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CIUTIC.4L STRESS OF THIN-WALLED CYLINDERS III AXIAL CONIPRESSION

By S. B. BATDORF, MURRY SCHILDCEOIiT, and M.AXUEL STEIX

SUMYIARY

Emp+-ieal design cw~resare presented jur the critical stress <f
thin-walled cylinders loaded in axial compres.w”on. Thaw
cvurresare plotted in terms of the nondimensional parameter~ oj
sinallde-ectio n theory and are compared wl[h theoretical curres
deriredfor the buckling qf cylinders with simply supported and
claroped edges. .-in empirical equation is giren for the buckling
of cylinders hal+ng a Length-radius ratio greater than about 0.75.

The test data obtained-from rarious sources follow the general
trend o-f the thew-etical cwrre for cylinders with clamped edges,
agre~ing closely u?ifh the theory in fhe case of ~hort cylinders, but
falling considerably b~low the theoretical results for long
qlinders. The di.scrcpan q in ~hecase of long cylinders increases
with increasing ralues oj the ratio ~f radius to wall thickness.
Plotting curres for diferent ralues gf this rafiio reduces fhe
scatter in the fesf data and a cerfain. d.egrw o-f correlationn with
theory is ach iewd. .4draniage is taken gf this correlation fo
obtain estima~tvl design curres for cylinders wifh simply sup-
pcwted edges, for -which little experimental information is
arailabk.

REVIEW OF PREVIOUS WORK ON PROBLE31

SoIut ions to the probIem of the determination of the cri ticcd
stress of thin-walled cylinders subject ecl to axkd compression
have been prese~ted by a large number of authors. South-
w-elIl Timoshenko, FIugge, and numerous otker authors
have obtained theoretical soIutions by the use of the smaH-
deflection theory. (See, for exampIe, references 1 to 4.) The
vaiw gi-ren by the smaLdefiection theory for the buckling
stress of a thiwmdled cylinder of moderate Iength ha-ring
simply supported edges is

m . Et
“=r1’3(1- ~2)=0. bo8T

(1)

where
u= critical compressi_re stress
-E Young’s moduks
t w-aLIthickness of c~linder
T radius of cylinder
p Poisso~’s ratio (in the present paper y is taken to be

0.316 whenever a ~alue is assigned to it)

Experiments (references .5 to 10) ha~e shown that the
actuaI critical stress is much Iow-er than that. predicted by
equation (l). Except in the case of short cylinders, the
experiments usuaIly gi?-e values only 15 to 50 percent of that

predicted theoret ieaIIy; moreover, the observed buckIe pat-
tern is different from that predicted on the basis of theory.
~ number of attempts have been macle to expIain these dis-
crepancies theoretically. Flugge (reference 3) considered the
detiation of the actual eclge supports from the support con-
dit ions assumed in the theoretical treatment. Donnell
(reference 5) and also Fliigge considered the initial dcwiation
from the perfect cylindrical shape. Neither of the two
attempted e.xpkinations satisfactorily accounts for the dis-
crepancy existing between the tbeoreticzd ancl experimental
va~ues of the buckling stresses of cylinclers.

Von K&-mAn and Tsien (reference 11) introduced a large-
deflection theory to account. for the buclding behavior of
long eyhnders. They showed that a Iong cylinder can be in
equilibrium in a buclded state at a stress that is much smaller
than the critical stress of small-deflection theory and ako
succeeded in accounting for the buckle pattern obser~ed in
the earIY stages of budding. Reference 11 suggested that ._
when a cylinder has an initial imperfection or is subjeeted to
a shock, it might pass into one of these buckIed states witho-
ut ever ha~ing reached the critical IoacI gi-i-en by equa-
tion (1). Based on the same approach, a theory for the
buckling stresses of perfecL cylinders m-as proposed by Tsierc
(reference 12), which ga-re for loacling by rigid screw--power
testing machine

CT==0.370 Et
r

(2)

and for loading by ideal hydraulic testing machine or dead
xeight

G==0.238 ‘t
r (3)

The Iarge-deflection theories fail in two respects to d~cribe
adequately the buckling behzvior of actual cylinders. First,
the theories are formulated only for Iong cylinders; equations
(2) and (3) serioudy underestimate the critical stress of very
short cylinders. Second, eve~ for long cyIinders, attempts to
determine experimentally the niimerical coefficient C in the
buckling formula

u.= CE; (4)
. . .

have redtecl in appreciable experiments! scatter. The
experimental scatter is due at. least iu part to the initiaI imper-
fections of construction alwn-ys present in real cylinders.
(See fig. 1.)
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l?tGT-RE 1.–Effect of initial defects upon tI!e maximum comprcwire Ioads of stints and cylinders. (From refcrcme 13, fig. 18.)

In the obsence of a compIct r and s~tisfactory theoretical
solution for the mit ical stress of cylinders, a number of
authors have proposecl empiricaI formulae clerivecI from test
data M’erences 6 to 8). One such formula, which tckes into
account the length of the cylinclcr, is due to 13a11emtedt and
W~gner (reference 8-):

og=3.3 ; 2+0.2 (;) (5)

ot2.
The first pfirameter in this equation ~ 1s appropriate for

flat sheet ancl the second parameter ~ is includec] to take

into aecoun t the effect of eurvat ww. More recently
Kanernitsu and N’ojima (reference 9) compiled ftll avaihible
previous esperimentaI results and conducted a number of
tests of their own. The formula of Wagner ancl BalIerstedt
was modified in reference 9 to bring it into better agreement
with experiment as folIows:

2=’X.V3+’(2”6(6)

(Within its range of application 0.1< ~<1.5;

)
500s ~ <3000 equation (6) is in considerably better agree-

ment with experiment, than equation (5) b Utj because of
the c:hange. in the exponents of the parameters, equation (6)
does not have any rationaI basis and must be regardecI as

purel~’ empirical. ~i complete divorce of theory an(l ex-
peritient, iloweverj cannot lx regardccl as msat isfac tory pm-
manent settlement of the problc’m, and the prcscmt rrpor~
zt tempts to bring thwry and cxperimcn[ into rcmon able
accord.

CONTR1BUTION OF PRESENT PAPER

In the present. paper the availabk test clatti for critiral
stresses ‘of cylinders are reexamined and t]Lc!ort!Lic’a]rcsulls
are used as n guide in fctiring thu curves, in cxh~mling Lhe
range of vcdic]it.y of the exisLiIig cmpiriea[ resu]Ls, uIL<lin
achieving a more rational int crprct a t ion of thu [cst data,
Fcrr this purpose the test data are plottcxl in terms of Llw
parameters of cylinder theory an(l are compar[’d wilh tllw-
retical results derived in the Rppendix on tlw Imsis of slnall-
deflection theory.

The cyIinder-theory ptirametcw used are

u.tL2
“= m“

and

where

D

L
z
k,

flexural stiffness of plate per unit length
(m:”P))

length of cylinder
curvature parameter
criticaI stress coefficient appmring in the equation

kz7r’11
“= L’t
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The experimental data are used as the principaI guide in
determining the critical compressive stresses of Iong cylinders
(large wJues of Z) and the theoretical results me used mainly
to supplement the test data in determining the critical stress
of ~ery short cylinders (smalI values of 2). The experimental
scat ter is reduced by presenting Merent curves for cylinders
with different values of the ratio of radius to walI thickness
on the assumption that for Iong cylinders this ratio furnishes
some indication of the initiaI imperfections of the cylinder.
.llthough these curves were determined partly on the basis of
theoret ica} considerations, they are for convenience referred
to herein as erup iricaI cum-es.

RESULTS AN’DCONCLUSIONS

The criticaI compressive stress for cylinders is gi-ren by
the equation

/04
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_k-+D
‘Z––L2Y (7)

where the ~alues of h-z may be obtained from figure 2 for
cyIinders with either clamped or simpIy supported edges.
The design curves for cylinders with clamped edges are
established by the test. results reported in references 5 to 9.
(See fig. 3.) Each curve was faired through a series of
test points which were plotted for cyIinders with nearIy
the same ratio of radius to wall thickness r/t. The estimated
(dashed) parts of the design curves for simpIe support. yere
obtained by fairing between the known experimental curves
for long cylinders (large values of Z), which according to
theory should be the same whether the cylinders have
simply supported or cIamped edges, and the theoretical
curves for wry short cylinders (small -ralues of Z).

I
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FIGURE2.—C~itieal stressewfficids for thin-walkd circuhr cylinders subjeetiti to axiaI compression,
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For long cylinders the buckling stress is considerably
below the theoretical bucklirrg stress, the amount of the
discrepancy depending on the ratio of raclius to wtdl thickness.
For very short cbvlinders the wdues of the critical
stresses approach those for ffat pIat es (simply supported
e.ncls, k$= 1; clamped ends, kz=4), for which the =greement
be.twwn theoreticrd and experimental results is known. to be
good, The general trend of each empirical curve is simiIar
to thut of the theo~eticzd curve, indicating the existence of a
certain degree of correlation between theory and tesi data,

-At large vaIues of Z, the curves for ,4$ become straigh~
lines given by the formula

.kz=l.15cz (8)

where C depends on the ratio of radius to wall thickness of
the cyIinders in the manner shown in figure A. From
equations (7) and (8) the following cxp~ession for the,

critical stress is obtained

~z= QE L
r’

—.-—

7
c1

5

(q

Equations (8) and (9) may be used when th~’ h’ngih of (he
cylinder is more than ahou~ % of the radius. The. cmpirirrd
curves 01 reference 10 indicate that the crit iml stress is sub-
stantidy independent of length when the Ienglh is grea ~rr
tk+n about ~j of the. radius. (This result may be chcckcd

by nothg that for Z> 0.5 ~ tho experimental curvw of

figure 2 are substantially straight lines of unit. sIopr. )

k figure 5, the ernpiricd formuhr of Kancrnitsu and h’oj imrk

(equation (6) of the present pap(~r, the bes~ pwviously
pubIished formula for the buckling of cylin(lers) is pIr-It.td
in terms of the parameters 1, and Z. The curves are cut
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FIGCRE4.—Coeffieient for comput ing critical axM compressive streses of Mermediate

off at those -ralues of Z corresponding to the lower limits of

the ramge of climensions within which the formuIa w-m in-

tended to appIy. h generaI, for the range covered, the

curves are in reasonable agreement -with the tes~ dzta and

with the curves of the present. paper for cylinders w-ith

clamped eclges. The practical importance of the present

approach lies in the fact that. the use of the theorc+icaI

parameters and the theoretical so~utions w a guide in fairing

the curves permits the removal of the lower limits on the&’

cur-res and ako permits estimated curves “to. be dra-pm for

the buckling stresses for simply supported cylinder;, ~lthough

experhnentaI data are a~ailable only for eyhnders with

cIamped edges.
,, .,.+

LANGLEY MEMORIAL .4KRONIUTIC.W L.\ BOR.&TORY,

ATATIONAL.4DVISORYCOMMITTEEFOR AERONAUTICS,

L.+NGLEY FIELD, VA.., March 20, 1947.
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APPENDIX

THEORY FOR CYLINDERS BUCKLING UNDER .4X1ALCOi%IPRESSION

m
r
t
w
x

Y

C

D

E
L

Q

z

a.
k.

SY.MBOLS
positil-e integer
radius of cylinder
wall thickness of cylinder
radial componcnb of displacement, positive outward
axial coordinate of cyIinder
circumferential coordinate of cylinder

coefficient appearing in ax= CE ~

fiexural stiffness of pkte per unit Iength
(12::.,))

Young’s modulus
length of cylinder
operator on w defined in appendix

(
L’

curvature parameter ~ I= or~~~~ J=)

coefficient of deflection function
critical-compressive-stress coefficient appearing in the

~7,n deflection function defined in the appendix

~=;

A half wave length of bucMes in circumferential direction
~ Poisson’s ratio
az criticaI axial compressive stress

V-4 the inverse of Vbdefined by V-%hw=w

THEORETICALSOLUTION

The critical compressive stress at which buckling occurs
in a cylindrical shell may be obtained by sol~ing the equa-
tion of equilibrium.

Equation of equilibrium.—The equation of equilibrium for
a slightly buckled cylindrical shelI under axiaI compression
is (reference 14)

(Al)

where x is the coordinate in the axiaI direction and y is the
coordinate in the circumferential direction. Dividing
krough equation (AI) by D gives

where the dimensionless parameters Z and k. ar~ defined by

z+ –pz

aztL2
“=-D7

The equation of equilibrium may be represented by

QW=O (M)

where Q is defined by

Method of solution. —Equation (A2) may be solved by usc
of the Galerkin method as outlined in reference 15. lW~en
this method is applied, the deflection w is expressed in series
form as follows

w= & a ~~7~ (A4)
m=l

The set of functions Vm are chosen to satisfy the boundary
con ditions but need not stitisfy the equation of equilibrium.
The coefficients an are. determined by the equations

SS
2).L

~’m~W dx dy =0 (?n=l, 2,3, . ..j) (A5)
00

In the present paper the deflection functions were chosen
to satisfy the following conditions on w at the ends of the
cylinder: For simply supported ec~ges

W=:$=o

For clamped edges
zlw

‘= bi=o

Simply supported edges,—An expansion for w tha~ is
sinusoidal in the circumferential direction and perfectly
general (subject to the boundary conditions for simple
support.) in the axial direction is

548
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where ~ is the half wave length of the buckles in the circum-
ferential direction. (Equation (.16) is equivalent. to equa-
tion (.44) if

Each term of this series satisfies the conditions on w at the
edges. The function ~“~ is now defined as

substitution of expressions (A6) and (AT) into equation (A5)
and integration o-rer the limits indicated give (T’m=sin y Cos@=Lti%os(3+L1L2T’) L&lo)

(m=l,2,3, . . .)

After the same operations are carried out for clamped
eclges as those carried OULfor the case of simply supported
edges, the following equations result: .

where
.

For m= 1,
al (2.111+.U3j– C13U3= 0

For m=2,
az(Mz + Ml) —aJ.L= O

I

(All)

For m=3, 4, 5, . . . ,

11a“’(.ll~+ M~+2.1—a~_2M ~— a~+2. ~+2= O

The minimum -raIue of k= for a given Z is found b-y assum-
ing a vaIue for rn and minimizing kZ -with respect. to p. This
procedure is foLIowed for various ~alues of m until a minimum
k, is reached. Figure 2 presents the theoretical critical
stress coefficients for cylinders with simply supported edges
subjected to axial compression.

Clamped edges.—A procedure similar to that. used for
cylinders with simply supported edges may be followed for
cylinders with clamped edges. The deflection function used
is the folIowing series

where

(Au)

These equations have a solution if the following infinite determinant vanishes:

2M, + .713

0

-- M3

o

0
0
0
0

0
.34+ 31<

0
–.31,

o
0
0
0

-313

0

31,+215

o
–M,

o
0
0

0
0

– .M5

o
.l.f~+ .31,

0
– u,

o

0 0
0
0
0

–M,
o

Mi+u,
o

0
0
0

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

0

o

.,. 1. .

If the rows and columns are rearranged the infinite determinant can be factored into the product of two infiuite subdeter-
minants. The critical stresses may then be obtained from the following equation:

0
–M,

M,+ 317

–M,

. . . 0

. . . 0

. . . 0

. . . 0

0
0
0
0

0 0
0 0

0 0
0 0

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

=0 (A13)

o

0
0
0

0
0
0
0

0
0
0
0

. . .

. . . M,+ M,

. . . – M,

. . . 0

. . . 0

– M,

M,+ M,

–M,

o
. . . .. .
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The infinite subdetermimmt invoIving terms with odd
subscripts corresponds to a symmetrical buclding pattern
(a buclding pattern symmetrical about the plane pei-penclicu-
lar to and bisecting the axis of the cylinder). The infinite
subdeterminant involving terms with even subscripts cor-
responds to an antisymmetrical budding pattern. I?or
brevity these subde.termimmts will be referred to &s the odd
determinant and the even determinant, respectively.

The first approximation is
Odd cletxmninant:

2.111+ MS= o (A14)

Even determinant:
M,+M4= o (A15)

The second approximation is
Odd determinant:

2M (M3+ MJ + M3M5 = o (A16)

IiIven determinant:

M* (f}li +MJ +. M@M6=o (A17)

These equations show that for a seIected value of the curva-
ture parameter Z the critical buclding stress of a cylinder
depends upon the circumferential wave length. Sin ce a
structure bucMes at the lowest stress at which instability
can occur, k, is minimized with respect to the wave Iength
by substituting values of 8 into the equations until the mini-
mum tt can be obtained from a plot of IcZa.gaim~t @. For a
given Z the lower of the two values obtainecl from equations
(A14) and (A15) is the first approximation of the critical
buclding stress ancl, similarly, the lower of the two values of
kz obtained from equations (A16) and (A17) is the second
approximation of the critical bucMing stress.

Figure 2 presents the theoretical critical stress coefficients
for cylinders with clamped edges in axial compression as ob-
tained from the second approximation, together with the
exact curve for the case of simply supported edges, AIthougl~
this solution is an upper-limit solution, the second approxi-
mation for the criticaI stress coefficient of a cylinder with
clamped edges must be very close to bei~g exact for inter-
mediate and large values of Z because it is aImost identical
with the exact solution for a cylinder with simply supported

edges, and the critical stress of a cylinder wi~h clnmped e(lge.s
cannot be less than the critical stress for a cylinder with
simply supported edges. For values of Z approml~ing
zero, the accuracy of the second approximation is ind imttud
by the fact that it coincides with the known exaci solution
(kz=4) for a long fiat plate with clamped edges.
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