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AERONAUTICAL SYMBOLS 
1. FUNDAMENTAL AND DERIVED UNITS 

2. GENERAL SYMBOLS, ETC. 

W, Weight = mg mk2, Moment of inertia (indicate axis of the 
g, Standard acceleration of gravity = 9.80665 radius of gyration k, by proper sub- 

m/s2 = 32.1740 ft./sec2 script). 

Length- - - - - - - 
Time --------- 
Force -------- 

Power -------- 
Speed- - - - - - - - 

W m, Mass =- 
4 

Symbol 

I 
t 
F 

P 
- - - - - -, - - - 

& .  
S, Area. 
En, Wing: area. etc. 

Metric 

p,  ensi it^-(mass per unit volume). G,. ~ a ~ r  
Standard density of dry air, 0.12497 (l~g-rn-~ b, Span. 

Unit 

meter ----,,------------ 
second- - -, - - - - - - - - - - - - - 
weight of one kilogram--- 

kglmls------------------------,-- 
km/h -----,------ ------- 

{mls .................... 

English 

s2) at 15' C. and 750 mm-0.002378 e, Chord. 

Symbol 

m 
6 

kg 

k. p. h. 
m.p.6. 

Unit 

foot (or mile) - -------- 
second (or hour) ------- 
weight of one pound-,, 

horsepower ----------- 
mi./hr. ------------,-- 
ft./sec .--------------- 

(lb.-ft.-4 s e ~ . ~ ) .  
bz Aspect ratio. Specific weight of "standard" air, 1.2255 S' 

Symbol 

f t .  (or mi.) 
sec. (or hr.) 
Ib. 

h~ 
m. p. h. 
f.p.6. 

kg/m3 -0.07651 Ib./ft.3. p, Coefficient of viscosity. 

3. AERODYNAMICAL SYMBOLS 

V, True air speed. Q, Resultant moment. 
1 8, Resultant angular velocity. 

q, Dynamic (or impact) pressure =- pV2. 2 VI 
L p--rReynolds Number, where 1 is a linear 

u L, Lift, absolute coefficient 4=$ dimension. - 

D 
D, Drag, absolute coefficient Go=@ e. g., for a model airfoil 3 in. chord, 100 

mi&. normal pressure, at 1 5 O  C., the 
D Do, Profile drag, absolute coefficient CDo = -' corresponding number is 234,000; 
cls or for a model of 10 cm chord 40 mls, 
Dt Di, Induced drag, absoiute coefficient CD,= - the corresponding number is 274,000. 
gS Cg, Center of pressure coefficient (ratio of - 
U 

D ,, Parasite drag, absolute coefficient Cb,=-p distance of c. p. from leading edge to 
cis chord length). 

C, Cross-wind force, absolute coefficient a, Angle of attack. ,.. 
b' 

Cc=$ e, Angle of downwash. 

R, Resultant force. a,, Angle of attack, infinite aspect ratio. 

i,, Angle of setting of wings (relative to of attaok, induced. 
thrust line). a,, Angle of attack, absolute. 

it, Angle of stabilizer setting (relative to (Measured from zero lift position.) 
thrust line). y, Flight path angle. 
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REPORT No. 383 . 

ON THE THEORY OF WING SECTIONS WITH PARTICULAR REFERENCE TO THE 
LIFT DISTRIBUTION 

SUMMARY 

This paper gives a simple and exact method o f  calcu- 
lating the lift distribution on thin wing sections. The 
most essential feature of the new theory i s  the introduc- 
tion of an  "ideal angle of attack," this angle being 
deJned as that at which the $ow enters the leading edge 
smoothly or, more precisely, as the angle of attack at 
which the lift at the leading edge equals zero. The lift 
distribution at this particular angle i s  shown to be a 
characteristic property of the section and has been 
termed the" basic distribution." I t  is shown that the lift of 
a wing section may always be considered to consist o f  (a)  
the basic distribution a,nd (b )  the additional distribution, 
where the latter i s  independent of the mean camber line and 
thus identical for all thin sections. The specific reason for 
the poor aerodynamic qualities of thin wing sections is 
pointed out as being due to the fact that the additional l i f t in  
potential $ow becomes inJnite at the leading edge. 

The theory ia in consequence adapted to describe some 
of the properties of actual wing sections. I t  is estab- 
lished that the essential parameter occurring in this 
analysis is the radius of curvature at the leading edge. 
The location and magnitude o f  the maximum lift intensity 
is  determined. .It is further pointed out that the actual 
slope of the lift curve is  dependent on this parameter. 

The theoretical lift distribution i s  compared with the 
distribution obtained by direct measurement on a number 
of the more conventional wing sections. The results 
check satisfactorily and may be consid4red as a conJr- 
mation of the validity of the theory. 

The new theory will be o f  value in the further improve- 
ments of airplane wings. I t  i s  pointed out that air- 
planes should be operated near the ideal angle of attack. 
The theory will also be of use in calculating the structural 
strength of wing sections. 

INTRODUCTION 

The existing theory for thin wing sections leads, in 
general, to an infinite velocity around the front edge. 
The condition is shown exaggerated in Figure 1. To 
avoid this inaccuracy a new condition has to be intro- 
duced. This is the requirement of a smooth flow 
around the front edge. I t  will be noticed that this is in 
analogy with the well-known Kutta condition for the rear 
edge. The new developments lead directly to the estab- 
lishment of an angle of maximum "entrance efficiency." 

I t  has been found possible to extend the theory also 
to thick or actual wing sections. The most important 
parameter in this analysis is the radius of curvature 
at the leading edge. 

Even with the advances made in the field of experi- 
mental aerodynamics, the mere knowledge of the 
expected total lift and moment of a wing section fur- 
nishes but a poor guidance, if any at all. 

The usual theory of wing sections is only capable of 
giving the total lift and the total moment on a wing 
section, the new gives also the pressure distribution. 

The main object of the study was to establish the 
pressure or lift distribution on the actual airfoil. On 

introducing the requirement of a smooth flow at the 
entrance edge the author has been able to determine 
the theoretical pressure distribution on a thin wing sec- 
tion. This distribution is of interest in the study of the 
properties of actual wing sections of similar basic shape. 
This distribution occurs only at a given angle of attack. 
This angle, which is a given characteristic of each air- 
foil, has been termed the ideal angle of attack. 

I t  is shown that the lift distribution may be con- 
sidered to consist of the basic distribution at the ideal 
angle plus a given function multiplied by the angle of 
attack as measured from this ideal angle. 

This function has been determined theoretically for 
actual wing sections. 

Considerable simplification in the method and a 
resulting greater applicability of the theoretical deduc- 
tions to actual testing have been obtained. The 
theoretical prediction of the effect of changes in the 
airfoil has, in particular, been simplified. 

The new theory has been succ6ssfully applied to some 
of the more frequently used wing sections for which 
test data were available. For this work we feel greatly 
indebted to Mr. R. M. Pinkerton of the Langley 
Memorial Aeronautical Laboratory. 

I t  is on a precise knowledge of the expected individ- 
ual ri3les played by each element in their contribution 
to t . L 9  whole that the road to future developments 
must be based. As usual, it may be said that no com- 
prehension of the effect of arbitrary changes may_ be 
arrived at without the guidance of the theory. I t  is 
the exclusive merit of a rigid theory to limit the num- 
ber of possible variables to a reasonable number, thus 
eliminating unnecessary experimenting, and of guiding 
the work into definite channels from which ultimately 
the useful facts are bound to emanate. 

3 



REPORT No. 383 
ON THE THEORY OF WING SECTIONS WITH PARTICULAR REFERENCE 

TO THE LIFT DISTRlBUTION 
PART I 

GENERAL 

In olider to avoid any repetition of the theory of the 
airfoil as it exists at the present time, we will refer 

exclusively to the works of Glauert as givm in Refer- 
ence 1 .  

We will in consequence adopt the nomenclature used 
by him throughout this study.' The system of coor- 
dinates is shown in E " i e  2. 

Glauert's work is in agreement with the principles 
developed by Max M. Munk. 

CALCULATION OF THE ANGULAR DISTORTION 

The angular distortion e plays an important r81e in 
the following theory. In fact, if the e  curve is known 
for a wing section, all the characteristics are obtained 
with ease. 

Just in the same manner as an airfoil is considered as 
a distorted straight line, its almost circular image may 
be considered as a distorted circle. 

The angular distortion is given by e =  - Z A, cos no; 
the radial distortion by r = 2 A, sin n 0  where 

We may then write 

where the symbols 8 ,  and e are used in order to dis- 
tinguish between the two different kinds of variables. 

This expression can easily be transformed to 

1 With theexcsption that t o  has been replaeed by themorelogical rr at2=1 and with 
to corresponding to z=0, and the lift coefflcient CL is used instead of the British 
KL(CL=~KL) .  Nondimensional equations are used throughout the report. 

* (Reference I, p. d.) 

4 

In order to develop this integral further we write 

1  , - - i Z ( e f n z -  e - fnz)  
2 

Let 
2 e f n z = e f Z + e 2 f z + e 3 f z +  . . . =S. 

This series is not convergent and its value is per- 
fectly indeterminate. 

This di£ficulty can be avoided, however, by the fol- 
lowing stratagem. We write 

S = e f 2 + e 2 i 2 + e 3 f 2 +  . . . en-12 

and 
-seiz= - e z r ~ -  e  3 f 2  . . .   en-^^- en' 

By addition 

Similarly 

Then 

e f n z  + e-i(n-l)z 
where += l - e f z  

From equation I 

1  e + o ,  0 - 0  e2= - - r r  2 r  o  (cot +cot 2+i+l+i+2 2 ) d%. 
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The functiolrs and i& containing the arguments 
0- 0, 9 and T ,  respectively, have infinitely high pe- 2 

riods and thus furnish nothing to the value of the inte- 
gral. Therefore 

In order to separate the independent variables 0 and 
13,) we write 

e e 
(cot cot +F 1 

cot -+- = (;-2) ( e 
2 @)= ~ ~ 3 )  cot -%cot- 2 

e 0, 
where Axcot -- and B=cot T -  2 

Then 

- - (AB-I) (-A+B)+(A+B) (ABSI) 
B2 - A2 

- 2A(1+ B2) - B2-A2 
and 

Using coordinates given as fractions of the chord with 
zero at the leading edge (Figure 2)) 

1-cos 8=2x and sin2 e=4x( l -~ ) ,  

we obtain ' 

s sine 2J==4= cot-= 2 ~ - C O S O =  22 x 
also 

T=- 
2dx 2y* and d o = .  

sin e sin e 
Introduced in 111, this gives 

(Reference 1,  p. 2.) 

and f ind7  

It is important to notice that the x-axis must coin- 
cide with the line joining the extremities of the mean 
camber line as indicated in Figure 2. 

The integrand becomes infinite at the point x=xl. 
The value of the integral is, however, finite. . 

, we have Introducing P = - 
Jx(1 -XI 

This relation may also be written 

That is, from the value P, at x is subtracted the 
value P(zz,-,) at the point 2x1-x, which is located 
the same distance from the point XI, but in the opposite 
direction. 

This integrand does not become infinite at any point 
0 <x< 1, and the integration can be performed for 
any profile. 

The calculated *curves for three typical wing sec- 
tions are shown in Figures 18, 19, and 20. 

CALCULATION OF s AND 4 

The calculation of eo and is more difficult, due to 
the fact that the integrand becomes infinite if the 
derivative y' is different from zero. 

Let us calculate the contributions to Q from the 
element between 0 and Ax where Ax is a very small 
quantity. 

Assuming y to be a straight line between 0 and Ax, 
we observe that the contribution to the integral, 
equation IV, is 

for Ax= 0.05 
A%= - 2.85~0.05 VI  

If y is curved upwards between 0 and 0.05, the con- 
tribution to the integral is somewhat larger. Similarly 
we obtain Ael = 4- 2 . 8 5 ~ ~ ~ ~ ~  as the contribu'l.:~ to e, 

from the element adjacent to the rear edge. 

GRAPHICAL EVALUATION OF r. 

Plot the function P, see Figure 3. Construct the 
curve carefully near 0 and 1. 

To find e, draw lines as shown in figure. I t  will be 
noticed that the integral 
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also may be written 

es,= -A f1 tan a dx 
= J O  

VII 

where a is the angle formed by a line drawn from 
. (xl, 0) to (x, P) as indicated in Figure 3. 

Infinite values of tan a are avoided by subtracting 
corresponding values of P as. indicated above. This 
amounts to folding the area around xl and taking the 
integral for the resulting difference, Figure 4. Since 
P crosses the x axis at right angles, it will be noticed 

that s and el actually contain elements of infinite 
height. The area formed is, however, finite and can be 
obtained graphicallv or by the calculation shown above. 
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LIFT DISTRIBUTION 

ANALYSIS OF THE EXISTING THEORY 

1 a 1 The nondimensional pressure P as given by Glauert 
where -- = cot2 and dx= - sin may be written in the form I 2 2 

(from reference 1, p. 5) 0.r 

(The function d-) = R appears throughout the 
work and is given for convenience in Table I.) 

I 

Now that we have actually been able to determine 
the value of the distortion e, we are able to express P 
as a definite function of the position x. 

This work will be taken up in Part 111. 
I t  is very interesting to notice that the second 

d function - - [ (s  - c) 4-1 is vital in determining dx 
the pressure distribution on the section, while it does 
not _affect the total pressure or the lift of the wing. 

The integral is identically zero, Figure 5. 
The total pressure on the wing is thus given by 

a a a  4(a+ €,)r cot 2 sin 5 cos 5 da  
0 

which is the value of the absolute lift coefficient in 
accordance with this theory. 

d The expression 6; [(h - e) Jx(1- x)] is entirely a 

function of the shape of the airfoiI and is thus not 
altered with a change in the angle of attack. 

Let us express the equation 

The distribution 'of n is indicated in Figure 6. I t  is 
infinite at the leading edge and zero at the trailing 
edge. The distribution of i2 is indicated approxi- 
mately by Figure 'I. The value of this function is  also 
infinite and zero at the front and rear edge, respec- 
tively, but the net area equals zero. 

For a point close to the front edge we ar;? confronted 
with the 4ctual determination of the value cc, - ob- 
tained by subtracting y2 from yl. 

7 
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This quantrity is determined as follows: 
Let us write for a point close to the origin 

de The last term ,/G z is negligible compared with the 

other terms and therefore 

This pressure is zero only if s= - 2a- el. In all 
other cases the pressure at the very edge is infinite, 
indicating that nonpermissible conditions are imposed 
by the theory. This relationship could have been 
expected. I t  is possible to show directly that the 
front stagnation point occurs at the angle - 2a- el. 

In order to obtain smooth flow past the front edge 
of the infinitely thin airfoil it is necessary that the 
above relation be satisfied, that is 

6- -2a-€1. I X  

I t  is noticed from the expression just developed for 
the pressure near the front edge that this requirement 
is actually a necessity in order to avoid infinite pres- 
sures at this .point. We may even go a step further 
in stating that the existing theory of thin wing sec- 
tions fails to give the true values of the lift and 
moment, except for the definite value of the angle of 
attack: 

Let us call this the ideal angle of attack. In all 
other cases the usual theory leads to infinite pressure 
differences across the leading edge. The assumption 
of a noncompressible fluid, on which this theory is 
based, is obviously violated. The theory breaks down 
in a precise study of localized effects. 

This angle plays in the aerodynamic theory of air- 
foils a r81e just as predominant as that of the entrance 
angle in the theory of turbines. While in the theory 
of turbines the question of entrance angles is com- 
pletely settled, enough thought has probably not been 
given to the corresponding problem in aerodynamics. 

DISCUSSION OF EXPRESSION FOR PRESSURE ON 
WING SECTION 

Glauert gives as expression for the numerical value 
of the velocity around the airfoil: 

' 

(Reference I, equation 14). We will observe that near 
0 = r no difficulties are encountered, since the infinite 
factors actually will cancel each other at e = r  due to 
the Eutta condition. 

As 8 4  we run into difficulties. We obtain for a 
point e = + Ae, 

Glauert's method of calculating the pitching moment 
on the basis of equation 14 is not strictly permissible. 
The factor [(a+ e) cot B +  (a+ el) cosec 01 can not be 
treated as a small quantity near the origin, and the 
squares and products of such large quantities can not 
be neglected as compared with unity. 

We know the numerical value of the velocity can not 
become less than zero and the corresponding pressure 

1 not greater than - pV2. There is also a limit to the 2 
maximum value of the velocity. This will not pass 
the sound velocity of the medium, and the greatest 
negative pressure is, in consequence, about one-half 
atmo~phere.~ 

The diEculties are, however, dispensed with by 
introducing what we will call the front edge condition. 

It will be noticed that if eo happens to be equal to 
- (2af  el), there is no infinite factor in Equation XI. 

2 Disregarding the fact that the factor mentioned above can not be treated as 
small near the origin, the results may be considered as sutficiently accurate for all 
points beyond z=0.1. 
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PART I11 
DIRECT CALCULATION OF THE 

9f % 
'-gr= -- 2 

If the ecurve is not found we may calculate ~ u ,  as 
follows: e =  -Z A, cos n 8 

-%=+AO+A1+A2+ . . . . 
-e l=  Ao-A1+A2-A3 . . . 

-(Eg+cl)=2(AO+A2+A4+ . . . .) 
=22rrde(s in00+sin28+ . .). 

K o 

This is equal to the imaginary part of 

n=O, 2, 4, 6, . . ., 
But ZeiW (n=O, 2, 4, 6, . . .) = 

1 e-@ cose-{sine ---- 
l -e2@-e-@-e@- -2{ sine 

Therefore - (w + s )  = 

2dx 
2y and do=- but r = -  sin e sin e 

We obtain - (s + el) 

1 

- -IS 
1 ydx(1- 22) 

='J' a y d x 8 [ ~ / 1 - ~ ) ] t - r  o m~ 
Iydx (1-22)-LJ1ydx - ---. (1-2x) 

R3 XI1 

A 4-point method gives the ideal angle in degrees, 
with s a c i e n t  accuracy as follows : 

4'623 (91 -Y&) + 47 (YZ-Y~) 
where y,, y2, y4, and y, are the ordinates of the mean 
camber line with respect to its chord at x=0.542, 
12.574,87.42 L, and 99.458 per cent chord, respectively. 

PRESSURE DISTRIBUTION ON THE THIN WING AT 
a=ar 

Rearranging, we obtain easily from Equation VIII: 

- de 2 
P=4&(1 -x)%+ i;m[2ff(l-~) XI11 

+ el + c(1- 2x)] 

IDEAL ANGLE OF ATTACK 

and with 
%+EI '-gz= --• 

2 .  
2 

[-eo(1 -XI 

or 
de 2 

P z = ~ ~ x ( I - x ) - +  dx dx(1-2) - [(-B+€) 

+ (%-2e+9)xI. 

This pressure distribution may, in order to fix our 
thoughts, be termed the basic pressure distribution of 
the section. 

Writing Jx(1- x) = R, we hive 

dc 2 
P I = 4 R ~ + z i e - % + ( w - 2 e + e 1 ) ~ ]  XIV 

This is the exact expression for P at, the ideal angle of 
attack for a thin airfoil. In this expression PI is the 
pressure dserence and e the distortion at x, co and s 
are the values of e at x = 0 and at x = 1, lespectively. 
The equation is readily integrated'and yields the value 
of the lift LI= a (el - cO). The basic distribution 
curves for three airfoils are shown in Figures 21, 22, 
and 23. The comparison has for convenience been 
made at the same total lift. 

I t  is noted that the center of lift of the measured 
distribution is nearer the leading edge than that of the 
theoretical distribution. I t  is believed that t+s effect 
is partly due to the finite aspect ratio of the airfoils on 
which the measurements were made. The exact effect 
of the finite aspect ratio is not simply to change the 
direction of flow as considered by the usual theory; but 
more precisely to change the local curvature in a cer- 
tain prescribed manner. The flow near the leadmg 
edge is less affected by the " downwash" thus produc- 
ing a lift which is greater than that based on the 
average hection of Near the trailing edge the 
reverse is true. 

The theory of thin wmg sections must this be based 
on the following assumptions : 

I. The flow must leave the trailing edge 
smoothly (Kutta's condition). 

11. The flow must enter the leading edge 
smoothly (front edge condition). 

9 



In all other cases the theory leads to infinite pressure 
differences. 

The first condition requires a circulation 

while according to condition 11, the angle of attack 
must be equal to 

%+el. 
ff15 -- 

2 

On basis of the theory developed above, we are 
actually able to explain certain properties of the lift 
curve. For instance, to obtain an efficient high lift 
wing section, it is obvious that 6 should be made large. 

The circulation at this condition point (I and I1 
satisfied) is equal to 

Note that both cur and L, are functions of the shape 
of the foil. I t  is impossible to devise a more efficient 
flow than that satisfying the above conditions. 

Thickening the airfoil does not improve the condi- 
tion. It only permits a certain violation of condition 
I1 with less disagreeable consequences. This fact 

explains why the Munk theory, acknowledging solely 
condition I, gives better results when applied to thick 
airfoils, while the theory actually is developed for 
infinitely thin foils. 

The fact is that the thickening of the foil makes it 
less efficient, but gives i t  a certain immunity against 
the losses caused by incorrect flow past the leading 
edge. This will be shown later. 

The above deductions explain several facts relating 
to the shape of the lift curve. For instance, why the 
most efficient angle of incidence, in general, is greater 
for a section with a greater curvature at  the leading 
edge. We know that the minimum friction loss clearly 
must be expected to occur near 

The entrance loss is evidently a function of I a- c u r l .  
The case is quite similar to that of the entrance loss 
in turbines. We may write for this loss 

Experience has shown that q is very large for a sharp 
leading edge and that i t  decreases rapidly as the 
thickness of the airfoil is increased. I t  is, however, 
difficult to- separate this loss experimentally. 

CALCU~ATION OF EXPRESSION FOR THE BASIC LIFT 

In analogy with the calculations for a!, we obtain : 

or the imaginary part of where n = 1,3,5, . . 
but 

and 

and 

The approximate Gauss' method gives: LI=69(ylf yd 
+6.8(yz+ y4) +3.6y3 where y3 is taken at x=50 per 
cent C. 

This function has considerable significance as being 
the lift at the ideal. angle of attack, or the lift of the 
wing when the flow is theoretically correct around the 
leading edge. 

I t  is noticed how the elements near front and rear 
are of the greatest importance. 

From Equation XVa we obtain . 

This expression shows that in order to obtain a high 
basic lift the angle near the nose should be steep. 
The fact that x appears only in ji power, shows that 
the steepness need not extend for any length. In 
fact, the best airfoil would be the one shown in Figw B 8 
if it were not for the fact that we must maintain poten- 
tial flow. Experience shows that any great curvature 
near the rear edge is poor aerodynamically. I t  is also 
in contradiction with the requirement of a small center 
of pressure travel. 

ADDITIONAL PRESSURE WHEN THE ANGLE OF INCI- 
DENCE IS DIFFERENT FROM THE IDEAL ANGLE 

We will observe from the expression for the pressure 
,distribution, Equation XIII, that the increase in the 
pressure due to a change in the angle a! is equal to 

(a!-ar). XVI 



The expression is, as pointed out, obviously far from 
giving the physical facts. 

The infinite pressure, of course, does not occur. In 
the limiting case sound velocity is reached, while the 
other extreme corresponds to a velocity of zero at the 
stagnation point. These facts are neglected in the 
present theory. 

If the angle of attack is different from a, we will now 
consider what actually takes place near the nose. We 
restrict ourselves to velocities considerably less than 
the velocity of sound. 

The velocity of potentid flow near the surface of a 
circle is given by the expression: 

Let the rear stagnation point occur at 3= T. 
This condition is satisfied by: 

I 

dw - 2iVeQ [sin (a + a )  + sin a]. dz= 

For'small values of a! and cP we write: 

*= -2iVe* (2a+3) and dz 

an 'angle a toward the direction of flow at infinity and 
equipped with a circulation suflicient in magnitude to 
locate the rear stagnation point at the corresponding 
end point of the major axis. The flow is indicated 
schematically in Figure 9. Reshaping of the rear part 
of this section so as to simulate a flat airfoil does not 
materially alter the flow at the front edge. 

It may be shown that: 

where p is the radius of curvature at the nose and 
c the chord. 

Consequently: 
(2a+ 9)' 

W2= v2 
3+@ C 

- 
We are more interested in the difference between 

the pressures at the upper and lower side of the nose. 
I 

V _ _ _ _ _ - - - - - C  

Let us transform this circle into an ellipse: ---.--_ - _  _ 

XVII 

With /3 close to unity, we may write: 

--- ~ a2 
~ = l - 2 p ( c o s  dz 23-i sin 2~ 

$= 1 -/i?(cos 23-i sin 2 4  

For small values of 

~ = l - ~ ( l - ~ i 3 ) ,  dz 

neglecting quantities of higher order than the first. 
Further : 

= (1 - ,3)2 + (23/3)2. 

This gives for the square of the velocity near 3 = 0 

(2a + $'2 
WZ= 4V2 (1 + (2@@)2 

I t  may be shown that the hf the airfoil corre- 
2 P sponding to a 2 = 2  c is located at z= - 2 or at the focal 

* - I, - -- _ . _ _  _ _ _ 
and at -3 by - - 

(2'2 - Pz = 
2~+@ 
C 

The difference is 

P= 8a3 
2P+ 3 2  
c 

2 
This function has a maximum at P= f 

This maximum equals 

or referred to the ideal angle P ,  

XVIII 

\ z /  

This expression gives the square of the velocity near 
the front edge of a flat elliptical cylinder inclined at 

point of the ellipse. 
I t  be rnderstood that the local flow very close to 

the nose is not very dependent on the shape of the rear 
(Reference I ,  epuation 10.) part of the foil, provided the Kutta condition is satis- 
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fied; that is, that the flow leaves the circle at  @= T as 
prescribed above. 

The greatest pressure difference across the nose thus 
occurs at a point midway between the center of curva- 
ture and the front edge. 

Its magnitude equals 

I t  will be noticed that the point is usually located 
less than 1 per cent from the edge and that the magni- 

tude of this pressure difference for ordinary airfoils is 
usually less than 4p except at the highest angles of 
attack. (Table VI.) 

In  addition to the basic pressure distribution at  c r ~  

given in equation XIV, we must add the distiibution 
due to the difference in the angle of attack. The latter 
can be obtained as follows: For points near x= 0, we 
employ Equation XVII and for points near x- 1, we 
employ  quat ti on XVI. By applying our analysis to 
ri st.~aight Joukowsl.;y section, we find further that no 
great change in the l if t  per radian takes place. That is, 
the concentrated lift at  the nose of a thin section will 
appear as a distributed lift of approximately the same 
magnitude. The center of this l i f t  will then m ~ v e  
from the 25 per cent location to a somewhat greater 
value of x. In  plotting the curve, we will consider it 
sufficiently accurate for most purposes to determine 

P,, (Equation XVIII) at x=$ and to draw the line 

as indicated in Figure 24. .The area or total lift per 
radian obtained in this manner is less than 2~ and 
almost exactly equal to the observed values. An ex- 
pected increase of lift along the remainder of the airfoil 
is, for practical purposes, almost completely nullified 
by the frictional losses, Table VI and Figure 25. 

The total lift of an airfoil is then mathematically 
expressed as : 

L=LISa,  (a-aI) XIX  

There exists a slight increase in this coefficient a. with 
a decrease of the radius of curvature at  the front edge 
(see Figure 25). I t  thus'probably serves no purpose 
to refine the above simple method by considering 
second-order terms or departures from an elliptical nose. 

EXPRESSION OF MOMENT ON THE AIRFOIL 

' We are on basis of the theory here represented able 
to furnish a clear picture of the question of the center 

of pressure travel. The total moment is represented 
by: (1) The momeslt of the basic distribution and 
(2) the moment of the additional distribution. 

The center of pressure of the additional distribution 
is for the thin airfoil located at x=0.25 and for a con- 
ventional airfoil (and potential flow) say, at x = 0.30. 

The magnitude of the travel of the center of pressure 
thus depends on the basic lift and on the moment of 
the basic eft about this point. 

The magnitude of this moment M equals : r P,(x- 0.25)dx 

I t  may be written 

(el - e)7/x(l- x)dx=4 (el- e)Rdx XX 

This integral is, in general, positive due to the fact 
that q ordinarily is the greatest value of e. (See fig. 5.) 

Any great accuracy in the total moment serves no par- 
ticular purpose. The center of pressure of the addi- 
tional distribution is actually located near x = 0.3, 

however, and the actual moment of the basic lift then 
differs slightfly from Equation XX. 

The simple derivation. of the above moment in 
accordance with the present theory is, however, a 
distinct advantage, and peculiarly enough, the center 
of pressure of the additional distribution actually 
tends to shift forward, due to the effect of the finite 
aspect ratio. 

It is interesting to know what happens if we keep 
the end values fixed at e,, and q, but decrease the area 
EI - e. This is indicated by the two dotted lines a 
and b in Figure 1 1. 

M is decreased, decreasing with it the travel of 
the center of pressure. Curve a corresponds to M = 0 



with a fixed center of pressure, b to a small M and 
s m d  travel of the center of pressure. 

The corresponding appearance of the airfoils is 
given in Figures 12 and 13. Figure 12 corresponds 
to the curve a with M=0. S shape is necessary as 

shown by Munk. The integral contains in this case 
a sufficient number of negative elements. 

Negative elements are avoided in curve b where c is 
stationary for a considerable distance from the rear 
end. This leads to the foil shown in Figure 13, with 

a straight rear end inclined at a fixed angle 8. We 
know from experience that it is quite difficult to 
maintain potential flow along the upper side of an 
airfoil if the change of direction is abrupt. For this 
reason the foil in Figure 13 with no change in cur- 
vature is probably superior to the oneshownin Fi,gure 12. 

THE IDEAL AIRFOIL 

We keep in mind that we do not want any large 
change in the location of the center of pressure. The 

foil arrived at so far should look like the one shown 
in Figure 14. 

I t  is evident from the preceding analysis that ar and 
LI should correspond to the coefficients at cruising 
speed or at the speed for which the greatest efficiency 
is desired. With a well-rounded front edge the im- 
portance of the front edge requirement is lessened, 
but not removed. The well-known poor characteris- 
tics of an airfoil approaching the mathematically 

"thin" section is due to this cause, as has been 
pointed out. I t  may be expected that the thin section 
at the optimum angle of attack cur in a flow without 
great initial turbulence is the best of all airfoils. 

But even for thick airfoils this consideration must 
be given proper attention. We must give as little 
occasion as possible for the creation of disturbances 
near the front edge. The study of the airplane nose 
is thus a problem of considerable importance. The 

design shown in F i e  15 will permit a large "most 
efficient" lift as far as the entrance condition is 
concerned. I t  leads, however, to a great curvature 
of the upper surface of the foil of conventional thick- 
ness. We know from experience that such designs 

cause premature turbulence. I t  is pointed out that a 
great increase in maximum lift above that of the con- 
ventional airfoil might be obtained by a foil of the 
above proposed type in conjunction with an auxiliary 
deflecting plate or guiding vane, located above the 

0 1 . 3  4 . 5  6 7 8 9 l . O  
FIGWE 18.-Distortion e. Clark Y airfoil 

point of the upper surface having the greatest ordinate, 
as indicated in Figure 16. This scheme has little 
justilkation or value in conjunction with airfoils of 
conventional designs. I t  is hoped, however, that 
such design might lead to a thicker and narrower 

FIQURE 19.-Distortion a. N. A. C. A. M-6 airfoil 

main wing section, which is sometimes desirable for 
structural reasons. 

AUTOMATIC ADJUSTMENT OF THE ENTRANCE ANGLE 

If a "thin" wipy section should be employed 
successfully as an airfoil, it would at least be necessary 
to have the leading edge adjustable. The importance 
of the angle at  the very edge has been pointed out be- 
fore. This end has unconsciously been obtained by 
rounding the front edge. This is equivalent to 
permitting change in the entrance angle and thus 
in the very shape of the foil. To make this point 
clear we refer to Figure 17, where b is the "shape " of the 
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airfoil at  low angles of attack and a at high angles. 
I t  should be pointed out that the actual "edge" of 

I 

e 0 

-. 1 

0 I .2 .3 .4 .5 .6 .7 .8 .9 1.0 
FIGURE 20.-Distortion r N. A. C. A. 84 airfoil 

the section and of the associated "thin" section is the 
momentary location of the stagnation point. A 

FIGUEE 2i.-~ift distribution. Clark Y airfoil 

thick nose is thus virtually equivalent to an adjust- 
able front edge. The thicker the section the greater 
is the possible change in the shape of the foil. That is, 

F I Q U ~ E  =.-Lift distribution. N. A. 0. A. M-6 airfoil 

the efficiency curve is flattened. The thin section 
on the other hand does not lend itself to any such 
"flexibility," hence its poorer characteristics. 

:OMMITTEE FOR AERONAUTICS 

The thickness of the foil beyond the nose is undesir- 
able aerodynamically, since it causes a certain in- 

- FIGURE 23.-Lift distribution. N. A. C. A. 84 airfoil 

FIQURE 24.-Additional distribution 

4% 
Note:- P-4 !? (a-a,)q. Ordinatesareequalto P/qfor a-aIIL rad. 

4 

crease in the fluid velocity on both sides of the foil. 
The,  least resistance is, however, introduced if a 
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fish-shaped section is used in conjunction with the 
desireh type of nose. The pressure distribution at 
zero angle of a foil similar in shape to the wing section 
as regards thickness, but with no curvature of the 
mean ordinate, may be determined in conjunction 
with the testing of each foil. 

, Nose curvature, p/c 
FIcfoBE 26.-810~ of the lift curve 

SUMMARY OF NEW FORMULAS 

With R= Jx(1 -x), q= 1 

and the x-axis coinciding with the chord. of the mean 
camber line. 

1 1 ydx 
ez,=-J n o (XI-x) R (A%= - 2.85y0.05 A e  = 2 . 8 5 ~ ~ - ~ )  

~ I O  = 623 (YI - y5) + 47 ( ~ 2 ~ ~ 4 )  degrees where yl, y2, y4, 
and y5 are taken at x=0.542, 12.574, 87.426, and 
99.458 per cent chord. (aI is measured with respect to 
the chord of the mean camber line.) 

dc 2 
PI=4R-+-[e-co+ (Eo-2e+cl)x] lift intensity at dx R 

a=a1 

R Pa = 4 - (a- aI) additional Lift valid for x > 0.1. x 

a-a, P ,  = 4 ---- P 
2p, 

maximum lift occurring at x-5 
- 
C 

I ydx (ALI= 2y' Ax%) ideal lift. LI=T((I-TO)=J Kb , 

L I = ~ ~ ( Y I + Y ~ )  +6.8(fka+~d +3.6~3 

where y, is the ordinate at x = 50 per cent chord. 

LANGLEY MEMORIAL AERONAUTICAL LABORATORY, 
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS, 

LANGLEY FIELD, VA., November 14,1930. 
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TABLE I 
VALUES OF R=-JxR 

TABLE IV 

IDEAL ANGLE OF ATTACK AND IDEAL LIFT 

NOTE.-Above angles are measured from the regular chord. 

TABLE V 

Angle of zero lift -------.-.---..---------------- 
Ideal angle of attack (.I) ....................... 
I d  1 at I ( I )  

C 

N.A.C.A. ClarkY N.A.C.A. 
84 M-6 M-6 - -  ___--- 

0.0 .------------------..--------.- 0.4 -.COT -.@I1 +.015 
0 - -  .5 ---------- f. 013 .025 
.025 -..--.---- -0.088 -0.052 .6 +.ml .025 ---------- 
.05 -0.115 -.075 -.M7 .7 .-----...- .038 .029 
.@75 ---.--.--. -------.-- -----.-.-- .8 .068 .046 .026 
.1 -.090 -.059 -.a .9 , OB9 --.----... ...-. ----. 
.15 ..-------- -------... -.-------- .95 .W .059 .014 
.2 -.058 -.035 -.014 1.0 -----..-------.-----------.--- 
.3 ---------- -.OM ---------- 

TABLE I1 
ANGULAR DISTORTION FOR THREE AIRFOILS 

TABLE I11 

N.A.c.A. 
M-6 

-0.5O 
1,4' 
.208 

ADDITIONAL DISTRIBUTION FOR s>0.1 

R- J z m  

BASIC DISTRIBUTIONS FOR THREE AIRFOILS 

I 1 PI Ordinates 11 I PI Ordinates I 

cUIkY ~ N . A . C . A .  

I 
84 

--- 
-5.5' 7.5O - P -7.30 : 524 1 .798 

I TABLE VI 

N A C A C l a r k N A C A .  N.A.C.A.Clark N.A.C. I I . ~ . ' I Y I . ~ - ~ I I  I a I Y l A . M - 6  

0.000 0.5 
.I70 .6 
.214 .7 
.311 .8 
.376 .9 
.424 .95 
.479 1.0 
.510 Integrated 
.462 lift ------- 
.403 

I PRESSURE NEAR THE LEADING EDGE AND CO- 
EFFICIENT OF LIFT 

CLARK Y 
p =0.017'& 
~ ~ ~ ~ . = 4 ~ ~ ~ g = 5 . 3 4 ~  4 g (per radian) (z=O.W88) 

a8 =5.48 
N. A. C. A. M-6 

p =0.0125C 
1 

~,...=4~~~g=6.33 z 4 g (per radian) (2=0.0058) 

a0 =5.& 
N.A.C.A. 84 

p =0.017Se 

~ , . . = 4 h ~ g = s . ~  z 4 g (per radian) (z=O.WSS) 

U. 9. GOVERNMENT PRINTING OFFICE: 1311 



Positive directions of axes and angles (forces and moments) are shown by arrows 

Axis 

Designation 

Longitudinal-. 
Lateral- - - - - - - 
Normal------ 

I I Moment about axis Angle 1 Velocities 

Force 
(parallel 
to axis) 
symbol 

Absolute coefficients'of moment Angle of set of control surface (relative to neu- 
L C -- M N tral position), 6. (Indicate surface by proper 

-qbS  "'a CIS ' nm subscript .) 

Designation Designs- 
tion 

4. PROPELLER SYMBOLS 

Dl Diameter. 
p, Geometric pitch. 
p/D, Pitch ratio. 
V'. Inflow velocitv. 

'{z- Sym- 
bol 

P P, Power, absolute coefficient C, = 

Positive 
direction 

C,, Speed power coefficient = s'pz. 

Linear 
(compo- 

,nent along 
axis) 

V,, Slipstream velocity. q ,  Efficiency. 
T n, Revolutions per second, r. p. s. 

T, Thrust, absolute coefficient C T = ~  

Q cP, Effective helix angle = tan-' 
Q, Torque, absolute coefficient CO = pnZp 

Angulal 

5. NUMERICAL RELATIONS 

1 hp = 76.04 kg/m/s = 550 lb./ft./sec. 1 Ib. =0.4535924277 kg 
1 kg/m/s=0.01315 hp 1 kg = 2.2046224 lb. 
1 mi./hr. = 0.44704 m/s 1 mi. = 1609.35 m = 5280 ft. 
1, m/s = 2.23693 mi./hr. 1 m =3.2808333 ft. 




