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AEHONAUTIC SYMBOLS 

1. FUNDAMENTAL AND DERIVED UNITS 

l\Ietric English 

Symbol 

Unit Abbrevia- Unit Abbrevia-
tion tion 

!,~ngth ___ ___ l rneter _____ _____ _______ _ m foot (or mile) ______ __ _ ft (or mi) 
f lme ___ __ __ _ t second ____ __ ___________ s second (or hour) ___ ____ sec (or hr) 
Force ___ _____ F weight of 1 kilogram _____ kg weight of 1 pound ____ _ lb 

Power __ _____ P horsepower (metric) _____ - --------- horsepower ___________ hp 
Speed __ ____ _ V 

{kilometers per hour ______ kph miles per hOUL ____ ___ mph 
meters per second _______ mps feet per second ___ _____ fps 

2. GENERAL SYMBOLS 

Weight=mg 
Standard accclcmtion of gravity=9.80665 m/s2 

or 32.1740 ft/scc2 

Mass=W 
g 

Moment of inertia=mk2
• (Indicate axis of 

radius of gyration k by proper subscript.) 
Ooefficient of viscosity 

Kinematic viscosity 
p D ensity (mass per unit volume) 
Standard density of dry air, 0.12497 kg_m-4_s2 at 15° C 

and 760 mID; or 0.002378 Ib-ft-4 sec2 

Specific weight of "standard" air, 1.2255 kg/m3 or 
0.07651 lb/cu it 

3. AERODYNAMIC SYMBOLS 

Area 
Area of wing 
Gap 
Span 
Chord 

b2 

Aspect ratio, S 

True air speed 

Dynamic pressure, ~p V 2 

Lift, absolute coefficient OL=:S 

Drag, absolute coefficient OD=:!s 

Profile drag, absolute coefficient ODO=~S 
Induced drag, absolute coefficient OD .=n.~ 

l gu 

Parasite drag, absolute coefficient ODP= DS q 

Cross-wind force, absolute coefficient 00 = q~ 

o 
n 

R 

'Y 

Angle of setting of wings (relative to thrust line) 
Angle of stabilizer setting (relative to thrust 

line) 
Resultant moment 
Resultant angular velocity 

Reynolds number, p Vl where l is a linear dimen-
J.t 

sion (e.g., for an airfoil of 1.0 ft chord, 100 mph, 
standard pressure at 15° C, the corresponding 
Reynolds number is 935,400; or for an airfoil 
of 1.0 m chord, 100 mps, the corresponding 
Reynolds number is 6,865,000) 

Angle of attack 
Angle of downwash 
Angle of attack, infinite aspect ratio 
Angle of attack, induced 
Angle of attack, absolute (measured from zero

lift position) 
Flight-path angle 
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ANALYSIS OF SPARK-IGNITION ENGINE KNOCK AS SEEN IN PHOTOGRAPHS TAKEN 
AT 200,000 FRAMES PER SECOND 

By EAR Y D. MILLER, H. L O WELL OLSEN, ,\V ALTER O. L OGAN, Jr., and GORDON E. O STERST ROM 

UMMARY 

A motion picture of the development of knock in a spark
ignition engine i presented, which con i t of 20 photograph 
taken at i.nterval oj 5 microsecond, 01' at a rate of 200,000 
photograph per second, with an equivaZmt wide-open eJ'posul'e 
time of 6.4 microsecond' for each photograph. 1 motion pic
ture oj a complft p combustion proces , including the develop
ment oj knock, taken at the rate oj 40,000 photographs p I' 

econd is also JJTesented to as i t the reader in orimtm g the 
photographs oj the knock development taken at 200,000 frame 
per second. The photographs taken at 200 ,000 frame. per 
s cond are analy zed and the conclusion is madp that the type 
of kn ock in the spark-ignition engine involving violent gas 
vibration originates a a selj-propagati'flg di tUlbance tarti'flg 
at a point in the bU1'11ing or autoigniting ga es and preading 
out from that poi7lt through the incompletely bUl'ntcl gases at a 
rate a, h:gh as 6800 jeet pel' . econd, 01' about twice the speNt of 
sound in the burned gas s. .A ppare71 t j o7'1nation oj fre e ca rbon 
particles in both the burning and the burned gas is observed 
within 10 micro econcl ajte?' pa sage of the knock disturbance 
through the gases. 

INTRODUCTIO 

Photography has bcen u cd in th e tucly of combu tion 
ovcr a pcriod of approximately 60 ycar beginning with Lhe 
kcak photograpb taken by 1allard and Le Chatcli cr in 

1 3 (refcrcncc 1). Many invc t igato L' bavc used the phoLO
graphi c method for tudying combu tion in bomb and tubc 
of variou type. (cc rcfcrencc 2 for specific mcntion of 
some of th e investigation .) trcak photographs of com
bu tion and lruoc1\: in enginc cylin dcr have bcen takcn by 
Withrow and coworkc), (1' fcrcncc 3 Lo 7), by the Rus ian 
inves tigators Sokolik and Voinov (refc]'cnce ), and by 
Rothrock and pen cr (rcfercncc 9). The fir tactual 
motion picture of lruock combu tion in an engine cylindcr 
wcre pre en ted by Withrow and coworkers during the pcriod 
1936 to 1940 (referencc 10 to ] 3). 

I ho LoO'raph of nonlmocking combustion cycles al 0 pre-
entedin references 10 to ] 3 werc taken a speecl up to 

5000 photograph (01' frame ) PCI' econd, whereas the photo
gl'fLphs of knocking combu tion cyclc were taken at 2250 
framcs pcr econcl. ::\Iotion pictul' of knocking and n011-

01929-49 

knockinO' combustion cycles takcn at about 3000 framc per 
sccond werc al 0 p rc cn cel by Rothrock ancl penccr in 1938 
(refcrcnce 9) . Thc motion picturcs takcn aL pccds of the 
ordcr of 2000 frame pC I' s('concl wcre fast cnough Lo how 
au Loignitiol1, 01' compr<' ionigni tion , of tll<' Ja 1, part of the 
fuel-ail' chargc to burn bu t " 'crc not fa t cnollgh to show all 
dctail of th r knocking ph cnom enon . For that rea on , early 
in 1936, the NACA undertook the dcYClopmcn t of a camera 
to takc photograph of knockin . combu tion at the ]'a te of 
40,000 framcs pel' sccond . Thc ]'e ulting high-spccd camcra 
i dc cribcd in refercncc 14. }.[otion picL lIrc of knocking 
combu tion takcn wi Lb th i camcra a1'(' ))]'c en lcd ill refcrcnces 
2 and 15 to 19. 

Althollgh auLoignition of thc la t part of Lhe chargc Lo bum 
i' oftcn a ociateci wi th knock, the picLurcs Lakcn a 40,000 
framc pCI' ccond indi catcd that omc phenomcnon othcr 
than autoignition is rcsI on iblc for thc vibration of the 
combu tion-chamber contcnt that givcs ri c Lo thc ping a 0-
ciatcd " 'ith knock. Thi pbenomenon that rts 11p Lhe ga 
vibration in thc combu tion chambcr occm within a time 
in trrval of no t morc than 50 mi crosc 'ond (refcr])(;c 16 
and 1 ) . Thc camr ra ope rating at 40 ,000 framc pcr sccond 
Lakc only t \\'O photograph clming an in tc rval of 50 micro-
econd. This camc ra ha a VC1'y p],onounccd focal-plane
huttcr effcct (refcrcncr l4), which hadly disto rt Lbc l' cords 

of movem en t taking place within a timc inLel'val as hort a 
50 microsecond. In refercncc 2 somc of Lhc pi Lurc " ' cre 
analyzcd by a m cLhod Lhat takc thc fo cal-planc- huLtcr 
cff ct into account ancl , in sp itc of the inadcquaLe pic UI'e
taking rate, it wa hO\nl that the knocking phcnom cnon i 
a sclf-pl'opao'aLing cl i LUl'bance who e pccd varic in different 
ca c from about the pccd of sound in tbc com bu tion cham
b l' t about twice Lhe spced of sound. Sokolik and Voinov 
(reference 8) had PI' viou ly concludcd from t heir tl' ak 
photographs that the knocking phenomenon i a detonation 
wavc traveling at about twice the sped of ound in the 
combustion chamber. 

Because the high- pccd camcra was no · fa t cnough to 
produce a clear picture of thc deYclopmenL of kno k , work 
was started in 1939 at the NACA Langley Field laboratory 
on the developmcll t 0 f a till fa tcr camera. Thi work re-
ulted, early in 1939, in the invention of a n ew optical y tern 

entirely unlike the optical ystem of the high- peed camera 
1 
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de cribed III reference 14. The camera that ha been 
con lrucLecl according to the new optical principle will be 
designated hereinafter the ul tra-high-speed camera in con
tradistinct ion to the older 40,000-frame-per- eeond camera 
which, a in the pa t, will be de ignated the high-speed 
camera. Credit should be given to Alois Kr ek, Jr. , and 
K ewell D . , ander of the N \..CA technical taff for val uable 
ugge tion in the de ign of the ultra-high - peed ca mera. 

Th e ultra-higb - peed camera was con tructe 1 at the 1 T \.. A 
_\..me laboratory in 1941. ALLempt were made to operate 
the camera at the Langley Field laboratory in 1942 and at 
the levcland laboratory from 1943 to the pre cn t time. A 
number of erious difficulties were enco untered in the opera
tion of Lhe camera and its opelation i not yet regar led as 
ent irely sati factory. On e moLion pic ture of the knock ing 
phenomenon ha been obtained, however , at the rate of 
200,000 frame pel" econd . The presen t pape r pre enl and 
anaJyze this single motion picture. 

APPARAT SAND PROCED RE 

Combustion apparatus.- The ingle knocking combustion 
cycle that i th e ubject of tbi report occurred in lhe ame 
combu t ion apparatu thaL wa u cd in the experiment 
pre ented in references 2, 9, and 15 to 19. A diagrammati c 
sketch of thi apparatus i given in figure 1; the apparaLu 
ha been de cribed in reference 9 and 16. 

A in previou inve ' tigation , Lhe combu tion apparatu 
was dri ven at the Lc L speed by an ele t ri c mo Lor and wa 
fired for only one cycle. During the one power cycle of the 
engine a ingle charge of fuel wa injected on the intake 
stroke, a single park wa produced at th spark plug, and a 
series of pho tograph of the knocking phenomenon \Va taken. 

Engine operating conditions .- The engine operating on
dition for the combu tion cycle studied were a follow 
Engine coolant temperature, °F ___ _____ _____ ____ _ _ 250 
Compression ratio __ _ ________________ ______ _____ . 7 
Engine speed, rpm ______ _____________ ______ ___________ 500 
Fuel-air ratio (approximale)______ ________________ _ ___ __ 0.0 

park t iming, deg B. T. C. ___ ________ _______ _______ ______ 27 

Only one park plug was used, in po ition G in the cylinder 
head. (ee fig. 1.) Th e fuel u ed wa a blend of 70 percent 

3 reference fuel with 30 percent M - 2 reference fuel. 
Setup for schlieren photography. - The optical etup for 

schli eren pho tography was somewhat cliEreren t from tha t 
used for the work of reference 2 and ]5 to 19 but produce 1 
practically the ame rr ult. In the earli er work a fairly 
cn it ive schlieren y tern wa used. The mirror on the 

pi ton top (fLg. ] ) [orrr. a part of the optical y tcm and, 
inasmuch as it i impossible to constrain thi mirror from 
hifting it angular p sit ion becau e of pi ton lap, consider

able difficult y ha been encountered with the en itive 
schli eren system. For that rca on and becau e the sen itiYe 

Sec t ion A - A, showing openings , 
for sp ark p lugs and ac c essories 

E 

~,!jection val ve 

A- if~-=~fjij~ - A 

Clutch 

Phose-changing 
gears 

2:1 reduction • 
Injection pU;"'p with drop 

cam not indicated 

· -Fue l tonk 

<··-- Fuel Circulating pump 

Tlmmq 
switches 

FIGVRE I.- Diagrammatic sketch of combustion apparatus. 
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chlieren y tern recently had been found unnece ary in 
work wih tb e high-speed camera, the optical ('Lup wa 
modified to th e form shown in figure 2. In thi form of 
lhe optical etup, ligh from h(' ource (a ga -filled fia h 
Lube for the ultra-bigh-speed phoLogra,pb pre ented h rein ) 
passes tbrough the schlieren lens from right to leIL and IS 
brought into approximat parul1eli m by this 1 n. Th e 
ligh L th('n i r eflected from 1he exL('rnal mirror through Lhe 
gla s windows in the cylinder b ad to the top of the pi ton. 
Th e mirror on the piston top return th e light to th exicrnal 
mirror from which it pa e back through the chli ren len 
from left to right. A the light pa se tluough the scWi (,l"en 
len from left to righ tit is rcfracl(, L by thi len 0 a to 
form an image of the light ource on the camera In. The 
camera len refracts the light in uch a manner a to produce 
an imaae of the combu tion-chamber contents on the film 
in th e camera. 

In any part of the eombu tion chamber in wbich com
bu tion is not taking place, the light pa e through practi
cally unaffected. uch part of thc combu tion chamber, 
a photographed by th amera , con equently appear a 
white region on the po itive p rint . In any part of th e 
combu bon chamber where burning is taking place, how
ever, the light rays seem to be thorouahly scattered; the 
chlier n len is therefore not able to fo cus the light ray 

on the camera lens after they have passed through the com
bu tion zone. The combu tion zone , for this rea on, show 
up on th po itive print a black region . (All photoaraph 
reproduced in this paper nrc posi tive prin t .) 

Ultra-high-speed camera.- Th ultra-11igh-spe d camera 
do not have a focal-plane hu tter a doe the high-speed 
camera de cribed in reference 14. Tb optical characteristic 
of the hutter of th e ultra-high- peed camera are th e ame a 
tho e of a conventional beLween-tne-len hutter. The 
distortion of high-sp ed phenomena, which cau d the 
difficulty in in terpreting photograph tal,en \yi tb the high-
peed camera, i therefore ab ent. There is orne over

lapping of exposures, a ho\\"n in figure 3. Thi fi ure bow 

,-Schlier en lens 

• - -GlOSS windows 
'----Mirror on piston 

~~ 

Comero--_ 

Camerolens -" 

Li9h t sour ce -" 

FIGcRE 2.-Diag:rammutic sketch of optical system for laking schlier n photographs of 
knock at 200,000 fram p r second. 

Frame I Frome 2 Frame 3 Frome 4 

1/ I"" / I"" V "" / "" 1/ "" / '" L "'" 
/ "" / ~ V "" ~ I'" / "" V "" I~ V ~ V I~ V ~ V 

l.::.....-
/' "- r----., V 

V ""'-- --......, / 
/' '-.. r---- ./ V ""'-- I'--.. V 

o 5 10 15 20 
Time . micro sec 

FIGURE 3.-Variation with tim e of intensity of light focused on film by ultra-high-speed 
camera for several motion-picture frame. 

the variation wilh Lime of Lbe inten ity of Lh e light focu cd 
on the film for each of several 'ucce ive frame. The curve 
of figure 3 are directly applicable when the camera i operated 
at 200,000 frame pel' second; operation at any oth l' peed 
would involve only a change of the time calc of the figure. 
As may be determined from the figW"e, about 60 p ercent of the 
integrated inten ity-time product for anyone frame OCClli' 

within the 5-microsecond interval allotted for that frame, 
whereas 20 p rcenL of the intcarated produ t fall within 
each of the 5-micro e ond interval allotted to the preceding 
and Llcceeding frame. The equiyalent " 'ide-open time of the 
hutter i 6.4 micro cond wilh operation at 200,000 frame 

p l' econd. 
PRESENTATlO T OF PHOTOGRAPH 

CE EHAL VI EW OF PHOTO CHAPH 

Fiaure 4 sho"- the pic Lure of the knocking phenomenon 
taken at 200,000 frame pel' econd as a s 1;ies of 20 still 
pictures. The photograph " -ere taken in Lh ord 1" from left 
to right acro the top row, then from left to right acro s the 
second 1'0"- , and 0 on. H ereinafter individual frames in the 
er ic \rill be de ignated frame A- l , meaning the fU'sL frame 

of th first row, frame B-3, meaning thc third frame of the 
ccond row, and 0 on . 

The 20 frames of figure 4 represent only a mall fraclion of 
Lhe lotal combu lion proce s. For thi reason figure 5 has 
been provided to a, i L the reader in Lb e orien talion of 
fi o- ure 4. Figure 5 i the ame sho t of knocking combu Lion 
Lakenat40,000frame pI' econdthatwa published a figure 
lOin reference 2 an cl as figUl"e l 1 in ref eren ce 19. Figure 
5 i not a photog:raph of the ame combuslion cycle as thaI, 
of flaur e 4 but i a pholograph of a om wbat imilar cy Ie. 
The combustion cycle hown in figure 5 differ from that of 
figure 4 in the fact that lwo park plug W 1'e fiTed , one at 
po ilion F ancl Lhe olher at po ilion G ( ee fig . I ), wherea 
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FIGUnE 4.- Knocking phenomenon photographed at 200,000 frames per second with ultra·high· peed camera 
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2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 20 21 
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c 

o ," ~i 4 411.. · ~ t·~ f.' ~. -.. /0 : " It 14 ~ ~.:-. ,.-,~ -"~. ,}'! ~. 
• t . t t • t t ... .. . _ WI .....". ... '"'I · 11 • 
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E 

F 

. . 

~, .~ ., .~ ,~ .~ ~~,~ ~~ ,~ ~ ~ ~ ~ ,1 ~ ~ ~ \' ,~ .; 

C-547/ 
7-17-44 

FlG{;RE 5.- Knocking combustion cycle photographed at 40,000 frame per second. (See references 2 and 19, fi gs. 10 and 11 , respectively.) 

only the park plug in G position IVa u ed for the combu tion 
proce hown in figure 4. In figure 5, the flame from the 
spark plug in F posi tion fir, t comes into view between 
frame A- 4 and A- 10. The [lame from the spark plug in 
G po ition become clearly visible in tbe fU'st few frame of 
row Band i faintly visible in lhe JaLer frame of row A. 
In lhe fn me of rows A lhrough C the two flames m erge and 
progre well into tbe fiel I of view. p Lo abou t the end 
of row C lhe flame appears a a oEd dark loud . In frame 
0 - 5 to 0 - 16 of the figure a dark Lt'eak appeal' , which is 
clue Lo fau] Ly proce ing of the film and hould be ignored. 
In frame 0 - 17 to 0 - 21 ancl the frames of row E th e flame 
no longer appears a a olid dark cloud; insLefLd a wbite 
spot develop within the fl ame and gradu ally 0TOW larger. 
By the time the condilion of frame F- 13 are reached tili 
white pol has g rown till it include rno t of the flame. Thi, 
while region " ' ilhin the flame pt'Obably repre ent the portion 
of the flame in which normal combu tion is complete, 
wherea lhe dark regions represenl the portion of the fl ame 
in which combustion is in progre s. In frame F- 13 the 
dark cloud extending from the upper central part of the 

frame dowmmrd to Lbe lower righ t portion of the frame 
probably r epre ent bUJ'l1ing ga e a do s the dark cloud in 
the lower lef t cornel' of th e frame. Thi fact lla. been 
indicated by tile wOJ'k of references 18 and 20. The white 
region to tbe right of the cl ark cloud in fram e F- 13, of course, 
repl'e ent gase thal have no t yet been igniled , 01' what j 

commonly referred to a the "end ga." In lbe frame from 
F- 13 to F- 21 au toignition begin in lh e end ga as bown by 
lhe black doL lhat develop in the end ga in lhc' e frames. 
In frame G- 1 to G- lO Lh e e black pol of :1uloignition 
gradually become larger unlil , in frame G- 10, lhey fill the 
ent ire end zone. In fram es G- 11 and G- 12 knock occur . 
In reference 2 tbe knock that appeal' in frame G- 11 and 
G- 12 was shown to be a progressive disturban ce traveling 
at a speed of the order of the peed of ound in the burned 
ga es. 

With reference again lo the ulLra-hi o-b- peed pbotograph 
of figure 4, the five frame hown in row A of thi fig ure were 
taken at abouL Lhe ame tao-e of the combu tion proces a 
frame G--lO of fig l/t'e 5. The entire eri e of 20 frames 
shown in figure 4 cover lhe ame tage in the ombustion 
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and knocking proce as frames G- 10 through G- 1 3 of 
fjO'ure 5; the dark combu tion zone disintegrate in the 20 
frame of figure 4 and also in frames G- 10 through G- 13 
of figure 5. IVhereas in frame G- 10 of figure 5 the autoig
ni Le 1 end zone appear as a dark clou d covering th e righ t, 
and upper portions of tbe frame, in tbe frames of row A 
of figure 4 tbe burning end zone appears as a dark cloud 
covering the right and lo\\-er portion of the frame (the 
region marked F in frame A- 3 of fig. 4) . The region de ig
naled B in frame A- 3 of figul' 4 represents the gase in 
which combu tion has been completed before the cxposlIl'e 
of the frames of row A. The line of demarcation R (frame 
A- 2), between the white or gray portions of these frames and 
the dark burning portion, rep resent not the front of the 
flame bu Lhe rear edge of the burninO' zone. Th e direct ion 
of fl ame lravel i indicated by Lbe alTOW in frame A- 1 of 
Lhe figure . 

Photographs were not taken far enough in advance of tbe 
frames of figure 4 to determine whether autoignition oc
CUlTed. On the ba i of ob er valion of everal hundred 
pI' viou hoL taken at 40,000 frame pel' second , however, 
it i believed that the dark region designated F in the frame 
of row A of figure 4 doe repre enl burning ga e , wh ther 
the e gase were ignited by the Dame front or by autoignition , 
and Lhat thi . dark region i not due to son-,e unforeseen 
exLraneou cause. 

Careful compllri on of frame A- 1 through B- 1 in figlll'(, 
4 will reveal no very marked difl'erence between any two 
slI cce ive frame except as (0 lhe qualily of tbe definilion. 
Frame A- 1, A- 3, and A- 5 are ralb l' badly blurred. Frames 
A- 2, A- 4, and B- 1 fire much more harply defined. Thi~ 

alternate blulTing and harpening in the e frame i a cllu rac
teri tic introduced by the camora, which it is believed can bo 
eliminate I a further work i done with the camera. In 
conLra t to the negligible ch anO'e th at occurs between any 
LWO Ll cce lve frame3 from fram o A- 1 to B- 1, a marked 
change occurs bet\\ een frame B- 1 and B- 2, between frames 
8- 2 and B- 3, and beLII'een frame. B- 3 and B- 4. The change 
beLween frames B- 1 and B- 2 con i ls in the development of 

8 - 1 B - 2 8 -3 

a very appreciable whitened region in the om bust ion zone 
a een in frame B- 2. This whitened region wa very much 
Ie apparent in frame B- 1 and in each of the frame of row 
A. Two white alTOW have been drawn on fram e B- 2, each 
ar],ow pointing at the ccnt or of the whitened rogion referred 
Lo. The continu ed eli integra tion of Lll e daJ'k combusLion 
zone in frames B- 3 and B- 4, a compared wi Lh frame B- 2, 
i very plain. Eecal! c of the extreme rapidity of th e ch ange 
occulTing bct ween the expo ures of . ucce sive frame in 1'0'" 

B of figure 4, iL is beli eved tbat lhe phenomenon of knock 
began during tbe expo ures of the e frames. 

A startling conelu ion appear eviden t from the frame of 
row B of figme 4; namely, th at at leas t in this ca e the knock
ing phenomenon Larted at the real' edge of th e combustion 
zone. This evidence reinforce a conclLl ion made in refer
ence] from a study of the phoLographs taken at 40 ,000 
frame pel' econel to the effect tha t knock apparenlly origi
nate only in a parl of tbe fuel-air charge that ha been 
previously ignited, eith er by auLoigrulion or by pa sage of 
the flame front, bUl which ha not burned to completion . 

APPARE ' T SPEED OF K ' 0 KING DJSTU RBA ' CE THROUGH BGRNI G 
GASES 

In figure 6 the five frames of lOW B from figure 4 have 
been reproducd and u eel to determine the apparent peed 
of the knocking eli tU J'banc through the burning ga es. 
Th e line of demarcation R B- 1 between th e burning 0'8 and 
the bUl'l1ecl ga ba been ace ntuatecl by a black line drawn 
in the fil' t fram e of figure 6. This arne d maJ'cation line, 
obtained from the f1r L frame of the fi O'ure, ha a1 0 been 
drawn on each of the other frame of th e figul' . All whiten
ing OJ' graying of th e om bustion zone to the righ t of the 
blaek lino in a~ly frame of the figure has becn a ume 1 to be 
caLlsed by the knock rcaction and the whitening OJ' graying 
ba further been a umed to indicate the full ex tent of the 
knocking di tu rbance in any frame of the fi O' LlJ'e. In each 
frame after th e fir L, horizontal traight lin e have been 
drawn marking the upper and lower limi ts of the whitening 
or graying, re pect i vcly, of the combu Lion zonC'. The di -

8 -4 8-5 

C-19623 
10-/-47 

F IGURE G.-Effect of elf' propagating knock react ion on bUl'I1i ng gases dW'ing ear:icst stages of knock c1 en]opmen t. 
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tan ce beLII'ecn the b\~o hOl'izontalline lJa be ·n designat('(l 
l2' l3' l4 ' and l; in frame 2, 3, 4, and 5, re pectivcly, of the 
figure. The valu e of II h a been a umed equal to zc ro in 
the fu· t frame of the figure. Th e difrerence between the 
valu es of l in any two succe ive frame may be consi lared 
to represent the comb in ed upward and cl owll,,'ard travel of 
th e knocking di turbance that occuJ'ed in the time in te rval 
between the cxpo ure of thc two ucces ivc frame. Th 
following velocitie 17 havc be n determined for the kno 'king 
eli turbance according to the equation 

F . . l 'elocily oj k"ock ;"" 
l J a n1es. dislurbance. (j,/seC) 

1- 2 ___ ~_~ ______________ ~ ~ _______ 9200 
2- 3 ____________ ~~ _______________ 4200 
3-4 ___ _____ ~~ _________________ ~_ 6900 
4- 5 __________ ~~ _________________ 1200 

Th e average of the fir t three velocities determined l S 

nearly 6 00 feet per econd. Thi value checks very well 
with the peed of about 2000 meLer per econd determined 
by So kolik and Voinov (reference ) and " ith tbe highest 
peed determined in reference 2. This speed is fully a" 

great a boulcl be expected for a true c1etonation \\'ave. 
The four th velocity determined , between frames 4 and 5 

of figur 6, i comparatively very low. Moreover , c mpa ri
son of the frames of row C and D of fi o- ure 4 with frame B- 5 
of that figure reveals no eviden e of a progressive eli turbance 
uc lt as i apparent in frame B- 2, B- 3, and B-4. The lark 

combu tion zone doe gradually di integra te in the fram e of 
row C and D of the figure. Thi di integration of the dark 
combu tion zone i many Li mes more rapid than the disin
tegrat i n that would occur witb nonknocking combu tion. 
( ee references 16 to 1 .) It, is, ho,,-eve]' , much 10 \\- r than 
Lh di sin tegration of portion of th e combustion zone that i' 

B ~ 1 B~2 B~3 

een in frame 8- 2, 8- 3, and 8- 4 and it appear to be quite 
bomoo-eneoll throughout the combustion zone, noL showing 
tbe pro res ive tendency in the pa tial ense thaL i een in 
frame B- 2, B- 3, and B- 4. 

It i not fully understood wby a paLially progres ive eli -
tu rbance (presumably a cletonation wave) cause complete 
disin tegrat ion oj port ion of the combu Lion zone btl t only 
cau es a homoo-eneou reeding up of tbe combustion in tbe 
oth oL' part of the eombu tion zone. It, seem po sible thaL 
Lho e portion of the combu Lion zone that eli inteoTated in 
frames B- 2, B- 3, ancl B- 4 may have been the only parts of 
tho zone in a ufficientlyadvanced tage of com bu tion to be 
detonaLabJe. 'i'Vhon tile detonation wave pa "d beyond the 
limit of the cletona table gases, it may have degenerated into 
an adiabatic hoc k wave. This shock wave may have had 
the eR'ect of speed ing up th e combu tion and perhap in some 
way changing the nature of Lhe combu tion in Lh e remaining 
incompletely burned ga e. Another po ible explanation of 
thj phenomenon j pre ented under CA RB ON FOR MATJO! . 

EFFE CT OF KNOCKI NG D IST URBANCE 0 ' B URNE D GASE . 

When the photograph taken at 200,000 frame per econd 
are projected on the creen as motion pic ture , two very 
high- peed wave are vi ible traveling one after the other 
ou t through tbe burned ga e away from the center of the 
knocking disturbance just after knock occur. The fust of 
the two wave through th e burned ga after the occurrence 
of knock i indicated inngure 7, which , like figure 5, is a 
reproduction of fram e B- 1 to B- 5 of figure 4. In figure 7, 
bowever, da hed black line have been drawn in frame 
2, 3, and 4 ou tlining blurred region that appear in the 
burneel ga . The defini tion of the photograph j no t 
suffi ciently good that the blurred region can be outlined 
with ab olute certainty. The author , however, have had 
th e advantage of ob ervation of the photograph again anel 
again as motion pictures proj ec ted on a screen and they 

8-4 B~ .5 
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FIGURE 7.- Apparent propagation of primary wave through burned gases during earliest stages of knock d velopment 
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al 0 have the advanLage of direct observation of Lbe original 
photographs, which are inevitably of better quality t-ban the 
printed reproducLions. It is believed lhat the dashed out
line shown in figure 7 repre enL Lhe fir t wave seen traveling 
ouL through Lhe burned gas in the projected motion pic Lures 
with an inaccuracy not greater than a mall percentage of 
the wave travel beLween successive frames. 

The left\mrd extremity of lhe dashed ouLline in frame 3 
of figure 7 j considerably fal'Lher Lo Lbe left than in frame 2. 
Likewise the lefL\mrd f'xtremity of the dasbed ouLline in 
frame 4 icon iclerably farther to tbe left than in frame 3. 
The leftward Lravel of the extremity of the oul1ine between 
frames 2 and 3 and bet,,-een frames 3 and 4 appears to have 
been at a velocity of about 6500 feet per second. Thi 
value checks well with Lhe average pepd letermined in Lhe 
burning gas from figure 6. 

The sf'cond of the two waves that travel out tbrouo-h the 
burned gas after the start of knock is indicated in figure 8. 
The frames of figure 8 are frame 8- 5 Lo C- 4 of figure 4. 
Darkened and bluITed regions in the burned gases are ouL
lined in figure with dashed black line. Between frames 
1 and 2 (order nunlber refers Lo arrangemenL in fig. , not 
arrangement in row C of fig. 4) and between frame 2 and 3 
the leftward exLremities of the dashed outlines traveled 
toward the lefL wiLh velocities of abou t 5800 and 5400 feel 
per second , respectively. Between frame 3 and 4 and 
between frames 4 and 5, the righlward exlremitie of the 
dashed outlines traveled to Lbe left with a velociLY of about 
7000 feet per second (not very definite between frames 3 and 
4 buL apparently at least 7000 ft l ec in this case) . The 
average of the four determinations for the second ,,-ave 
through the burned gas is abou t 6300 feet per econci, less 
than the average of 6500 feet per econd for tile first wave 
by an amount not greater than lhe probable error of the 
determination . 

Evidence of two sucee lve wave , traveling through the 
burncd ga , each at a yeloci ty abou l b\ icc the peed of ound, 

1 
(8-5) 

2 
(C-1 ) 

3 
(C-2) 

is confl.ling. H is difficult to believe that any pxplo ive 
chemicall'eaction could occur in the burned ga that would 
release enough enprgy to UppOl't a violent detonation wave, 
rt i till more clifftcult to believe that two explosiyc chemical 
reaction could occur in the burned o-a , one after the other, 
each releasing enough energy to support a violent detonation 
wavt'. According to hydrodynamic theory (references 21 
and 22), a stablp detonation wave trclveling through the 
burned gas at 6300 feet peJ" econd would require an energy 
relea e roughly equal to the entire hea ting valu e of the fuel. 

" aves of transver e deflection of the mirror on the piston 
top are a pos ible explanation of the two apparent waves 
tranling through the burned gace. uch waves in milTor 
following knock have actually bee11 ob el'ved in photograph 
taken at 40,000 frames ncr second but not yet publi hed. 
·When the photographs of figure 4 are projected on the 
motion-picture creen, the vi ual impre sion i that the waves 
through the burne 1 gase ar actuall.v gas wave. Until 
definite evidcnce is available, howeve1", thaL the e wave 
cannot be transve r e ,,-ave in t,he gla s, , peculation about 
their significance a gas waves will probably not be very 
fruitful. 

CAR BO FORMAT ION 

Black spots, probably free carbon particle formed by 
the knock reaction, arc clearly visib1 in frame 8- 5 and th e 
framcs of rows C and D of fio-ure 4. Throughout this report 
the e pots, and similar pots in other figurc ,will be refelTed 
to as II carbon particles" with the under tanding tha,t the 
identity of t he spot as carbon partide ha not been scien
tifically pro:ncl. It is the authors' feeling, from tudy of 
thefigu]"es of thi report and nume!"ou previou photograph 
taken at 40 .000 frame per second, tha t carbon particle ar 
by far the mo t likely explanation of the pots. Through
out th frames of row D of figure 4, the extreme right edge 
of the frame remain dark , possibly becau e of a heavy con
centration of carhon particles near the chamb r wall. Free 

4 
(C- 3) 
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FIGUR E 8.- A pp~rent prvl!agation of sc("ondary wavc througb burned gases during later stages of knock development. 
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carbon particle have not generally been ob erved in the 
photograph taken at 40,000 frame per second, probably 
becau e the externally uppliecl lighL 1.1 eel in the taking of 
tho e photograph nearly matched the incand(' c('nce of the 
carbon particle. The carbon paJ·Licles are visible, however, 
a bl'illian t white pots in a few of the photograph taken at 
40,000 frame per second, notably figure of 1'0£('rence 16 
(sRm as fiO". 6 of rcferrnce 2). It i clear from the figure of 
refr r nce 16 and oth I' llnpubli h d photographs of knocking 
combu tion taken at 40,000 fram(' pel' econd, that free 
carbon i formed in the cyl in der charg(' \,~ithin 2 micro
seconds after the pa sage of the knock disturbance Lhrough 
the charge. For the photograph of figure 4, the expo ure 
time and the len aperture werr 0 small that the incan
d(' c('nc(' of the carbon particl(' did not photograph. The 
externally u ppli('el light wa 0 brillian t that t h (' carbon 
particle how IIp in tbr phoLographs a dark hadows. 

A few carbon particle were formed in the combustion 
cycle of figure 4 well before Lhe knock di turbance began, for 
example, Lbe two parLicle de ignaLed C1 in frame 8- 1. 
( orne carbon particle may be formed , of course, even wiLh 
nonknocking combu tion. ) The number of carbon par·Licle , 
however, increase. manyfold in row C of figure 4 aILer pa ao-e 
of Lhe knock di turbance through the charge. The e 
pat-Licle how up as small black doLs in lhe frame of row C 
and Lo orne extent in frame 8- 5. In the frame of row D, 
however, each of the carbon parti Ie smears ouL to form a 
line about 1/4 inch long (ac Lual combu tion~cbamb r cale) 
extending in the direcLion or the ga motion. (The incan
de cenL pot of carbon een in fig . of reference 16 were in 
the form of slender treak. ) Apparently lhe carbon par
ticle have ufficient inertia that they are temporarily lefL 
b hind by Lhe mass moLion of the o-a e. The vi ible par
ticle are probably feaLhery conglomeralion of much maIler 
particle. A. the ga es move by the vi ible parlicles at bigh 
speed i.n Lbe frames of row D, ll cces ive outer layers of tb 
smaller particles may be heared off and ca rried along wiLh 
.Lhe moving gases with t lt e final result that each vi ible par
licle i drawn out into a long lender treak. The carbon 
particle may al 0 erve a nuclei for the preci.pitation of 
additional carbon from Lhe ga es flowing by. The preipita
Lion of additional carbon during the formation of Lhe Lreak 
eems likely becau e the density of the sLreaks appear to b 

as great a the density of Lhe original black doL and Lhe 
width of the streaks appear a great a tbe diameter of ti)e 
original black do ts. 

lL i interesting Lo note thal many of Lhe carbon particles 
are formed in the ga e t hat were burned before pas age of 
Lhe self-propagatino- knock reacLion. Some of these pol 
Rre forme I early enough in the proce , and far enough from 
the burning zone, to preclude any po ~ ibiliLy that they a re 
aCLually formed in Lhe burning ga e and phy icaJly cRrried 
inLo the po ition of the burned ga. The particle designal d 
C2 in frame D- 4 of figure 4, for example, i Rlready visible in 
frame 8- 5 in Lhe original photograph , though thi pol may 
not reproduce well enougl1 Lo be visible in the prinLed figure 
in frume 8- 5. Thi carbon particle wa formed in frame 
8- 5 not more than 20 microsecond after the beginning of 
the knock listurbance (frame 8- 1 or 8- 2) and not more than 

10 microsecond aILer the pa age of the lmock disturbance 
through the location of the particle C2 in frame 8- 3. (ee 
fig. 7.) 

ATURE OF ELF-PROPAGATING K O CK REACTJO 

The hydrodynamic Lheory of stable deLonaLion waves 
requires u. po itive moLion of the reacted o-a e immediately 
behind the detonation front in the direction of motion of 
the detonation wave and at a speed equal to Lhe peed of Lhe 
detonation wave minu the speed of ound in th burned ga . 
Throughout the entire cour e of the knock inve tigation 
made wi III the high-speed camera at 40,000 frames per 
econd, ,,-hich covered a period of over 5 year and included 

hundred of motion pieture of knocking combu Lion, no 
evidence ha ever been found of a ma s moLion of Lbe ga es 
caused directly by the pa sage of Lb ~ knocking di turbance 
through the ga.se. }'Ia.s motion of the ga es ha alway 
been evident in the form of a vibration of Lhe gase , which 
is responsible fol' the knocking ound , hUl thi vibration has 
alway appeared lo gel under way aIler tho knock dis lurb
ance pa sed complelely lhrough the charge. Any confwura
tion vi ible before the occurrence of knock in either the 
burned gase or Lhe burning ga es, if Lhey remained visible 
after the knock eli Lurbance had passed Lhrough them, 
appeared entirely unmoved phy ically by the pas age of the 
knock di turbance. The impre ion that Lhe gase are not 
nOLiceably el in m Lion by lbe passao-e of Lbe original knock 
reaction i unaltered in the ultra-high- peed pictures pre
sented in the figure of Lhis repor t. 

pon examination of the frame of figure 6, all configura
tions of the burning ga e (Lo the rigl1t of the demarcation 
line RS . 1) that are vi iblQ in more than one frame of the 
figure will be een to occupy the arne po ilion in one frame 
a in another, relalive Lo tbe demarcation line. one of 
tbem how any evidence of having been moved pbysically 
by the pas age of the detonation wave. mall carbon 
particles appeal' at variou points throughou tihe field of 
view in the frame of 1"0"· 8 and C of figure 4. AlLbough the 
deLonation wave pa oel Lhrough the charo·e in the frame of 
row 8, the carbon particles do not sho\\~ evidence of motion 
unt il the frame of row D in wl1ich the ma motion of the 
gas finally gel und · r way and cau e the parLi Ie Lo meal' 
ou t into treaks. Thi ma motion of Lhe ga , geLLing under 
way in the frames of row D, appears Loo late Lo have been 
cau eel directly by the patially progre ive eli lurbance seen 
in frames 8- 2, 8- 3, and 8- 4. The mass motion OCCUlTed 
immediately aftor the gradual di integration of the dark 
combustion zone LhaL i een in frame 8- 5 to D- 2. The 
motion wa therefore probably caused by a local high pre -

Ufe produced by Lhe reaction re pon ible for thi gradual 
di intcgration of Lhe dark combu tion zone. 

The photoo-raJ h taken at 40,000 frame per second arc 
too low and Lbo r t9kell at 200,000 frame per ('cond are 
too indi tinct to allow a quite defu1i te conclusion that the 
knocking detono. ion wave docs not have the foIl w-through 
velocity that hould b expected of a table d tonation wa ve. 
The authol' do not feel , however , that the ab ence of the 
follow-through velocity would ca t doubt upon thc COlTect~ 
nes of th e conelusion that orne kind of a detonation wave 
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actually doC's oC'eLiI'. TJw llH'o r('tiea l possibili ly of un table 
clC'Lo nalion wans tmvC'lin g at a pC'C'cl highC'1' t han that of 
t he stable detonation waye co rl'C'sponding to the amC' ellC' rgy 
release ha bC'en indicatC'cl by Bechr (rderC'l1 ce 21). TIc 
cited ('xpel'imC'nt by Kast (rC'fC'renc(' 23) in whi ch sllchun
stable clC'tonation wavC' \\' C' rC' Pl'odllcC'd with a numbC'r of 
explosiycs. uch lInstable dC'tonation wave boulcl proh
ably nol hC' C'xpC'ctC'cl to show l he amC' foll ow-through molion 
a t h C' slabl C' clC'lonation wave. \~ v ter-conciC'nsation wave, 
a pparellily inYolving conclen alion of ,,'atel' bu t ))0 eh ('mical 
)'('action, have been obsel'vC'cl in l h C' fl ow of humid air l hrough 
sup(,l'sonic nozzl('s by H('rmann (re[('I'enc(' 24) and in un
puhlish ed NAC.\ records. Th C'se stationary wavC's appa l" 
C'ntly involve murh 1(' ch angC' of vC'locity of th C' ail' l1"asc 
t han do Lablr detonation wavC's in C'xplosivC' gas mixLlIl'C's. 
A self-propagating l'eacLioll migh L OCCllr, moreoYC' r , in which 
th e propagation is not call C'cl by a h ock waye but by the 
clifl'usioll of ch ain carrier of low molecular weight. In uch 
a ca C' Lh (' avC'rage carriC'1' would trav('l a eli tance C'qual 10 
tll C' mean f1'('(' path and would bypa mo t of th C' ga, mol('
cu l(' ; t he propagation mt(' would depE'nd 011 th e pe('d of 
th e carrier ra.thc r th an 011 th c dynamic of a h ock wavC'. 
Lewi (refe rence 25) h a pl'eViOll ly proposed th e idea th aL 
propagation rates of dC'tonation waves may bC' governed by 
t he vrlocities of cC'l'tain carri ers in volvC'd in a ch ain J'C'action 
and h a lI ccC'edeci in naminO' uitable carri ers for detonation 
of a numbC'l' of ubstance . CO \\'lin g (l'dC'l'C'nce 26) h a 
p re ented a mathematical discu ion of th e effC'ct of c1ifl'u ion 
on th e propagation of hock wave .. 

Until mor(' definite evidC'l1ce i available as to the existence 
of a follow-through velocity, th C' simplr t and m.o t logical 
interprC'iation of th e phoLograph of this l'C'port and of 
l'del'encc 2 ce rn to be th at t he type of lrnock involving ga 
vibrations i causcd by som(' typ(' of detonation \Va e origin
ating at random fit somC' point wiLhin the bU]'Jling 0 1' a uLo
igniting gases and preacling ou t in all dirC'etion from t he 
point of o rigin at a raLe ran gin g from th C' pC'C'd o f ound 
in th e burned ga e 10 twic(' Lhe speed of sound ill lh e 
burnC'c1 ga es. 

CO CLUSIO S 

Th e prC'sent paper i ba C'eI enlirely on a single photographic 
shot of the knock pl)('nomenon laken al t11C' ratC' of 200,000 
frames pel' second. ,'I.ll conclusion should the]' fore be 
regarded as lentu.tive until it, i po ible to upplement th e 

LUcly with additional photograph . ThC' con III ions may 
probably be regarded as definiLe fo1' the singl e knocking 
eycle studied but thC'y cfLnnoL, of cour C', be regarcled as 
geJl.C'rally applicable Lo all knocking cycles. The tC'nlaliye 
conclu. ions that sC'em .iu LifiC'c1 by th e nppearan('e of the 
photographs arC' as follow: 

1. Th e type of knock in the park-ignition engine ill\'o!\' ing 
yiolent gas \'ibration originatC'. a a elf-propagaling di -
turbance tarting at a point in the burning or autoigniting 
gase and spreading out from that point through the incom
pletrly bU1'l1ecl gases at a rate a high a 6800 feet pC'r econd, 
or about twic the p cl of ounel in th burn cI ga e . 

2. ApparenL frC'e carbon particles arc formed in both the 
burn ing and lh e burned ga es within 10 micro econd after 
pa sage of the knock ]'ea tion through tb (' ga e . 
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z 
Positive directions of axes and angles (forces and moments) are shown by arrows 

I 
Axis I Moment about axis Angle Velocities 

~ 
Designation bol 

LongitudinaL______ X 
LateraL _____________ 

1 
Y 

N ormaL ____ _________ 1 Z 

Absolute coefficients of moment 
L 111 

0 1= qbS Om= qcS 
(rolling) (pitching) 

Force 
(parallel 
to axis) 
symbol Designation 

X Rolling ____ ___ 
y Pitching ______ 
Z Yawing _______ 

N 
On=qbS 
(yawing) 

Sym-
bol 

L 
M 
N 

Linear 
Positive Designa- Sym- (compo-
direction tion bol nent along Angular 

axis) 

Y---+Z Roll _____ ___ 
'" u p 

Z---+X PitclL ______ () v q 
X-4Y Yaw ___ ____ 

'" 
w r 

Angle of set of control surface (relative to neutral 
position), o. (Indicate surface by proper subscript.) 

4. PROPELLER SYMBOLS 

D 
P 
p/D 
V' 
V. 

T 

Q 

Diameter 
Geometric pitch 
Pitch ratio 
Inflow velocity 
Slipstream velocity 

Thrust, absolute coefficient OT= ;D4 
pn 

Torque, absolute coefficient OQ= - 9
D

5 
pn 

p 

O. 

n 

Power, absolute coefficient Op= fD5 
pn 

6/ V" 
Speed-power coefficient = " Pn2 

Efficiency 
R evolutions per second, rps 

Effective helix angle = tan- l (2~n) 

5. NUMERICAL RELATIONS 

1 hp=76.04 kg-m/s=550 ft-Ib/sec 
1 metric horsepower=0.9863 hp 
1 mph=O.4470 mps 
1 mps=2.2369 mph 

1 Ib=0.4536 kg 
1 kg=2.2046 lb 
1 mi= 1,609.35 m=5,280 ft 
1 m=3.2808 ft 


