
limiting critical stress corresponding to the coefficient 
0.07 is reached. 

In Figure 5 are shown a number of cruciform sec­
tions, some with and some without fillets. Wood 
columns having these sections failed through 
twisting about a longitudinal a.xis. Accom-
panying each section is a graph showing the 28000 

relation between axial load and the angle of 
twist for the colunm corresponding to it. 
The horizontal dotted lines in these graphs 24000 

are drawn at the critical load calculated in 
accordance with the preceding recommenda-
tion . 

For example, the critical ~tress for column 
T-25 (fig. 5) without fillets is given by 

(0.506)2 
P = 0.044 X 1,901,000 (3.2 15)2 

20.000 

160.0.0 

I 
=2,072 pounds per square inch. I 

The area is 6.76 square inches and the criti­
cal load becomes 

p = 2,072 X 6.76 = 14,000 pounds. 

As a further illustration, the critical twist­
ing stress for column T-25 (fig. 5) with 
X-incb square fillets is calculated thus: 

The torsion constant K for the section 
without fillets is 

K =2 X 0.318 X 6.936 X (0.506)3= 0.572. 

For the section with fillets K must be cal­
culated in three parts-the first part is the 
value K, for the square central portion of 
the colwnn section, the dimen ions of which 
are 1.006 inches on each edge; the econd 
part is the total value K2 for the four rec­
tangles projecting from the square center; 
and the third part is the increase K a caused 
by the foUl' junctions. (Reference 22, p . 26, 
and 1929 annual report, p. 696.) The junc-
tions are treated as T junctions and the bar 

12000 
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4000 --
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Actual te ts of the pecimens, made prlOr to the 
twisting tests, yielded a ratio of 1.29. 

p=2,072 X 1.26 =2,610 pounds per square inch 
Area with fillets = 7.01 quare inches 
Critical load P = 2,610 X 7.01 = 18,300 pound. 

In figure 6 are shown a number of U sections of 
column that failed through twisting about a longi-

\ 
-

Gulumn T - 35 Column T-45 

U - -
l u i 

3. 48"x 5. 48"x0. 496" - I. 9/"x 3. 45"x 0.318" -
£ = 1,783.000 Ib/sq. In. £ =1.561.00.0. Ib/sq. tn. 
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~ 
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I 
II 
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lui I ad I 
190"l<c.99"xo.c95" - r---- I-- 1915 "x 2. 49"xo.c93" r----

£ = 1.58c{J00 Ib /sq. In. £ = 1.58200.0. Ib/sq. tn. 

- --
v. ...-- V-i-- \ 

L Il-
of each T is taken as half of the square cen- 0. 4 8 12 0 4 8 12 
tel'. The torsion constant is then the Sunl Angle of t wisl 0 1 cenler of column. degrees 
of the parts, which are calculated as follows: FIGURE G.-The relation between angle of twist at the center of n colllmn and axial compressive 

load for various channel cross sections 

K = (1.006)4 = 0144 
1 7.11 . 

K2 =2 X 0.315 X 2 X 2.965 X (0.506)8 =0.484 
K3=4 X O.15X(0.629)4 = 0.094 

K = 0.722 
Then 

Torsional rigidity with fillets 0.722 
Torsional rigidity without fillets 0.572 = 1.26. 

tudinal axis. Accompanying graphs how the relation 
between the axial load and the angle of twist. The 
horizontal dott d lines are drawn at the critical loads 
calculated by formula (7). 

The agreement between tests resul ts and calculated 
results as shown in Figures 5 and 6 is considered quite 
satisfactory. 
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Effect of length. 

In fl.lTiving at the coefficients 0.3 5 for steel and 
0.044 for pruce, which are used in the critical-stress 
formula for fr e twisting, the length of plate was 
assumed as several times the outstanding width. Thi 
assumption give th lower limit for the critical stres . 
A the length is decrca ed to less than five or six times 
the width, these coefficients increase appreciably. 
Consequently, if the legs of a channel section, for 
example, arc supported at intervals as by bracing and 
the distance between points of support is les than 
five or six times the width of the legs, the actual 
critical tress will be higher than that given by the 
propo ed formula . 

CONCLUSIONS FOR PART I 

Thin, out tanding flange of compre sion members 
under load may buckle into everal waves or may 
buckle into a ingle half wave, in which event they ' 
will tend to twist the member about its longitudinal 
aXIS. 

If both the length and the torsional rigidity of the 
member are great uch flanges will buckle into several 
wave (wrinkle) and the critical stress for pruce 
flanges is then given by 

h2 

P=0.07Eb2 
If the torsional rigidity of the member is not great, 

the thin, ouL tandino- flanges will twist the member. 

Under uch rigidity the flange may be regarded as 
plates simply supported on three edges and free along 
the fourth edge. The critical stres for such a pruce 
plate is given by 

h2 

p=0.044Eb2 

Although the coefficients ;n the pI' ceding formulas 
were obtained from the test of spruce flange, the rela­
tions among the elastic constants for the variou 
pecie are such that the coefficients may be expected 

to apply to all aircraft wood with safety. 
Member having ections a hown in Figure 3 will 

twi t under axial compre ion if the junction of the 
main elements is not strengthened with fillet. If 
generou fillets are used or if part of the main elements 
of the section are made heavier than the rest, the thin, 
outstanding element may either "lrinlde or twist the 
member, this depending unon the amolmt of tor ional 
rigidity fidded. Bla tic instability, therefore, may 
occur at a tress intermediate between the critical 
stre es corresponding to the coefficients 0.044 and 
0.07. Intermediate critical stresse may be calculated 
by the rules given in this report. 

Failure through local buclding can occur only when 
the critical stress i Ie s than the tress required to cause 
primary failure. 

Further conclusion , including calculated coefficient 
for teel, follow the mathematical appendix. 

I 

r 

I 
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ELASTIC INSTABILITY OF MEMBERS HAVING SECTIONS COMMON IN AIRCRAFT 
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P ART II 

THE LATERAL BUCKLING OF DEEP BEAMS 

METHOD OF TEST 

VARIATION OF FACTORS AFFECTING T H E B UCKLI NG LOAD 

In order to determine to what degree certain factor 
affect the critical load for lateral elasti instability of 

The loading device consistcd of five parL. A rod 
with an upset central portion pa ed through the beam 
at the neutral axis. The upset portion wa threaded 
at each end 0 that the rod could be centered in thc 

}'/G URE 7.-The set-up of tbe test for lateral clastic instability of a single beam undor ccnter loading 

deep beam, tests were made in which all factor. except 
one were held con tant while thc i olated factor wa.:; 
varied. In the e te ts the beam 1'e ted on two sup­
port with their ends held vertical and clamped against 
lateral rotation but free to rotate in a longitudinal­
vertical plane as the beam deflected. Load wa 
applied at the center by means of the rod-and-bar 
framework hown in Figure 7. 

beam by means of two nut, which were drawn nug 
against the sides of the beam dUTing tc t. lotted 
bars, the lateral positions of which were fixed by V's 
in the up et rod, onnccted cach end of thc rod to the 
ends of an evener bar and from the center of this 
evener bar a tiebar pa ed through the movable head 
of the testing machine and was pin-connected to it 
on the under side. All connections other than the 
pin connection mentioned were knife-edge. 

13 
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FIGURE 8.- The set-up oC the test for critical buckling load under constant bending moment with 
the ends of the single beam held vertical and not restrained laterally 

\iVhen load wa applied by 
lowering the movable head, the 
beam could buckle freely to one 
side 01' the other_ The set-up was 
not considered satisfactory until 
tile beam buckled to one side and 
then to the other with the lightest 
adju tment of the rod by means 
of the two nut _ 

TESTS OF SINGLE BEAMS U DER VA RI­
OUS LO ADING CONDITI ONS 

Three different loading and fL'(­
ity conditions were cl;lOsen to dem­
onstrate the applicability of the 
formulas recommended for the 
calculation of critical buckling 
load. These condition were: 
First, con tant bending moment 
with the end of the beam held 
v rtical and not re trained later­
ally; second, con tant bending 
moment with the end of the beam 
held vertical and re trained later­
ally; and third, a concentrated 
load ali the center of a beam that 
rested on two support with its 
end both held vertical and re-
trained laterally. 
Con tant bending moment with­

out lateral fixity was obLained 
by considering only the portion 
of a beam that was betw en two 
ymmetricalload. A total pan 

of 14 feet wa used and the two 
ymmetrical load point were 60 

inches apart. In order Lo permit 
the beam to ~ving freely, both 
upports and load were applied 

through members, 16 feet long, 
that were free to s\ving and twi t. 
The beams were wedged into the e 
long member, which were lotted 
and of . ufficient rigidity to hold 
the beams vertical. The two 
loading members were attached 
to an evenel' timber, which in 
LlU'n was attached to the mov­
able head of a testing machine 
,vith a tie bal'. Th set-up re­
quired head room of approxi­
mately 35 feet. A diagrammatic 
sketch of this et-up i shown 
in Figme 8. 

on tant bending moment with 
lateral fi:\-1 ty was 0 b tained by using 
a symmetrical Z-point loading and 
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again con idrring only the portion of the b am between 
the loads. For this condition, improvi ed extension 
wings were put on a 30,000-pound capaci ty tes ting 
machine that pcrmitted spans lip to 16 feet . Load 
was applied at two symmeLl'ical points, in some te ts 
5 and in othcr te ts 6 feet apart. In order to obtain as 
complete laLeral featy as possible at the load points, 
lateral, horizontal, pin-connected tie rods were at tached 
to the beam at inLervals between the load points and 
the upports. In addition, pieces 1% inches thick and 
about 6 inches deep were clamped to both ides of the 
beam from each load point outward and well toward 
Lhe upport. FiglU'e 9 show this as embly. 

a t the suppor ts but because of resting on ball bearings 
were not restr ained laterally . Figure 10 shows a 
panel before tes t. 

ANALYSIS OF THE LATERAL BUCKLING PROBLEM 

A mathematical analysis of the la teral elastic insta­
bility of deep rectangular beams leads to the following 
general expression: 

p F.JEIzGK (8) 
D 

in which 
P = the critical buckling load 
E = the modulus of elasticity along the grain 

FIG URE 9.-The set-up of the tcst for critical buckling load under constant bending moment with tbe ends of tbe si ngle beam beld vertical and restrained laterally 

Th . Lhird method of test, namely, the application 
of a cOJlcenLratcd load at Lhe center of a beam resting 
on Lwo snppoJ'ta with its end held ver ti al, was 
identical wiLh the te t procedure de cribec.l under the 
heading, Variation of Factor Afl'ecting the Buckling 
Load. 

TESTS OJ<' PANELS 

Panels consisting of two beams held together wi th 
ribs were tr ted in two ways. The fir t method wa to 

II pend the two beam on hanging suppor ts 16 feet 
long and to apply load to each beam at two symmetri­
cal points as just clescribed for the testing of single 
beams under constant bending moment with ends 
held vertical and not restrained laterally. The second 
method wa to upport the two beams on four ball 
bearings and to apply a uniformly di tributed load 
over the rib themselves; in doing this trips were 
laid on the rib upon which cans filled with and were 
placed. The ends of the beams were held ver tical 

I 2 = the moman t of inertia abo ut the principal vertical 
aXIS 

G= the modulus of rigidi ty in torsion 
K = the torsion constant of the section 
L = the span 
F = a constan t depending upon the loading and fixity 

condi tions. 
(References 9, ] 1, 13, 17, 20, and 23 .) 

If b is taken as t.he wid th of beam and d the depth, 
I2 in equation (8) becomes 

db3 

I 2=-
12 

and the torsion constant K is expressed as follows: 

K =/3 db3 (9) 

in which /3 is a constant depending upon the ratio of 
d to b. Table I gives the values of /3 for variolls 
ra tios of d to b. 
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TABLE I 

TH E FACTOR fj FOR CALCULATI NG THE TOR ION L 
RIGIDITY OF RE TA G LAR PRISM 

Ratio of f3 Ratio of f3 sides. d/b sides, dlb 

1.00 0.14058 2.25 0.24012 
1. 05 .14744 2.50 .24936 
1.10 .1539 2. 75 .25696 
1.15 .16021 3.00 . 26332 
1.20 .16612 3.50 .27331 
1. 25 .17173 4.00 .28081 
I. 30 .17707 4.50 .28665 
1. 35 . 18211 5.00 .29135 
1. 40 .18690 6.00 .2932 
1.45 .19145 7.00 .30332 
1.50 . ]9576 8.00 .30707 
1. 60 .20374 9.00 .30999 
I. 70 .21093 10.00 .31232 
1.75 .21428 20.00 . 32283 
1.80 . 21743 50.00 .32913 
1.90 .22332 100.00 .33123 
2.00 .22868 "" . 33333 

Figure 12 hows the results of one r epre en tative serie 
of these te ts. The circles repl'e ent te t value and 
the lull line is the locus of equation (11 ). Again the 
agreement b tween actual to t resul t and theory is 
considered good. 

In the thu'd serie of tests, the span L was varied 
while all other factor were held can tanto The buck­
ling load fo1' thi condition reduced to 

(12) 

In Figure 13 are hown the results of t \\'o repre enta­
tive serie of these te ts. Again the circle represent 
actual te t value and the full lines the respective loci 
of equation (12) for the two beams s lected. 

FIG URE 10.- A ribbed panel before test 

In the fir t eries of te. t to check the relation of the 
varia LIS factors in the general equation, all factors except 
the depth of beam (d) were held constant. The buck­
rng load then reduce to 

(10) 

in which 0 1 i a can tanto In Figure 11 are plotted the 
results of foul' serie of tests in which d wa varied while 
all other facLo)' wore held can tanto The cU'cles repre­
sen t the actual loads and the full line are loci of equa­
tion (10). The agreement is considered very satis­
factory. 

In the econcl serie of te t , the width b was varied 
while all other factors wore kept can tanto The buck­
ling load in this ca e becomes 

(11) 

The efl'ect of the modulu of ela ticity in bending 
could not be separated [),om that of the modulu of 
rigidi ty in torsion for the purpo e of checking further 
the fundamental expre ion, becau e when one is 
changed the other change with i t, and therefore 
nei ther could be isolated. Moreover , it was impossible 
to a cer tain experimen tally with wood alone the impor­
tance of their combined efl'ect on buckling load becau e 
the range over which their product varie is too limited . 
For steel, the modulus of rigidity in tor ion is commonly 
taken a two-fifths oJ the modu]u of elasticity in 
bending while for spruce i t i in the neighborhood of 
one-fifteenth 01' one-sL\':teenth. Since orne previou 
test of steel beam have hown excellent agreement 
wi th critical value calculated by the formulas, it 
therefore appeared logical to assume that, if tests of 
wooden beams also checked value given by the formu-

J 
t 
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las, the moduli of elasticity in bending and of rigidity 
in torsion are in their right relation in the formula. 
(References 6 and 9.) 

Following are formulas that apply to rectangular 
beams under various loading and fixity conditions. 
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FIGURE H.-The relation between tbe lateral buckling 
load and tbe deptb of beam mod ified by a torsion cor­
rection factor (d.J ifi, for deep, rectangu lar beams 

In all cases the ends of the beam are assumed to be 
verticaL An end not restrained, in the terminology 
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FIGURE l2.-Tbe relation between tbe lateral buckling load and 
tbe cube of the width of beam modified by a torsion correction 
factor (b3.J8), for deep, rectangular beams 

used, is held vertical but is not otherwise constrained, 
and an end restrained is both held vertical and clamped 
against lateral rotation. Figure 14 shows the lateral 
deflection of the longitudinal axis for three principal 
conditions of restraint. 

36276-31--3 

CASE I.- A thin, deep, rectangular beam under con­
stant bending moment M , with its ends 
not restrained. 

M = 7r-JEI;Gk 
L 

1\ 
Series S-2 r\ \ 

\ 
Senes S-/ 

"" "'1'-, ~ 
....... '"'-~ 

20 40 60 80 
Span. inches 

FIGURE l3.-Tbe relation between tbe lateral buckling load and 
the span, for deep, rectangular beams 

CASE 2.-The same as case 1 except that the ends are 
restrained. 

A:No lateral restraint 01 ends 

+j 
Plan of undeflected beam r 

-----'.A 

Plan of longdudtnal aXIS ofter deflection 

B Ends restrained laterally 

Plan of undeflected beam 
--.--- .---.---.---.----::-=-=~--"' 

Plan of longdudtnal aXIS afler defleellon 

. C Laleral reslraln~ at cenler of span 
+0- --- ---------0- - ---- --- - ¢3 

Plan of undeflecled beam 

PIon of longlfudtnal axis ofler deflection 

FIGURE a.-Tbe lateral deflection of tbe longitudinal axis of a Single rectangu­
lar beam when the bending in a vertical plane becomes unstable and sidewise 
buckling occurs 

CASE 3.-A thin, deep, rectangular cantilever with a 
concentrated load P at the end. 

CASE 4.-A thin, deep, rectangular cantilever with a 
uniformly distributed load W .. 

W _ 12.9-JEUJK 
- L2 
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CASE 5.-A thin, deep, rectangular beam supported 
at the ends and carrying a concentrated 
load p . a..t the middle, with its ends not 
restrained. 

CASE 6.- The same as case 5 except that the ends are 
restrained. 

CASE 7.-A thin, deep, rectangular beam supported at 
its ends and carrying a uniformly dis­
tributed load W with its ends not re­
strained. 

CASE S.-The came as ca e 7 except that the ends are 
restrained. 

CASE 9.-A thin, deep, rectangular beam subjected to 
a constant banding moment 1111 and an 
axial thrust pI, with its ends not restrained. 

CASE 10.-The same as case 9 except that the ends are 
restrained. 

CASE 11.-A thin, deep, rectangular beam supported 
at its ends and carrying both a uniformly 
distributed load Wand a concentrated 
load P at the middle, with its ends not 
restrained. 

Combinations of the preceding cases may be siInilarly 
expressed. 

CASE 12.-A thin, deep , rectangular beam supported 
at its ends and carrying a concentrated 
load P at its middle r with lateral support 
as by tie-rods, at the middle, and the 
ends not restrained. Such a beam 
bucldes laterally in two half waves. 
(Fig. 14, C.) 

P _ 44.5 -JEJ;JJK 
- L 2 

BUCKLI G FORMULAS FOR I BEAM 

The preceding formulas require modification when 
the beam ha flanges, since the lateral flexure of the 
flanges then becomes important. Following are some 
of the results obtained by Timoshenko. (References 
7, 16, 17, 18, and 20.) Two more symbols are intro­
duced. Let 
13 = the moment of inertia of one flange abou t the 

principal vertical axis 
and let 

2_ E13h2 
a -2 GKD 

CASE 13.- An I beam subjected to a constant bending 
moment M, with its ends not restrained. 

M = 7f-J~12GK -Jl + 7f2a 2 

CASE 14.- The same as case 13 except that the ends 
are res trained. 

CASE 15.-The same as case 13 with the addition of an 
axial thrust P'. 

M = 7f-JEfGK -Jl + 7f2a2~ 1 - ~;;2 
CASE 16.- The same as case 15 except that the ends 

are restrained. 

'AA'=27f EJ7JK '1 + 4 2 2 11- pIL2 
1\'L L -v 7f a V 47f2E12 

CASE 17.-A cantilever I beam with a concentrated 
load P at the free end. 

in which values of F for reciprocal values of a 2
, are: 

-!;;: O. 1 1 2 4 8 12 16 24 32 40 

F: 44. 3 15. 7 12. 2 9. . 0 7. 2 6. 7 6. 2 5. 9 O. 6 4. 0 

CASE 18.-An I beam supported at its ends and carry­
ing a uniformly distributed load W, with 
the ends not 1'e trained . 

W _ F-JEJ;GK 
- L 2 

in which values of F, for reciprocal values of a 2 and for 
three differant placements of the load, are: 

1,: 0.4 4 8 16 32 48 64 96 160 320 
a 

(I ) F: 143.2 53.0 42. 6 36. 3 32. 6 31. 5 30.5 29.8 29.2 28.6 28.3 
(2) F: 92. 36.3 30.4 27.4 26.2 26.2 25. 26.0 26.2 26.5 28. 3 
(3) F: 221. 6 7.2 59.4 43. 1 40.7 38. 1 36.0 34.4 32.6 31. 0 28.3 

The placements of the load on the beam, numbered to 
correspond with the values of F, are: 

(1) Along the neutral axis. 
(2) On the top. 
(3) At the bottom. 
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CASE 19.-The same as case 18 ex ept that the end 
are restrained. 

w=F-J~~2GK 
1. 

0.4 4 8 16 ~. 32 96 128 200 400 
F: 488 160.8 119.2 9l. 2 73.0 SS.O 55.8 53.4 51. 2 43.3 

CASE 20.-An I beam supported at its ends and carry­
ing a concentrated load P at the middle, 
with the ends not restrained. 

p _ F -JEI2GK 
- L 2 

1. 
0.4 4 8 16 ~. 32 64 96 160 320 

(1) F: 86. 4 31. 9 2.1.6 21. 8 19.4 18.3 17.9 17.5 17.2 16.9 
(2) F : 51. 4 20.2 17.0 15.4 14.9 14.9 15.0 15. 'I 15.7 16.9 
(3) F: 145.6 50.0 38.2 30.5 25.5 22.4 21. 2 20.0 I 9 16. 9 

As in case 18 the load is applied: 
(1) Along the neutrRl ax"is. 
(2) On the top. 
(3) At the bottom. 

CASE 2I.- The same as case 20 except that the ends 
are restrained. 

p = F-JEJ;GK 
L2 

2...; a 4 4 8 16 32 64 96 160 320 400 a' . 
F: 268 .8 65.5 50.2 40.2 34.2 31. 30.0 28.5 28.2 25.9 

CASE 22.- An I beam supported at it ends and carry­
ing a concentrated load P at the middle, 
with the ends not restrained, and th 
beam laterally uppol'ted at the middle, 
as when two parallel girder have a lateral 
connection between them at the middle 
of their span. 

1 
;1: 0.4 

P F-JEJ;GK 
D 

8 16 32 96 128 200 400 

F; 466 154 114 86.4 69.2 54.6 52.4 49.8 47.4 44.5 

CASE 23.-An I beam supported at its ends and carry­
ing a distributed load TV, with the ends 
not restrained, and the beam laterally 
supported at the middle ot the span. 

W_ F -JEI2GK 
- D 

1 
0.4 8 16 32 96 ;;: 

t F: 673 221 164 125.5 100.8 79.4 
2) F: 586 194 145 112 91. 2 73.7 
3) F: 774 252 186 141 111.2 85.6 

Again the load is applied: 
(1) Along the neutral axis. 
(2) On the top. 
(3) At the bottom. 

128 

76.4 
71. 5 
8 1. 6 

200 400 

72.8 69.6 65.9 
88.9 66.8 65.9 
77.0 72.5 65.9 

EXPERIMENTAL VEHU'[CATlON OF THE BUCKLING FORMULAS 

Time and funds were not available for the experi­
mental verification of the formulas for all the loading 

and fixity conditions Ii ted. Over 40 I and rectangular 
beams, however, were tested under the following condi­
tions, which represent a con idel'able range for the 
fi"\.-ity and the loading constant F. 
CASE I.- A rectangular beam subjected to a constant 

bending moment, with its ends not 
re trained. 

ASE 2.-A rectangular beam subjected to a con­
stant bendinO' moment, with it ends re­
strained. 

CASE l3.-An I beam subjected to a constant bending 
moment, with its end not restrained. 

ASE l4.- An I beam subjected to a con tant bending 
moment, with it end restrained. 

CASE 2l.-An I beam resting on two supports, with a 
concentrated load applied at the middle 
of the span, and the ends restrained. 

The results are shown in Tables II, III, IV, and V. 
ince the exact fixity conditions as umed in the mathe­

matical analyses are difficult of attainment, the agree­
ment of test results with values given by the formula 
is remarkable. We consider thi agreement, together 
with the agreement for a limited number of metal 
beam, conclu ive proof that the formula are appli­
cable to beam under actual service conditions. 

A REPORTED DISAGREEME T WITH EXPERIME TAL RESULTS 

The only experimental record of tests with wood 
that ha come to th attention of the present authors 
is an undergraduate the i that has been published 
a ational Advisory Committee for Aeronautics 
T eclmical ote 232, "The Lateral Failure of pars." 
In this note a wide difference between actual and 
theoretical 1'e ults is reported, the statement being 
made that actual load l'anO'ed from one-half to one­
fifth the loads calculated by the formula applying 
to the test conditions. Examination of thi note, 
however, lead to the conclusion that the theoretical 
formulas were not correctly applied in two re peets, 
as follows: 

1. The coefficient 16.9, which the authors of the 
note used, applies only to the conditions of ca e 5 of 
the pre ent report. Their loading conditions, how­
ever, were those of ca e 12, which require a coefficient 
of 44.5. In addition, the ends of the test beam were 
under light lateral restraint, which would increase 
the coefficient to about 50. 

2. It appears that they used the moment of inertia 
about the principal horizontal axis instead of that 
about the principal vertical axi . 

Only part of the test results reported could be 
checked, since in several instances the beams were 
stressed beyond the elastic limit and stre - train 
curves with which to modify the modulus of elasticity 
were not available, yet propel' work-up of their ex­
perimental data gives results that check with pre­
ci ion the theoretical results. 
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TABLE II 

THE CONSTA T BE DING MOMENT REQUIRED TO CAUSE LATERAL BUCKLING AND TWISTI G OF THIN, 
DEEP, RECTANGULAR BEAM HAVING THEIR E DS UNRE TRAINED LATERALLY BUT HELD VERTI­
CALLY ALTHOUGH FREE TO ROTATE II A LONGITUDINAL-VERTICAL PLA E 

S'l'RESSES WITTI[ 'rITE ELASTIC Ln.n'l' 

2 3 8 10 11 

Buckling moment by-

EI, by- GKby-
Beam Nominal dimensions (inches) L Calculation from columns-

Test 
Calculation Test Calculation 'l'est 3 and 5 3 and 6 4 and 6 

------------1---------1----1----1----1----1---------------
R- 102 ____________________________ _ ~'. by 6 _________ ___ _________ _ 
R- 105 _____________________ _ 1 by 6 ______________________ _ 
R- I07 ________________ _ 1 by 6 ______________________ _ 
R- IO'J __________ ____ ___ _____ _ I V! by 0 ____________________ _ 
R-Il L ________________________ _______ _ I~ by 6 ____________________ _ 

398,000 
680,000 
984,000 

1,744,000 
3,330,000 

938,000 
1, 667,000 
3,63 ,000 

75,050 
21, 00 
175,900 
328,800 
547,000 

7 , 000 
250,300 
161,300 
373,200 
490,000 

STRESSES BEYOND THE ELASTIC LIMI'I' 

Beam Nominal dimensions (i nches) 

R-1l0 ___________________________________________ _______ 1~ by 4~-- _______________ __ _________________ __ _ 
R-112 ________________________ _______________________ 2 by 6 ___ _________________________________ ___ __ _ _ 
R - 113_ ____ __________ __ __ _____ ____ ______ ________________ 1~ by <I~- _____________________________________ _ 
R-II4. _______________________________________________ 2 by 6 __________________________________________ _ 

All calculations were made with a slide rule. 

Corrected 
E'h 

1,630,000 
4,670,000 
2,105,000 
5,980,000 

E = modulus of elasticity as determined frOID control tests increased 11 per cent to correct for shear distortion. 
E'=secant 1D0duius of elasticity as obtained from a stress-strain curve. 
1.= moment of inertia of a beam about its principal vertical axis. 
0= modulus of rigidity. 
K=torsion constant for the section. 
L=length subjected to constant moment. 

TABLE III 

60 
00 
00 
60 
60 

9,070 
20,200 
21, 00 
39,620 
70,700 

OJ( by test 

3 9,600 
1,059,000 

355,000 
1,088,000 

L 

9,225 
21, 70 
20, 50 
42,230 
67,300 

20,380 
41,380 
70,300 

10,4 0 
18, 50 
22,620 
43,200 
67,500 

Buckling moment by-

00 
60 
60 
60 

Calculation 
from columns 

3 and 4 

41 , 730 
116,250 
45,250 

133,500 

Test 

42,350 
102,800 
42,350 
96,250 

THE CONSTANT BE DING MOME T REQ IRED TO CAUSE LATERAL BUCKLING A D TWISTING OF THIN, 
DEEP I BEAMS HAVI G THEIR ENDS U RE TRAINED BUT HELD VERTICALLY ALTHOUGH FREE TO 
ROTATE IN A LO GITUDINAL-VERTICAL PLA E 

2 4 6 

EI,by-

Beam Nominal dimensions (inches) h' 
EI,by 

calculation 
Calculation 

1- 10 ______________ __ __________ 2 by 6 by ~4 flange by 34 web ___ _______________ 35. 40 921,000 2,140,000 1- 11 ________________________ __ Hi by 6 by ~ flange by ~, web ________________ 35.76 294, 000 1,006,000 1- 12 _______________________ ___ 2~'. by 5H by }~ flange by % web ____ ________ __ 26.73 2,709,000 5,710,000 1- 13 __________________________ 2 by 7 by t10 !lange by t10 web _____ ___________ <I .58 412,000 862,000 1- 14 _______ __________________ _ I ~ by 5 by~!! flange by % web ________________ 24.00 225,000 492,000 
1- 15 __ IJ-i by 6 by ~~ flange by % web ________________ 36.00 242,500 536,000 
1- 16 ___ ~~~~~~~~~~~~~~~~~~~~~~ ~ 1 by 6 by ~ flange by ~ web __ _____ _______ ____ 35.71 80,600 262,000 1- 17 _________________________ _ I by 6 by % flange by ~~ web __________________ 35.58 59.050 158,000 1- 18 __________________________ 2 by 7 by ~!! flange by ~~ web ____ ______________ 4 . 58 503,000 1,070,000 T-19 ____ ______________________ 1 by 6 by }io flange by }io web ____ ____________ 35.95 71,200 206,000 1-22 ________________________ __ 2H by 5H by % flange by % web ___ __ ________ 27.67 3,209,000 5, 0,000 

All calculations were made with a slide rule. 
h=beight of beam . 
E=modulus of elasticity as determined from control tests increased 11 per cent to correct for sbear distortion. 
J, =moment of inertia of 1 flange about the principal vertical axis of the beam. 
h=lDornent of inertia of a beam about its principal vertical aris. 
G=modulus of rigidity. 
[(=torsion constant for tbe section. 
L = length subjected to constant moment. 

Test 

2,290,000 
1,006,000 
5,7 0,000 

878,000 
529,000 
545,000 
332,000 
221,000 

1, 022,000 
210,500 

5,955,000 

8 9 10 

Buckling 1D0ment by-

GKby L test Calculation 
from columns Test 

6 aDd 7 

124, 100 00 32,550 34,510 
126,300 60 19,710 21,000 
151,500 60 63,100 75,000 

12,910 00 9,870 13,450 
15,3 0 60 5,770 5,350 
17,150 60 6,590 ,860 
32,250 60 5,750 6,210 
13,450 60 3,159 2,970 
18,400 60 12,070 15,120 
22,320 60 3,945 4,590 

150,000 00 66,700 65,500 l 
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TABLE IV 

THE CONSTANT BENDING MOMENT REQUIRED TO CAU E LATERAL BUCKLI G OF THI DEEP BEAMS 
HAVING THEIR E DS RESTRAINED LATERALLY AND HELD VERTICALLY ALTHOUGH FREE TO ROTATE 
IN A LO GITUDINAL-VERTICAL PLANE 

RECTANGULAR BEAlIIS 

2 5 6 7 8 10 11 

Buckling moment by-

E [,by- O](by-
Beam I om ina 1 dimensions (inches) -----.------�----~----I L Calculation from columns-

Test 
Calculation Test I Calculation Test 3 and 5 3 and 6 4 and 6 

-------------------------I-------------------I------- I -------I-------I---~---I----------------
R-IOJ _ _ __ _____ __ _ _ ____ H by 6 _____________ ______ __ _ 
R-J02_ _ __ _ _________ _ _ _______ ~ , by 6 _____________ __ ______ _ 
R-J07 __________________________________ 1 by 6-__________ ________ ___ _ 

430,200 
39,000 
98<1,000 938,000 

IBEAMS 

76,600 
75, 050 

li5,900 
7,000 

161,300 

72 
60 
60 

J5,85O --------- __________ I 
J8, 120 1 ,470 
43,600 41, 720 40, 78ry 

14,85 ) 
16,741 
36,051 

________________ 1----------2---------1----- 1---4--1-------...:....---6---,1-_7 _________ 9 _______ 1_0 __ _ 

Ell by-

Deam Nominal dimensions (incbes). 

1-10 ________________________ _ 2 by 6 by ~4 flange by H web ____ _____________ _ 
I - II ____________________ _ 1~ by 6 by y.! (la nge by ~~ web _______________ _ 
1- 13 _______________________ _ 2 by 7 by ~i. (lange by M. web _______________ _ 
!- J,, ________________________ _ 1~ by 6 by ~~ flange by % web _______________ _ 
1-16_ ___ ___ ______ ______ _ 1 by 6 by ~ flange by ~ web ______ ___________ _ 
1-17 _ __ ____ _ _ __ _ _ 1 by 6 by % flange by ~~ web ____ _____________ _ 

2 by 7 by % flange by ~1\ web _____ ____________ _ 
1 by 6 by ~6 flange by~. web _______________ _ 

1- 18 ______________________ _ 
1- 19 _________ _____ __________ _ 
1- 20 __ __ _ _______ _ n~ by 6 by ~. llange by ~6 web _____________ _ 
1- 21. _______ __ ___ _____ __ _ Ho by 6 by % flange by 31\ web _______________ _ 

h' 

35.40 
35.76 
48. 58 
36.00 

~~:~ 
4 .58 
35.95 
35.76 
24.50 

EJ, by 
ca lculation 

92J,000 
~I,OOO 
412,000 
242,500 

0,600 
59, 050 

503,000 
7J,2oo 

241, 300 
197,000 

Calculation 

2, 140,000 
1,006,000 

862,000 
536,000 
262,000 
158, 000 

1, 070,000 
206,000 
55J,ooo 
425,000 

All calculations were made wilh a slide rule. 
h=height of beam. 
E=modulus of elasticity as determined from control tests increased 1I per cent to correct for shear distortion. 
ia=moment of inertia of 1 flange about the principal vert ical axis of tho beam. 
lI=moment of inertia of a beam about its principal vertical axis. 
O=!Dodulus of rigidity. 
f(=torsion constant for the section. 
L=length subjected to constant moment. 

TABLE V 

Test 

2,290,000 
1,006,000 

878,000 
545,000 
a32,000 
22 1,000 

J, 022, 000 
219,500 
547,000 
562,500 

GJ(by 
test 

124, 100 
126,300 
J2,910 
17,150 
32,250 
13,450 
18,400 
22,320 
27,270 
13,650 

L 

60 
60 
60 
60 
60 
60 
60 
60 
60 
60 

Buckling moment by-

Calculation 
from columns 

6 anrl 7 

81,6,10 
45,100 
34,420 
19,700 
13,220 
7,780 

41 , 340 
9,360 

21,180 
15,7:.0 

Test 

55,900 
35, 150 
25,380 
14, L80 
11.3.10 

7,700 
29,430 

,370 
16,610 
11,480 

THE CONCENTRATED CE TER LOAD REQ IRED TO CAU 'E LATERAL B KLI NG OF THI ,DEEP I BEAM 
SUPPORTED AT EA H END WITH THE E. DS RESTRAI ED LATERALLY A D HELn VERTICALLY 
ALTHOUGH FREE TO ROTATE I J A LO GITUD! AL-VERTICAL PLA E 

2 

Beam ' ominal dimensions (inches) h' 
E h by Ehby Of(by 

ca lcu latiou calculation calculatiou 

1-1 _____________________ I~ by 6 by % flange by ~~ web ____________ __ __ 35.05 1 9,800 423,000 15,040 
B-l ____ 1 by 6 by ~~ /lange by y.! web __________________ 34.69 74,800 236,200 23,390 
B-L __ ::::::::::::::: IY.! by 6 by % /lange by % web ___ ____________ _ 34.22 I 4,500 412,000 13,010 
C-l._ - - - ------- 2 by 7 by M. flange by H. web ________________ 47.61 Z69,I00 .';62,000 -----io:oBii-C- 2 ___ ::: - ------.---- lY.! by 5 by % flange by % web ________________ 24.40 137,100 299,500 
A-Z ____________________ I~ by 5 by % !lange by ~B web ___ . ____________ 24.21 I 9,400 414,200 12,770 
6-2-65 __________ 2 by 6 by % lIange by~. web _________________ 34. 57 339,500 71 ,000 22,960 
1-4.. ______________ ::::: 1H by 5 by % flange by % web ___ __ ___ ________ 24.21 190 500 414, 00 12,6 0 
1-5 _____________________ I by 6 by~. flange by~. web ________________ 35.05 71: 500 21?, 000 20,220 
1-6 _____________________ 2 by 6 by~. flange by~. web ________________ 35.05 552.000 1,171,000 26,150 

All calculations were made with a slide mle. 
h = beight or beam. 
E=modulus of elasticity as determined from control tests increased II per cent to correct for shear distortion. 
I!=moment of inertia of 1 flange about the principal vert ical axis o[ the beam. 
[,= moment of inertia of a beam about its principal vertical axis. 
0= modulus of rigidity. 
](=torsion constant [or the section. 
L=span. 
, E f ,h' 

a -20[(L" 
F= multiplying factor in tbe I!lteral bucklins formula, dependent upon /x' 

S 9 10 11 

Buck ling load b)'-

L /x' P 
Calculation Tesl 

82 o.og~ 40. ~ 4 2 401 . 2 . 00 ~?J ~~ 405 
82 .0a60 450 
82 

----.-o~~r 
---------- --------305- ,,50 

82 37.3 307 
82 .026 38.5 416 400 

2 . 0380 42.4 10 720 
82 .0271 36.9 ~6~ 410 

2 .0092 ~U 320 
2 .0550 1,244 9ro 
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STRESSES BEYON D THE E LAS TIC LIM IT 

The calculation of a critical load that produces a 
fiber stress b yond the elastic limit i possible by 
means of t he preceding formulas if the modulus for 
inelastic deformation is known. Although this modu­
lus is a variable beyond t.he elastic limit, it may be 
ob tained from a stress-strain diagram. Figure 15 
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in which lc is a constant that need not be evaluated 
when Figure 15 i available. The modulus below the 
elastic, limit will be called E in this report and that 
above will be called E'. Although both depend upon 
the slope of the line connecting the origin with the 
stres -strain curve at the particular stress in question , 
E' i u ually spoken of as the secant modulu 

A~ 

'-i-f-

---./ 

./ 
!-" 8 

./ --I-

/ ---
./ 

V 
, C 
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A 1.00 - l-
8 .90 
C .80 - I-
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E .60 - l-
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Ii: x S troin, inches 

FIGURE IS.-Stress·strain curves for spruce beams. Values taken from these curves are for use in the equation: 

M duJ 1 t · · stress 
o us of e as lClty=130.7 k X strain 

shows such a diagram for a spruce beam in bending. 
F rom it the required modulus, for a tress either below 
or above the elastic limit, may be determined by means 
of the formula: 

stress 
Modulus of elasticity = 130.7 k X t' (13) s ram 

The formula proposed by Karman and Ildvocated 
by Timoshenko :for caleulating E' , 

4E x E1 

E' = (-JE+ {Jt;y' (14 ) 

in which El is the tangent modulus on the compression 

• I 
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side of the beam and E is the initial modulu , can not 
be used for wood. (Reference 16.) I t can no t apply 
to wood because when the maximum load in bending 
is reached the stress-strain curve for the compression 
fibers has turned downward, which mean that E l has 
become negative. In fact, before the maximum load is 
reached the tangent to the stress- train curve for the 
compre sion fibers has become horizontal, which mean 
that the formula would give the beam no stiffness, 
whereas it actually i still re i ting an increasing load. 

Whatever the method used, more than one trial will 
have to be made in the calculation of the cri tical stre s 
because E' is not known until the stress i known. In 
calculating critical loads by imply sub ti t uting E' 
in the formulas that w re develop d on the a umption 
that the elastic limit was not pft sed, two furthel' 
assumptions are made, as follows : 

1. Passing the elastic limit does no t affec t t he 
torsion modulus G. 

2. The decrease in E is constan t along the span. 
In investigating critical loads, four rectangular 

beams were subjected to a constan t bending moment 
that produced lateral buckling at a fiber stress beyond 
the elastic limit. The results appeal' in T able II. 
The corrected values of EI 2 given in the table were 
obtained by multiplying the ecan t modulu E' by 
the moment of inertia I2 of the cross section about i ts 
principal vertical axi. The calculated cri tical bend­
ing moment for the fir t beam listed in the econd par t 
of the table (R-llO) is about H~ per cent lower than 
the test value, while the calculated values for the 
second (R-1l2) and the third (R- 1l3) beams are 
respectively 13 and 7 per cent higher than t'he test 
values. The second (R-1l2) and the four th (R- 1l4) 
beams, which were of the same size, were made from 
adjacent planks cut from the ftme log. Con trol teo t 
showed the material in R-1l4 to be slightly superior. 
Con equently its low test bending momen t is difficult 
to accoun t for unl s the beam had become ligh tly 
warped before test, in which even t the actual tre s 
at failure would be higher than the calculated stress 
and the value of E' lower than that used. 

LO AD NOT APPLIED ALO NG THE NEUTRAL AXIS 

The development of the buclding formulas is 
greatly simplified by the as umption that the load is 
applied along the neutral axis of the beam, and in 
aircraft work usually no material error will normally 
be introduced by assuming such an application of the 
load. In a few of the case for which formulas are 
given , coefficients are also given for load applied along 
the neutral axis, on the compre ion flange, and on 
the tension flange of the beam. F or the development 
of the formulas for a load placed above or below the 
neutral axis, ' attention is again directed to the work 
of Timoshenko and to advanced texts on strength of 
materials or applied elastici ty . (References 7, 12, 
and 18.) 

BUCKLING OF BEAMS TIED TOGETHER WITH RIBS 

When two thin, deep beams are tied together with 
rib , in addi tion to carrying whatever direct load is 
normally placed upon them the ribs will a t to prevent 
la teral bucld ing of the beam . Very often, though, 
when the direct load is tl'ansferred to the beams from 
the rib.s, the rib may be laboring to ustain the load 
already upon them and con equently may have no 

FIGURE lO.-The test of a panel to show that the tendency of an axially loaded 
single spar to huckle is transmitted by the ribs to an unloaded single spar 

reserve strength left for any extra load that a tendency 
of the beam to bucld e would produce. 

The first panel test was made to demonstrate the 
fact that the tendency of an axially loaded spar to 
buclde is transmi tted by the rib to the unloaded spar. 
F or this test t here was made a panel con i ting of two 
I X by 6 inch spars spaced 55 inche center to center, 
four compression ribs spaced 55 inche, and drag 
wires in the three bays. No ribs were put in between 
the compression ribs. Axial load was applied to but 



24 REPORT ATIO AL ADVISORY COMMITTEE FOR AERONAUTICS 

one spar, which deflected altemately in and out between 
compre ion ribs as the beam of Figure 14, C, deflected. 
The test was topped at a load of 12,750 pound with 
the panel still uninjmed. The deflections were in­
creasing rapidly at that time, and apparently the load 
was very near its maximum. AlLTIliary ribs were 
then put in between adjacent compression rib, four 
in each bay. Figure 16 haws the completed panel 
ready for te t. A.ual load was again applied to but 
one spar. The test was stopped at a load of 29 ,000 
pounds, which was very neal' the maximum. 

Under the condition of the second test, in which 
all ribs were in place, the two spars act as one, the 
lateral rigidity of the panel being the combined rigidi­
ties of the two spar. Similar te t were made by the 
Engineering Divi ion of the War Department, Ail' 

ervice, at Mc ook Field with identical 1"e ults. 

stopped taking load more was thrown upon the other. 
When the panel was as embled the bolts holding tbe 
cleats along one beam were drawn up tightly, while 
tho e along the other beam were not. The beam 
supported by the less rigid cleat quit taking load at a 
moment of 35,530 inch-potmd , while the one with the 
more rigid cleats did not buckle until it wa -subjected 
to a moment of 53,620 inch-pounds. The results 
show what may happen when the ribs start to fail. 
Incidentally, had the beams been held so a to re trict 
bending to a vertical plane, each should have carried 
65,550 inch-pounds and had they been free to buckle 
laterally each was calculated to sustain 21,270 inch­
pounds. 

The next panel tested wa similar except that the 
rib were glued to the flange. Load wa applied to 
the beams as before, and failure occurred when each 

beam was subjected to a moment of 
55,600 inch-pound. The calculated 
bending moment for each with bending 
confIDed to a vertical plane was 62, 00 
inch-pounds. 

FIGURE 17.-Wing ribs for which the degree of attachment of the ribs to the beams is adjustable 

The third and final tep' as the test 
of ingle bays with load applied to the 
rib alone. (Fig. 10.) The panels were 
8 feet between support and the beam 
36 inches center to center . ven ribs 
of the lightened plywood type, rectan­
gular in form, extending 12% inche be­
yond each beam and spaced 12 inche 
apart, tied the two beams together. 
The ends of the beams rested on thru t 
bearings and were held vertical during 
test. Roller bearings under the ball 
bearings at one upport permitted 
movement a the beam deflect d. 
Thin strip 7 feet 5 inches long, notched 
at the ribs, were laid on th ribs, and 
cans filled with sand were plac~d on 
them. 

In th next panel tests the beams were ubjected to 
bending, and load was applied directly to them and 
not to the rib. Two 1 by 6 inch rectangular beams 
ubject d to a constant bending moment over 60 

inches of their length were tied together with four rib 
spaced 12 in he center to center in the 60 inch bay . 
Constant moment was applied by using the apparatus 
shown in Figure 8, except that double the number of 
support and load rods weI' u ed. The ribs that tied 
the two beams together were a hown in Figme 17; 
they were held in place simply by the friction under 
the heads of th bolts, the holes for which were lotted . 
Obviously, if the bolt were not drawn tight the beams 
could buckle very easily, while if they were drawn 
tight twisting was practically prevented. The evener 
bar was not pin-connected to the movable head in this 
test but was rigidly attached to it, a that if one beam 

For thi fixity and loading the beam , which were 
rectangular and Yz by 4 inches in era section, should 
have buckled laterally at approximately 91 potmds 
each if un upported by the rib. If bending had b en 
confined to a vertical plane, 970 pounds should have 
been required to break each beam. The ribs when 
supported laterally should have been good for 250 to 
300 pound. The preceding values are calculated 
one. 

The two beam were supported at the center by a 
cross timber resting on two jack screws" with the ribs 
supported only by the beams. A load of 735 pound 
was put on the panel and the screws lowered. The 
beams remained in a vertical plane throughout their 
length. The timber was again brought up against the 
two beams to relieve the load and more load was 
added. a buckling occurred a.t 1,155 pounds when 
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the screws were lowered . Again the two beams we re 
upported at the center by the eros timber and more 

load was applied. A total of 1,370 pounds was su -
tained by the ribs with the beam till upported at 
the center. This load, however, was approaching the 
maximum for the rib . When the screws were again 
lowered the ribs did not have sufficient additional 
strength to resist the tendency of the beams to buckle 
and they gave way. 

The two beams, which were uninjUl'ed in this te t, 
were again used in a econd panel. T hi econd panel 
was like the first in every re pect, but the loading was 
omewhat different. In place of the notched 7-foot 

5-inch loading trip , short smooth strip that ex­
tended over two and three ribs al ternately were used. 
In tead of having the long strips with their notches 
hold the top of the ribs in line, strip ~-inch thicl;;: 
and 2 inche wide were laid flat along each side of each 
rib and tacked at t he end and center to the short 
loading strips. In thi te t, a in the first, the lower 
chord of the rib were unsupported. Becau e the 
short loading trips permitted freer lateral play in the 
beams, t hi panel fai led at a lower load than the first. 
A maximum load of 900 pound wa obtained, at which 
load the lower part of the rib buclded until the rib 
lay almost flat against the loading strips. 

In the third and final test of this series the bottom 
as well a the tops of the ribs were held in line and the 
sam beam were u ed again. Ten row of I X-inch 
commercial cotton tape were run parallel to the pars 
and ewed to the rib. Two diagonal pieces on both 
top and bottom were then sewed to the parallel l'ow . 
Although till taping was hardly comparable with wing 
covering, it held the ribs in line quite well . The hort 
loading trip of the previous te t were again u ed in 
addition to the tape. 

As previously stated, the lateral buclding load of 
each dpar when it wa unsupported was calculated as 
9] pounds, which is 182 pounds for the panel. The load 
required to break each one if bending had been confined 
to a vertical plane was 970 pound or 1,940 pounds for 
the panel. Failure occurred at a total load of 1,470 
pounds, at which one beam buclded badly and col­
lapsed. The ribs had tarted to buckle omewhat, 
which permitted the one beam to buckle out of a 
vertical plane. Greater strength of the ribs or greate l' 
tor ional rigidity of the spar would have prevented thi 
buckling and twi ting. A box beam of the same 
trength in bending, for example, would not have 

buckled at thi same load. 
The no e of an airplane wing help to hold the front 

or deeper par in line and the wing covering keeps the 
ribs in line. With this support, fairly large ratios of 
depth to breadth may be used if the ribs are made with 
ju t a little surplus strength. 

Some years ago, after the test of a great many 
beams in connection with a study of form factors, the 

suggestion was made that the ratio of the moment of 
inertia about the principal horizontal a)"'is to the 
moment of inertia about the principal vertical axis be 
kept low, below 25 if possible. A further sugge tion 
was that when this value was exceeded special atten­
tion should be given to the factors that insUl'e lateral 
rigidity. (Reference 10, p. 16, and 1923 annual 
r eport, p. 390.) As a result of the pre ent experiments, 
the Forest Products Laboratory has learned what 
factors are involved in the lateral buckling load and has 
concluded that no arbitrary ratio for the moments of 
inertia can properly be set and that such a method of 
design should not be use<!. 

In previous te ts it was practically impossible to 
prevent the buckling of I beam having a moment-of­
inertia ratio of 39. In the pancl with t he 1 by 6 inch 
beam ju t mentioned, for which the moment-of­
inertia ratio is 35) the maximum moment was approxi­
mately 89 per cent of the moment that would have 
been required to cause failUl'e had bending been 
confined to a vertical plane, and even this percentage 
value could not have been obtained if it had not been 
for the excess strength of the ribs. In the third test of 
the la t panel, which had }~ by 4 inch beams and for 
which the moment ratio is 54, the marumml load was 
approximately 75 per cent of the load required to 
cause ffl.ilure had bending been confined to a vertical 
plane. 

In all of the recent test it is probable that the 
beams were receiving less lateral support than the 
beams in an ordinary wing panel would receive and the 
end fixity was les than that which obtain in the usual 
drag bay. With a more or less rigid nose, such as one 
of plywood or metal, and ribs slightly over strength, 
beams with moment-oC-inertia ratios considerably in 
exces of 25 can be counted upon for their full bending 
strength. 

CONCLUSIONS FOR PART II 

D eep beams may fail through buckling laterally and 
twisting at loads much less than those calculated by 
mean of the u ual beam formula. 

There is for each ll)"'ity and loading condition a 
critical lateral buckling load for a deep beam just as 
there is a critical load for a column . 

A mathematical analy is of the problem for various 
loading and fi)"'ity conditions leads to formulas that 
contain the dimen ion of the beam, the modulus of 
elasticity along the grain, the modulus of rigidity in 
torsion, the span, and a constant depending upon the 
loading and fixi ty conditions. 

Experimental results confirm the practical appli­
cabili ty of these forlllulas. 

When one spar of an airplane wing or other panel 
is subjected to an axial load and the other spar and the 
rib are not loaded, the lateral rigidity of the whole 
combination i the sum of the lateral rigidities of the 
two spars. 
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When two deep beams fastened together with ribs 
are subjected to bending, lateral buckling of the beam 
mayor may not be preven ted. When one or both of 
such beam are heavily stre sed and in need of lateral 
upp~rt, the ribs, if they are not stronger than is neces­
ary to carry the load upon them, can not carry the 

extra load that i induced by the tendency of the 
beam to buclde. 

A fairly rigid nose and ribs slightly overstrength will 
permit the u e of aircraft wing beam that have a rela­
tively large ratio of moment of inertia about the prin­
cipal horizontal axi to that about the principal vertical 
aXlS. 

o arbitrary mornen t-or-inertia r atio can be used 
with certainty. Each particular case must be studied 
individually and lateral support rnu t be provided in 
accordance wi th the tendency of the beam to buclde 
laterally rather than to bend in a vertical plane. 

This inve tigation wa undertaken a a study in air­
craft de ign. The conclu ions, however, are of general 
application, even though ome of them for convenience 
are worded a if they applied only to aircraft. 
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APPENDIX 
A MATHEMATICAL STUDY OF THE ELASTIC STABILITY OF THIN, OUTSTANDING FLANGES 

UNDER COMPRESSION 

INTRODUCTIO 

In di cussing the stability of a column 01' o(,her 
compre sion member having one or mOl:e thin, out­
standing flanges, it is neces ary to consider not only 

p the conditions for the stability of the 
column as a whole but al 0 the stability 
of the flanges them elve. The probl m 
of the stability of such a flange is e en­
tially that of the stability of a rectan-

.x; = a 

gular plate imply upported along the 
ends to which the load i applied, free 
along one of th other edges, and on the 

.0 remaining edge either simply upportcd, 
imperfectly fixed, or perf ctly fixed, de-

~ pending upon the nature of the section. 

p 

FIGU RE I .- A rec· 
t a o g u la r plate 
under a uniform 
compressive load 

Timosheno has di cu ed this problem 
in considerable detail for plates of 
isotropic material. (References 17 and 
21.) In the following appendix hi 
methods will be extended to plates com­
posed of a nonisotropic material, such 
as wood, which will be considered 
to have three mutually perpendicular 
planes of elastic symmetry. Hi anal­
ysis for isotropic plate will al 0 be 
summarized a~d orne further conclu­

on two opposite 
edges sion drawn. 

EXA T METHOD; BASE OF FLANGE P ERFECTLY FIXED 

DIFFERENTIAL EQUATION FOR THE DE~'LE TI ON OF A FLANGE 
OF NONlSOTROPIC MATERIAL UNDE R A COMP R ESSI VE LOAD 

A plate of thicknes h, Figure 1 , is considrred to 
lie in the XY-plane and to be bounded by the lines 
x = O, x= a, y = O, and y = b. Uniform compre sive 
loads P per unit length of edge, parallel to the X-axis 
are applied to the edges x = 0 and x = a, which ar~ 

Z 

N~ S2 

Y 

X 
N, Te 

r----f-,.L- S, 

T, 
A 

simply upported. 
edge y = ° i either 
or p rfectly fixed. 

The edge y = b is free while the 
imply supported, partially fixed, 

The ca~e in which the edge y = ° is perfectly fixed, 
a case which rarely or never occurs in practice, is first 
treated for both isotropic and nonisotropic material 
making u e of the differential equation for the def]ec~ 
tion of the plate from its plane and of appropriate 
boundary conditions. A impler approximate method 
ba cd on energy con iderations i then applied to the 
arne case and the results are compared and found to 

check in a satisfactory manner. The approximate 
method i then applied to the case in which the edo-e 
jn qu e tion is only partially fixed, the ea e in whi~h 
the edge i simply upported appearing as a limiting 
form of partial fix.'ity. 

The differential equation sati fied by the deflection 
wi obtained from the following differential equations 
conneeting the tres resultants T, S, and N and the 
stres couple G and H acting upon an elementary 
portion of the plate with edge dx and dy. (Reference 

; ar~. 326, equations (24) , (25), (26), and art. 331, 
equatIOns (45) and (46) .) The notation u ed is that 
of Love. (Reference ,art. 294.) 

aTI _ aS2 _
N 

a2w _ a2w , _ 
ax ay I ax2 2 axay +X - 0 

a I aT2 a ~ w a2w 
(f£ + ay - N 1 axay - N 2 ay2+ Y' = o (15 ) 

aNI aN2 a2w a2w a2w a2w 
ax +ay + TI ax2- S2 axay + SI axay + T2 ay2 +Z' = o. 

aHI aG2 N L' -a --a + .,+ = 0 x Y -

aa~l + a~2 - NI + M' = 0 (16) 

a2w a2w a2w a2w 
GI ayax - G2 axay +HI ax2+H2 ay2+ S I+ S2= O. 

G~ 

Hi! 

H , B 
FroURE 19.- (A) Stress resultants and (B) stress couples on an element of a plate 

27 
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In equations (15) and (16) X' = Y' = Z' = M' =N' = 0, 
since the components of the external force per unit 
area and of the external couple are zero. 

To calculate TI ...... H2 it i necessary to 
express the components of stress X" . . . . . . Xv in 
terms of the deflection wand the elastic constants· 
(Figure 20.) The displacements u and v are given 
with sufficient accuracy by 

aw 
u = -z ax 

aw 
V= -2 ay' 

The components of strain are 

au a2w 
exx = ax = - z ax2 

(17) 

av a2w 
evv = ay = - z dy2 (18) 

au av a2w 
e = - + - = - 2z-- ' 

xv ay ax axay 

For a more exten ive cliscussion of the components of 
str ain, see article 329 of reference 8. 

A sume that the material of the plate, wood, has 
three mutually perpendicular planes of elastic sym­
metry. (Reference ,arts. 110 and 111.) Denote by 

~------------~----.-----x 

z 'U 

dw 
cJx 

FIGURE 2O.-Components of displacement in terms of 
deflection 

Ex, E v, and E. Young's moduli in the directions x, y, 
and z, respectively, by U xv Poi son's ratio associated 
with contraction parallel to the Y-axis and tress 
parallel to the X-axis, and by J1.xv the modulus of rig­
idity corresponding to the directions x and y. Tnc 
stress components Xx, Yv, and Xv are then given by 

(19) 

f h

'

2 
G1 = X"zdz . 

--h/2 

(Reference 8, art. 294.) Then 

(20) 

where 

(21 ) 

(22) 

where 

D
2

= Evh3 . 
12(1 - uxvuvx) 

(23) 

Further, from their definitions, 

(24) 

where 

(25) 

In the last of equations (16) the quantities GI , G2, 

HI, and H 2 , which are expre sed by (20), (22), and (24) 
in terms of second partial derivatives of w, are each 
multiplied by second derivatives of w. Each of these 
derivatives may be con idered small and the produ~t of 
two of them negligible. It follows that 

(26) 

From the first two equations (16) and equations 
(20), (22), and (24) it is found that 

(~W ~W) a3w 
NI = - DI axs + Uvx axay2 - M aXOy2 

(27) 

(
a3w a3w ) a3w 

N2 = - D2 ay3 + Uxv ax2 ay - M ax2ay' 

It is clear from their definitions and (19) that 8 1 and 
8 2 are small. (Reference 8, art. 294.) Also from its 
definition and equation (18) T2 is small. Equation 
(26) and the first two of equations (15) are satisfied 
approximately by taking 

(28) 
and 

TI = constant = - P (29) 

where P is the load per unit length of the loadeded ges. 
The third of equations (15), on making use of (27), 
(28), and (29), then gives the differential equation of 
the plate: 

( 
a·w a4w ) a4w 

- DI ax4 + uv" ax2ay2 - M ax2ay2 

(
a4W a4w ) a4w a2w 

-D2 ay. + u"v ax2ay2 -M ax2ay2 - P ax2 =0. 

Or 

where 

(31) 
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BOUNDARY CONDITIONS 

On the simply supported edge x = 0 and x = a of 
Figure 18, 

w=O 
and 

The last condition requires that 

a2w a2w 
ax2 + (JII X ay2 = O. 

On the f!Xed edge, y = 0, 

and 
w=o 

aw = o 
ay . 

On the free edge, y = b, 

Rewriting the e conditions for the edge y = b, 

(32) 

(32a) 

(33) 

(34) 

(35) 

a2w a2w 
-a 2 + (JZY-a 2 = 0 (36) y x 

and 

where 

that is, 

a3w. CJ3w 
-a 3 + (2- (J) a--Z-a = 0, y .£ Y 

2}.;J 
2-(J=(Jxy+ D- ' 

2 

SOLUTIO OF THE DIFFERENTIAL EQUATiON 

(37) 

onditions (32) and (33) arc satisfied by 

w= in m7rXj(y) = sin }..X fey). (39) 
a 

It will be convenient to replace m7r/a by 7r/c, for if the 
flange breaks up into more than a ingle half wave 
each portion of lenO'th a/m=c may be con idered a a 
plate of length c imply supported at its ends. We 
. hall accordingly interpret}.. a given by the equation 

}..= ~ 
c 

where c may be either the entire length of the flaoO'e or 

. where 

a2 = ~I}..2(K2- DtD2 ) + D2P+ I~2J 
(41 ) 

(32= ~L}..2(I.(2-DtV2) + D2P-12:]~' 

Conditions (34) and (35) are satisfied if the constant 
in (40) are so related that we may write 

fey) = A (cos (3y- cosh ay) + B ( in (3y- ~sinh ay). (42) 
a 

The sub titution of (39) combined with (42) in ihe 
conditions (36) and (37) leads to the equation: 

A[«(32 + (JXy}..2) cos (3b + (a2 -(JXy}..2) cosh abl+ 

B[((32+ (J Xy }..2) sin (3b+(3(a2 -(Jry}..2) sinh abl = O (43) 
a 

and 
A[(3((32+ 2}..2_(J}..2) sin (3b-a(a2- 2A2+(J}..2) sinh abl+ 
B[ - (3((32+2}..2-aV) cos (3b-(3(a2-2}..2+(JA,2) cosh ab]-O. 

In (44) note that after some reduction 

(32 + (2 - 0')}..2 = a2 - (JxIIA,2 
a2 - (2 - (J)}..2 = (32 + (JXII}..2. 

(44) 

In thi redllction the following relations were used: 

" (3" 2KY 2 2}.;[ dEE a- - -= D
2

' - (J =(JXY+ V-;' an 'II(JXY = /x(Jyx. 

(Reference 1, p. 104.) siog the abbreviations 
t = (32 + (J Xy }..2 
8=a2 - (Jxy}..z, (45) 

the equations (43) and (44) can be \\Tiiten in t he form 

Alt cos (3b + 8 cosh ab] + B[t in (3b + {3 8 inh ab] = 0 
a 

(46) 
A[{3 sin {3b - at inh abl + B[ - {38 cos {3b - {3t cosh abl = O. 

In order that solution of the system (46) other ihan 
A = O and B = O may exist, that i , that a olution 
different from zero of the differential equation (30) of 
the form (3 9) may exi ·t, it is necessary and sufficient 
that the determinant of the coefficients oJ A and Bin 
(46) vani h. The result of equating the determinant 
to zero is, after some reduction, 

(
a 2t2 - (32 2) 

2t8 + W + 82
) cos (3b cosh a6 = a(3 sin (36 sinh a6. 

(47) 

Multiplying thi· equation through hy b\ the terms can 
be arranged so that a and (3 OCCllr only in ihe combina­
tions ab and (3b. We then write (equations (4 1)) 

ab = (-JUV+ V)} 
(4 ) 

a p rtion of this length, a Ci.l'CLllll tances require. where 
(3b = ( U17-t');, 

v - 2b
2 

J( 
In accordance with (30) j(y) in (39) must sati fy an 

ordinary linear differential equa tion of the fourth order. 
It solution Cfln be written and 

- 7r c2 D
2

' 
(49) 

(50) 
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GENERAL EXPRESSION FOR CRITICAL STRESS 

By a igning a value to the ratio c/b the qllantity 
V is determined. The one ponding value or U can 
then be found by solving equation (47). The value 
of the critical stress 

p 
P=7l, 

corresponding to this value of c/b can then be found 
from equation (50). From (50) it follows that 

Or 

(51 ) 

ELASTlC CONSTANTS OF SPR CE 

The ela tic con tants to be used in the ('ompuLa­
tion depend upon the orientation of the plane of 
cIa tic ymmetry of the wood in the plate. It will 
be a limed throughout the di Cll ion Lhat the grain 
of the wood is parallel to tho X-axi , the direction 
in which the eompl'essive load is applied. Two ca e 
for the diJ'ection of Lhe growth ring of the wood will 
be con idel'ed, one in whieh the rings are perpendicu­
lar to the face of the plaLe and another in whi ch 
they make an angle of 45° with the [aee . 

In the first case (fig. 21) Young' moduli Ex, Ell, and 

Y 

oL-----'---Z 

FIGURE 21.-The cross 
section o( a quarter­
sawn flan ge 

E z are qual Lo E L , En , and E T , 

respectively, the sub eripts L, R, 
and T denoting the longitudinal, 
radial, and tangential moduli, re­
spectively. The value for the e 
and other elastic constants for 
spruce were tak n from a report of 
the British Aeronautical Research 
Committee. (Reference 1, p. 105.) 
The values are : 

EL = 1. 95 X 106 

En = 0.13 X 106 

E T = 0.07 X 106 

l.l.£n = O. 104 X 106 

J.i.LT = 0.072 X 106 

J.i.nT = O. 005 X 10 6 

(JLn = 0.45 

(JLT = 0.539 

(JnT = O. 559 . 

(JnL = 0.03 

(JTL = 0.0194 

(JTn = 0.301 

In the econd case, when the growth rings make an 
angle of 45° with the faces of the plate (fig. 22), the 

ela tic constants Ey ........ J.i.xy can be eom-
puted from those just given by the following formulas: 

1 1 1 1 (Jn7' -=-+- +-- - , 
Ev 4En 4E7· 411/17' 2En 

E I/ 
CJl/x = 2E

L 
(CJLR+CJLT), 

EL 
(JXII= E (JI/X, 

11 

2J.i.LTJ.i.Ln 
J.i. XI/ = J.i.LT + J.i.Ln· 

(Reference 8, art. 111.) It IS 

Lhen found that 

E II = O.Ol 75 X 10 6 

(JlIx= 0.00475 

(Jxy= 0.494 

J.i. Xy= O.O 51 X 10 6• 

Y' 

FIGURE 22.-rl'he cross seClIon 
o( a wood flange the growth 
rings o( which make au anglo 
o{ 45° with tho (aces 

CRITICAL STRE S FOR A FLANGE OF SPHUCE 

Values o[ Ie in equation (51), the equation ['or rritical 
tre s, whi h result from solving equlLtioll (47) for the 

cases or growth rings perpendiculur to the faces of the 
flange and at 45° to the [aces, are given in Tabl VI 
and VII, respectively. 

TABLE I 

THEORETICAL 'Or STANTS FOR FLA OED C01\I­
PRES,'ION IEl\IBER' OF SPR CE HAVING THE 
GROWTH RI G PERPENDIC LAR TO THE FA 'ES 
OF THE FLA GE, C LCULATED BY THE EXACT 
l\IATHEl\IATI AL METHOD 

clb U k 

----
3.40 J5.42 0.228540 
3.30 10.13 .228340 
3.25 14.95 .228057 
3.20 14. 2 .228376 
3. 10 14.55 .229166 
3. ()() 14.30 .230577 

The minimum ('.ri tical stres' for growth ring. perpen­
dicular to the [aces of the flange oc Lll'S whrn the half 
wave length is 3.25 times ihe outstanding width of Lhe 
flange. This critical stl'es i equal to 0.22 Exh,2fb2. 
Ordinarily the length of the column is such thaI, the 
flange can not break up into egments the length of 
which is exactly 3.25 times the outstanding width. 
Under such a condition the stre s will be increased a. 
the values in the table indicate. Con iderable incr a e 
would be found for considerable departur s from the 
optimum value of the ratio c/b. Such departures occur 
only when the column is so short that its length is Ie s 
than two or three time the optimum half wave length . 
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TABLE VII 

THEORETICAL CO STANT FOR FLANGED CO M­
PRESSION ME 1BERS OF SPRUCE HA VI G THE 
GRO"YVTH RI GS AT AN ANGLE OF 45° WITH THE 
FACE OF THE FLAI GE, CALCULATED BY THE 
EXACT lATHEMATICAL l\lETHOD 

c/b U k 

--
5.34 14.83 0.117308 
5.20 14.78 .117119 
5.10 14.76 .]17113 
5.00 14.74 .]17]] 
4.00 14.73 .]17227 
4.80 14.75 .]]7539 

Consideration of Tables VI and VII how that the 
theoretical critical stre s is considerably Ie when the 
growth rings make an angle of 45° with the faces 
of the flange (fig. 22) than when they make an angle 
of 90° (fig. 21). The chief.£actol' in determining the 
variation in the cri tical tress with variation in the 
angle between rings and faces i the ratio Ev/Ez. 
This ratio i nearly constant when the angle made by 
the rings with the face of the Hange lies between 20° 
and 70°, and hence the results for rings at an angle 
of 45° may be taken to apply over this range. When 
the rings are parallel to the faces of the flange, 
however, the minimum cri tical stress is found by an 
approximate method given la ter in this report to be 

- 0.164 Ex h2jb2 
for a flange with a perfectly fixed edge. This critical 
strcss is intermediate between tho e for flanges with 
the rings at angle of 45° and of 90° with th e face. 

The theoretical critical stre for a flange with a 
perfectly fixed edge is not attained in practice because i 

the condition of perfect fixity at the ba e of the flange 
is not realized. Later in this report i t will be pointed 
out more in detail that as the fixity at the base of the 
flange decrease the variation of the critical tre with 
inclination of growLh ring become smaller and 
ultimately, as the fixity con tinues to diminish, the 
critical strcss for a flange wiLh rings parall 1 to it 
faces become less than that for a similar flange with 
rings at 45°, which in tUl'll i alway less than that for 
a imilar flang with range at 90°. 

DlFFERE TlAL EQUATION AND BOUNDARY CO DITIO S FOR A 
FLANGE OF ISOTROPIC MATEIUAL 

The preceding analysis i an exten ion to fl ange 
of noni otropic material of the method that Timo­
shenko used in di cussing Hanges of isotropic material. 
(Reference 17, p. 350.) When the material is i otropic 
the differential equation (3 0) becomes 

~4w+2 a
4
w +~+fa2w= 0 (52) 

ax4 ax2ay2 ay4 a ax2 
where 

(53) 

The boundary conditions are given by equation (32) 
to (37) after CTxv and CTvz have been replaced wi th CT. The 

differential equation and the boundary conditions are 
then tho e u ed by Timoshenko. The critical load is 
determined by olving equation (47) wher t and s 
are given by (45) with CTxv = CT and where a and (3 are 
given by (48) with 

y _ 2b2 

-7r ? (54) 

and 

U-
P

b2 -0 - (55) 

CRITICAL STRESS FOR A FLANGE OF ISOT ROPIC MATERIAL 

The values of U corresponding to various values of 
the ratio c/b as calculated by Timoshenko are giyen in 
T abl e VIII for flanges of i otropic maLerial. In the 
third column of this table appear the value of k in 
the formula 

h2 

p =kElJ2 , 

where p is the critical tress. This formula i obtained 
at once from equation (55) by no ting that 

P Eh3 

p= h and O= 1 2( 1 - ~) 

In the computation CT was taken as 0. 25. 

TABLE VIII 

THE RET! AL CO STAr T FOR FLANGED COl\J­
PRE SION MEMBERS OF I OTROPIC MATERIAL, 

ALCULATED BY THE EXA T MATHEMATICAL 
METHOD AND WITH POI ON'S RATIO TAKE 
AS 0.25. 

c/b U k 

--
1.0 16.76 l. 400 
1.1 15.41 1.370 
1.2 14.47 1. 286 
1.3 13. I. 234 
1.4 13.41i 1.196 
1.5 13.20 1.173 
1.6 13.13 I. 167 
1. 635 13.] I 1. 165 
1.7 13.15 I. 169 
1. 13.24 1. Iii 
1.9 13.43 1. 194 
2. 0 13.67 1. 215 
2.2 14.35 1. 276 
2. 4 1'>. 21 1.352 

In Table VIII the critical trcs is least when the 
half wave length is equal to 1.635 times the width of 
the outstanding flange . If a, the total length, is either 
less than 1.635b or somewhat greater than thi amount 
the critical tress ,vill be greater, as Table VIn show. 
As a increases toward twice the ideal half wave length 
the critical stress begins to diminish, reaching the 
same minimum value at a = 3.27b as at a=1.635b 
When the column is long in comparison with the 
"vidth of the outstanding flange (the length three or 
more times the "vidth) the flange will break up into 
waves the half length of which i approximately 
1.635b, and the critical tress will then differ but little 
from that for this ideal hall' wave Jength. 



32 REPORT ATIONAL ADVISORY COMMITTEE FOR AERO AUTICS 

APPROXIMATE METH OD 

DI CUSSION 

Approximate 1'e ul ts were obtained by Timoshenko 
with a method that j ba cd upon energy relationship 
and that is an important extension of a method u ed 
by Bryan. (R eferences 3, 4, 5, 19, 20, and 21.) The 
deflection of the plate (fig . 1 ) is expres ed as a sum of 
term of the form 

the function <PI, <P2, .. ... being chosen to ati fy 
the boundary conditions a nearly as po ible and the 
coeIlicients AI, .112, ••••• being arbitrary . Thi 
expression ror the denection w i then ubsti tuted in 
the intearal representing t he energy of deformati n of 
the plate. The 1'e ul t j a fun ction of the arbi trary 
con tant AI, .112 , . • . • •• The energy i then 
equated to the work done by the compressive load P 
per unit length acting on the edges X= O and x = a· 
The result is an equation that can be olved for P 
in term of the arbitrary con tants AI, .112 , •••••• 

The ratio .112/.11 1, A 3/AI' ..... are then chosen in 
uch a way as to make P a minimum. If the rcsultina 
tress, 

wher h i the thicknes of ihe plate, i less t han the 
stres for primary failure of the olumn of which the 
plate is a member, the plate will fail by buckling at the 
critical stress p. For a full di cu sion of the method, 
with examples of it application to simple case, eo 
Timo henko' paper. (R eference 19.) 

The energy of defol"lnation of the plate, under the 
a umption that the str ess components X., Y z , and 
Zz are negligible, is given by 

The work done by a compre sive load P per unit 
length of edge, applied to the edaes x = 0 and x = a 
(fig. 1 ) is given by 

r p ( a (b(aW)2 
T = 2 J o J o ax dy dx. (60) 

In what follow, the integrations with respect to x 
in (58), (59), and (60) will be performed between the 
limits 0 and c, where c i the half wave length of the 
deformed smface. In certain ca es c will be equal to 
a, while in other it will be a fractional part of a. 

BASE OF FLANGE PERFECTLY F1XED 

The as umed deflection (equation (56)) will be 
taken as 

w = {AI (6 b2y2 - 4by3 + y4) + A 2(y5- 10b2y3 

+ 20b3y2)} sin 7rx. 
c 

(61) 

The flLnciions of y in the first and econd terms of 
(6 1) represent respectively the deflection of a canti­
lever fixed at the end y = 0 under a uniform load and 
under a load that i proportional to y. Timoshenko 
in treating the i otropic plate by this method cho e 
other functions. (R eferen ce 21, p. 405.) It i not 
apparent that either choice posse es any particular 
advantage oyer the other. 

Flange of nonisotropic material. 

Entering (6 1) in (5 ) it follows that for noni otropic 
material 

(57) in which, letting 

ubstiLuting the valli of the train components given 
in (1 ) and those of the sire com.ponents given in 
(19) for noni otropic 'material having three mutually 
perpendicular plane of cIa t ic ymmetry, the 1'e ult i 

a2w a2w] ( a2w )2} + 2Ex(l V" ay2 a£2 + 4J.1xy axay dy dx. 

For i otropic material thi hecomes 

11= ~lalb{(~; + ~~y -2(1-(l{~; ~~ 

- (a~~y)2]}dY dx. 

(5 ) 

(59) 

(63) 

do=2.3117r4 +7r2 

[ 41.15 J.lxv(1 ~:xv (lvx) - 3 .432(l vx] P + 2 

d2 = 30.4 7r4 +7r2 

[ 559.7 J.lXy(1 ~:Xy (lvx) - 50.16(lYx} + 377 .2 i: p2 

and 

(65) 
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From (60) and (61) it follows that 

T P7r2A 2b9( 2) 
= 4c I CO + CIZ+C2 Z (66) 

where 
co = 2.311, cl=16.7 8, and c2=30.4 8. (67) 

Equating T and Vas given by (62) and (66) and solving 
for p=P/h, 

(6 ) 

The critical stress p will be a minimum if Z is the 
larger of the roots of 

dp=O 
dz . 

Equation (68) may be written 

h2 

p =kEx b2 • (69) 

The calculation outlined assumes the ratio c/b to be 
given and determines the critical stress for this ratio. 
By calculating k for a series of ratios c/b the ideal half 
wave length is found as that which makes the critical 
stress a minimum. 

In Table IX, X, and XI, the values of k for cer­
tain values of the ratio c/b are given for flanges of 
spruce, the growth ring being respectively pCl·pen­
dicular to the faces of the flange, inclined to them at 
an angle of 45°, and parallel to them. The elastic 
con tants for spruce given earli er in thi appendi;"{ 
were used in the calculation. For rings parallel to 
the faces, we note that 

Ex= 1. 95 X 106 

Ev = O. 07 X 10 6 

/J.xv = O. 072 X 106 

£Txv= 0.539 
£Tvx = 0.0194. 

(Reference 1, p. 105.) 

TABLE IX 

THEORETICAL CO STANT FOR FLA GES OF 
SPRUCE, UNDER LONGITUDINAL COMPRESSIO , 
THAT HAVE THE GROWTH RI JGS PERPENDICU­
LARTO THE FACES OF THE FLA GE, CALCULATED 
BY THE APPROXIMATE METHOD 

c/b k 

3. 2 0.228356 
3. 3 .228256 
3.4 .228719 

TABLE X 

THEORETICAL CONSTANT FOR FLANGE OF 
PR CE, U DER LONGITUDI AL COMPRES ION, 

THAT HAVE THE GROWTH RING AT AN ANGLE 
OF 45° WITH THE FACES OF THE FLANGE, CAL­
CULATED BY THE APPROXIMATE METHOD 

c/b k 

5. I 
5. 2 
5.3 

0.11 68 12 
. II 06 
. 111021 

TABLE XI 

THEORETI AL CON TA T' FOR FLANGE OF 
SPRUCE, UNDER LONOTT DINAL COMPRESSION, 
THAT HAVE THE GROWTH RINGS PARALLEL TO 
THE FACES OF THE FLA GE, CALCULATED BY 
THE APPROXIMATE METHOD 

c/b k 

3. i o. 16399 
3. 8 .1 63 I 
3.9 .1 63 9 

The result agree remarkably well with tho e given 
in Table VI and VII as the result of more exact. 
analysis. 

Flange of isotropic material. 

After ubstituting the assumed deflection (61) in 
the integral (59) for the energy of deformation of the 
flange in the ca e of isotropic material and equating 
T and Vas given by (59) and (60) it i found that 

where 
P p =­
h 

(70) 

and expressions for do, db d2 are round rrom (64) by 
writing 

The quanti tie Co, CI, and C2 have the value given by 
(67) . 

If equation (70) is written in the form 

h2 

p = kEp (71) 

the value of the minimum k for a given value of the 
ratio c/b can be calculated a with noni otropic mate­
rial. A few values in the vicinity of the half wave 
length for which the critical stress is a minimum are 
gIven In Table XII; Poisson's ratio £T was taken as 
0.25. 
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TABLE XII 

THEORETICAL CON TANTS FOR FLAr GES OF I 0-
TROPIC MATERIAL U DER LONGITUDII AL COM­
PRESSION, CALCULATED BY THE APPROXIMATE 
METHOD A D WITH POI ON'S RATIO TAKE A 
0.25 

c/b k 

1. 65 1. 16434 
l. 66 l. 16390 
1. 67 l. 16407 

The minimum values of k in Table XII differ from 
those of Table VIn by a small fraction of 1 per cent. 
The haH wave length at which the minimum criti al 
stre OCCUTS differ by about 1.5 per cent. Plotting 
the curve connecting critical stress and half wave 
length in the vicinity of the minimum critical stress 
will show that this difference has little significance. 
For steel, with Poisson's ratio taken as 0.3, a similar 
calculation give a minimum k of 1.1592 correspond­
ing td a value of c/b of 1.60. 

BASE OF FLANGE I MPERFECTLY FIXED 

Discussion. 
The condition of perfect fixity assumed in the pre­

ceding sections of this report for the edge of the flange 
y = 0 (fig. 18) is probably never realized. This is due 
to two circumstances, which will be considered sepa­
rately. Both result from the moment induced at the 
edge y = 0 by the deformation of the ou tstanding flange 
bOUll led by this edge. This moment cause twi ting 
of the whole cros section of the column and it al 0 

cause elastic giving of the material along the junction 
of the base of the flange and the body of the column. 
Both of these phenomena, twisting of the section and 
elastic giving at the ba e of the flange, are accompanied 
by a change in the inclination of the flange at its base 
from the value zero required by the condition of per­
fect fh . .'ity. The twisting phenomenon is easily ex­
pre sed in terms of the torsional rigidity of the section. 
The ela tic giving appeal' to involve factors that are 
best determined experimentally . 

Effect of twisting of column. 

We proceed to calculate the effect of the twisting of 
the column induced by the moments acting along the 
edge y = O. (See Timoshenko. Reference 21, p. 400.) 

Let </> denote the angle of rotation of a cross section 
the abscissa of which is x. If elastic giving of the 
material is neglected for the present, 

( aW) cp- - . - ay 11=0 
(72) 

The torsional couple in any section i then 

where G is the modulus of rigidity of the material and 
K is the torsion constant of the section. (Reference 22, 

p. 1l, and 1929 annual report, p. 681.) The couple 
applied per unit lenath is then 

aM ( a3W) 
m= ax = GK ax2ay 1/-0 ' 

In applying the approximate method, the strain 
energy resulting from the twisting of the column (in 
whole or in segments) should be added to the strain 
energy of deformation of the corre ponding portion of 
the out tanding flange. The strain energy pel' half 
way length c, re ulting from twisting, is 

If 

V 1 = - - dx= - -- dx. 
l

c GK (a</»2 GKlc ( a2W)2 
o 2 ax 2 0 axiYIj 11 =0 

W = j (y) sin 7rX 
c 

VI = GK7r21f'(y) ] 2 
4c l 1/=0 

To apply the approximate method let 

[ ( 7ry )].7rX w = Ay+AI I-cos b sm c' 

(73) 

(74) 

If Al = 0 the edge y = 0 is simply supported . If A = 0 
the edge y = 0 is fixed. Hence, by allowing Ad A to 
vary from zero to infinity, all conditions on the edge 
y = 0 intermediate between those for an edge simply 
supported and those for one perfectly fixed can be 
satisfied by a deflection in the form given by (74) . 

It follow from (73) and (74) that 

A 2c 
(75) VI=-y -

4 
where 

GK7r2 

(76) -Y= ----;r . 

In calculating VI for a colunm of spruce the modulus 
of rigidity G may be taken as the mean modulus that 
would be given by a tor ion test on a cylinder of circular 
section. This value may be conveniently taken a 
Young's modulus in the longitudinal direction divided 
by 15 .6. (Reference 22, pp. 21 and 24, and 1929 
annual report, pp. 691 and 694.) 

Flange of nonisotropic material. 

For nonisotropic material, such a wood, with three 
mutually perpendicular planes of elastic ymmetry it 
follows from (5 ) and (74) that 

V = Ezh3c7r4 {A2 [b3
4 
+ 4ILxll (l- (J"Z1/(J"lIX) ~] 

4 (1 - (J"zv(J"1/z) 3c Ex 7r C 
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From (GO ) and (74) 

T=~:l A2 ~3 +A1
2b (~ - !)+AAl b2 (1 - ~ + 7r2 ) 1 

From 

usmg 

(77) 

it follo 'Ws that 

(78) 

or 

(7 a) 

where for convenience the following notation ha been 
used: 

(79) 

1 4 8 3 4 
c = -, CI = 1 - - + - , and C2 = ---. ° 3 7r 7r

2 2 7r 
(81 ) 

Flange of isotropic material. 
For isotropic material equation (7 ) with appropri­

ate values of do: dl , d2, Co, CI, and C2 become that given 
by Timoshenko, to whom the hoice of the form (74) 
for the de1lection w is due. (Reference 21, p . 401.) 

The valucs of thc coefficient do, dl, and (4 are 

d 
_ 1 + 2 (1 - 0' ) Ep2 

0 - 3 2 p+ 4 
7r 7r 

dl = l - +-- 1- + p (1 - 0') 1+ -4 8 p( 2) (2) 
7r 7r2 7r 7r 7r 7r 

( 2) 

d2 = - + p - - - + -3 4 (1 0') p 2 

3 7r 4 7r 32 
where 

(83) 

The constants Co, el, and C2 are unch anged. 

( 4 ) 

or 

(84a) 

Application of formulas. 
Equations (7 ) and (84) are of the same form as (68) 

and should be used in the same way. For a given E 

and a eries of values of the ratio c/b a series of critical 
s tresses p are determined corresponding to a suitable 
value z. The ratio c/b associated with the minimum 

I'itical s tre s (if there is a minimum) determines the 
half wav length c that is ideal for the value of E under 
consideration . 

For the study of a given column it is more conven­
ient to proceed in another way. The fir t step is to 
cons truct a table giving k in the formula for the 
critical s tress JJ as a function of the fixity coefficient E, 

fol' each of aeries 01' values of the ratio c/b of the half 
wave length to the width of the outstanding flange. 
Table XIII was constructed in this way for flanges of 
pruce and Table XIV for flanges of isotropic material. 

The re uIts in these tables are also shown in the curves 
01' Figures 23 and 24. 

The u e of the e curves in studying a givell colum'l 
i discussed in a later section of this appendix. In 
interpreting the curves, it must be borne in mind that 
the fixity coefficient E depends upon the half wave 
length c and the outstandinO' width b a well as upon 
the thickness 11, and the torsion cons tant K . 

TABLE XIII 

THE COEFFICIENT k IN EQUATIO (78a) FOR A 
FLANGE OF SPRUCE HAVING GROWTH RINGS AT 
A ANGLE OF 45° WITH THE FACE 

cjb _' I_k cj b , k 

I O. JO 0.868 3 0. 10 0.1 54 
I .05 .866 3 . 05 . 147 
1 .03 . 865 3 .03 . 142 
1 . 01 . 864 3 . 01 .136 
I .00 63 3 .00 . 132 

5 .10 .113 7 . 10 . 117 
5 .05 .102 7 . 05 . 102 
5 . 03 .094 7 .03 . 091 
5 . 01 .083 7 .01 . 073 
5 .00 .075 7 .00 . 059 

9 .10 .136 12 .10 . 181 
9 .05 .115 12 . 05 . 149 
\} .03 .100 12 .03 . 124 
9 . 01 .074 12 .01 . 079 
9 .00 .053 12 . 00 . 049 

15 .10 .241 20 . 10 . 375 
15 . 05 .195 20 . 05 .29 
15 .03 . 159 20 .03 .237 
15 .01 . 09 20 . 01 .133 
15 .00 .047 20 . 00 . 046 
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TABLE XIV 

THE COEFFI 'IE IT k I EQ ATIO (84a) FOR A 
FLANGE OF ISOTROPIC MATERIAL THAT HAS 
A POI SON 'S RATIO OF 0.25 

c/b 

-------
-- -----

-.-----

5 
5 
5 
5 
5 

-- - ----

10 
10 
10 
10 

0.50 
.10 
.00 

---------
------ - --

. 50 

. 10 

. 05 

.01 

.00 
- .. -------

. 50 

.10 

.05 

.02 

.00 
- - -------

.50 

.10 

.05 

.00 

k 

1. 287 
I. 273 
1. 269 

-------.--
_. -.------

.616 

.522 

.509 

.498 

.496 
_.--------

.750 

.503 

.469 

.448 

.434 
----- --- --

1.640 
.675 
.543 
.409 

c/b k 

2 0. 50 0.673 
2 .10 .628 
2 .05 .622 
2 .01 .6 17 
2 .00 .616 

.50 .660 

. 10 .498 

.05 . 476 

.03 .467 

.01 .4, 

.00 .4fi4 

.50 1.026 

.10 .549 

.05 .484 

.03 .458 

.01 .431 

.00 . 41 

Flange with a simply supported edge , the limiting case 
as the fixity coefficient approaches zero . 

As the fixity coefficient ~ approa hes zero in equations 
(7 ) and (84) it is found that the value of 2 corre pond­
ing to a minimum value of p approache zero. This 
should be so for as ~ approaches zero the edge y = 0 
becomes more and more nearly simply upported. 
The ratio of Al to A in (74) will then approach zero. 
By equation (77) tllis implie that 2 approaches zero, 
as just noted. 

Accordingly the limiting critical stress as ~ ap­
proaches zero i found to be 

p=[ . 7r

2 

.!.+~XVJE" h: (85) 
12(1- UXVuyx ) p Ex b 

by setting ~ = O and 2 = 0 in (7 ) and (0). The value 
of k given by thi formula for a imply upported edge 
agree well with tho e of Table XIII for the fixity 
coefficient ~ = O. As p becomes large p decrea e to the 
limi ting value, 

(86) 

ing the elastic con tant for spruce haying the 
growLh rings at an angle of 45° with the face of the 
H ange, ( 6) become 

h2 
p = 0.044 Ex b2' ( 7) 

If the growth ring are perp ndicular to the faces of the 
flange 

h2 

P = 0.053 Ex b2 ' 

while if they are parallel 
h2 

p = 0.037 Ex h2' 

(8 ) 

(89) 

Thu for a flange with a simply supported edge the 
criLical stress is Ie when the growth rings are parall el 
to the faee of the ilanO'e than wben the ring are 
inclined to them at an angle of 45°. For a nange with 
a perfectly fhed edge, on the contrary, the critical 
tre was found to be les when the ring are inclined 

to the face at an angle of 45° than when they are 
parallel to them. The relative variation of the critical 
tl'e with inclination of the rings is less for flanges 

with simply supported edge than for tho e with 
perfectly fixed edges . 

In practice, the fixity at the base of the flange is 
mall. Con equently the variation of the critical 
tres with the inclination of the growth rings may be 

expected to be inlilar to that for flange 'with simply 
supported edges . 

From thi point on the di cus ion will be limited to 
flanges with growth rings at an angle of 45° to the 
faces. The re ults may be considered to be applicable 
to flanges with rings at any inclination except for the 
extreme cases of ring nearly parallel to the faces or 
nearly perpendicular to them. In the first case the 
calculated critical stres hould be reduced somewhat, 
while in the second it should be increased omewhat. 
The e formulas hold for long flanges. For short one 
the effect of the first term of (85) mu t be included. 

For isotropic material the equation corresponding 
to ( 5) an d ( 6) are 

(90) 

and 
1 h2 

P=2(1+u)Eb2 · (91 ) 

With rr = 0.25 equation (91) becomes 

(92) 

and with u=0.3 

(93 ) 

For hort £lange the first term in (90) must be re­
tained. 

The 1'e ult expre sed by equations ( 5) 1,0 (93) for 
fl ange with a imply supported edge at y = 0 ou ld 
have been obtained directly through the approximaLe 
method by assuming, for example, in tead of (74) thaL 

W = Ay. 

Thi ' was done for isotropic flanges by Timoshenko. 
(Reference 21, p. 396.) 

Effect of elastic giving of material at the base of the 
flange. . 

In obtaining the preceding results the Ill, Ie of fixity 
of the edge y = 0 was ascribed to the twisting of the 
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column, either as a whole or in segment, in conse­
quence of the moments applied at t his edge by the 
deformation of the flange. Aetually, however, the 
material at the base of the flange yields elastically 
under the action of these moments so that the angle 
of rotation of the section i Jes than (Bw/By)y = o, 
the inclination of the fl ange at it base. Accordingly 
equation (72) should be replaced by 

¢ = 1/(~) 
By v=o 

where 1/ is some proper fraction. The effect is to 
reduco the s train energy VI (equation (73)) reslllting 
from the twisting of the column. To the reduced VI 
should be added the energy of deformation of the ma­
terial at the base of the {lange. This portion of the 
energy i relatively small. The result i that VI, equa­
tion (73), which was added to V, equation (5 ), to ex­
press the whole energy of deformation of the flange 
and column in so far as it arises from the load on the 
flanges, should be reduced. This is equivalent to say­
ing that e a calculated by (79) from the torsional ri­
gidity of the section should be reduced . 

For flanges of wood in which the grain is longitudinal, 
such reduction in the fixity coefficient is very great. 
This is due to the extremely small relative value of the 
modulus of elasticity E in the direction parallel to the 
faces of the {lange and perpendicular to its length, 
which ranges from ~{5 of the modulus in the longitudinal 
direction in quarter-sawn {langes of spruce to Hoo of this 
modulll in flanges in which the growth rings make an 
angle of 45° with the face. The te t show that, for 
calcula ted coefficients of fixity of the order of magni­
tude 0['2 and above, the critical tre s OlTe ponds to an 
actual fixity of about 0.01. Corre ponding reduction 
in the smaller calculated fixity coefficients are ob-
eryed but the law that the reduction follows has not 

been determined. 
The practical re ult of the reduction in fi..."{ity because 

of elastic giving is that the condition of a simply 
supported edge at the base of tho £lange is olosely 
approximated when the calculatecl fixity coefficient is 
small. The material is unable to transmit the bending 
moment from the base of the flange to the body of the 
column, with the result that the flange itself is inclined 
nearly as if it were merely hinged or simply upported 
at it base and consequently a condition in which 
formula (87) is applicable i approached. This 
situation will be discussed further in connection with 
the study of two flanged columns with the aid of the 
curves of Figure 23. 

A similar but probably not so great a reduction 
occms in the calculated fixity coefficients of the 

flange of structural steel column in consequence of 
the elastic giving of the material at the ba e of the 
flanges. Practically no data are available for use in 
determining the extent of this reduction. 

Examples of the determination of the critical stresses, 
neglecting the effect of elastic giving at the bases of 
the flanges . 

In the following paragraphs will be explained the 
pl'ocedm e to follow in applying the result of the 
preceding mathematical analy j, using the fixity 
coefficient as calculated from the torsional rigidity 
of the ection and the dimensions of the flange and 
neglecting the reduction in thi coefficient that should 
be made to allow for the ela tic giving of the material 
at the ba e of the flange. The method can then be 
applied when the reduced coefficients are known by 
sub tituting in each ca e for the fixity coefficient E the 
reduced fixity coefficient e'. 

The method will be first applied to a column of 
spruce similar to many of those used in the tests. The 
dimen ions are shown in Figure 25. The growth 
rings in the ingle outstanding flange wil l be a sumed 
to make an angle of 45° with the faces of th flange. 
The 1i,'rity coefficient is given by 

G 1 
Ex 15.6 

i t fo llows that 
K b2 

e= 7.5 bh3 CZ · (94) 

With the given dimensions 
1 

where a = c/b . e = 1066;;y· 

It is important to observe that 
the coefficient E depends upon 
the half wave length c. This co- FIGURE 25.-The cross 

efficien t was computed for a series 
of possible half wave length, the 
length of the column being 40 
inches, and the quantity k, to which 
the corre ponding cri tical stre is 

section of a wood test 
colu mn with Ii single 
tilin, outslanding llange 
the growth rings of 
which make an aogle 
of 45° with the (aces 

proportional, was then taken by extrapolation from the 
curves of Figure 23. The results are shown in Table 
XV. The numbers in the last column of the table are 
really estimated, since the values of e concerned are far 
beyond the limits plotted on the curves of Figure 23. 
Through in pection of thi column and the curve in 
Figure 23, however, it becomes clear that the flange will 
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break into five hali wave lengths, the critical stress be­
ing 0.12 Exh2/b2, corre ponding to the value 5.33 of the 
ratio c/b. These values agree well with those calcu­
lated for E = co. Indeed it is apparent from the be­
havior of the portions of the cmves shown that the 
ordinates rapidly approach their limiting values as E 

increases. 
The approximate method u ed in calculating the 

curves of Figme 23 give values of k that are slightly 
LOO large for the higher values of E. High values of E, 

however, do not occur in cases of practical interest, as 
will shortly be seen. T he approximate method may 
therefore be considered entirely satisfactory. 

TABLE XV 

V ARIATIO OF CRI TI AL STRESS WITH UMBER 
OF HALF WAVE LENGTHS FOR THE 40-I r CH COL­
UM OF FIGURE 25 

I Number of k half w"ave a=c/b (estimated) 

I 
Ipngths 

5.00 3.33 96.1 0.1 
7 5. 71 3.81 73.4 .13 
6 6. 67 4.45 53. 8 . 12 
5 .00 5.33 37.5 . 12 
4 10.00 6.67 24.0 . 12 
3 13.3:1 .89 13.5 .14 
2 20.00 13.33 6.0 .20 
1 40.00 26.67 1.5 .40 

Table XV was calculated on the assumption Lhat the 
effects of the elastic giving of the material at the ba e 
of the flange could be neglected. This table indi­
cated a mlnimum critical stres of 0.12 E~h2/b2, corre-
ponding to the value 5.33 of the ratio c/b. Actual 

te ts, however, show that the flange wrinkles at a 
stress of 0.07 E xh2fb2. (Part I , equation (5), p. 9.) 
TIllS reduction in the critical stress should be attrib­
uted to the elastic giving of the material at the base 
of the ilanO'e. The curves show that this nllnimum 
critical stre s should be attributed to a fL'{ity coeffi­
cient in the vicinity of 0.01 and a ratio of c/b of about 7. 
This example is yery informing, since i t indicates a 
reduction in the fu".ity coefficient from a number of 
the order of 20.0 to one of the order of 0.01. 

In the example ju t considered there was only one 
outstanding flange. If there are N flange, the fixity 
coefficient a calculated should be divided by N. 

Consider now the section of column T- 25, Figure 5. 
The length of the column i taken as 120 inches. 
The growth rings of the wood will be a umed to 
make an angle of 45° with the faces of the flanges. 
In accordance with equation (79 ) 

7.5 K b2
• 1 

E=T bh3 c2=2 .736 a2 (95) 

where a=c/b. Proceeding as before Table XVI was 
constructed with the aid of the cmyes of F igure 23. 

TABLE XVI 

VARIATIO J OF CRITICAL STRESS WITH NUMBER OF 
HALF WAVE LENGTHS FOR COLUMN 1'-25 OF 
FIGURE 5 

Number of 
half wave c 
lengths 

a=c/b • k 

8 15.00 4. 67 0.1255 0.115 
7 17.14 5. 34 . 0960 .112 
6 20.00 6.23 .0705 .107 
5 24.00 7. 47 . 0~90 .105 
4 30.00 9. 34 .0314 .103 
3 40.00 12.46 .Oli6 .102 
2 60.00 18.68 .0078 .107 
1 120.00 37.37 .0020 I .120 

I Estimated. 

The values of k in Table XVI indicate that at a 
cri tical stress of 0.102 Exh2jb2 each flange will break 
into tlnee half wave length corresponding to a fixity 
coefficient of 0.0176. The te ts showed that each 
ilange broke into a single half wave length and the 
colwnn twisted at a critical stres of about 0.044 
Exh2jb2, the critical stres for a imply supported edge. 
This means that the calculated fixity coefficient has 
been reduced nearly to zero by the elastic giving of the 
material at the ba es of the flanges. 

Failure through twisting or wrinkling. 

When, as in the example just given, the lea t critical 
tre s is as ociated with a half waye lenO'th equal to the 

length of the cohunn, the column fail by twisting 
about it aJl.'is. At the base of each flange, as a result 
of the beginninO' of failme, a torque that is in the ame 
sense for the entire length of the column is applied to 
the column as a whole. If a flange breaks into several 
half wave lengths, however, the torque at it ba e are 
in opposite senses in adjoining half wave lengths and 
consequently oppo e one another. 

Practical rules for determining the critical stress , al­
lowance being made fo r elastic giving of th e material 
at th e bases of th e fl anges. 

In a cruciform section baving equal arms and no 
fillets it appears from equation (95) that a change in 
the dimensions, b, the outstanding width, and h, the 
thickness of the flange, will not greatly alter the cal­
culated fi.,'Xity coefficient E, since K , the torsion con tant 
is nearly proportional to b and to h3. (Part I, p . 7.) 

Much the ame ituation exists in other section, 
uch as L , U, Z, and T, made up of component rect­

angles, all parts being of equal thickness and having 
no fillets. It appears from the data at our disposal 
that the flanges of such sections may be treated as 
having their base simply supported. The critical 
stress for long column of pruce of uch section may 
then be taken as 0.044 Ex h2/b2

, provided that tillS 
stress is less than the one that would cause primary 
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failure. If fillets are added to any of the e sections 
or if the thiclmess of the back of a channel i incr ased, 
lor example, the critical stress will increase. The 
exact amount of this increase can not be stated, ince 
the law by which the calculated fixity coefficient is 
reduced through the giving of the material at the 
bases of the flanges is not known. Tests indicate, 
however, that the critical stress is increa ed approxi­
mately in the ratio of the torsional rigidity of the 
changed section to that of the original ection. Thi 
relation may be taken to hold for spruce until the limit­
ing critical stre 0.07 E xh2fb2 is attained. From this 
point as the torsional rigidity increases the critical stress 
remains unchanged. 

As the critical stress increases with increasing co­
efficient of fixity at the ba e of the flange, the type of 
failure changes from one through twisting to one 
through wrinlding. The distinction between these 
externally different types of failure does not appear to 
be importa.nt, since the one goes over gradually to the 
other. 

For flanges on short columns the critical stresses 
will be higher than those for the long columns ju t 
considered. 

As previously stated, the foregoing discussion applie 
to flanges of spruce in which the growth rings make an 
angle of 45° with the faces of the flange. Flanges' of 
steel or other isotropic material can be treated in a 
similar way through the use of Table XIV and the 
curves of Figure 24. Sufficient experimental data for 
steel columns, to enable the authors to estimate the 
effect of the reduction in the calculated coefficient of 
fixity, have not been found in the literature. 

CONCLUSIO S 

1. Under a compressive load, the critical stress for a 
moderately long flange of spruce, perfectly fixed along 
its base and of thickness h and width b, is given by 

h2 

P = 0.228 Ex b2 

when the growth rings are perpendicular to the faces 
of the flange (fig. 21), by 

h2 

p = 0.117 Ex7)2 

when the rings make an angle of 45° with the faces 
(fig. 22), and by 

when the rings are parallel to the faces. In these 
formulas Ex is Young's modulus in the direction of the 

grain of the wood, which is taken as the direction of the 
length of the flange. 

For a flange of steul the base of which is perfectly 
fi.-..::ed the critical stress is given by 

h2 

p=1.16E-52 

when Poisson's ratio is taken as 0.3. 
2. If the base of the flange is simply supported the 

corresponding critical stresses are 

and 

and 

h2 

p = 0.053 Ex 52 

h2 

P = 0.044 Ex 7J2 

h2 

p=0.037 Ex 7)2 

for a flange of spruce and 
h2 

p = 0.385 E 7J2 

for a flange of steel. Such a condition at tha base of 
the flanges is found, for example, in the case of columns 
of L . U. Z, T. and + sections without fillets and 
having parts of the same thickness. 

3. The condition of perfect fixity is not realized in 
practice because of the elastic giving of the material 
at the base of the flange. Tests indicate that the 
upper limit of the critical tress for moderately long 
flanges of spruce i given by 

h2 

p = 0.07Ex 7)2" 

This is an average value from tests of specimens in 
which the growth rings were at various inclinations 
to the faces of the flanges. For trictly quarter-sawn 
flange the critical stress would be somewhat higher 
and for plain-sawn ones somewhat lower. The re­
duction from the values given for flanges with per­
fectly fixed edges should be attributed to the elastic 
giving of the material at the bases of the flanges. 

Because of the same elastic giving the fixity of 
flanges with partially fixed bases is greatly reduced. 
For such flanges the critical stress ranges from 

h2 

p=0.044Exb2 
to the upper limit 

Both limiting stresses can be increased somewhat for 
strictly quarter-sawn flanges and should be reduced 
somewhat for plain-sawn ones. 
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Tests on steel flanges were not made. A a re ult 
of the ela tic giving of the material at the base of the 
flange, however, it i probable that the upper limit of 
the critical stress will be found to be considerably le s 
than that calculated for a flange with a perfectly 
fixed edge. 

4. The critical stre es for hort flanges are greater 
than tho given by the preceding formula . 

5. The critical tre es obtained through u e of 
these formulas will be of interest only if they are less 

than tho e that would cause a primary failme of the 
column under consideration. 
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Positive directions of axes and angles (forces and moments) are shown by arrows 

Axis Moment about axis Angle Velocities 

Force 
(parallel 

Sym- to axis) 
Designation Sym-

Designation bol symbol bol 

LongitudinaL __ X X rolling _____ L 
LateraL _______ Y Y pitching ____ M 
NormaL ______ Z Z yawing _____ N 

Absolute coefficients of moment 
L M 

0 1= qbS Om= qcS 

Linear 
Positive Designa- Sym- (compo-
direction tion bol nent along Angular 

axis) 

Y-->Z roll ______ 

'" 
u p 

Z-->X pitch _____ 0 v q 
X-->Y yaw _____ 

'" 
w r 

Angle of set of control surface (relative to neu­
tral position), o. (Indicate surface by proper 
subscript.) 

4. PROPELLER SYMBOLS 

D, Diameter. 
p, Geometric pitch. 
pjD, Pitch ratio. 
V', Inflow velocity. 
V., Slipstream velocity. 

T, Thrust, absolute coefficient OT= pn;D4 

Q, Torque, absolute coefficient 00 = 9D5 pn 

. p 
P, Power, absolute coefficient Op= 3n1;' pn 1I 

OS, Speed power coefficient =.v ~~:. 
1/, Efficiency. 
n, Revolutions per second, r. p. s. 

<P, Effective helix angle = tan-1 (2:n) 

5. NUMERICAL RELATIONS 

1 hp = 76.04 kg/mtsc =1)5tT'lb.jft·/sec. 
1 kg/m/s=0.01315 hp 
1 mi.fhr. =0.44704 mls 
1 mjs=2.23693 mi·fhr· 

1 lb. = 0.4535924277 kg 
1 kg = 2.2046224 lb. 
1 mi. = 1609.35 m=5280 ft. 
1 m = 3.2808333 ft. 




