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1. FUNDAMENTAL AND DERIVED UNITS

t
1
l
W

Metric English
Symbol
. Abbrevia- . Abbrevia-
Unit tion Unit tion
Length______ l meters: aPohi s 2oy foot (or mile) - ._______ ft (or mi)
Time 2. 3o i il e L I 8 second (or hour)_______ sec (or hr)
Foroe:. . zooo F weight of 1 kilogram___ kg weight of 1 pound_____ 1b
Power-...... o horsepower (metric) .- _ | _________ horsepower- _____..___ hp
Shesd v {kilometers per hour_.__ kph miles per hour________ mph
BODL ot meters per second_ _ ___ mps feet per second____:___ fps
2. GENERAL SYMBOLS
Weight=mg i i v Kinematic viscosity
Standard acceleration of gravity=9.80665 m/s? p Density (mass per unit volume)

or 32.1740 £t/sec?

Ma,ss=E

Moment of inertia=mk?.
radius of gyration k by proper subscript.)
Coefficient omcosity

Area

Area of wing
Gap

Span

Chord

Aspect ratio, %’-

True air speed

Dynamic pressure, %pV’

(Indicate axis of

Standard density of dry air, 0.12497 kg-m—*-s? at 15° O

Specific weight of “standard”. air, 1.2255 kg/m® or
0.07651 lbjcu ft

3. AERODYNAMIC SYMBOLS

Lift, absolute coefficient 0,,=q—§,

Drag, absolute coefficient OD=§§
Profile drag, absolute coefficient Cp = s
Induced drag, absolute coefficient Cp, TR

Parasite drag, absolute coefficient CD,=ZI—S

D

D,

i

D,

Cross-wind force, absolute coefficient 00=-QQS

T Angle of setting of wings (relative to thrust line)

{7 Anligie) of stabilizer setting (relative to thrust
)

Q Resultant moment
Q Resultant angular velocity

Reynolds number, p% where / is a linear dimen-

sion (e.g., for an airfoil of 1.0 ft chord, 100 mph,
standard pressure at 15° C, the corresponding
Reynolds number is 935,400; or for an airfoil
of 1.0 m chord, 100 mps, the corresponding
Reynolds number is 6,865,000)

@ Angle of attack

€ Angle of downwash

Qg Angle of attack, infinite aspect ratio

ay Angle of attack, induced |

ag Angle of attack, absolute (measured from zero-
Lift position)

v Flight-path angle

and 760 mm; or 0.002378 lb-ft—* sec?
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DAMPING IN PITCH AND ROLL OF TRIANGULAR WINGS AT SUPERSONIC SPEEDS

By Cruinton E. BRown and Mac C. Apams

SUMMARY

A method 1is derived for calculating the damping coefficients
in pitch and roll for a series of triangular wings and a restricted
series of sweptback wings at supersonic speeds.  The elementary
“supersonie source”’ solution of the linearized equation of motion
is used to find the potential function of a line of doublets, and
the flows are obtained by surface distributions of these doublet
lines.  The damping derivatives for triangular wings are found
to be a function of the ratio of the tangent of the apex angle to the
tangent of the Mach angle. As this ratio becomes equal to and
greater than 1.0 for triangular wings, the damping derivatives,
in pitch and in roll, become constant. The damping derivative
in roll becomes equal to one-half the value caleulated for an
infinite rectangular wing, and the damping derivative in pitch

for pitching about the apex becomes equal to 3.375 times that of

an infinite rectangular wing.

INTRODUCTION

In reference 1, a straightforward method was found for
calculating the lift and the drag due to lift of triangular
wings. The present paper extends the method to the cal-
culation of rolling and pitching motions of the wings. The
damping coefficients in roll and pitch for the limiting case of
very slender wings have been calculated (reference 2).  The
present theory is not limited by the size of the apex angle,
and triangular wings with leading edges ahead of and behind
the Mach cone originating at the apex of the wing are treated.

In the present theory, based on the linearized equations of
motion, the wing is represented by a doublet distribution
which can be shown to be equivalent to a vortex distribution.
An integral equation is found which can be easily solved by
analogy with known relations for two-dimensional incom-
pressible flow. The pressure distributions presented may be
used to calculate the damping coefficients of a limited series
of wings for which the trailing edges are cut off so that they
lie ahead of the Mach cone springing from their foremost
point.

SYMBOLS

maximum span of wing
root chord
mean aerodynamic chord

2 (™ (Local chord)? dy=2
<Sﬁ (Local chord) yag()

ol O o«

835371—49

/(o)

P

q

Dy

w

x, Y, 2
&Ly, Yy, &
Ly

A

()3

E'(BO)

F’(BC)

M
P

v

¢p
%1

doublet-line-distribution function

angular velocity of roll

angular velocity of pitch

incremental velocity component in z-direction
z-component of velocity

coordinates of field point (see fig. 1)
coordinates of a source or doublet

point about which the wing pitches

source or doublet strength

tangent of half-apex angle

Rolling moment

L ov2sh

rolling-moment coefficient

e T Piteching moment
pitching-moment coefficient { - 1 == =
5 pV?8e

Lift force

L g
9p1 2)

lift coefficient
L

complete elliptic integral

(jom J1— ({1 —B%C?sin’n dn)

complete elliptic integral

w2 dn L
<‘J" vi—(1—8*C?%) sinzn>

constant
Mach number

e S Lifting pressure
lifting-pressure coeflicient Sl

1 17
gV

wing area

free-stream velocity

half of apex angle of wing
small quantity

Mach angle (sin—l A‘1[>

density of fluid

disturbance-potential function

potential of supersonic source

potential of supersonic source distribution
potential of supersonic doublet distribution
potential of a line of doublets
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ANALYSIS

Solutions must be found that satisfy the linearized differ-
ential equation of a nonviscous compressible fluid written

¢ ¢ 0%
Bbz Dl/- 22 =0 i)

where z, y, z are Cartesian coordinates (see fig. 1), and ¢ is

the disturbance-potential function created by the wing. An
Mach cone
V
P
. Y

FiGure 1.

Coordinate system.

elementary solution of this equation known as the potential
of a supersonic source may be written

—A
o=" e (2)
DV —2) B ly—y) — B (z—2)?
The quantity A is the strength coefficient of the source.
New solutions may be obtained by superposition of such

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

potentials as shown in reference 3.  For example, a distribu-
tion of sources over a portion of the zy-plane would give the

potential
‘ay (Ca
¢s:J j
as ay

where the limits chosen must be such that all sources will be
located within the forward Mach cone from the field point
(x, ¥, 2).  Another solution may now be obtained by differ-
entiation with respect to any of the coordinate directions;
that is,

— A(xy,y,)dx, (IJ,

3
= @)

2,2

— B ly—u)* —p*2

ad’s

S

This solution, however, may be considered the vertical or
z-component velocity of the source-distribution potential ¢g
and as shown in reference 3

=35

—A(r,,yl)(l.gl dy,
v (@—2)*— Ay — Jl) — Bt

(4)

¢p ==+ ﬂ'xl(il’; Y)

+2-0

(5)

The step taken in equation (4) also corresponds to the forma-
tion of a doublet potential; that is, ¢, represents a distribu-
tion of doublets over the zy-plane with strengths
proportional to A(x,:). For any known doublet distribu-
tion, the velocity component parallel to the surface in any
direction s may immediately be obtained from equation (5)

Oép

Vg —=
1250 OS

a[l

=47 5 (6)

The foregoing results are analogous to incompressible-flow
relations and it may be stated in general that for every doub-
let distribution there is a vortex distribution which will
produce a similar flow. The vortex distribution and doublet
distribution are directly related by equations (5) and (6).
These simple concepts, given first by Prandtl (reference 4),
may be used directly to obtain the solution of problems in
which the pressure distributions are given, such as airfoils of
uniform loading. If the equation of the surface is given and
the pressure distribution is required, integral equations must
be solved. In certain cases, the problem may be simplified
if the form of the final potential is known. In reference 2 the
disturbance potential for wings of very low aspect ratio was
found to be in the form

2 ™)

This form of the potential appears quite logical from the
standpoint of satisfying the boundary conditions for steady
rolling or pitching. In the following analysis, the assump-

(KA

tion of a potential in the form of equation (7) is shown to be
correct; however, it should be pointed out that the potential
of this type must be restricted to the linearized theory and is
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not of the same general nature as that of a conical field which
exists even in the nonlinear problems.
From equation (7) the doublet distribution over the surface

will be in the form
a7 () (8)

and under the assumptions of the linearized theory the
lifting-pressure coefficient is now

P_4‘D€

_ 4wz, [’)f (%)_% f ?;D] (9)

The formation of the integral equation follows the method
of reference 1. A potential that represents a line of doublets
in the zy-plane at an angle tan~'¢ to the z-axis is derived in
the form of equation (7). Use is made of the boundary con-
ditions to set up an integral equation that introduces the
unknown distribution function f(¢). The potential of the
doublet line may be obtained by following a procedure
similar to that used in obtaining equations (3) and (4), and
by substituting the expression for A given in equation (8)
into equation (4). The expression obtained in the following
equation may be seen to represent a line of doublets along
which the doublet strength increases as z*:

b= 0 —1:13(1;13,
e e e
2~ ¥ -5
¥ 6(1_13626))?//2) (3 coth™1¢—— 1) BBZ (Zl)/ +2 )
(10)
where
= s o R

I =BG )

and 2’ is the value of z, for which the denominator of the
integrand vanishes. The potential of the complete wing
may now be obtained by an integration with respect to the
dimensionless parameter o

C
o= Foroudo an

where tan—'C=e, the half-apex angle, and f(s) is an un-
known distribution function. The z-component velocity w

can be written for g ; approaching zero

0 BBl =Bl o dnoqe t &
rfﬂc (=77 3 coth™'¢ o1

G
> —a—gfg—z_l—)] d(Bao) +2x !

835371—49—2

ﬂf(tf) . 1 B T

1 ! -
where 0:% for convenience. The boundary conditions for

rolling may now be written
w=—py

or

=—npl (13)

w
X

For pitching about the y-axis, there is obtained

W= —qr
or
w

Introduction of equations (13) and (14) into equation (12)
provides integral equations which theoretically can be solved
for the unknown function f(¢). Simpler relations, however,
may be obtained if equation (12) is differentiated twice with

o*(w/x)

respect to 8 to obtain the quantity - of The method for

differentiating is indicated in the appendix and gives
FW/) i $6T—pe f B0-n) 'f(q) d(Bo)

e R I o= s

()‘ 1 ﬁl@ZJ.ﬂC ’?f(ﬂ) (Z(BU)

potn (Bo— 36)4
i [0 410} s

The boundary conditions require the foregoing quantity to
be zero for both rolling and pitching with the additional
requirements on f(s) that, for rolling, at the point 6=0

(5)

o(w/ fg)fq
Y

and, for pitching,

=0 (17)

Equation (15) now yields, for rolling,

f(‘f)ﬂ (1‘7

: ¢ flo)pdo_ ,[1"7(0)p fO)n 1 _

i o [ eir v )] Feege—a[ L4 0 [0
(18)

and, for pitching,

; 3 flo), do ¢ flo),da_ [ (0), f(m]? il

tim {6 [ 2o [, A S =0
(19)

Equations (18) and (19) are identical to the equations that
would be obtained for similar boundary conditions on a two-
dimensional flat plate if an analogous process of distributing
the doublets were followed. (See appendix.) The analogue
for the rolling motion of a triangular wing would be a
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two-dimensional flat plate rotating about its midchord point
in a stationary stream. The surface potential distribution
and therefore the doublet distribution would be

j(‘7>p:1{p6 \/0‘2_0,2 (20)
For the pitching condition the analogue would be a two-

dimensional flat plate in a stream flowing normal to the
surface. The potential or doublet distribution would be

flo),=K,C*—¢* (21)
These potentials, which can be found in references 2 and 5,

satisfy equations (18) and (19) by analogy; however, the
conditions of equations (16) and (17) must be shown to be

satisfied. For the calculations of (w/z), and g(jgéf)”; and

the evaluation of K, and K,, only one value of # need be

considered. This value may conveniently be set equal to
zero. Forrolling motion, equation (20) indicates the doublet

distribution to be antisymmetric. Therefore the value of
w/z at 6=0 must be zero, and the condition of equation (16)
is satisfied. For the pitching motion, the doublet distribution
is symmetrical about 6=0 and therefore the quantity

d(w/x)

Jo Must be zero at 6=0, and the condition of equa-

tion (17) is satisfied.

The constants K, and K, may now be evaluated from the relations obtained in the appendix; for =0

/u)_ — DY ’d e \B(“—B
x‘”ﬂiﬁ?["’“ﬂh (1— %22

800 JBRO—FF | o (#C
KoJ e ot g B0+ K,

—8C

d(w/x) PC Bra*+ B2 CP—Bo”
o=t [am, [ B e

‘BC \ﬁz(‘,zﬁﬁch

2K —
B(6+n) B’

Equations (22) and (23) may be integrated by use of tables
(reference 6) to give

p=rK, [ ;

=

60— P en a0y | e

17 IB)(Y) ‘/

B (BC)+ B, F(60)
—B

F’ (BC) and £ (BC') are complete elliptic integrals of the first
and second kind.

The pressure distribution for the rolling wing may now be
obtained from equations (9), (20), and (24), and the pressure
coefficient is

42pC*0

O I R—
s F wm] JO—¢

P=— 2 (26)
r[2—8C* ..,
v[ =8 B6o)-

Integration of the pressures over the wing surface gives the
forces and moments acting on the wing. The nondimen-
sional derivative (7, may then be found

O, = —

—FC7
R E/(g0)—

, @7)
o , F'(8C >]

In the analysis the pitching axis has been taken at the
wing apex; however, in application it is desirable to obtain
the pressure distribution and the force and moment co-
efficients for pitching about any point. A superposition of
motions is therefore required. The pitching motion about
any point 1z, can be made up of a pure pitching motion
about the apex of the wing combined with a vertical

Bsz (1

B(6+n)

gy { § Bi‘ﬁ% T*_)fa " d(o) — KJ \B 0o
.

A VI=FoT o)+ 2K, [T VOB gy 4
7—3 < d(go)— 2 ;‘:’A—@] (22)
tanh~—'4/1—g%" d(ﬁo)%—’K‘JM‘le B(‘; B’ d(Bo) +

430 :I .
Bz 7) [(B‘T) » (25)

translational motion of velocity qr,. The pressure distribution
for this translational motion corresponds to that of a wing

at a constant angle of attack of —%70 (See references 1

and 7.) The pressure distribution for the constant angle of

attack — {1%) is

_4,(11‘10,i 9
VE’ (BO) \CP—¢? (28)

Combining equations (9), (21), (25), and (28) gives for the
pressure distribution in the pitching case

po_ 4 - 2000 | z,C*
S VVC—e| 1-28C* _, ~ zE’(BC)
T—gier B0+ 6202 s F(50)
(29)

Integration of the pressures over the wing surface and for-
mation of the nondimensional derivative yields

_ 6xC 410.2:
G T — o (30)
~B (" B o E"(B0O)e
and
. — 67 0(8 ?) 4#010(1—?>
qu 1—92 ,ngz 'v 2 ., —E/ C
2 B0+ L o) EEO)
—8C —FC?
(31)
where ¢ is the mean aerodynamic chord.
Calculations of these derivatives for triangular wings

having their leading edges outside the Mach cone are most
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easily made by the source distribution method. In this
method, the upper and lower sides of the wing may be con-
sidered independent of each other. The source distribution
function for the rolling wing is

(1, Y1) <Ky (32)
whereas that for the pitching wing is
94(x1, y1) < Ky (33)

The calculation of the pressure distribution is not presented,
since the subject of the integration of source distributions
has been well covered in reference 3.

The pressure distribution for rolling wings outside the
Mach cone has been calculated to be

s 4pCx > el 000 )
P—*V@zozjﬁ{/z[(l%’ﬁ Cb) cos™ BCT6)
; _, 1—BCY" _
(1—ﬁ'06) CcOS lﬂ@ﬂje)_ (34)

Integrating the pressures over the wing and expressing the
derivative in nondimensional form gives

1 =

Ozp-—- = 3B (30)

For the pressure distribution due to pitching about the
point z,, a combination of flow patterns must again be used.
The pressure distribution of a wing at uniform angle of

attack _qT?\ is (reference 3)

4qa,C _, 1—B%08 _, 14208 .
o7 =i A i Y
The pressure distribution for pitching then becomes
 4qz 930\1—ﬁa~ BC*—28C—B6  _ 1+8°08
P=val"ro—1 T @o—n™  scFo
gC*—280+p0 _, 1—8°C8
-7 % BC—6)
4qz,8C 14808 _, 1—p%Ch s
i Rl A T e

The nondimensional derivatives OLq and U,,;q then become

8 8,
Cre=5~5s (38)
9— 8
81 %
e~ =) (39)

DISCUSSION AND CONCLUSIONS

Expressions for the lifting-pressure coefficients over
triangular wings in roll are given in equations (26) and (34)
and in pitch, in equations (29) and (37). Equations (26)
and (29) are for wings inside the Mach cone and equations
(34) and (37), for wings outside the Mach cone. Typical
pressure distributions are shown in figure 2 in which the
pressure distributions for the two wings in pitch are for
pitching about the apex.

Expressions for the quantities (’, , CL ,and C O, B1€ given

in equations (27), (30), and (31), 1cspoctnely, for the case
of the wing inside the Mach cone and in equations (35),
(38), and (39) for wings lying outside the Mach cone. It
will be seen that the parameters gC,, Cy , and BC,,,q may

be expressed as functions of BC where

f0— tan e
tan u
The stability derivatives may therefore be plotted against
this parameter to give curves which will hold for all triangular
wings at any Mach number. These curves are given in
figures 3 to 5. For values of BC approaching zero the values
of the derivatives closely approach those given in reference 2
which were based on the assumption of very low aspect
ratio.

For values of BC=1 (that is, for the wing lying outside
the Mach cone), the quantities BCI” and BC,,,q become con-

stant and equal to—l and —1, respectively (the pitching

3

! 2 . :
being about the % ¢ point). In comparison, the values of

3

R s 2
BC,, and BC,, for infinite-span, rectangular wings are g
and —g; respectively (the pitching being about the leading

edges).

It should be pointed out that the pressure distributions
given in this paper may be used directly to calculate the
damping in pitch and roll for wings having trailing edges
cut off ahead of the Mach cone, the most interesting of this
series being the so-called “arrow wings.”

It is apparent that a suction force exists at the leading
edges of wings in pitch and roll whenever the leading edges
are swept behind the Mach cone. A method for obtaining
the values of these suction forces was derived in reference 1.

LANGLEY MEMORIAL AERONAUTICAL LLABORATORY,
NaT1oNAL Apvisory COMMITTEE FOR AERONAUTICS,
LancLEY Fienp, Va., December 12, 1947.
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Rolling Rolling

@ Pitching (b)

(a) Leading edge behind Mach cone. (b) Leading edge ahead of Mach cone.

Pitching

Ficure 2.—Pressure distributions for rolling and pitching about apex.
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—
— | Q0
<) £
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Ficure 3.—Stability derivative C;, for triangular wings.
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Frcure 5.—Stability derivative C’mq about the
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Figure 4.—Stability derivative Cp, about the gc point for triangular
wings.



APPENDIX

METHOD FOR DIFFERENTIATION OF EQUATION (12)

The expression for w (equation (12)) cannot be used directly when z is set equal to zero because of a troublesome singularity

; G 5 ; - . !
in the term 21 and the occurrence of an indeterminate form under the integral sign. To obtain the value of w on the

surface, however, it is po%siblv to integrate and then set z equal to zero. The troublesome parts of equation (12) come from
the terms inv olvm(r—s; - These terms, written out, may be integrated as follows:
B)~)
: —B206)?
’Iiﬁfezfﬂ B(0) A=Fo0)? o) 1 - =Pt
sc (1—p%%? gz’

> A
(Ba—po)y+ (1—p%0?) L= (1—p) [(Ba—69>2+ 1—pe) 0% |

d[ﬁf(v )Ll =8ie0)" ]

. Bf (o) (1—p*a8)*y1—B%*(Bs— B36) o (B¢ d(Ba) (Ba—p0) (1—p%>?

— 522 +\1—59 . 57 4(80) (A1)
(1— B2a?)? [50—/30) 4+ (1—B%?) - A€ (B —B0)2+ (1 — 8202 o

Introducing the limits and then setting z=0 gives
. A — 8f(0) (1—B%t)?
Bf(C) (1—p%00)*y1—pg%* B/ (—C *0C)* y1— 5% J'ﬂ@ d@Bo) “L (1—p%?)? v
TVI=FF ) Bo—po T do) )

(1—pC?)*(BC—p6) —  (1—B*C?H*(BC+RB0)

The integral term of the expression (A2) is improper, however, and must be evaluated at the singular point 6=g. If the
expression (A2) is now integrated by parts, account being taken of the singular point, there is obtained with z=0
|

. 5 (P9 [_Bf(e)(1—pah)? Bf (o) (1—p6)* 2f(6) V1— % A
lm “—“J (L oo 480 [+ i | 30 |- U
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Equation (12) may now be rewritten for w/z with z=0:

PTG e T e S
I B - M ] S
Following Leibnitz’ rule for differentiation under the integral sign and collecting terms gives finally:
labe'{ )—In”l’, ! (ﬁ(r) ” l:;ﬁ af(o) (‘o)tlll) £ 4(s) — X ;6o+;ﬁee Fﬁﬁﬂ;’a’)f(tf) (8o )+ 1_?;?5;{3(?_”59)2‘1(3")_
R e o)+ O 57 o) Sy L i 00—
= Tjﬁw::wﬁa;m 40+ ooy O~ T e —p) 1T
HONIFP 1, e LR i,
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The second differentiation now gives

& . e (6—m) 3 (g - eEE 31 (o PR T
Pk —tim dovi—p [ B dgo) 6= e s —ai—g [LOIYY )

The same process may be carried through for an incompressible, two-dimensional flow. The potential of a single doublet at
a point (y;, 0) in a two-dimensional field (y, z) would be (reference 8)

2 -
TS b

from which w,, the velocity normal to a flat plate extending along the y-axis from —C to ; would be

,w:f" Faa [ i 8o 2l :| (A8)
B0 TR TR
Integrating by parts, then setting z=0 as in equations (A1) to (A4) gives for z=0
. v fyody . (¢ S dy %@}
2 f ~ ! =3 A9
v Jfﬁ{.-c 7= W ey S

Differentiating twice with respect to 7 gives

O*w;_ 1. { f”‘" 6/ (1) dy, fc 6f(y)dy: _4f(y) _ 4" ()
— :l = e —_— e =
oy* nlg} Joe "G Je U9 UK ] 5 (L0

This equation, except for the factor 41—pg%?, is analogous to equation (A6). When the boundary conditions require the

term a‘g%t) to be zero, the factor may be omitted and solutions of equation (A10) are then seen to be solutions of

equation (A6).
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Positive directions of axes and angles (forces and moments) are shown by arrows
Axis Moment about axis Angle Velocities
Force
(parallel Linear
Destrnati Sym- Yo m;)is)l Bedanats Sym- Positive Designa- |Sym-| (compo- | o ou1ar
slghation ol SHEPe GEIERAVSE Shol direction tion bol |nent along g
axis)
Longitudinal________ X X Rolling_..___. 5 V7 SRl ¢ P
Laberal - o2, 14 Y Pitching..___. M Z—X Piteh. o~ 6 v q
Normal. .. =02 Z Z Yawing ... N X—Y Yaw._ .. ¥ w r
Absolute coefficients of moment Angle of set of control surface (relative to neutral
e L O O N position), 6. (Indicate surface by proper subscript.)
" gbS " qeS " qbS

(rolling) (pitching) (yawing)
4, PROPELLER SYMBOLS

D Diameter ; o0 5
» Glootngtrid pifoh 12 Power, absolute coefficient Op_pnﬁ Db

p/D  Pitch ratio

5 5
e T
VvV’  Inflow velocity G, Speed-power coeﬂ‘iclent—\/ Pt

V. Slipstream velocity 5 n Efficiency
r Thrust, absolute coefficient 0T=pn’D‘ n Revolutions per second, rps e
: Effective helix an 1e=tan"(——)
Q Torque, absolute coefficient 00=;;?—D"T = & 2xrn
5. NUMERICAL RELATIONS
1 hp=76.04 kg-m/s=550 ft-lb/sec \ 1 1b=0.4536 kg
1 metric horsepower=0.9863 hp 1 kg=2.2046 b
1 mph=0.4470 mps 1 mi=1,609.35 m=5,280 ft
1 mps=2.2369 mph 1 m=3.2808 ft.



