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AERONAUTICAL SYMBOLS 

1. FUNDAMENTAL AND DERIVED UNITS 

Length __ ____ _ 
Time ________ _ 
Force ________ _ 

Symbol 

I 
t 
F 

Metric 

Unit 

meter _________________ _ 
second ________________ _ 
weight of 1 kilogram ____ _ 

Symbol 

m 
s 

kg 

English 

Unit 

foot (or mile) ________ _ 
second (or hour) ______ _ 
weight of 1 pound ____ _ 

Symbol 

ft. (or mi.) 
sec. (or hr.) 
lb. 

power ________ j P kg/m/s _________________ I _____ ____ _ 
Speed __________________ {km/h __________ -- - - --- - - k. p .h. 

m/s ____________________ 
1 

m .p.s. 

horsepower __________ _ 
rni./hr _______________ _ 
ft./sec _______________ _ 

hp. 
m.p.h. 
f.p.s. 

2. GENERAL SYMBOLS, ETC. 

llt, Weight= mg 
g, Standard acceleration of gravity= 9.80665 

m/s2= 32.1740 ft./sec. 2 

m, Mass = W 
g 

p, Density (mass per unit volume). 
Standard density of dry air, 0.12497 (kg-m-4 

mk2
, Moment of inertia (indicate axis of the 

radius of gyration k, by proper sub­
script). 

S, 
Sto, 
G, 
b, 

Area. 
Wing area, etc. 
Gap. 
Span. 

S2) at 15° C. and 750 mm= 0.002378 c, Chord. 

Aspect ratio. Ob.-ft. -4 sec.2). b2 

Specific weight of "standard" air, 1.2255 S' 
kg/mb 0.07651Ih./ft.3. J1., Coefficient of viscosity. 

3. AERODYNAMICAL SYMBOLS 

V, True air speed. 

Dynamic (or iropac ~) pressure = i p TT2. 

L, Lift, absolute coefficient OL = :s 
D, Drag, absolute coefficient OD= ~ " 

Profile drag, absolute coefficient ODO=~S 

D, Induced drag, absolute coefficient ODI= ~S 
Parasite drag, absolute coefficient ODP= ~S 
Cross-wind force, absolute coefficient 0, 

o 
OC=qS 

R, Resultant force. 
ito, Angle of setting of wings (relative to 

thrust line). 
Angle of stabilizer setting (relative to 

thrust line). 

Q, Resultant moment. 
n, Resultant angular velocity. 
Vl rr--' Reynolds Number, where l is a linear 

J1. dimension. 
e.g., for a model airfoil 3 in. chord, 100 

mi.fhr. normal pressure, at 15° C., the 
corresponding number is 234,000; 

or for a model of 10 cm chord 40 mis, 
the corresponding number is 274,000. 

0 11 , Center of pressure coefficient (ratio of 
distance of c. p. from leading edge to 
chord length). 

a , Angle of at tack. 
Angle of downwash. 
Angle of attack, infinite aspect ratio. 

at, Angle of attack, induced. 
aa, Angle of attack, absolute. 

(Measured from zero lift position.) 

'Y, Flight path angle. 
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REPORT No. 479 

STABILITY OF THIN-WALLED TUBES UNDER TORSION 

By L. H. DONNELL 

SUMMARY 

In this paper a theoretical solution is developed jor the 
torsion on a round thin-walled tube jor which the walls 
become unstable. The results oj this theory are given by 
a jew simple jormulas and curves which cover all cases. 
The differential equations oj equilibrium are derived in a 
simpler jorm than previou ly jound, it being shown that 
many items can be neglected. The solution obtained is 
" exact" j 01' the two extreme cases when the diameter­
length ratio is zero and injinite, and is a good approxi­
mation jor intermediate case. The theory is compa7'ed 
with all available experiment , including about 50 tests 
mCLde by the author. The expe?'imental-jailure torque is 
always smaller than the theoretical-buckling torque, aver­
aging about 75 percent oj it, with a mi nimum oj 60 per­
cent. As the jorm oj the deflection checks clQsely with 
that predicted by theory and the experiments cover a great 
range oj shapes and materials, this discrepancy can rea­
sonably be ascribed largely to initial eccentricities in 
actual tubes. 

SYMBOLS 

l, t, r, d, length, thickness of wall, and mean radius and 
diameter of the tube, respectively. 

It, p., Young's modulus, and Poisson's ratio (0.3 for 
engineering metals). 

S, critical shear st.ress (equftls the critical torque times 

7r~~) 
n, number of eircumferential waves in buckling de­

formation. 
8, angle of waves with the axis, measured near the mid­

dle of the tube. 
x, s, longitudinal and circumferential coordinates, 

measured axially from the normal section at the 
middle of the tube, find cireumferentially from some 
genetrix, figure 13. 

11, v, w, longitudinal, circumferential, and radial com­
ponents of the displacement during buckling, taken 
as po itive in the x, s, and outward directions, 
figure 13. 

EX) es, ex., Kx, Ks, KX., linear strains in the x and s directions 
H nd the shearing strain, and the changes in curva­
ture in the x and s direction and the unit twist, all 
d lIC to the buckling di placement. 

T:r;, Ts, T:r;s, T:r;/, N:r;, N s, Gx, G., Gu , Gzs', resultant 
normal and shear forces, and resultant bending and 
twisting moments, due to the buckling displacement, 
all reckoned per unit length of section, as shown in 
figure 14. 

AI, A2, - Am, numbers relating to the axial length of 
buckling waves. 

Al = a+b, Az= a-b, A3 = - a + ic, A4= - a - ie, where 
a, b, c are real numbers. 

U m, V m, W m are real numbers llsed in the expressions 
(13) for u, v, and w. 

" 0
2 + i:J2 4' • fi 1" f 2 • \1- = ox2 OS2' \1 slgm les app LCatlOn 0 \1 tWIce, etc. 

8 l2 --8 l 
A = (1- p.2) E f,2' B = J1 - p.2 E t 

- - l2 1 l2t l 
II= .J1 - p.2 td' J = .J1 _ p.2 d:l ' k = na 

All equation given in the paper are dimensionally 
correct, so any consistent unit of distance and force 
may be used. 

RESULTS 

According to the theory developed in tbis paper, the 
torsional shear stress at wbich buckling occurs in short 
and moderately long tubes is given by the full lines in 
figure 1, or is very nearly expressed by the formulas 

A = 4.6 + .J7.8 + 1.67II3/2 (clamped edges, J <7.8) ( ) 
A = 2.8 + .J2.6 + 1.40II3/2 (binged edges, J < 5.5) 1 

It is a sumed that all components of displacement are 
prevented at end cross sections of the tube, and that 
"clamped" edges are held perpendicular to these cross 
sections wbile "hinged" edges are free to change their 
angle with the cross sections . It is found to be imma­
te rial whether or not the ends of the tube are free to 
move as a whole. 

For very long slender tub('s the number of circum­
ferential waves, n, is small, and there is a slight devia­
tion from the above laws, as the number of waves 
changes from one whole number to the next. In figure 
2 the straight lines de represent the above laws, while 
the irregular lines represent the more exact law. When 
J exceeds a certain value, n remains always 2 (at least 
for any tubes of practical proportions). For large 
values of J the critical stress for both end conditions 

3 
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IS gl ven very nearly by the traight line eef, whose 
eq un tion is 

B = O.77 JJ (2) 

For practical purposes equation (1) may bo used 
when J is less than 7.8 for clamped edges, or 5.5 for 
hinged edges, as indicaLed in (1), while (2) is u ed when 
J exceeds these values. 

II buckling takes place all around the Lube, n must 
naturally be a whole number, and its value may be 
Laken as the whole number nearest Lo the value found 
from figure 3. In many to L , 0 pecially when n is 
large, buckling takes place over only part of the tube. 
In such a cn e 11 i taken a the circumference divided 
by the average width of the waves, and it therefore 
need not be a wholo number. 
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FIGURE 3.-'I'he number of circumferential waves for short and medium length tubes. 
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FIGUREI.-'l'ho angle of the waves with respect to tbe cylinder axis for short and medium length tubes. 

The buckling deformation con ists of a number of 
circumferential waves which spiral around the tubc 
from one end to the other, as hown by the photo­
graphs of actual specimens (fig. 6). The theoretical 
number of circumferential wave, n, i indicated in 
figure 2 for long lender tubes. For short or moder­
ately long tubes the theoretical yalue of n i given by 
the curves of figure 3. 

The theoretical angle of the waves wiLh the axial 
direction, near the middle of the tube, fJ, is given in 
figure 4 for short and moderately long tubes. For long 
slender Lubes it may be taken as 

fJ 235d ( 1 d 1 ) (3) =--;n:t c ampe e( ges 

184d . 
0= ----:nz (hmged edges) 

in degrees, where n i ' as given in figure 2. 
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To check the aboye theoretical results, the author ' 
has made lUore thun 50 tesLs; in addition, the re uIts 
of many aLlIer experiments have been published by 
the J.A.C.A. (reference 1) and others. All the avail­
able test results have been plotted on figures 1, 2, 3, 
and 4. All the tests were made with clamped edges. 
Comparing the experimental result with the theoreti­
cal curve for clamped edges, it will be seen that all 
te ts give values for the failure stress somewhat lower 
than the values for critical stres predicted by theory. 
The experimental values average about 75 percent of 
the theoretical, with a minimum for metal tubes of 
about 60 percent of the theoretical. 

These relations hold over an enormous range of 
sizes, proportions, and materials. The form of the 
bucklina' deflection, as measured by the number and 
angle of the waves, checks closely with that predicted 
by theory. It is therefore reasonable to uppose that 
the discrepancy between the theoretical and experi­
mental values of failure tress is due chiefly to unavoid­
able defects in actual tubes. Some of the discrepancy 
is undoubtedly due to the fact that a true clamped 
edge is impossible to attain in practice. But it is 
probable that most of it can be ascribed to initial 
eccentricitie ; that i , departures from a true cylindri­
cal form, always present in actual tubes. Among the 
te ts made on long flat strips in shear (which is con 
sidered the lin1iting case of a tube under torsion when 
II= O), tho e made by Bollenrath (reference 2) record 
the stress at which wrinkling began, and these stre ses 
average less than half the theoretical, as shown in 
figure 1. Similar re ults were obtained by Gough and 
Cox (reference 3), but these e:xperimenters took meas­
urements of the buckling deflections at various loads 
and with this data were able to calculate, by a method 
developed by Southwell (reference 4), the probable 
load at which the strips would have buckled if there 
had been no eccentricities. These calculated values 
check the theoreticitl values very well, as shown in fig­
ure 1. It seelllS likely that most of the discrepancies in 
the tests on tubes could be explained in the same 
manner if similar data were available. 

By multiplying the right-hand sides of equations (1) 
and (2) by the factor 0.75 or 0.60, we obtain, respec­
tively, expressions for the average and minimum 
resistance to buckling to be expected from an actual 
tube. The following equations are obtained by multi­
plying the right-hand sides of equations (1) by 0.60 
and taking J.L = 0.3: 

These fornHilas cover all present-day upplications and 
are recommended for design purpo e. Being ba ed OIl 

Lhe millim7lln resuHs from all available LrsL~ on meLal 
tubes, more than 120 Lests, they should give values 
whicll are always on the safe side. They are repre­
sented graphically by the broken lines in figure l. 

The case of hinged edges has an application, 1'01' 

example, in the case of a circular monocoque fuselage, 
without longitudinal stiffeners and with circumferential 
stiffeners or rings of an open cross section, with small 
stiffness against twi t. The portions of the covering 
between rings are very nearly in the condition of tubes 
with hinged edges, as the rings, while still against linear 
movement, give little resistance to rotation of the 
edges. In such a ca e there is little interference 
between adjacent section of the covering in buckling, 
a where one section buckles outward the next section 
(!un buckle in. 

HISTORY OF PROBLE ,1 

In 18 3 Greenhill obtained a soluLion for the sta­
bility under torsion of a long solid shaft (reference 10). 
This solution applies also to hollow shafts or tubes, 
representing a solution for the ca e n = 1. It will be 
shown later that this solution can be obtained in a 
much simpler way, and that it actually has little prac­
tical importance. 

The first paper on thin walled tubes under tor ion 
seems to have been written by Schwerin (reference 5) 
in 1924. He develops the following formula for the 
critical stre s of tubes in torsion 

The values found in experiments are mo tly much 
higber than those given by this formula. For the 
horter tube th~ test results are 30, or more, times the 

formula value; for longer tubes the discrepancy de­
creases. The value in the final parenthe. is in the 
above formula i practically unity, as with available 
matcrials til' must be Yery small if 1'ai11.l1'c by buckling 
OCC1l1'S before faillll'e of the material. If this value is 
taken as lillity, Schwerin's equation check equation 
(2), except for a difference of about 16 percent in the 
coefficient, a hown in figure 2. chwerin obtained 
hi result from a solution of differential equations of 
equilibrium, by neglecting all end constraint and 
assuming that 11 = 2. Equation (2) is also for the case 
n = 2, and as it holds for both clamped and hinged 
edges, it is evident that end conditions are unimportant 
in the range to which it applies. From this check and 
from the check with experiments, it is evident that 
Sehwerin' cquation is an at least approximately cor­
rect olution for rel'Y long lender tllbes, that is, for 
the range, ay, when J > 6. 

The above equation is the only part of Schwerin'~ 
paper which is commonly quoted. However Schwerin 
also disellssed in this puper the cases where n has 
other .-allies (hall 2. lIe chccked Greenhill's result 
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for Lhe case n= 1, and ~howeu how individual rcsulLs 
could be obtained with other value of n, and with a 
consideration of end conditions. lIe calculated the 
relation between the buckling stress and rll for several 
value of n and for several values of tlr, with the end 
conditions X= ± l/2: w= O. These calculations give 
good checks with the theory and experiments found 
by the author for more specific end conditions. How­
ever chwerin failed to develop any way of simplifying 
hi re uIt , except for the case discussed above, and he 
did noL carry them far enough to be of practical value 
Lo users of short 01' moderately long thin-walled tubes. 

In the 'ame year (1924) a solution was published 
by outhwell and kan (reference 6) for the critical 
shearing stress on a flat trip of infinite length. This 
case may be considered to be the limiting ease for a 
tube lUlder torsion, when the ratio of length to diam­
eter becomes zero. As the theory of the present paper 
i "cxact" for this extreme ca e, it concides with the 
'outhwell and kan theory when lid is set equal to 
zero. The existence of thi olution for a limitinO' 
ca e was natUl'ally of great help to the author in 
developing a general theor] of torsional tability, and 
many valuable ugge tions were taken from the in­
geniou method of solution u ed by these writers. 

In 1931 a paper on the buckling of tubes under tor-
ion wa published by ezawa and Kubo (reference 7). 

In this a general theory i developed and worked out 
for a number of ca es, and nine very complete tests on 
rubber models are reported. The re ults of this theory 
are not in agreement 'with experimental result. The 
experiments on rubber models cited in the paper hap­
pen to be in a range 'where the di crepancy is not 0 

great, the ratio between the eritical stress found by 
experiment and that predicted by the theory being 
from 0.5 to 3. However, for most of the available 
experiments on metal cylinders, this ratio is much 
hiO'her- a much a 50 01' more in many ca es. The 
difl'erential equation of equilibrium on which the 0-

lution i based seem to be incolTect, the very important 
term T21a (using the paper's ymbols) hawO' appar­
ently been omitted from the third equation. 

The re ults of the experiment de cribed by ezawa 
and Kubo are reasonably con i tent with the re ults 
of other experiments and the theory of the present 
report (see fig. 1), and certainly as consistent as could 
be expected when it is con idered that a material was 
u ed which many experimenters con ider unsuitable 
for quantitative work. The eheck is excellent in re­
spect to nand 0, which do not depend on E (figs. 3 
and 4). In reference 7 very complete data are given 
on the hape taken hy the pecimen at all stage of 
the loading, from th lmloaded condition to the 
C'l'iLicul load. Thi data aHoI'd a very interesting 
pictme 01' the way in which the cleUection, starting 
Jl'om the initinl l.mcvene ses, changes to the final 
buckling form. A lJlcLhod 01' sLudying this qllcstion 

t,heorelically ha fl Iwen flugg' ti Led by the present author 
(reference ), and applied to the ca e of simple struLti. 
This que tion is dOli htless morc of academic than of 
practical intere L 

In 1932, the ltLional Advisory OommiLLee for 
Aeronautics puhli heel the results of an extensive eries 
of te 1, by Lundquist (reference 1) on the strength in 
tor ion of thin-walled dlll'alumin tubes. 0 theoreti­
cal annlysi was aLLempted. These tests, together 
with the te t s mucIe by the twthor, constitute the bulk 
or the expe1'imentnl cvidcncc cited in the prc. enL paper. 

In 1932, also, it LheoreLical paper was published by 
Sanden and Tolke (reference 11) on the stability of 
thin cylinders, the case of torsion being considered 
among others. These authors used very complete and 
therefore complex equations of equilibrium, but they 
carried their work on torsion no farther than Schwerin. 
It is very intere ting to noLe that their equation 130b, 
for the case n = 2, is exactly the same as equation (2) 
of the pre ent paper, which was obtained independ­
ently with very much simplified equilibrium equations. 

The experimental re ults of Bollelll'ath (reference 2), 
published in 1929, and of Gough and Cox (reference 3), 
published' in 1932, on narrow :flat strips in shear, have 
already been discussed. 

THE TESTS AND DESCRIPTION OF SPECIAL TESTING 
APPARATUS 

The author's te ts were performed at the Guggen­
heim Aeronautical Laboratory of the California In­
stitute of Technology. With one exception the speci­
mens were of small size, from Xs inch to 6 inches diam­
eter, and made of steel and brass" shim stock" from 
0.002 inch to 0.006 inch thielc Such sizes were se­
lected becau e of the great ea e and cheapness of con­
struction and testing. The exception mentioned was 
very much larger (27 inch diameter); all the N.A.C.A. 
test (reference 1) were on specimens 15 inches and 30 
inches in diameter. Comparison of the results indi­
cates that there is no great di advantage or danger in 
using such small specimen. In all tests the propor­
tion were such that the stre es ,\'ere always well be­
low the elastic limit. 

The material was carefully rolled around rods of 
proper diameter to give it approximately the desired 
cmvature, the longitudinal seams were soldered, and 
the tubes were then soldered to heavy end pieces 
Jigs were used to hold the material in a true cylindricai 
form and prevent local waving while these soldering 
open1,tions were performed. The specimens haying 
the maHe t tid ratios howed some initial waves, due 
chiefly to lack of Hatne sin Lhe stock from which they 
were made; but in the pecimens with larger tid ratio 
no departure from true cylindrical form could be de­
tected by the eye or fIDger . 

The longitudinal seams were lapped about }{s inch 
and were formed with as liLUe Rolder as po sible. 
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There is no LheoreLicalrcason why uch a seHm should 
have an appreciu ble efl'ecL in Lbis Lype of loading. 
Buckling deilecLions seemed to occm across eams as 
freely as anywhere, so the tilIening effect of the double 
Lhicknes at the seam was probabJy negligible in all 
cases except possibly for the few tu bes which were only 
~{6 inch in diameter. For these tubes an attempt was 
made to correct as much as pos ible for thi tilIening 
effect by taking the thickness as the total cross-section­
al area of the tube wall divided by the circumference. 

The end conditions of the tubes were a shown in 
figure 5. The medium length tube (6 to 30 inche 
long) were soldered to heavy end plates as shown at 
(a). Heat was applied only to the end plates and care 

r- L
-

fitting r in g 

(a) 

k---l--

r-l -1 
I :+ Tube 

'Sweafed 

(b) 

End plate of 

tes,;ng,m=F 1-

.-- ·Tube 

Cemenf 

(e) (d) 

FI4,l' U"; rio .';dgt' (.'OIHlltiOJll' uf tcst ~pec.'i"l l'II ~. 

was Laken Lo heaL LhC'lll YI1lJllC'Lrieally to avoid produc­
ing iniLial skains in Lhe Lube. The loose ring hown in 
Lhe figure fitted the tube jusL closely enough to keep 
Lhe tube cylindrical during the soldering. As Lhere 
was alway a cOl'Lain amount of clearance heLween the 
ring and the tLI be wall and huckling deflection were 
not ,lppreciable at a dis Lance from the end many Limes I 

the width of the ring ( ee fig. 6), the dfecL of the ring 
on the end condition was neglected and the di Lance 
between the end plaLe ml taken a Lhe lengtb of the 
Lubes. 

Several extremely short specimens were made, to 
Lest tbe theory at small values of JI. As both theory 
and common ense indicate the greater importance of 

end condiLions roJ' such a case, greaL care was Laken Lo 
obtain defUliLe end conditions. One side of a strip of 
ma terial % inch wider than th e desired Lu be length was 
tinned on one ide with a very thin coating of solder. 
The mechanical properties of similar heeL material 
were measured after tinning and found to be the same 
as before tinning, a nearly as could be determined. 
Two disks were turned the size of the desired tube, 
their edges were thinly tinned, the tinned strip was 
tightly clamped around them as shown in figure 5 (b), 
and the whole heated 0 as to sweat the tube to the 
disks. Examination after testing showed a perfect 
joint between the Lube and the di ks right lip to the 
edges of the disks. 

The ~{6-inch-diameLer tubes were merely sweaLed 
over the end of a sLeel rod as shown in figure 5 (c). 
The 27-inch tube had bolted joints, and its ends were 
embedded in concrete, held between teel hoops, as 
hown at (d). The hoop were clamped to Lhe heavy 

end plates of the te ting machine, and the lengLh of 
the tube wa mea ured as hown. 

The medium and very short pecimen were tested 
on the special Lesting machine shown in figure 6. 

a 

Spec/.men 
d e ___ _ v_ __ e 
~------~~ ~~------~ 

b 

f 

FIGURE i .-Diagrammatic top view of torsion-bending-compression testing machine. 

This machine is capable of testing specimens in torsion, 
uniform or varying bending, and ax-rial compres ion, 
separately or in any combination. Tho three type of 
load are applied hy three conveniently located cranks, 
and the load application is extremely mooth. The 
load is read direcLly in inch-pounds and pounds, on 
Lhree dial gages. The 0 dial gages me,l me Lhe de­
flection of canLilC'ver springs which aro de igned ill 
such a way as to eliminaLe practically all hysLere is 
and arc artificially aged. Provision is made for adju t­
ing the po ition of the dial gages lengtlnvi 0 of tho 
sprinO's so that, in cali bra Ling, a position can be foulld 
at which they read Lhe loads directly. 

The principle of the machine i shown by Lhe dia­
grammatic top view (fig. 7). The specimen i attached 
to two L-shapC'cL members abc and def which are 
balanced on practically frictionle universal joint at 
band e. The ends of the specimen arc therefore free 
to rota te in any dirC'ction. When a~'ialload are used 
they are applied throl/O'h the,se universal joints and 
this insures a definite line of action of the load. The 
pecimen is subjected to bending by applying down­

ward forces at d and c; Lhese forces are applied through 
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wires which extend down to a cross bar de under the 
specimen. A crank is used to press down on a ful­
crum mounted on the bar de; the crank and fulcrum 
are movable along the length of dc, and in this Wtly 
the ratio between the forces at d and c, and therefore 
the bending moments at the two ends of the specimen, 
can be varied at will. Torsion is applied to the speci­
men by pulling down on f tm:ough a wire, by means of 
a crank; the point a is prevented from vertical (but 
not from horizontal) motion by vertical wire. rial 
load is applied by moving point b to the left with a 

n=/O 

joint takes loads in two directions, allows rotation in 
any direction with almost no friction, and is extremely 
cheap and satisfactory. The whole testing machine 
i built of stluctural hapes, assembled largely by 
welding, ,vith a minimum of machining. It cost very 
little to build and ha proved very satisfactory and 
convenient to use. 

The 27-inch diameter specimen was tested on a 
special te ting machin similar to the one just described 
but much larger (fig. 9). 0 provision for arialloacling 
is made on this machine, and the loads are mea ured 

FIGURE 6.-Small torsion-bending-compression testing macbine, Bnd medium Bnd short specimens afler failure. 

crank; e is mounted on one of the cantilever spring 
and thus the axial load is measured. The arms be and 
ab are in themselves cantilever springs and their de­
flection measures the bending and torsion moment 
respectively. The dial gages which measure the de­
flections of the springs are mounted on unstres ed arm . 

The univer al joint, at band e are of the type hown 
in figure a, consisting only of a spherical cup, a central 
ball and six loose balls (the weight of the member abc 
or def i sufficient to keep the balls in position). Thi 

12402-33-2 

by the lateral deflection of tension members that are 
initially bent, which permits the measurement of very 
large forces with a light measuring device. This ma­
chine takes specimens up to 3 feet in diameter and 15 
feet in length, and ha a capacity of 500,000 inch­
pOlmcl in bending and in torsion. 

The 'is-inch diameter specimen, used to test the 
theory for long slender tubes, were loaded as hown in 
figure 10. T-shaped piece were attached to the ends 
of the specimen. These were halanced on a knife-edge 
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uL one end and on a loose vertical strip at the other, so 
Lhat the ends of the specimen were free to rotate in 
any direction or to approach each other (as was also the 
case with the te ting machines previou ly described). 
The long arm of the T at one end \\~as held down with 
a string, while weights were applied to the other until 
buckling occurred, as shown in the figure. 

The wall thickness of the specimens being 0 small, 
it was necessary to measure it with much more than 
common accuracy. The instrument shown in figure 11 

Spherical 
cup 

'tJ 
g Central ball 
-.J 

(a) 

which 'ul'l'ollnds the anvil. Such Pl'o\Tlsions are neces-
ary to mea ure the thickness of thin material accu­

rately. The sheet mu t also be very clean, as particles 
of dust or film of dirt causes appreciable errors; it was 
found advisa ble to wet the sheet with alcohol during 
the measuring. In spite of such precaution, the 
errors in the measurement of t and in the variation in 
the thickness at different parts of the sheet undoubt~ 
edly cause a large part of the catter in the final results. 
The variation in thiclme over a tube was u uaIly 

(b) 

FIGURE .- Bali universal joints used in the testing machines (b, type used 011 large machine for "erticalloads only, 1 in. balls, capacity 5,000 lb.) 

FIGURE 9.-Corner of aeronautical· tructures laboratory a t California Institu te of Technology, showing 500,000 in.·II1. torsion·bending testing machine. 

was therefore constructed; it is 10 times as sensitive 
as an ordinary micrometer and proved to be much 
more accurate and convenient. It consists of a verti­
cally mounted dial gage reading in 0.01 mm (.00039 in.) 
and having an extra strong spring and a very f'mooth 
contact point, 0 that a heet can be moved lmder it 
smoothly. Directly under the contact point of the 
gage an adju table rounded anvil projects slightly 
above the fla t bedplate of the machine. The heet i · 
pressed down on this anvil by a pring-actuated ring 

about 5 percent. As torsion failure occurs over most 
of the tube at Olice, the average thickness was recorded . 

The modulus of elasticity of the material of the t ube 
was measured by the special testing machines shown 
in figure 12. The one shown at (a) is a tensile machine 
with a capacity of 130 pounds. The fo rce is measured 
by the calibrated spring at the top, the dial reading 
directly in tenths of a pound. The pecimens used 
are plain straight strips 1 inch wide. They are clamped 
in ordinary straight jaws lined with emery cloth ; such 

.' 
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thin materials are easily held by friction alone. A 
the machine is frequently used to determine elastic 
limits, provision is made to insure perfectly central 
loading. The extensometer hown involves a detach­
able Huggenberger instrument mounted on a special 
frame, with provisions for clamping to thin sheet and 

It wa feared that the physical propertie of such 
thin, highly cold-worked material might vary along 
the thicknes . In order to test this, the machine shown 
in figure 12 (b) was designed to test strips of the ma­
terial in hending. The strips are first coiled somewhat 
like n watch sp ring and te~ ted in this form; this feature 

FIGURE lD.-l\Iethod of testing very long tubes and close·up of failure. 

FIGURE H.-Thickness tester. 

for preventing all motion but the de ired one; it i 
balanced to prevent bending the specimen, and its 
weight is allowed for by the proper initial setting of the 
load dial. It reads directly in 1/100,000 unit strain 
and can be read consistently to one tenth of this value 

i nece ary to insure traight cross ections. The ma­
chine exerts a pure couple on the coil, bending it uni­
formly through its length, and measures the total 
angle of bending. Very consistent results can be 
obtained. As the width of the strip is several hundred 
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times the thickness, this machine of COUTse mea UTes 
E/(I-,}), while the ten ion machine mea ures E. 
Assuming J.I. = 0.3 the values of E obtained from the 
two machines are f01IDd to check within 1 or 2 percent, 
and are very consistent for each (,ype of material. 

Data for an the tests are given in table r. In all 
ca es the torque given i the maximum torque that 
the tube will take. In most case, this ultimate torque 
was very sharply defined and occurred wben the buck-

the circumferen e divided by the avel'age width of the 
circumferential waves. The value of 0 was estimated 
roughly by eye, with the aid of a tran parent protrac­
tor, from the appearance of the top or outermost part 
of the wave. The angle of the top aud bottom of the 
wave must be the same when buckling starts but, as 
buckling increa e , the angle at thE' bottom of the 
wave becomes greatly distorted, while. the angle at the 
top seems to remain nearly constant. 

FIGt:IlE 12. T ensile and bending maleriallcsling apparatus. 

ling deflection wa comparat.ively mall. In thc ca c 
of the few extremely hort tu be , however, the torque 
increased gradually for a long time after buckling 
started, the maximum value being reached when the 
buckling deflections were very deep. Thi eems (,0 
indicate that for such extremely short tubes, wbile the 
present theory presumably gives a correct value for 
tbe torque at which buckling would start if there were 
no eccentricities, the ultimate torque which the tube 
will take is probably to some extent a function of the 
elastic linlit or yield point of the material. In the 
specimens tested, the strengthening effect of larO'e de­
flections evidently counterbalanced to a great extent 
the weakening effect of initial ccentricities. 

In many tests, buckling occulTed only part way 
around the tube , and in ihese case 7/ WH ' taken as 

In plotting the experimental re ults, J.I. i as umed 
to be 0.3 for metal tll be , 0.36 for celluloid, and 0.5 for 
rubber models. 

DERIVATIO O F TH E EQU ATIO NS 0]<' EQUILIBRIUM 
OF A CY LINDER WALL 

The equations of equilibrium of elements of the 
cylindrical wall of the tube have been obtained in a 
new and simplified form; consequently it will be neces­
sary to give a derivation. Figure 13 shows the coordi­
nates and the components of displacement of the middle 
surface of the wall dUTing buckling. A circumferen­
tial coordinate s is used in preference to an angular one, 
because it results in simpler expressions and makes the 
connection between a curved plate and the limiting 
case of a £Iat plate more readily seen. It will be shown 
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that, to the order of approximation which we need, it 
makes no difference whether the component of dis­
placement v is considered to be measured circumfer­
entially or tangentially. 

The equations of equilibrium for a flat plate are 
well known, but the corresponding equations for the 
case of a curved plate are by no means so clearly 
established. In the case of a flat plate, in some prob­
lems only extensional strains or stresses- tension, 
compre ion, or shear in the plane of the plate-need 
be considered, while in other problems only flexur 
bending or twisting- is of any importance. Extension 
and flexure may be considered separately, even in the 
case of a complex problem in olving both; all excep­
Lion to this is the case where large deflection. occur 
to a non-developable surface. In the case of a curved 
plate, extension and flexure are, in general, intercon­
nected even when the lateral deflections are of infi­
nitesimal order. 1£ no simplifications were made the 
conditions of equilibrium would be too complex to be 

P (d isp/ocfd posifion) 

FWUIlE l3,-Coordinates and components of displacement. 

of much practical use. Much confusion eems to exi t 
as to what simplifications can be made, and the con­
ditions under which they can be made. One author 
consider items which another reject as negligible, 
and vice vel' a. An attempt is made, in the following 
discussion, to clarify this question and to obtain the 
greatest simplification po sible, under the condition 
of the pre ent problem; the results are applicable to a 
large class of problems. 

The usual assumptions are made, that the material 
is perfectly elastic, that the tube is exactly cylindrical, 
that the wall thickness is small compared to the radius, 
and that the deflection are small compared to the 
thickness. The usual assumption is also made that 
straight lines in the cylinder wall, perpendicular to the 
middle surface, remain traight and perpendicular to 
the middle surface; that is, we neglect the distortion 
due to transverse shear. We could easily justify thi 
assumption by taking the magnitude of the transverse 
shear, obtained on this a umption, a a fir t approxi-

mation and calculating a correction. The correction 
will be found to be negligible. 

1£ lines perpenrlicular to the middle surface remain 
o during distortion then the displacement of all 

points in the cylinder wall can be found from the 
displacements of the middle surface u, v, and w. The 
equations of equilibrium can then be derived in terms 
of u, v, and w by considering: first, the purely geo­
metrical relationship between these displacements and 
the trains in all parts of the wall; next, the relation­
ship between the strains and the stresses, given by 
Hooke's and Poisson's relations ; and last, the rela­
tionship between all the stresses on an element of the 
\ all, given by the laws of e.quilibrium. There is no 
e sential difficulty in doing this. However, as the 
contention to be made is that most writers consider 
more items than necessary, it will be sufficient to take 
their results and show what can be neglected. 

Let us consider first the items that all authorities 
agree cannot be neglected. The extensional and flex­
ural train in the middle sUI'fa e are 

au av w au av 
~x =:;;- , ~s =:;;-+ ,~xs =:;;- +" 

u X u S l' u S UJ' 

(5) 

These expressions are the same as the well-known 
expressions for the case of a flat plate, with the addi­
tion of wlr to the expression for Es. This term is due 
to the change in circumferential dimensions with 
change in the radius, which produces the train: 

1'+ w_ l =~ 
l' r 

The resultant forces and moments pel' unit length 
of wall section, obtained by umming up the stresses 
over the thickness, are taken as shown in figure 14. 
The relation between these and the strains of the 
middle surface will be taken the same as in the case 
of a flat plate: 

Et Et 
T:r;=-1--2 (~x+ J.L~s) , T S =-l --z (~s + J.L~x) , 

- J.L - J.L 

I Et Ef 
T "" = T xs = 2 (1 + J.L ) ~xs , G:. = 12 (1 - J.L2) (Kx + J.L Ks) , (6) 

Et3 
_ I Ef 

Gs= 12(1 - J.L2) (Ks+ J.LKx) , G:r;s- Gu = 12 (1 + J.L ) Kxs 

We will now set up the conditions for equilibrium of 
an element such as shown in figure 14. Before doing 
this we must remember that we have taken u, v, and w 
as the displacements occurring dU1'ing buckling, and 
hence the above quantities T x, Gx, etc., represent only 
the changes in the internal forces during buckling. The 
total internal forces at any instant are the internal 
forces present before buckling, plus these changes. 
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In the particular problem that we are considering, the 
tube is subjected to torsion and, if the tube is per­
fectly cylindrical and uniform, the tress distribution 
and the di tortion will be, before buckling begins, the 
ame as assumed in elementary mechanics. There will 

be a shearing tress S on normal and longitudinal 
ection , which can be taken as uniform throughout 

the entire tube, since t/r is small. There will be a 
imple distortion in the circumferential direction, 

which leaves the tube still cylindrical and is of no 
interest to us. To obtain the total internal force we 
must add to those shown in figure 14, the forces per 
unit length St, which will be con idered to be in the 
opposite sense to T x. and T xs' . 

In setting up the conditions of equilibrium of the 
clement we must take into consideration the changes 
in the angles of it faces due to its distortion, as this 
will obviously affect the component of the forces in 
the different equilibrium equations. However, if the 
displacements are small this effect will be small, and 
its effect on T x , Gx , etc., is of a second order of small­
ness compared to other items. But its effect on St 

FIGUR E 14.- Forces and moments on element of wall. 

may be of the same order of magnitude as these other 
items, because St is an order of magIJitude larger than 
T x, Gx, etc.; the latter forces are proportional to the 
buckling displacements and when these displacements 
are small, T x, Gx, etc., must be small compared to St, 
which had a finite value when the buckling started. 

The terms which we will consider in the equations 
of equilibrium give, after simplification 

"J;Fx = oTx+ oTxs' = 0 
ox os 

"J;F = oTs+ oTxs = 0 
s os ox 

~FT= oNT + oN. + T. + 2St 0 2W = 0 ox os I" OX08 (7) 

"5'.1.\1 = oG,+ oGu _ N,= () 
r 08 oJ' 

~M = oar + oGr / - N = 0 
" 0.1' 08 L 

There is no use in writing the equation of moments 
about the radial direction, as it would merely state 
what we have already assumed- that T xs= Txs'. 

The term Ts/r in the third equation comes from the 
resultant of the force T.dx and the similar force on 
the opposite face of the element, due to the angle 
ds/?' between them; this is the only term we will con-
ider due to this angle, that is, due to the curvature 

of the element; all the other terms in (7) are the 
0 2W 

same as for a {lat plate. The term 2St oxos is the 

only term con idered due to the distortion of the ele­
ment; this is the resultant of forces Stdx or Stds on all 
four sides of the element, due to the angle of twist 

. . 02W 02W 
between OpPoslte sIdes, ox os dx or oxos ds. The rest 

of the terms in (7) are due to changes in T x, Gx, etc., 
over the distances dx or ds, and to obviolls moments 
due to N z and N s, the same as for a flat plate. 

sing the last two eq uati{)ns to eliminate N x and 
N s from the third, replacing T x, Gx, etc., by their 
values in (6), and then Es, K x , etc., by their values in 
(5), we obtain three equations involving: derivatives 
of u, v, and w with respect to x and s, the unknown S, 
and the physical constants of the tube 

'" 9~ + 1 - ,u 0 2U -I- 1 + ,u 0 2V + ~ ow = 0 
ox2 2 OS2 2 oxos r oX 

02V + 1 - ,u 0 2V :r + ,u 02U + 1. owv~~ 0 
O S2 2 ox2 2 oxo l' OS 

(8) 

t
2 ~w + .!. (~+ ou + ~) + 2 (1 - ,u2) S 0 2W = 0 

12 \1 r os ,u ox r E oxos 
02 02 

where \1
2 

= 0:r2 + OS2' and \14 signifies that this opera-

tor is to be applied twice. 
Equations (8) can be simplified as follows: J. pply-

ing first ;;2 and then ;;2 to the first equation, solving 

in each case for the term involving v, and substituting 
these expressions in the equation obtained by applying 

o~~s to the second equation, we obtain an equation 

from which v has been eliminated. Similarly, arply-

. 0
2 

d 0
2 

t h d . I ' f" h mg ox2 an OS2 0 t e secon equatIOn, so vrng or t e 

term involving u, and substituting in the first equa­

tion, after applying ::..0: to it, we obtain an equation 
.uXuS 

from which u has been eliminated. These equations 
are, after simplification: 

03W 03W 
l'\1

4
U = - ,u or + oxos2 

03W 03W 
1"\l4V = - (2 + ,u) ox20s - OS3 

(9) 

ow, applying ;x to' the first of these equations and 

~ to the second, and substituting in the equation 

obtained by applying \14 to the third equation of (8), 
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we obLuill an equation from which both u and v have 
been eliminated: 

Et3 Et 04W ( 0 2W ) 
12(1 _ j.L2)\78w +T2ox4+2St\74 oxo = 0 (10) 

Equation (10) i the same as Lhe corresponding 
equntion for a :flat plate, with the exception of the 
second term; tbi is evident if we et r infinite in (10). 
The contention being made i that this term repre-
ents the principal effect of the curvature in a large 

class of problems of which the present problem is one. 
For most problems, equation (10) represents the com­
plete equilibrium condition. However, if it is desired 
to include constraints against u and v displacements in 
the boundary conditions (as will be done here), rela­
tions (9) must be used for this purpo e; this, of course, 
can titutes another effect of the curva'ture, but it will 
be a very small effect in most case . 

In using these simplified resul t for other problems, 
it is only necessary to remember that the la t term 
of equation (10) repre ents the radial force on the 
cylinder wall due to the loading, per unit area of the 
wall, to which the operator \74 i applied. Thu for 
the problem of the buckling of a cylinder wall undei· 
axinl compressive stresses, So (due to an axial load 01' 

due to bending), equations (9) and (10) will be a 
above except that the last term of (10) will be t\74 

( 
o? ' 

o o~v: J For a t.ube under a varying external pres ure 

1), this last term will be \74p (but if picon tant with 
1'e pect to s, or varies very gradually, then the above 
equations may be no longer applicable, as will be ex­
plainedlater). For studying lateral vibrations of the 
cylinder wall, the la t term of (10) will be m"iw, where m 
is the rna s per unit area and withe econd derivative 
of w with respect to time. 

It is nece sary now to ju tify the neglect, in deriving 
(9) and (10), of many items which are commonly con­
sidered. In the relation between strain and di­
placements (5), we neglected, in the expre ion for 

K s, a term; w, due to chano-e of curvature with chang r . 
of radius. If v is measured tangentially the expre -
sion for K s hould logically include also the term 

1 OV . f' . l' f t' 11 ·bi· r os; 1 v IS measurec ClrCLUll eren la y t s 1 unnece -

sary, but Kxs should have an additional term 1. ~v . 
r u X 

As for expressions (6) for the internal forces and 
moments in terms of the train of the middle surface, 
we have obviou ly neglected the effect of the varia­
tion in the length of circumferential fiber along the 
thickness. Love (reference 9) give a econd approxi­
mation for the internal force , in which the expressi.on 
for Gx, Gs, Gxs , and Gx.' are the ame as in (6), but the 

expre sions for Tx, T s, T X 8) and T xs' contain a number 
of additional terms involving the flexural strains 
Kx , K., and Kzs. In these expressions Txs and Txs' 
are no longer equal, but have values satisfying a more 
exact statement of the equation of equilibrium of 
moments on an element, about the radial direction. 

In setting up the equilibrium conditions (7), many 
terms were neglected. It has been noted that the 
term T s/r in the third equation comes from the re­
sultant of the T s forces on opposite faces of the ele­
ment, due to the angle ds/r between these face. By 
the same reasoning, there should logically be a term 
N s/r in the second equation, and a term Gx / /r in the 
equation of equilibrium of moments about the radial 
direction, as noted in the last paragraph. The term 

2St :;~s in the third equation represents the radial 

components of St forces on opposite faces of the e1e-
0 2W 02W 

ment, due to the angle ~x() dx or oxos d between 

Lhem. There are other mall angle between the St 
forces on the opposite face, produced by distortion of 
the element, and these give resultants in the x and 
directions; these are considered by Schwerin (reference 
5) in his solution of the torsion problem. 

The justification for neglecting all these items lies in 
the following: If any, or all, of them are included, we 
obtain finally an equation corresponding to (10), which 
includes all the terms in (10) and numerous additional 
terms. ow suppose we take w as a harmonic func­
tion of s, such a the e).rpre ion (13), given later, for 
which n represents the number of circumferential 
waves of the displacement, and substitute it in thi 
equation. If we compare the two types of terms which 
we obtain- those which we would get with (10) and the 
additional terms- we find that each of the additional 
terms is equal to a term we get with (10) multiplied 
by (t /r)2 or l /n2, and with some numerical factor of 
the order of unity. Those involving (t /r)2 can be im­
mediately thrown out, for any" thin-walled" cylinder. 
Those involving l /n 2 can evidently be neglected when 
n is large. This means that (10) is applicable in all 
thin-wall problems in which the deformation consi ts 
of a large number of waves in the circumferential 
direction, or in which it changes rapidly in this direc­
tion. 

It i an interesting fact that a simple test exist for 
difl'erentiating between items which can be neglected 
on the above basis and those which cannot be, in the 
expre ions for f x , Kx , etc., for T x , Gx , etc., or in the 
oq uilibriurn equations. If we make the substitu tion 
u =-/t /ru', v= t/I'V', x= tr: x', s= ,Itr: s' and divide 
all the items by the proper factor, we find that items 
which can be neglected are left with a factor t/r, while 
the other items are free from such a factor. For 
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example, uppo e we wish to compare the items in the 
expression 

02W 1 10v 
K. =);2 + 2W+- ~ u r r u S 

Making the above substitution, we find 

1 (c)2w t t OV') 
KS= tr os'2+ rW +r os' 

The meaning of this is probably that, for the cla s of 
problems to which (10) applies, u and v are of the 

order of magnitude of -J~ w. 

One more question requiring discussion i that of 
how large n must be in order for (10) to give a reason­
ably accurate result. In the present problem the 
results obtained from (10) give an excellent check with 
experiment when n is only 2. (ee fig. 2. ) More­
over, the results seem to check reasonably with those 
of Schwerin, who used a number of the items neglected 
in (10), indicating that the e items were of minor 
importance even when n = 2. On the other hand, 
the results obtained from (10) give an entirely di -
tot'ted result when n = 1. There seems to be a rather 
critical change between n = 1 and n = 2, for our par­
ticular problem at least. 

It is no inconvenience to us that (10) is inapplicable 
when n = 1, because for this ca e the cross section of 
the tube is entirely undistorted, merely undergoing a 
general displacement. The elementary theory of 
bending of a tube evidently applies in uch a ca e, and 
there would hardly be any advantage in having a 
complex solution for a case to which elementary theory 
applies. However, borderline problems doubtless exi t 
for which neither (10) nor an elementary treatment 
would be accurate. It cannot be concluded, however, 
that the equations of equilibrium commonly used, 
which take into consideration some of the items neg­
lected in (10) but not all of them, will nece sarily be 
more accurate in such a case than (10). Unle the 
equations of equilibrium take all such items into con­
sideration they may quite po sibly be Ie s accurate 
than (10), rather than more accurate. 

THE BOUNDARY CONDITIO NS 

There are only two boundary lines to a tube (the 
two ends), instead of the four which we have in rec­
tangular plate problems. The boundary condition 
which we would have for the lateral sides of a plate or for 
the edges of the split in the case of a split tube are 
replaced in the case of a complete tube by the condi­
tion that the di placement must be cyclical function 
of s, with the cycle length 'Frd. 

We will con ider two cdge condition at the nd. 
For the ea e of clamped edge we will assume all com­
ponent of displacement, and the lope of the urface 
in the axial direction, to be zero. There must, of 

cour e, be a uniform circumferential displacement for 
at least one end whil the tor ion i being applied and 
before buckling take place. However, we are con­
sidering only what take place during buckling. We 
will find that our equations can be ati fied with a 
con tant, which mean that , and therefore the torque 
on the tube, remain con tant during the buckling. 
There is therefore no rea on for any relative circum­
ferential di placement of the end while buckling take 
place, and the conditions for ~ed edge are 

l ow 
x= ± - : u =v= w=-= O 

2 ox (ll) 

imilarly, the condition for hinged edges at the ends 
is that the component of disp acement and the mo­
ment Gx are zero: 

l 02W 02W 
x= ±:{ u =V= W=OX2 + !J. OS2 = 0 (12) 

Both of the above end conditions evidently require, 
not only that the edges of the tube hall be clamped 
or hinged, ay to some rigid end piece, but that the ends 
as a whole shall have no lineal' or angular motion relative 
to each other. However, if we take the fUlal re ults 
obtained, and calculate the resultant of all the forces 

on the end of the tube due to buckling, (that is, the 

l 
1'e ultant of Tx , TXI) x, Gx , and G"s, when x=Z or 

x = -~) we find thi re ultant to be zero. Thi means 

that no constraint are required to prevent motion or 
the ends of the tube as a whole; that i , it makes no 
difference wheth l' or not they are free to move as a 
whole (thi dol'S not apply to the case n= 1, which i 
discussed later). 

THE SOLUTIO 

The equations of equilibrium and the boundary con­
ditions are ati lied if u = v = W = O-an obvious solu­
tion of no intere t to us. Buckling displacement are 
other type of di placement which sati fy these condi ­
tions. There are many such displacements and each 
one require a certain definite value of . Our prob­
lem is to find the lowe t of lIch value of S for each 
given tube; buckling will certainly take place as soon 
as S exceed this value. In the pre ent problem the 
equilibrium and boundary condition can be sati fied 
if S is a con tant with re pect to the di placements, 
and the di placements are the following function of 
x and s: 

(13) 
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where [ tn , '\ 'III' TV"" and n are real nUlnbers, 11 being 
an integer, and Am may be complex. SubsLiLuting 
Lbe value in (9) and (10), we obtain 

1 (A 1II)2 
L'm~ I~. ~ [I ~ ('k:)'J 
/ _ 1V1II 1 -1-(2 + J.L ) (~y 

T"'--n [l + (AkmYT 

( (4) 

[ ( )2J2 [ 11 J2 k 8 1 I ~;n 1- 3 1 + (~;"y Am"- 6A1c5 Am= 0 ( 15) 

The SUJllJlHLtion sign have been dropped. H Lbe 
equa Lions are satisfied without the summation 
they will certainly be sati tied wiLh them. 

If we now sub titute (13 ) and (14 ) in Lhe eight 
boundary conditions (11 ) 01' (12), and eliminate 
from the e equations in a imilar manner to that used 
later, we obtain eight lineal' equation in lVI, TV2, ll'a , 
etc. A there are no term not containing TV"" it will 
Lake eigh L value of 11'"" which means eigh t term in 
Lbe uIlllllation of (13), as well as a deterl11inanL'1I rela­
lion, Lo aLisfy them . Thi clcLerminanta.l equaLion 
ilwolve the eight values of Am. As (15) i of eiO'hLh 
degree in Am, for a given et of values of k, II, and A, 
Am may have in general eiO'ht different yalues. It can 
ea ily be hown tha t under these conditions the determi­
nantal equation and (15 ) together determine a relation 
between k, H, and A. The problem is to determine 
thi relationship; it i not impo ible to do it, but the 
algebraic comple}.'ities of the problem render it im­
practicable. 

We will therefore make certain minor approximations 
that will make the problem more tractable. The re-
ult of experiments give the clue for doing this. It 

. . 1 f ()·l A",d Am' b f 1 IS eVIC ent rom 13 L wt nT = lc l,S t e tangent 0 LIe 

nllgle of deflection waves wiLh Lhe axial direcLion. 
L~'rom Lhe theory 0[' SouLhwell and Skan (refercnce U) 
nlld from experimcn t , we know tha t the angle 8 tart 
aL nbout· 45 ° [or infinitely hort cylinder and rapidly 
decreases a tllC length increa es, being about 15° when 
Lhe length equal the diameter, and evidently approach­
ing zero at yery large length /diameter ratios (of cou rse, 
we will how that 8 is a function of JI, rather tban of 
l id, but the foregoing sLatement is ju tified by the fact 
tlla t d/t has a practical lower limit detennined by Lhe 
cia tic limit of ayailable maLerial ). 

This indicates tha t, for all except very shorL Lubes, 
'A", /k is small compared to 1. Of COUl' e, the actual 
deformation i a supel'po ition of eight defoI1nntion , 

each with a difl'erent va lue of 'A"./k; some of Lhe va lues 
of Am/Ie may not be small, but experimenL a well as 
the following theory show that the important value of 
'A,,,11e are certainly mall, except when l id is mall. 
We ,are also quite afe in a,ssuming that A"./k approache' 
lIero for large values of lid, a thi assumpLion certainly 
give a good fir t approximation, and tllis fir t approxi­
mation verti£ies the assumption. 

These facts ar the basis for the approximations 
wllich we will use. tarting with (14), if we neglecL 

(A,;"Y in compal'i on to 1, we obtain 

U = W"'~!!': 
//I n k 

v = _.!.fill .". n 

(l6) 

The el'l'or introduced by thi approxllwl,Lion i zero a L 
both extremes, when l id i infrnite, and nl 0 whell 
l/d = O-because both U", and V ", are then ,zero any­
way, ince n becomes infmite. The error is mall for 
any intermedia,te case becau e \\'hen A"./k i not small 
compared to 1, n is larg and U'" and V", are of liLLie 
importance. For extUll pIe, when l /d= 1, taking 
A"./Ic = tan 15°, the errol' in V". i about 3 percent, and 
in U m (which is mllch Ie s important than V "" as it 
contains the factor A".fle) about 14 percent. Moreover, 
investigation of the final re ult shows that U". is never 
of any particular in1portance, and even 11". i noL 
important here, only becoming of importance when l 
is large compared to d. 

ubstituting (13) and (16) in (11) or (12), and 
dividing through by common factors, we find, for 

l 
x = ±Z; 

v= O: ~W",sin(n';'±A"') = O 

w = 0: ~ W". co (n';' ± A".) = 0 

1L = O: ~W1lL A ", si ll(n:' ± AIIL) = U 

~~= O: ~IV", A ",si n (n ; ± A".) = O 

(boLh edge 
conditions) 

(C'Ia III peel 
edges) 

ax = 0: ~ I V",A".2 cos (n T ± A IlL) = 0 (hinged edgt's) 

(17) 

vVe \\'ill neglect the third condition for hinged edgc , 
that u = O. Thi i by' far the least importanL of Lhe 
fOllr condition , owing to the relaLive in ignifi 'a,Hce of 
U "" as mentioned before. eglecting thi condition, 
<md using the trigonometric formulas for the ines and 
co ines of the S1.UJ1 of two numbers, we obtain 
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. S (f ) Sill II ~ II '" (,0::; Am ,. 
8 ( " I I ' . \ ) ~ ('OS II r -oJ '" :ill I 1\ 11/ o 

(boLh edge condiLiolls) 
. S ( I I" ) Slll 111' ~ '" Slll A", 

~ ('os II f (~IV", cos Alii) = 0 

sin I! ~ (~II'", A ", eo ' Alii) 1 
1" 

~ co ' n f(~lVII/ A II/ :iiu A",) = 0 

• S ( " 'r'll 2 ' ) SIll n - -oJ ",A", SIll Am 
l' 

S ('Ill 2 ) :l eo n - ~ ",Am co Am = 0 
l ' 

(clamped edges) 

(hinge 1 edge ) 

.~ll Lhese eondition will be ati [jeel if 

~lV", sin Am= O 
~lF", cos Am = 0 
~lV",A ", COS Am = 0 
~lF", A ", in A", = 0 

~lVm sin Am = 0 
~lV", COS Am= 0 
~lV",Am2 COS Am= O 
~lV ",A ",2 in Am = 0 

(damped edges) 

(hinged edges) 

(1 ) 

The e four equation fo1' each end condition can be 
saLi fied by four yalues of lV m, that is four term to 
the summation of (13), and a determinantal relation-
hip inyolying the AmS. The conditions (1 ) are the 
ame as the boundary conditions found by outhwe11 

and Skan (reference 6) for the case l id = O. These 
writers show that the determinantal relationship 
between the AmS, implied by (1 ), can be put in the 
following forms: 

(AI A2) (A3 - A'J) sin (AI A3) I 
::;in (A2 - A-U = (AI - A3) (A2 - A,) (clamped edge) 

sin (AI - Az) sin (A3 - A4) 

( A1 2 A/)(Aa2- A/) sin (AI 
- Aa) in (A2 - A4) = (A12 
- A32

) (Al- Al) sin (AI 
- A2) in (Aa - A4) 

1 (hinged edges) 

(l9) 

'Ye will next use the fn,ct that A".tle i small compa red 
to 1 (except for small values of l id) to reduce tIl e equi­
librium equation (15) to one of the fourth degree in 
AII/' This ean be clone in several way. The most 

accurale is to merely eonsider nj[I +(Ak'YJ -II' <IS 

a quantity independent of Am, until we obtain a 0-

lu Lion . This give 

T ht' erro r iJllrodu('('(l is ",ero for lh(' extreme eH e ', \\"hen 
I/d = co (since A "./1.: = 0), and whell lld = O, since J[ 0 

for this C<lse. For j nlermediaLe cases, n fnir firsl. 
approximaLioll for Lhe value of A, and Lherefore of S, 
could be expecLed even if we neglecLed A".tk alLoo-eLher 
in the above q nantiLy, taking II' = If, beeH.l1 0 when 
the elTor in neglecting A".IIe is laro-e, lJ is mall and Lbe 
whole second Lenn in (15) i of small imporLance in 
detormining A; when thi Lerm i importanL A",lle i 
mall compared to one, ,wd the error is mall. 

A second approximation for the relation beLween S 
and lJ is obtained by Laking 

(21) 

where A",2 is taken as a weighted averao-e of the four 
valu es fotUld in the first approA'imation. In figure 1 
the relation between A and II, for clamped edge, 
obtained from tho fir t approximation, is shown by the 
dotted line, while the econd approximation i hown 
in [ull line. The difference between the value of A 
or fOtUlcl from the fiT t and Trom the econd approx­
imation is never more than about 20 percent (and is 
much les than this in the rano-e of greatest practical 
importance). Hence, if general experience i a safe 
guide, the maximum error in the second approximation 
is probably not more than a few percent. This is 
borne out by the te t ,a the average ratio of experi­
mental to theoretical re ults is about the ame in the 
range where the theory is most uncertain, as iL i in the 
more certain range. 

A further implification of (15) can be obtained by 
completely neglecting (Amlle)2 in compari on to one in 
both the fir t and second terms . Equation (15) then 
reduces to 

(22) 

This would give a very poor approximation 1'01' very 
short tubes, buL it i an excellent approximation for 
long tube for which Amlle is mall, and the error 
becomes zero when l id = co. Due to the absence of n. 
term in A",2 thi equation i much ea icr Lo work witb 
than (20), and we can obtain most of our 1'e ult from 
it, u ing (20) only to fill in the theory for very bort 
tube. The re lllt obtained from (22) are shown in 
figure 2, and al 0 give the traight upper portion of th e 
curves in figure 1. Equation (20) yield the lower 
portions of the e curve, which approach asymptoti­
cally the traight lines o-iven by (22) . 

As (20) and (22) are of fourth degree in Am, they are 
in general satisfied by four yalues of A"" Lhat is, four 
roots of the equation, for any given et of values of 
k, II, and A or 11, J, and 13. But these four values of 
Am mu t a lso ati fy tbe boundary condition (19), and 
in general thi CHJ1 only be done if certain rcla tions 
exi t between Ie, fI, and A or 11, J, and B. The prob­
lem i to find the 0 relations; when we have Lhem we 

Lill have the Lnsk of clccLing the values of n or le which 
giye the low sL S for any given tube, llR huckling call 
occur wbel) llus S is reach d. 
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As lhe term ill A,,/ is abscuL in holl! (20) nnd (22) we I 

know Llin L AI I A2 -l Aa I AI n. From Lh(' ]'('slIILs of 
SOllUl\n~1l nncl Skan (refereJlcc 0 ) we know that for the 
casc fjd= O, two of tlle (' rooL arc real, and the othcl' 
two complex with the renl part negative. Trial shows 
thi to be true for all value of l jd. We enn therefore 
expl'es tbe root as follow : 

AI = a + b, Az= a - b, A3= - a +ic, A4= - a - ic (23 ) 

w\tere a, b, and c arc po itive real 11 umbel' . The equa­
tion of which these are tbe root is 
[A m - (a + b)][Am - (a - b)J[A m - ( a + ic) j[A,n - ( - a-- ic) ] = 

A",4 - (2a2+ b2 - CZ)A,,/ - 2aW + CZ) Am+ (a2- bZ) «(L2 + cZ) = 0 
Equ!1ting the coefficients in tbi equation to those 

in (20) we find tbe foHowing conditions which must be 
satisfied: 

2 b2 - 2_ 2k
G 

2a + c - - lc4+ 3H'2 

3Alc5 

k' + 3I1'2 

(a2 - b2)(a2 + c2
) = 

01' if (22) is used 

lc 

2Ct2 + b2 - c2 = 0 

a(b2 + c2
) = n5BJ 

3 (a2 - b2) «((2 + c2) = n J 2 

(24) 

(25) 

These three equations from the eq uilibriulll con­
dition (24) or (25), mu t be solved with a fourth aiven 
by the boundary condition. This i obtained by 
ub tituting (23) in (19); the results can be put in the 

following form: 

4 ? b? ? + 2bc 
Ct- = -- c- IV tan 2b 

? (b 2 + C2
)2 

4a- = -
b2 _ c2 _ 2bc 

IV tnn 2b 

(clamped 
edge) 

(hinged 
edge) 

(26) 

tanh 2c 
whcl'l' N = - "" 1. 'rri<tl sllows Llnlt 2c 

1- co 4([ 
co 2b cosh 2c 

is never less thelll U, and 2b varie between 7r and ~7r' 

for clamped edges, and between 7r and ~7r' for hinged 

edge, for the lowest range of real olutions for S (real 
solution can also be obtained with yalues of 2b around 
27r, 37r, etc., but the e olutions give much higher 
values of ). For uch a mnge of value, we can take 
IV = 1 without any appreciable error. 

on ider now solution ' obtained witb (25) (which 
will apply to all but short lube ) . Eliminating a 
between (26 ) and Lhe fir. t equation of' (25), and a -
sunllnO' value for b beLween the limits mentioned 
above, we olve for the corresponding valuc of c. This 
can be done directly in the case of clamped eclge , 
as wc have a simple quadratic equntion in c Lo work 

with; in tbe ca e of hinged ('dges, the Ynlu(>s of c weI' 

founu by a simple graphical method. The value of (( 
can next be found from tbe f-irst equation of (25), Hncl 
Lhen the values of n8J 2 and n5BJ from the last two 
equations. Table II shows variou sets of value of all 
these quantities, thus obtained. 

From the sets of values of n8J2 and n5BJ we can cal­
culate, for any given value of n (2, 3, 4, etc.) et of 
corresponding values of J, and then B. In thi way 
were plotted the families of curve, howing the rrlaLion 
between Band J for n = 2, n = 3, etc., in figure 2. 
Obviously, only the portion of each curve which is 
below the other curves, that is, the portion between 
inter ections with the adjacent curves, has pl'acticnl 
ignificance, as buckling will occur at the lowest Lre, S 

at which equilibrium in a buckled state can exi t. 
lIence, the relation between Band J (and therefore 
between S n.ncl the propertie of the tube), when buck­
ling occurs, i given by the jagged line hown in the 
figure, made up of the lower portion of the curve ' for 
n = 2, n = 3, etc. As indicated on the figure, the inteI'-
ections of the curves give the values of J at which the 

number of circumferential waves will change from one 
inteO'er to the next. TIm a clamped edge tube fol' 
which J > 1.45 should buckle in two waves; and for 
1.45> J > 0.35 it should buckle in three waves, etc. 
It will be noted that test results are quite consistent 
with the theory in thi respect. 

The relation between n5BJ and n8J 2 can be vcry 
n arly e:\.-pre ed, for the range of value of Hct1l111 
significance, by the formula: n5BJ is equal to 

0.3 5 (n8J2){ + .94 (n J2)1 + 1 .3 (clamped edges) } ( ) 
0.3 5 (n J 2): + (n J2) ~ + 6.5 (hinged edges) 27 

The value obtained from the e expre sions are shown 
in table II, in the coluJ1m next to n 5BJ. The e rela­
tions can be simplified to 

B = O.3 51lJ:+ O~OJ-: + l ;J.:3 (clumped Cdges)} 
n ' n' 

(2~ ) 

13 = 0.3 5 nJl + }JI + G;J5 (hinged edges) 
n ' n 

The e are the equation of the individual curve in 
flgure 2. For very large value of J, n = 2 and only 
the fU'st term of (2 ) arc important, giving us equa­
tion (2) . This is Lhe equation of the line eef in figure 
2, which the cune for n = 2 approach asymptotically. 
Bj' equating the right-heUlcl ide of (2 ) to the ame 
expre ion with n replaced by n + 1, we obLain an 
equation for deLennining t.he value of J for which the 
number of circumrerential ,,"UYCS changes from n to 
n + l. 

It will be no ticed tha t the part of the j aggccl lines 
in figure 2 corresponding to larger value of n approach 
clo er and clo er to the OIl velopes of all the curves, 
sh0'\-n by the broken line de. For values or J below 

l 
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6 or 7 this envelope call be used instead of the jagged 
line without serious error. We can obtain the equa­
tion of this envelope very simply-merely by treating 
11 as though it could have any value, fractional as well 
ao integral. In tbe la t column of table II, values of 
II J 2 have been rai ed t Lhe % p wer and divided into 
corresponding values of n 5BJ, giving us values of 

1. 8 

1.6 

, 

1. 4 

1.2 

~I 
i\ 

n5BJ . B 
(n8J 2)i J~ 

I IIII 
o c1mJJdJ )J)nts 

'1 r-
\ ''If',-Clomped e+ge} 

'\ 
n 8)2 = ~236 AbI \ 

B/l'/< = 1.293 

r--... ,.: I I ?' 
""-. 

'-... [} 
I I ! : 

n 8 J 2= 822. 
' -Hi:n9~d edges 

L I I I-I II r-Br'/f( IIi 
1.0 

100 
I III 

~ooo 10,000 

l ' IGURE I5.- Plot of n'J' against B /JI /' 

./ . 

100,000 

'l'llese values have been plotted on figure 15. It will 
be seen that the minimum value of B/J+- and there­
[ore the minimum value of B for any given value of 
J - occura when n8J2=2236 (clamped edges) or n8J2= 

22 (hinged edges), that is when 

n = 2236k/Jt = 2. 62jJi (clamped edges)} 
n=822k/Jt =2.31/Jt (hinged edge) 

(29) 

These minimum values of B/J1 are 1.29 for clamped 
edges, and 1.18 for hinged edge. Hence, the mini­
mum. B for any given J is 

B = 1.29 J l (clamp. cd edgeS)} 
13 = 1.1 J} (hinged edges) 

(30) 

The 'e arc the equations of the envelopes in figul'e 2. 
Equations (29) give the appro::\.rimate number of cir­
cumferential waves in which a tube will buclde; if n 
is taken as an integer, the e equations give the inter­
sections of the envelope with the corresponding curve. 
The e equation can be put in a different form by 

multiplying (29) by l/d and (30) by . 1 - J.L 2
{: 

k = 2.G2 Iii (clamped edge) 
k = 2.31 II} (binged edges) 

A = 1.29 IT: (clamped edge) 
A = 1.1 11 t (hi nged edges) 

In this form, they were used to plot the right hand I 
end of the ClU'ves in figures 1 and 3. 

\'Ve have as umed the minimum ilumber of circum­
ferential waves to be two. The case n = 0 clearly has 
no ignificance for the torsion problem, but the case 
n = 1 i not so obvious. Thi would give a distortion 
in whi.ch cross sections remain circular bu L arc dis­
placed, the tIi placement piralling around lue cenler 
line, so thaL the shape of the tube would become some­
thing like that of a corkscrew. uch a eli pla,cement 
can ea ily be obtained by twi ting a long piece of 
rubber tubing in the hands; however, no uch distor­
tion has been ob erved in a thin-walled meLal Lube, 
even in the tu be shown in figure LO, which had a 
length/diamrter ratio of neDdy 170. 

I 

~~~~~- --~~ -,--Y. $ 
I '-!IV 

(a ) 

(e) 

FIGURE l 6.- The case n = J. 

As previously explained, the equations of equilib­
rium that we have used do not apply to this case, but 
the elementary theory of bending of a tube does apply. 
Figure 1611, shows a tube undergoing tbi type of dis­
tortion, under the action of a twisting moment M t , 

the center line being bent to a spiral and having the 
constant angle e with the aAris of the spiral. If the 
couple M t acts about the a::\.ris of the spiral, all parts 
of the tube will be subjected to the bendino- moment 
NIt sin e. At the same time it can easily be shown 
that all parts of the tube are bent to a curvature 
in2 e/R (where R is the radius of the spiral). This 

cllJ'vature is in the same plane as the bending moment 
1\([, sin e. Hence aU parts of the tube will be in 
eq uilibriulll if 

. . , sin2 e 
M t sm e=EI--r 

.Mt = Els~e 
(a) 

If lh end conditions are uch that ' ill e/ R can have 
only one particular value, as in the case discussed in 
the next paragraph, then this formula determines a 
value of M t at which the tube can buckle in the shape 
given. 

It was assumed above that tbe couple 'PtI, is applied 
at the axis of the spiral In a practicaI case it would 

.. 
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naturally be applied at the end of the tube, as shown 
in figure 16b. As the couple has only been moved 
parallel to itself tills i statically equivalent to the 
case of figme 16a, and the above reasoning still 
applies. But now the couples at the ends of the 
tube are not about the line joining the two ends 
(shown dotted in the figure). In order to fullfil a 
requirement that the end couples be about this line, 
the spiral form of the tube must consist of an even 
number of full turns. The condition for this is that 

sin 8 27r 
T=m-l 

where m is an integer. Taking m= 1, as in figure 16c, 
and sub tituting this in (a), we nnd 

7'-' _ 27rEI 
.LVJt - l 

This checks Greenhill' olu tion (reference 10) and the 
loading condition correspond to those assumed by 
Greenhill. However, many other solutions could be 
obtained from (a) for other end condition, and the 
Rpecial end conditions assumed by Greenhill are no 
clORe]' Lo most practical ca es than the others. In 
Ilolle of the e cn e could the loading applied be called 
n pu]'e twi ting moment, ns the applied couple is not 
abouL the axis of the Lube at the end, a it i for 
instance in the acLual experiment shown in figure] O. 

It would not be worth while, for most practical 
purposes, to try to obtain solutions for other end 
conditions such as that in figure 10, because a little 
figuring indicates that this type of buckling can never 
be of importance with meLal Lubes. In the last 
analysis such a buckling merely amounts to a change 
of a component of the Lwisting moment into bending 
moment. The resulting deflections could never be as 
great as the bending deflections which would occur 
if the whole twisting moment were to be applied as a 
bending moment. In the case of a long piece of rubber 
tubing, enormous angles of twist can be obtained. 
Tills deformation is not especially apparent, as it 
leaves the tube cylindrical as before; if, now, some of 
tills twisting deformation suddenly goes into bend­
ing deformation, the resulting deformation is very 
spectacular, even if the angles of bending are only a 
small part of the previous angles of twist. In the 
case of the steel tube shown in figure 10, which is 
abollt as extreme a any practical case could be, the 
torque at which buckling occmred would only have 
cau ed a deflection of 1 inch in the middle of the 
53-inch span, if it had all been applied as a bending 
moment. It is evident that the occurrence of a frac­
tion of tills deflection due to a spiral deformation would 
not even be noticeable. 

Returning to the ca es where n> 1, the shape of 
buckling deflection can be found as follows: From the 
vahles of a, b, and c wbich hfl,ve been determined, the 
values of AI, A2, A3, A4 are found from (23). Putting 

these in any three of the four equations of (18), we 
solve these equation simultaneously for TV2, W3, and 
VV4 in terms of '[IVj • Using these values, the value of n 
(obtained as elsewhere di cu sed) and (16), in (13), we 
obtain the desired expressions for u, v, and w. These 
expre ions contain an indeterminate factor WI, which 
i to be expected, as the absolute magnitude of the 
di placement is indeterminate. These calculations can 
be made from the re uIts obtained later for short tubes, 
as well as from the results all'eady obtained for long 
tube. However, as the work of solving equations (1 ) 
simultaneously is quite laborious, it has been carried 
out for only one case, that of long clamped edge tubes; 
the result should apply with sufficient accuracy to 
most of the experiments and to most practical appli­
cations. Using the values of b, c, and a from the 
fourth line of table II, we find, for long clamped edge 
tubes 

O . 1 x . (8 ,i') - .00054 RJ111 12.00 I SIll II, /' -R.20 I 

~ (nN f)J - 0.00172 ('0. h 12.0() l ('os ,. -:";.20 I 

1)= - ~~ WI [sin (II :. -I 11 .54 '0 
( 

8 x) + 1.301 in n r+ 4. 61 (31) 

. ] x (8 ? x) +0.00054Rlll12.061COS 11,,-.- .~O -Z 

:r (118 .I.')J -0.00172 cosh 12.067, sin -;:--8 .20 1 

U= n~l TVI [5.77 sin (11, f,+ 11.54 D 
. (n8 6 X) +3.16 ill -;:-+4.8 1 

x (ns X) + 0.00 2 sinh 12.06 1 cos -;:- - .201 

x . (n8 X)J + 0.0103 cosh 12.06 1 sm r -8.20 1 

where n is given by figure 2 or equation (29). 
The results found 0 far were obtained from (25) finn 

a.re not accurate for hort tube. To obtain a solution 
from (24) and (26) is much more difficult. PtuLiculal' 
solu tions were found a follows: Value of band c a.rc 
a umed, and the value of a found from (26). The 
value of k i then found from an equation obtained by 
dividing the third by the first equation of (24); II' i 
now found from the first and then A from the second 
eq uation of (24). 

The value of II is now computed from (21). Thi 
requires the selection of a weighted average value for 
Ant For this purpose three solutions for the shape of 
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tbe buckling deflection are available, the one above for 
the case l/d = co (clamped edges), and solutions for the 
case lld = O for both edge conditions, given by outh­
w~ll and Skan (reference 6) . In all these solutions the 
first two terms involve Al and A2, respectively, and the 
In t two terms involve A3 and A4. These last two terms 
nrc much smaller than the first two. In figure 17 the 

,:\~-H~O (~inger e~e) I 1\\ ~-H~O (clamped edge) VI - I 1 I ~ I 

1\\ .:-x I I I, 

~ [L ," H~oo (clamped edge) 
r-.. ' I 

/ "-~ k ~ V 
.2 .3 .4 .5 

FIGURE 17.-Chart showing relative unimportance o( X, nnd X •. 

ratio of the average absolute magnitudes of the last 
two term, to the average absolute magnitudes of Lbe 
first two, is plotted against x/l. It will be seen that 
Lhe last two terms arc very unimportant compared to 
the fir t two, and hence A3 and A4 are unimportan t 
compared to Al and A2' Comparison of the terms con­
taining Al and A2 shows that these arc of the same 
order of magnitude for all of these extreme cases. 
Equn.tion (21) was Lherc1Ol'e taken as 

II = II{ 1 + A/2t2A22) = 11'( 1 + a
2 

~ b
2

) 

This is of course rather a rough correction, but it may 
be considered to be applied, not to the whole solution 
for A or S, but· to the eITor in the first approximation, 
as previously eli cussed. 

\Ve now have corresponding vn.lues of .!l and IT, 
snLisi"ying the equn.tions of equilibrium and the bound­
ary conditions. However, the original choice of band 
c was purely guesswork, and with different values of b 
and c we may obtain higher or lower value of A, and 
therefore of S, for the same value of H. For the e 
higher or lower value of S there 'will correspond cer­
tain values of k and therefore of n. We know that the 
actual value of n will be that giving the lowest value of 
S consistent with equilibrium and boundary conditions. 
It is therefore clen.r that the smallest values we can 
find for A in terms of IT by the above process will be 
the correct values. 

If we had to try values of band c blindly, the work 
would be very difficult, as only a small range of values 
eve result in real values for a, k, A, and H. However, 
we already know the values of band c for the extreme 
case' when H = 0 and II = co, given by Southwell and 
Skan, and the previou solution obtained from (25). 
These sets of values of band c are represented hy tbe 
points 11 and q, figure 1 . The desired values of band 

6 0 - - I.~ I- - t--I--

o Computed poinfs H=do '\ 
I---

~ t f\ I--- I---t-- l-I- l- f--

- I-- - - - ~ -
H=cn 

f---f--hi 
- I- ~-

Clamped edges. 
I--

I- -g/ ~ -

1-11 
'-j i p ~ , 

H=O) 
-~ 

I---I--- -

5.6 

5.2 

4. 8 

c 

4.4 

4. 0 

-~ -
'Hinged I edges 

3.6 

f---- j ·i- -

1--1- -I-- ---I--

~r-I--- - r- - j-- t--l- I-- .. I--
H=p./ 

3.2 

28 
1.36 1.40 1. 44 1.64 1.68 1.72 I. 76 1.80 

b 
1'IGUIlE 1 .- Vnlue. (ound (or band c (rom ][=0 to If=«> . 

c, for intermediate values of II, are ohviously given by 
poims on some line connecting 11 and q. By trying a 
number of points eli tributed over the area between 1i 
and '1, plotting the re ults on figure 1, and making lise 
of cr ss plotting, we locate wiLh sufficient accuracy Lhe 
line shown in figure 1 ,which correspond to tbe lower 
part of the curves in figure 1. Points on either side of 
the line in figure 18 give points above the curves in 
figUle 1. Tahle III gives sets of values of b, c, a, k, 
II', H, and A obtained in tbis way. Equations (1) 
nre merely formulas which have been found nearly to 
chee c the relation between A and II given by these 
vallle , as will be seen from the la.st column of table 
III. Corre ponding values of k and II have been 
plott.ed in figure 3, forming the left-band end of the 
curv s shown, which approach asymptotically the 
portIOns previously found, at the right. 

The theoretical value of the angle which the buckling 

wayes make with the axial direction is tan-1 An1d for 

each of the four components of tbe wave, as has been 
pointed out previously. As it has been hown that 
the components involving A3 and A4 are compara tively 
unimportant, and that the other two components arc 
of nearly the same magnitude, an approximate value 
for t e angle of the resultant wave is evidently 

o· 
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-I Al + A2 d ad a 
e= tan - 2-nl = tan- 1 nl = tan-I

k (32) 

A more accurate value for three particular cases can be 
found from the three available solutions for the shape 
of the buckling deflection. etting equal to zero the 
derivative with respect to s of the expression for w, 
we obtain the equation of the line at the top or 
bottom of the wave. The desired angle is the tangent 
of the slope of this line, or tan- I ds/dx. It is found that, 
for these extreme cases, the angle is nearly constant 
near the middle of the tube, and checks the value 
found from (32) within about 10 percent. Hence (32) 
is probably sufficiently accurate for a check on the 

TABLE I- EXPERIMENTAL DATA 

I 
STEEL TUBES 

I d I IX I03 EXIO-I Ultimate n 0 torque 

----------- - - --
I nches Inches Inches Lb./in.' In.-lb. 0 

27.0 85. 8 11. 5 28. 9 12. 00 . 5 
5. . 469 1. 93 JI. 3 960 44 ._---
5.88 .375 1. 93 31. 3 1.020 46 ---- -
5. . 290 I. 93 31.3 1,400 50 ----
.319 4. 53 1. 92 31. 3 5.20 2 ------
.319 7. 81 1. 92 31. 3 3.39 2 -----
.319 12.4 1. 92 31. 3 3. 81 2 ---_ . 
. 319 13. 1 1. 92 31. 3 3.4 1 2 - ---
.3 t9 15.8 1. 90 31. 3 3. 19 2 -- - -
.319 21. 4 1. 99 31. 3 3. 01 2 - ----
.319 29.5 1. 92 31. 3 3.27 2 ----.-
.319 53.5 1.92 31.3 3. 20 2 ---- -

5.67 6.0 2. 92 31. 3 26 13.9 Jl 
5. 67 6.0 2. 0 31. 3 268 13.4 11 
3. 75 6. 0 2. 31. 3 202 10. 4 JO 
3.75 6.0 2. 31. 3 218 11.1 10 
I. 6.0 2.92 31. 3 96 6.7 \0 
5. (;7 6.0 2. 17 31. 3 162 15.4 9 
5.67 6.0 2.17 31. 3 146 13. I II 
3.75 6.0 2.13 31.3 84 10 10 
3.75 6.0 2.1 3 31.3 106 12.5 10 
1.88 6.0 2.05 3J.3 46 6.6 Jl 
5.67 12.0 2. 68 31. 3 206 7 9 
3.75 12. 0 2. 0 31. 3 12S 8 9 I 
1. 88 12.0 2.80 31. 3 6·1 5.1 9 
0.67 12.0 2.05 31. 3 90 10 8 

I 
3. 75 J2.0 2.0 1 31. :l 60 7.9 9 
1. 88 J2.0 2.0 1 31. 3 :12 ;, 7 
1. 88 24. 0 2.84 3l.3 48 4 12 
1. 88 30. 0 2.01 31. 3 20 4.7 6 

-

B RASS T UnES 

-- --
(/ I (XIO' EX 10- 6 Ulti mate n 0 torque 

------- ------- ----
Tnch e.~ Inches Inch,s Lb./in.' In.-lb. 0 

5.67 6.0 5. bi 16.3 912 II J5 
5.67 6.0 5.98 16.3 1.048 11 17 
3.75 6.0 6.02 16. 3 .164 10 
3.75 6.0 5.91 J6.3 638 S.7 9 
1.88 6.0 5. 7 16.3 2S2 6 10 
5. 67 6.0 3.07 1.5.7 170 7. 10 
.5.67 6.0 3. J 1 15.7 HI2 Jl 
3. 75 0.0 :1. 11 15.7 11 2 10.5 11 
I. n.o 2.99 15.7 00 7. 1 JO 
1. 88 6.0 2.99 15. 7 '16 7.8 10 
5.67 6.0 2. 13 15.7 72 15 Jl 
5.67 6.0 2.09 15. 7 70 14 13 
3.75 6.0 2.09 15.7 50 11. 6 J1 
3.75 6.0 2.13 15.7 '16 12. 5 12 
5.69 12.0 5.95 16.3 764 . 9 9 
5.69 12.0 5.90 16.3 776 9 12 
5.69 12.0 5.90 16. 3 710 10 12 
3.75 12.0 5.95 16.3 47 6. 7 11 
1 ' 12.0 5. i 16. 3 192 4 9 
5.67 12. 0 2.09 15. 7 44 10 10 
3.75 12.0 2.05 15.7 38 9 9 
5.67 30.0 5.98 J6.3 454 7. 2 9 
3.75 30. 0 5.91 16.3 2lx~ 5 9 
I. 30.0 5.98 J6.3 126 3 3 

tests, especially as it is difficult to get a very accura te 
value for e from experiments. The curves of figure 
4 were plotted from (32), using values of a, k, and II 
from table III. Equation (3) is also obtained from 
(32), using the value of a for II = co . 

The author wishes to acknowledge the valuable suo'-
. 0 

gestlOns of Dr. Theodor von Karman for interpreting 
the application of the simplified equilibrium equations; 
the help of Messrs. K . W. Donnell and L. Secretan in 
carrying out the experiments; and several helpful cri ti­
cisms from Dr. S. Timoshenko. 

GUGGENHEIM AERONAUTICAL LABORATORY , 
OALIFORNIA INSTITUTE OF T ECHNOLO GY, 

MAY 5, 1933. 

TABLE II 

b 

I 
c 

1 

a 
I 

n'J' n'BJ I EXP[2~)Sion 1 IJ/J: 

77r/12 3. 18 U~ 1. 780 3.56 
1. 728 4. 25 2. 75 
1. 669 6.03 4. 10 
1. 641 8. 13 5.62 
1.623 10.54 7.36 

I.~ 15. 47 10.89 
1. 30.40 21. 50 

7r/2 ao ao 

57r/12 ? ?-I 1. 3t 
1. :142 3: 33 2. 16 
1. 39 1 4.74 3.21 
I. 414 5.57 3.81 
I. 449 7.44 0.17 
1. 500 14.0 9. 82 
I. 530 24.9 17. 60 

7r/2 ao ao 

b 

1 

c 
I 

n 1 
1. 804 4.334 1.977 
I. 796 4. 52 2.03 
1. 7 1 4. 81 2. 14 
I. 75 1 5. 22 2. 47 
1. 72 1 5.59 2.9 1 
I. (;9 1 5.9.5 3.53 
1. fi78 6.06 3. 6 
I. 669 6. 03 4. 10 

I. 383 2.9il 1. 445 
1.390 3.16 1. 53 
I. 395 3.43 1. 70 
1. 404 4.06 2. 15 
I. 404 4. 46 2. 56 
I. 41 0 4.72 2. 9·1 
I. 39 1 4.74 3.21 

-

LAM PE D 

0 
82. 2 

348. 3 
2, 236 
8,442 

25,620 
124.500 

1,912,500 
ao 

1 

HI NGE D 

0 
135 

22 
1, 707 

ED GE 

~: ~ 1--------33:8-
57.7 57.7 

160,6 160,5 
387 386 
839 842 

2,633 2,645 
20, 000 20, 062 

. 385(n'J') 1 . 385(n'J') 1 

EDGES 

28. I 
78.2 

12.5.4 

ao 

2.19 
1. 49 
1. 2'J3 
1. 36 
I. 47 
I. ;2 
2. :li 

ao 

6, 046 
2,240 

61,000 
ao 

9. 04 
27.8 
78.3 

125. 7 
297 

1, 936 
11,000 

. 385(n'J') 1 
297 I 1,945 

] t, 050 
, 385(nV') ; 

1. 29 
1. 182 
I. 20 
I. 211 
1. 64 
2. 15 

-

TABLE IlT 

k I IL' 

I 
If 

1 

C LAMP E D EnG ES 
--

H~ 
0 

.67 I. 69 
2.7 1 2.5R 5.30 
4. 10 13.0 20. 1 
0.21 5:!. G 69.5 

10.92 3il ·120 
17. 6 2, 180 2.300 

2.62 11 : ao ao 

r IIINGED EDGES 

1. !~ 0 
1. 73 J. 52 3. 69 
2.61 6.07 10.38 
4. 63 33.1 43. 6 
7. II 13t 153 

I I. 6
J 

726 783 
2.3 1 fl ' ao ao 

- -

.Il 

7. 39 
7.73 
9.47 

17.0·1 
36.3 

128 
4~0 

I. 293ll l 

4.40 
6.22 

10.06 
23.3 
55.3 

1 0 , 
1. 182fl', 

I 
Rt. sid~ 
eq . (I) 

7.39 
7.9 
9. 

17.20 
a5. 9 

12fi 
4:{5 

1. 293 11 ; 

4.40 
6. 33 
9.2 

22.9 
54.2 

17 
I. 182 11 1 
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Positive directions of axes a.nd a.ngles (forces and moments) are shown by arrows 

Axis 

I 
Moment about axis Angle Velocities 

Force 
(parallel 

Designa.- I Sym-
Linear 

Sym- to axis) 
Sym- Positive (compo-Designation bol symbol Designation bol direction tion bol nentalong Angular 

a.xis) 
-- - I --I 

! LongitudinaL __ X X rolling _____ 
I La.teraL _______ Y Y pitching ____ 
I NormaL ______ Z Z yawing _____ 
L 
Abs01ute coefficients of moment 

L M N 
0 1= gbS Om= qcS On= qbS 

L 
M 
N 

Y--.Z roll ______ 
cf> u p 

Z--.X pitch _____ 0 v q 
X--. Y yaw _____ 1 

'" w r 

Angle of set of control surface (relative to neu­
tral position), o. (Indicate surface by proper 
subscript.) 

4. PROPELLER SYMBOLS 

D, 
p, 
p/D, 
V', 
VB' 
T, 

Q, 

Diameter. 
Geometric pitch. 
Pitch ratio. 
Inflow velocity. 
Slipstream velocity. 

Thrust, absolute coefficient Op= ~D4 
pn 

Torque, absolute coefficient OQ= pn9D6 

P, Power, absolute coefficient Op= fD6' 
pn 

6/pp 
Os, Speed power coefficient = -V Pn2 ' 

1], Efficiency. 
n, Revolutions per second, r. p. s. 

<1>, Effective helix angle = tan-I (2;'n) 

5. NUMERICAL RELATIONS 

1 hp=76.04 kg/m/s=550 Ib./ft./sec. 
1 kg/m/s = 0.01315 hp 
1 mi.jhr. =0.44704 m/s 
1 m/s=2.23693 mi./hr. 

1 lb. = 0.4535924277 kg. 
1 kg = 2.2046224 lb. 
1 mi. = 1609.35 m = 5280 ft. 
1 m=3.2808333 ft. 

Reproduced from 
best available copy. 


