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AERONAUTIC SYMBOLS 

I. FUNDAMENTAL AND DERIVED UNITS 

-
Metrio English 

Symbol 
I 

Unit Abbrevia- Unit Abbrevia-
t ioD!' t ion 

Length ____ __ l 
Dleter __________________ 

Dl foot (or Dlile) _________ it (or Dli) TiIne ________ t second _________________ 
s second (or hour) _______ seo (or hr) Force ________ F weight of 1 kilograDl ___ A kg weight of 1 pound _____ lb 

I 

Power _______ P horsepower (Dletric) _____ ---------- horsepower _____ ______ bp 
Speed _______ V {kiloDleters per bour __ ___ ~ kpb Dliles per hour __ __ __ __ Dlpb 

Dleters per second ______ ,_ DlpS feet per second ____ __ __ fps 

2. GENERAL SYMBOLS 

Weight=mg v Kinematic viscosity 
Standard acceleration of gravity=9.80665 mIs' p Density (mass per unit volume) ~ 

or 32.1740 ftLsec2 Standard density of dry air; 0.12497 kg-m-~-st at 150 0 
M W and 760 mm; or 0.002378 lb-ft-' sec2 

a5s=g Specific weight of "standard", air, 1.2255 kg/ms or 
Moment of inertia=mk,. (Indicate axis of 0.07651 IbLcu ft 

radius of gyration k by proper subscript.) 
Coefficient of viscosity . . 

3. AERODYNAMIC SYMBOLS 

Area 
Area of wing 
Gap 
Span 
Chord 

Aspect ratio, ~ 
True air speed 

Dynamic pressure, ~P V' 

Lift, absolute coefficient OL= q~ 

Drag, absolute coefficient OD= ~ 

Prome drag, absolute coefficient ODO=~ 

Induced drag, absolute coefficient ODt=::S 

Parasite drag, absolute coefficient ODl1= ~S 

Cross-wind force, absolute coefficient 0 0=£ 

tID Angle of setting of wings (relative to thrust line) 
if Angle of stabilizer setting (relative to thrust 

line) -
Q 
n 
R 

'Y 

Resultant moment 
Resultant angular velocity 

Reynolds number, p Vi where Z is a linear dimen-
. p. 

sion (e.g., for an aiHoil of 1.0 ft chord, 100 mph; 
standard pressure at 15° C, the corresponding 
Reynolds number is 935,400; or for an airfoil 
of 1.0 m chord, 100 mps, the corresponding 
Reynolds number is 6,865,000) 

Angle of attack 
Angle of downwash 
Angle of attack, infinite aspect ratio 
Angle of attack, induced 
Angle of attack, absolutQ (measured from zero

lift position) 
Flight-path angle 
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REPORT No. 900 

THE USE OF SOURCE-SINK AND DOUBLET DISTRIBUTIONS EXTENDED TO THE SOLUTION 
OF BOUNDARY-VALUE PROBLEMS IN SUPERSONIC FLOW 

By M AX. A. H EASLE}, and H ARVARD LOM AX 

SUMMARY 

A direct analogy is e tabli hed betu;een the use oj source-sink 
and doublet distributions in the solution oj specific boundary
value problem in subsonic wing theory and the corresponding 
problems in supersonic theory. The concept oj the "finite part" 
oj an integral is introduced and used in the calculation oj the 
improper integrals associated with supersonic doublet distri
butions. The general equations developed are shown to include 
several previou ly published results and l)articular examples 
are given j or the loading on rolling and pitching triangular 
wings with supersonic leading edges . 

INTRODUCTIO 

The problem of finding pre sure di t ributions over airfoils 
of arbitrary shape and plan form or of finding airfoil which 
have arbitrary preSSUTe distributions i one of th most 
fundamental problems in a rodynamic theory. At the pres
ent time the most important and at isfactory approach to 
problems of this type i provided by t.he methods of so-called 
thin-airfoil theory. The es ential assumptions in this theory 
are that the per tUTbation velocitie induced by the airfoil 
are small r elative to the free-str eam velocity and that the 
boundary conditions can be specified in a fixed reference 
plane. 

Under the assumption of thin-airfoil theory the theoreti
cal analysis of a problem in "Ting theory resolves itself into 
the task of determining the olution of a second-order linear 
partial diffrrential equation with prescribed boundary 

I conditions. In the case of purely subsonic flow, Laplace's 
equation in three dimensions must be considered, while in 
pUTely supersonic flow the differential equat ion which arises 
is algebraically equivalent to the two-dim ensional wave 
equation of mathematical physics. The classical olution 
of these two equations have been developed along two dis
tinct lines: First, by u e of orthogonal function which can 
be derived in terms of the boundary conditions, and alter
nat ively by means of Green 's theorem which in turn u ~ilizes 
a known particular solution of the partial differential equa
t.ion together witb the given boundary conditions. 

One particular solution a sociated wit h Laplace's equation 
and subsonic aerodynamic has been found to be outstanding 
in its mathematical usefulne and, when identified with th 
velocity potential, ha a physical in terpretation which can 
upply, in diJ:ect application, added in io-ht into the natUTe of 

the problem . This function is referred to as th e "funda-

mental solution" and can be developed from the concept of 
a so-called source. A concomitant development to the 
ource potential is the doublet potential, and appropriate 

distributions of these function are known to be ufficient 
for the solution of all problem in subsonic wing theory. 

The exten ion of the u e of the fundamental olution to 
problems in purely upersonic flow introduces mathematical 
difficul ties which differ e s ntially from Lbo e encountered 
at 101V speeds. Both the source and the doublet potential 
pos ess singulari ties on their conical characteri tic surfaces 
or M ach cone and, in the ca e of the doublet, the singularity 
is of higher order than can be treated by elementary mathe
matical methods. In th e historical development of the 
solutions of the wave equation this trouble wa circumvented 
by r eplacing the ource po ten tial by other particular olu
tion of the differen tial equation. A an example, VolLerra 
(r eference 1) inLroduced the integral of the fundamental 
solution and in tha t way r educed the order of the singularities 
involved. The analytical development of Volterra' theory 
presen ts no inherent difIicultie (e. g., r eference 2) but tb e 
phy ical significance of the particular olution i 10 t, Lhe 
direct analogy wi th sub onic tbeory no longer exi t , and a 
cer tain amount of mathematical inefficiency arises ince, 
after using the integral of the OUTce potential, it is found 
necessary to r esor t a t the end of th e analy is to taking a 
final derivative. 

In this repor t, following methods introduced by Hadamard 
(r eference 3), a general olution to the thin-airfoil problem 
in supersonic theory will be given in term of the dis tribution 
of sources and doublets over th e given reference plane. 
Furthermore, a discussion of the nature of the boundary 
values required will be given . For properly set problems 
in wave theory it ha been found nece sary to specify, 
usually, both the r equired function and it derivative with 
respect to time along the boundary considered. In aero
dynamic applications of Lhe wave equation as ociated with 
lifting-surface theory and thicknes di tribu tions it will be 
shown that only a knowledge of the unlmown funcLion or 
iLs normal derivative along the boundary is needed ince a 
relationship between th e two function will be e tabli hed 
on Lhe boundary urface. 

In tbe theoretical portion of the r eport a brief pre enLa
tion will be made of the differential equations involved and 
the two forms of th e fundamental solu tion. An outline is 
th en given of the type of boundary-value problems encoun
tered and, ince the purpo e of the r eport is to extend the 

1 
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concepls of lhin-airfoil theory \\·hi ch arc u. cd in subsonic 
Lheory to problems ari ing in super onic lheory, a eli cus ion 
,,-ill be given of lhe ubsonic developmen t as a ba i for lh e 
analogy which exisls between the methods of solution C01"re
spondino- Lo \'b e \"YO r egimes of flo\\,. In the discussion or 
the purely sup ersonic case it \\·ill be sho\\·n th a t the intro· 
uuction of the concep \' of "finil e part" \I-ill prov ide a tech
nique whereby the improper intcgrals ari ing from the u e 
of doubleL may be ('valua Led in a s traight-forward manner. 
The applicaLions of th e theoretical d velopm('nLs will include 
the rcderivation of some previou ly published r esults and 
will also conla in th(' calcula tion of load distribution for 
rolling and p itching triangular wings 'Y i th leading edges 
s\l-ept ahead of tb e M ach cone from the vertex of th e 
triangles. 

SYMBOLS 

b span of wing 
c chord of wing 
1v1 fr ee-stream 11ach number 
n normal 1,0 arbi trary surface 
n l , n2 , n3 direction cosines of normal n 
p static pre Slll"e 
P r a t e of roll abou t X axis 
q free-stream dynamic pre sure 
Q raLe of pi tch abou t Yaxis 
r , / (X-XI)2+ (Y_ YI)2+ (Z-ZI)2 

r. , (X_X I)2+(Y_YI )2+ Z2 

re ..,I(X-XI) 2_ (Y_ YI)2_ (Z-ZI)2 

re, , /(:C-XI)2_ (Y_ YI )2_ Z2 

R 
S 
u, v, w 

v 
X , Y , Z 
x, Y,Z 

{3 

II 

T 

arbitrary region of integration 
surface enclosing r egion R 
per turbation veloci t ies in direc tion of X , Y, and Z 

axes respcctiyely 
free-stream velocity 
Car tes ian coordina te in original pace variables 
lransformed system of coordinates 

..,1 11112- 11 
infinitesimal used in analysis 
surface along which stream enters induced field of 

WlUg 
conorm al to arbitrary urface 
direction cosines of cononn al 
"ariable representing either acceleration poLential, 

velocity po tential , or any of the three perturba
tion velocity components 

urface on ,,·hich boundary condition are given 
per turba tion velocity po ten tial 
yariable r epresen ting either acceleraLion po tential , 

veloci ty potential, or any of the three per turba
t ion veloeiLy componen t 

pres ure coefficient 

load coefficien t 

. . (moment about X aXi S) rolhng-moment coeffiCIent bX · q WU1g area 
00 1 

0(Pb/2V) 

(
02 02 

(
2

) 
difrerentialoperator OX2+oy2+0Z2 

.,. ( 02 0
2 

(
2

) 
dIfferential operator ox2-oy2-oz2 

slgn denoLing "fmite parL" of integral 

, B CRIPTS 

u sub cript denoLing value of variable on upper sur · 
face of wing 

c 

subscript denoting value of variable on lower sur
face of wing 

ubscript deno ting variable of integration 
sub cript on l' deno ting fundamen tal olution III 

sup ersonic flow 

SUPERSCRIPT 

superscript denoting value of variable on opposite 
siele of T from fixed point (x , y , z) 

THEORETICAL DEVELOPME T 

LINEARIZED EQUATIONS AND nou DAllY co ' 01'1'10 S 

The linearization of Lhe second-order differenLial equation 
for compre ible fluid flow i developed under th e assump
tions of thin-airfoil or mall-per tmbation th eory. If the 
velocity vector of the free stream is parallel to and in tho 
direction of th e positive X axis, the r e ulting differential 
equation is expres iule in the form 

(1) 

where Q r epresent a: velocity-potential, acceleration poten
lial, or any one of the p er t urba tion velocitie while NI is the 
con lant yalue of the free-str eam ;"Iaeh number. Assuming 
the plane of ymmeLry of th e airfoil to lie in the XY plane, 
the boundary condi tions associated with equation (1) are 
given for Z= o. 11 oreover , if u, v, and w r epresent, respective
ly, the pelturbaLion velocity component alono- the X , Y, 
and 7, axe, and if the velocity of the free stream is V, the 
direcLion co ines of any streamline are proportional to the 
point functions V + u(X, Y, 7,), v(X , Y , 7,), and w(X, Y, Z) 
while pressure coeffi cient GYp i given by Lhe relation 

Detailed discussions of these results may be found in refer
ence 4. 

Introducing the affine transformations 

x= X 

y= ,/± (I-M2) Y 

Z= ±CI - M 2) Z 

where the signs under Lhe radical are chosen so that r eal 
values r e ult , it follow that in the subsoni c ca e (M < l) 
equation (1 ) r educes to 

02Q 02Q 02Q 
ox2 +oy2+0Z2 = 0 (3) 
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\yhile the up el'sonic ca e (JIJ> 1) yield 

iJ2Q 02Q iJ2Q 
- - - - = 0 ox2 oy2 O Z2 

(4 ) 

The fundam enta.l solu tion associa ted wi th equation (3) is 

(5) 

oJ', in te rm of the original pace vari ables, 

wb ere 

Wh en the wave equation is to be considered th e fundamen tal 
solution take the form 

(6) 

or 

where 

These fundamen tal olu tion are dil'ee tly r ela ted bo th in 
ub onic and upersonic Dow to the veloci ty po ten tials a t 

th e point (x, y, z) or (X, Y, Z) of unit somces situated at the 
point (Xl, Yl, 21) or (Xl, Yl, Z l) ' The velocity po ten tial of a 
doubl t may be ob tained by taking a directional derivative 
of the ource poten tial, the direction of the axis of the doublet 
coinciding with the direction along which the derivative is 
taken. These two function will be seen to be of paramount 
importance when Green 's theorem is applied to the given 
boundary conditions. 

It remain now to men tion the types of boundary condi
tions which appear in problem a ociated with wing theory . 
A a convenience to the developmen t of the theory the 
normalized forms (equation (3) and (4)) of equation (1) 
will be used and boundary condition will be a sumedlmown 
with r espect to the x, y, z coordinate y tern. R etran 
formation to the X, Y, Z y tem of a.xe can be made qui te 
simply wherever needed in application. In order to define 
the boundary condi tion , two ub crip t will be introduced: 
The first, u, denotes the valu of the required function on th e 
upper surface, t,hat is, the limi t of the function a z ap
pro ache zero from the po it ive direction ; the eeond, l , 
denotes the value on the lower urface, that is, the limi t of the 
r equired function as z approaehe zero from the negative 
direction. 

Using these defini tion the fom boundary-value problems 
of prinripal in terest can be defined a follows: 

l. ymmetrical nonlifting airfoil with specified slope.
In this case Wu=Wl= O over all of the xy plane excep t for 
region occupied by the airfoil wh 1'e 2wu= - 2Wl= /:"W-j(x, y ), 
the function being determined by the geometry of the wing. 
Over all of the xy plane, /:"u= o. 

2. Lift ing plate wi th specified loading.- I t i g iven tha t 
/:"U=Uu-Ul= O ov l' the xy plane excep t for the r egion 
occupied by the airfoil wh ere /:"u j (x, y), the function being 
determined by the pecified loading. 'Moreover, /:"w= o 
everywhere. 

3. Lifting plate with pecified camber, twist, and angle of 
incidence.- Over Lh e xy plane /:"w= O every wher e. And, 
excep t for the r egion occupied by the au'foil , /:"u= o. Over 
the region occupied by the airfoil w-j(x, y ) where j (x , y ) is 
determined by the given camber , twi t, and angle of 
incidence. 

4 . Symmetrical nonJift ing airfoil wi th specified pre m e 
distribu tion.- Over the xy plane /:"u= o everywhere. And, 
excep t for the r eo-ioD 0 cupied by the airfoil /:"w= o. Over 
the region occupi ed by the airfoil Op lex, y ) where j (x, y ) is 
gIven. 

It hould be pointed ouL that the fir t two problem con-
idered here differ from the usual type of boundary-value 

problem enco untered. In the so-called Dirichlet or eu
mann problems, which ari e in connection wi th Laplace's 
equation, the value of the normal derivative of the function 
or of the function it elf is sp cified along the boundary while 
Lhe Cauchy problem for econd-order par tial d ifferential 
quations involves the knowledo-e of bo th the function and a 

derivative. In Lhe first two aerodynamic problems Ii ted 
above, no absolu te values ar e given but rather the jump in 
the valne of the fllncLion along the boundary is pre cribed. 
It i this type of problem with which the present report i 
par ticularly concerne 1. 

B OUNDARY-VAL UE PROBLEMS J PURELY SUB SO I e FL OW 

ince the purpose of this report is to extend the concepts 
of thin-airfoil theory used in ubsonic theory to problems 
ari u1g in uper onic theory, ome discu ion of the former 
will be given to provide lucidi ty as well as to furni h a ba is 
for the analoo.y which will be shown to exis t between the 
methods of solution ari ing in the two regilne of flow. 

The method whereby the olutions of the given problems 
can be effected i provided by Green 's theorem which relate 
a volume in tegral over a region R to a surface integral over 
the surface S enelo ing R . If u, Q are any two functions 
which, together wi th their fir t and second deriva tives, are 
fini te and ingle-valued throughou t R, then for the subsonic 
case 

where the Laplacian opera tor, 

02 02 02 

\l2= OX2+oy2+ 0 Z2 

is in troduced and the du'ectional derivatives on the left side 
are taken along the normal n, drawn inward , to the surface S . 
Iden tifying now the function u with the fundamental solution 
1/1' and specifying that Q satisfies Laplace's equation, equa
tion (7) implifi es to give 

(8) 
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where 

The variable of integration in the equation arc XI, YI , Z I, 

while X, y, Z are the coordin aLes of a point P either insid e or 
out id e of the reg ion of integration. 

If the poinL P is assumecl to be inside the r eo-ion of iJlteo-l"a-I:> I:> 

tion, it i evident that th e fun ction 1/1' becomes infinite at P, 
and it i necessary to exclude Lhis POUlt from the region if 
formula ( ) is to apply. D escribing a spherical surface ~ 
with radius e about the point P, and considerillg the ultegral 
over the t\\"o surfaces ~ and S whi ch enclo e the reo-ion it I:> , 

can be sho\\'n tha t ill the limi t as e- >O equation (8) becomes 

D.. (X·, y z) = - 1 J' f [l (on) _D.. o(1 /r)J dS 
, 471" s r on on (9) 

The physical sign ifi cance of this last relation follows im
mediately: the term 1/1' represents a fluid source and the 

0 (1/1' ) 
term ----c5n represen ts a doublet wi th its axis Jy ing along 

the normal to S, both ource and doublet being sit uaLed at 
the surface point X"I, Yl , ZI. The value of the function n at 
the point x, y , z is therefore given as an in tegral of a so urce 
and doublet distribution, the trengths of the two being 
determined directly from the respective boundary values of n 
an 1 art /on. 

Equation (9) expresses th e value of Q in terms of Lhe 
surface values of n and art/on but thi relation docs noL imply 
tha t a kno \dedge of both the e variables is necessary for the 
determination of Q. As can be sho\\'n easily, another con
dition may be e tabli hed \\'hich relates the two surface 
values. Applyillg equation ( ) to the case where Plies 
ou Lside the region of integration, it fo11o\\'s that Lhe integral 
is equal to zero and that Q and oQ/on on the surface arc 
fUJlctionally dependent. 

Sufficien L informaLion is now fit hand to provide a soluLioll 
[or the thin-airfoil boundary-value problems. Consid er the 
region R bounded by the xy plane and a hemispherical dome 
of infUli te radius lying aboye this plane. For all problem to 
\\"hi ch the re ults " ,ill be appli ed, the value of Q may b as-
llmed equal to zero at infinity.l The contr ibution of the 

surface inLegral o\' er the hemisphere is thus zero ancl , from 
equation (9) , 

II'here t.he integration oxLends oyer the entu'e plane a,ncl the 
sub crip t s indicates the function is to be evaluated at ZI = O. 

The directional deri\'at iye arc necessar ily in the clirecLion of 
the po itive Z ax is and subscripts arc again introduced to de
note conditions on the upper side of the plane. K eep ing P 

1 If n is thc perturbation " cloclt )" potentia l <1>. it is sum cicnt to assumo that <I> a nd M'/bn 
are zero on the sphere at all poinls ha dng radius "cctors which make finit e (nonzrro) angiC'o:; 
with the posi[i,·c x axis while <I. and o<l>,"ox arc merely bounded at a ll poin ts infinitcly distan t 
from the lift ing surface a t a fini te dista nce fro m the positi ve x axis. Thus, thc results of the 
analysis can be applied to lifting,surfa ce problems with tbeir t railing "orlex shee ts. 

fi..'\ed and integrating over the 10\\'e1' side of the xy plane, it 
follows that 

where the negative direction of the normal may be ignored 
since the integral is equal to zero. . ub tracLing the e two 
equations gives the expre sion 

D.. (:r , y, z)= - 1 [J [(~) (Oil " _ OD.. I)_ 
471". T 1 s O ZI O ZI 

(10) 

the integral extencling now only over the area 'T for ,,·hich the 
int.egrand docs not vanish. Equation (1 0) is the basic equa
tion from which all sol u Lions in su bsonie wing theory will be 
developed. It hould be poi'1ted out that the derivation 
proceeded from t.he as umption tha,t the point (x, y, z) lay 
above the xy plane. When (x, y , z) li es below the xy plane, 
ho\\-ever, the derivation call be carried through in exactly 
the same manner. Such a development reveals that equa
tion (10) i general and tha t no restrict ion need be impo ed 
on the position of (x, y, z) relative to Lhe reference plane. 

As a parLieull1r applicaLion of equation (10) con ider a thill 
symmetri cal airfoil at zero angle of attack and et n = q, 
where q, is the pe1'Lurbation velocity po tential. Conditions 
of symmetry demand that 

\\"hile 

art" ox = W" 

ancl 

(11 ) 

and the velocity poLenLial is giyen by a lii tribution of oW'ee 
potentials. Thi di tribuLion can be immediately related to 
the slope of the ba ie sect ion by means of the equation 

The symmetri c a irfoil can also be treated by replacing n 
by the perturbation ycioeity wand in the ea e of the thin 
Ii fting surface with ginn loading the function Q can be et 
equal to u. Employing, 1'e pect ively, eond iLion of ym
metry and irroLat ionaliLy, it follow that Ol'.u/OZ-ort z/oz 
" anishes and , a ft er selling t.Q = llu-QI equaLion (10) becomes 
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BOV DARY-VALUE PROBLEMS I N PU RELY SUPERSONI C FLO W 

Applications of Green's theorem ,-The problem to be dis
cussed at thi point is the extent to which an analogue to 
equation (10) can be developed for supersonic How fields. 
The first tep in the presentation i , once more, the introduc
tion of Green' theorem for equation (1) after it has been 
modified Lo the form given by equation (4) . Employing the 
operator 

Green's theorem now becomes 

where v i the so-called conormal to the sUl'face S and has 
direction cosine equal to VI, V2, V3 such that 

(14) 

where 11.1, 11.2, 11.3 are the direction cosines of the normal to the 
smface S (fig. 1). (The conormal at any poin t XI, YI, 21 of a 
smface i Lhe mirror image in the plane X=XI of the normal 
through the ame point.) If u and n are perfectly arbi trary 
functions , aside from sati fying the usual condi tion of 
ingle-valuedne s, etc., equation (13) represents an identity 

and this fact will be useful at a later time. For immediate 
pmposes, however, u and n will be chosen as olution of the 
differential equation under consideration so that 

and, con equ ently, 

(15) 

The use of equations (13) and (15) depends upon an under-
tanding of the physical nature of super onie flow fields. 

The essential featme of such flow is the presence of Mach 
cones which correspond to the characteristic cones ari ing 
in the mathematical study of th wave equation. In ac
cordance with these concepts a di tmbance in the fio,·v fiell 
can affect the flow only within its aftercone, that is, the cone 
with vertex at the point of distmbance and with axis ex
tending in the direction of the undistmbed tream velocity 
vector; conver ely, a point in the flow field can be affected 
only by di turbance which emanate from point within it 
forecone. 

"When the distmbances are generated by a wing it is, 
moreover, necessary to speak more specifically about the 
natme of the leading edge of the wing. For all cases con
sidered here the a sumption will be made that the plan form 
is a polygon, that is, is composed of straight line segments, 
If the wing is wept ahead of the foremost Mach cone, the 
cones arising at the I ading edge will have as envelope a 
wedge-shaped smface passing through and extending back 
from the leading edge, while if the wing is swept back of the 
foremost Mach cone this cone will be the smface along which 
Lhe air fir t experiences pertmbation or distmbances. 
Thus, a point P with coordinates X, y, 2 is affected by all 

distLll'bances lying within it forecone r and at the ame time 
behind the fOl'l,-ard sLU'face 'A, the nature of the latter smface 
being dictated by the leading edge. In figure 2 (a) and 
2 (b) the e surfaces, along with the di tLU'bance plane T , 

are indicated for two different wing plan form. In the 
application of equa tion (13) the volume integral i limited 
Lo the portion of pace common to the su rfaces r, 'A , and T 

and the smface integral involves a di cu ion of conditions 
on these sLll'faces . 

Up to thi point the analogy between the subsonic and 
upersonic ca e , in ofar a the u e of Green's theorem is 

concerned, is quite apparent. The principal difference which 
o cw-red wa brouO"ht about by the use of the true normal in 
the sub onic field together with the fact that the xy plane 
was coverC'd by a hemi pherical dome of infinite radius; 
wherea , in the supersonic 6eld, the concept of the conormal 
wa introduced and the volume to be co nsidered was that 
enclosed within a finite region. In continuing the analogy, 
however, far more formidable obstacle arise. To begin 
with, the discussion of u and n over the surface in the sub
sonic ca e wa relatively simple. TIm , with the exception 
of footnote 1, n could be a sumC'd zero at infinity and ton 
was specified completely in the xy plane. But in the Sllper-
onic case, although ton can be assumed known in the 3y 

plane and, as will be seen later, n may be evaluated on the 
forward boundary of the region, nothing i known of n on 
the fOJ'econe r. H ence u mu t be chosen properly so that 
the knowledge of n i unneces ary on r. The mo t, obvious 
choice of u would be a particular olution of equation (4) 
which would make u= 0 on r and this i in fact the choice 
used by Volterra (reference 1) and applied to aerodynamic 
problem in reference 2. However, if the analogy is to be 
maintained the choice of u is not arbitrary but must b the 
tlu'ee-dimensional upersonic OLU'ce corre ponding to the 

n J= COB a 

n, =cos 0 
n ,= cos C! 

Conorma /- - -, 

/ 
y 

, , 

, 
I 

I 

z 

I , 

I , 

I 
;--Norma / to 
~ surfac e S , 

" --Sur f ace S 

l h = cos (7'( -a.) 
112 = C O S b 
UJ =COS C! 

FIG URE l.-Geometric relations between direction cosines (n" n., nIl of normal and direction 
cosines (til, 112, LI3) of conormal to surface S. 
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(a) Triangular plan for m. 

(h) Hectll ngul" r plan form. 

P ( x,Y,z) 

,P (x ,y,:r) 

, ' -- T 

' - xy plane 

1',,, t' RE 2. ~Iach forccone from point P (x, Y. z) int ersecting surface T. 

fundamenLal solu Lion ] /r in subso ni c th eory. But such a 
solu tion 

7: =[(x-x, )2 - (Y-YI )2 - (Z- Z,)2(} 
c 

becomes inrllli te along Lhe forecone r ,,"hich has t it e cquat ion 

(x-:rl)2 - (y_y,)2_ (Z- ZI)2= 0 

It is jusL this difficulty " 'hich apparently invalidates any 
fur therance of the analogy and the predict ion in adyance 
of an aerodynamic hape from a disLribution of so urces and 
doubleLs in superso ni c fl ow. However , it is also precisely 
this difficulty whi ch is oycrcome by Hadamard's general 
metbod . 

Extension of analogy by Hadamard 's method.- The full 
developme nt of Hadamar l 's methods cannot be giYen here, 
but a rough sketch of hi r easo ning will perhap be useful. 
The ba is of his arguments terns from equation (13). 
First it is admitted that tbe right-hand sid e of equation (13) 

will tend to infinity as the urface S approaches r so that 
l /re is not a r egular oluLion to 0 2 n= o on r . However, 
as has been mentioned, equation (13) Lill must hold whether 
or no t IJ or Q atisfy t he wave equation and thus it till 
provides an equali ty. H ence, if the surface integral t ends 
to infinity 0 also musL Lhe volume integral. Further, equa
Lion (13) implie that th e e infinite portions ju t cancel since 
Lhe d ifference of th e Lwo integrat ions must always give zero. 
To deal wi th such a problem quantitatively by the usual 
mathcmatical techniqu es would r equire the study of a limit
ing process for each new boundary-value problem. Hada
mard's contr ibu t ion ,,"as Lhe int rod uction and just ification 
of a co ncept whi ch rel1loyed the neces ity for studying the 
i nfini te portion inyolvecl . Thi concept is best presented 
by means of a new notation, thus Lhe ign I is used and is 
to be read" Lh e fini te pa rt 0 r. " 

Using Lh i co ncep t i L is possible to how tha t if IJ were set 
equal to 1/1'" then equat ion (13) co uld be written 

II J~ I (~ 02Q-Q02 ~) dR 

= IJ~ I[n gu (~)-~ ~~J dS (16) 

so that Lhe "fini Le parts" of each ide of the equation would 
be equal. uch a notation would , of COLU'se, in general be 
meaningless since in discarding arbi trarily a part which 
tended Lo infinity it would be possible, by proper combina
t ions, to obtain as a remaind er any finite value. The fact 
is, however, that the integrals involv d in equation (16) tend 
to infiniLy only at a limit of the integration and this limit 
always invoh-e. the foreco ne r. It wa.s consequently pos
sible to cl eyi e a manipulative technique to handle equation 
(16) wiLilOUL co n idel'ing t he singularities individually . It 
mi ght be mentioned, without stressing the correspondence, 
that a treatmenL of improper integral i also employed in the 
use of Ca uchy'S principal value. In subsonic thin-airfoil 
theory and lifting-line theory integrals of the latter type are 
,,"ell known in the form 

I I = ( c f(Xo)rixo O< x<c 
Jo X-Xo 

I I certainly tends to inrtnity as Xo approaches x but the use 
of Cauchy's principal value allow the very large values of 
the integrand obtained when Xo is on either side of x to just 
cancel in such a way t hat I I is finite and unique. 0 again 
the integral 

j' X' A(x)dx 
I ?= 

- a (XO-X)3/2 

is finite andl.l nique and given by H ada.mard in the form 

or 
I ?= eo A' (x) dx _ 2A (a) 
- Ja ·bo-x ·.Jxo-a 

It is actually pos ible to generalize the idea of "finite part" 
to t he ca e wh en the exponent in the denominaLor is of the 
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form j + 1/2 ,,-here .7 i a po i tive integer bu t uch a ge neral
izat ion i not needed for aerodynamic application and will 
t here fore be omitted. 

In acLual calculation, the evaluaLion of the integral J2 can 
ofte n be sllor te ned . Thus , if Lh e indefinite in teg ral o[ 

I A(x)~x 
(XO-X)3 /2 

is ,,"Ti tten in the form F(x) + (1 then 

I = lim [ rx A(xl) -4 (Xo) dx _ 2 l (xo) 
2 .r~Io J a (XO-X I)3 /2 I (:ro-a) 1/2 

= lim [ F(x)+C- F (a)-C- ( 2~(X)~/2J 
X-~IO Xo 0, 

It follows that if C is chosen 0 that 

C=. lim [ 2A (xo) - F(x) ] 
x-->xo , 1'0 - X 

then the expression for 12 may be written 12= -[p(a) + ('] 
When C is chosen in this m anner, the notation for the cal
culat ion may thus be modified to the form 

where the asterisk indica te that the UPPPl' limi t is not 
sub tituted into the indefinite integral F (x)+C. 

The technique for the calculation of the finite part ha 
therefore been r educed to three imple step : First, the 
indefini te integral F (x) + C i determined; second, the con-
tant C in the indefinite integral is evaluated by m eans of a 

limiting proce s; and third , the lower limit of the integral is 
substituted into the inde5.niteintegral and a mmu ign 
prefixed. A an example, con ider the integral 

In this case 

and 

o that, finally , 

- [F(a) +0] - 1 

·Wi t h the aid of this arti5.ce the analogy between the sub
sonic and super onic cases can be continu ed with rela tive 
case . Thus, in equation (16) the right-hand m ember i zero 
provided we exclude the point P from the volume of inte
gration. Thi can be done mo t ea ily by limiting t.he 
integration to the XI = con tan t plane, a di tance ~ upstr am 
from P . The portion of this plane intersected by the cone, 
and thus the section over which the integration mu t be 
carried, will be denoted by ~ (fig. 3) . 

As drawn, figure 3 shows a cross section in a y, = con tani 
plan for the special case wh en Pi located directly behind 

8433 1 4 2 

and above Lhe Joremo L eli tLU'bance . Applying equation 
(16) to the r egion above and below the disturbance urface 
T (plane of the a irfoil) y ield the two equations 

and 
I fJ' [n ° (1) IOn] d 
, ~ oU "c - I'c ou A.. 

(17) 

fl' [n' ° (1 )_l OQ'] dS-O (1 ) 
, >'+I'+r Ou' Tc 1', Ou' _ -

where the prime indi cates the urface value of n OIl t he 
oppo ite s id e o[ T from P. 

The integration over ~ can be compu Le el for ~ very mall, 
For convenience, onsider P Lo be the origin; then it follows 
that since the conormal is in the XI dircction and the area 
clem en t can bc writtcn 

l' d'Y do 
where 

and 

O= arc tan ~ 
YI 

the right side o£ eq uaLion (17) will give 

-II r [0 ~ (!.-)-.!.- W] dS ) 2; -- au 1"c Tc OU 

.. [I J' 211" SuE -nd'Y = ltm Q(x, y, z) de ( 2 2)3/2 + 
E->O 0 0 ~-'Y 

lon (x, y ,z) r 211"doj'E 'Yd'Y ] 
OX, Jo 0 ,/~2_ 'Y2 

I, [2 O( )j'* -€'Yd,,{ +2 oQ (x, v, X) ScE = 1m 7r __ x, y, Z ( 2 2)3/2 7r A ' 
E->O 0 ~ - 1' VXI 0 

I , 
I 
I , 

I 
I : -Forecone r 

Aftercol1e A-', 

I Vo --
I 

)-_ -f---T ----/ 

Surface E , , 

FIGURE 3.-Cross section through region of integration used to obtain equatiou (19). 
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]1 el1ce l lt t' value of \1 al lllt' poinl P , Q. (X,y, Z) , can be deler
mined from ('quat ion ( 17) with l il r res triclion imp lir d by 
rquation ( Ie) , FurllH' r , sillcr only t il (, "finitr part" is COJl
s ic/rl'rcl , th e in trgmtion OH'r r yie ld s Zl'ro and till' t\\~O 
equat iolls ('ol1lbinl' to gin' 

n Cr, y , ,:) 

1 I fJ' [( I ) (00 (':lO') (0 1) J -? ,>- ~- ->-~ -en- in >-_, d,/',dy ,-
_7r. T le.'1 U __ I U .... I U ~I I e .<; 

~ 1 I f'J [n 0 ( 1 ) _ I onJ dS-
271', ~ Ou l'c l'c Ou 

I -J'J' [£I' 0, ( 1) _ J Oll,'J ciS 
271' ~ Ou Fe Fe Ou 

(19) 

The only rt'llHlinillg difrercnce bd ll'el' n lite su bsonic sol uti on 
for t he di s tribulion of sou rCl'S and doublrls, ('qua t ion (10), 
and till' s l'lwI'80nic , o ili t ion, equation (19) , is til(' integration 
o \~er surfac(' t.., 

Dl~CUSS10:>l OF CON DITION~ ON SURFACE A 

B)T dC'finition A is t il l' sll rftl,('c' on \\'11iclt tb(' s tr('amlines of 
t l1(' fl ow fi r. t experiencc Pl'c'ss ure di s turbances, that is , till' 
surface aloJ1g \\'hich th r st('('Hm firsL bcconH's a\\'are of lile 
('xi . tCll CC of l hl' \\' ing, Figu('('s 2 (a ) and 2 (b) \ H'('(' intro
duced 10 s it 0\1' t il l' naturc of t he co nfig ura ti ons in volvc'd for 
t\\'o difJ'ct'('nt p lan forms , lL is apparenl lhal wll cn lh e wing 
is s \\'ept a ll e/td of tlte foremos l ':'fach cone' the \H'dgc-like' 
form of A is comparablc to l ite lI'edgl' aPP<'ill' ing in purely 
(,,,"o-climc'nsional problems II'bile thc' " ' ing s \l'ept back of lhe 
~Iach conc' llas for its A-s llrfacl' a co ne a nd lhus mny bc 
l hought or as inyolving a purdy l brc'c-ciimc'Jls ioJlal pJ'oblc'm, 

In ol'ci<'1' lo ci l'tc' J'lnine lh<' valul' of <I> on A il is s uffi eil'nL to 
impose till' cond ilion that lIlc lang('nlial componenl of 
velocity j , eontinllolls aero s t.., Such a cond il ion repl'csent 
no csscnt inl res triction s inc(' it is an immed iate consrquen ce 
of continuit y of mass flow Hnd conl inuity of thl' langc'ntial 
compoJlenl of momentum anoss ti l(' SLUJUC'l', ~\s a I' suIt 
of lhis cond ition, llOwe \' cl', it folloll's lhat the tangcntial 
componrnl of tIl(' pprlurbation Yc10eity is Zl' l'O on the down
sln'am s urface of A s ince it is obyiously ZCI'O on till' upsll'cam 
s urfac(' , ':'Iol'c'on' r, \"Cloc i ty Ill' ing ('q ual to t tt l' gradienl of 
tbe \"Clocity polpntiai the pert uriJat ion-v eloc ity poll'Jlt ia l 
mus t be equal to It C011 tant Oll A, Bul an arb itrary co n
s lant can he add<'d 01' s uhtr;ldl'd from til(' velocity potenlial 
so thai with no los. of g<'IH'rn li ly lh(' I'/tlu(' of cP on A can be 
a u nll'd ('q lIal to Z(' I'O and , s i nce t b (' eonol'mal lies 011 t b<' 
s Ul'fltce A, O«()/o [' is Ili80 ZC'I'O, 

Tll c COlllpletC' nnltloguc' to <'qual ion ( LO ) has now bec'll 
clc\~doped [01' 11 - (1) so t bal 

Q(:r,y, z) 

"lVhen n is equal to one of lh e perlul'balion-wlocily com
ponenLs, iL is obvio Lls th aL boundary con li Lion over t.. and T 

cannol be consid('t'ed to be a bsolut ely arbiLral'Y since it is 
Jlrccssal'Y to includr the adclrcil'r trictioJl that thr l'csllltanL 
potential CD also atisfic ' th e rqnation 

Considel'ingfil's l thc ca c wll('rc the wing i wcpt bchind the 
:'1ac11 cone, iL follo\\'s lha l 

and, a ft c' l' <,valu at ing the partial dcriyalives of <I> and sub
s lituting in t il l' g iven difl'('I'<' nlial equatio n, dircct calculation 
leads to tbc conclusion thai on t.. lhl' following clifl' (' rl'rltial 
cquat ions hold 

\\'h crc UI, VI, and WI arc the valucs of u , L', and won t.. , The 
gen eral solulions of the e Ii neal' pal'lial diHel'ential eq uaLions 
can be wl'ilt en a follow 

It has been stated, however, that the tangential component 
of the Lotal perturbation-velocity vector vanishes on A, or, in 
analytical term s 

\I'h e1'e l, m, n ar e direction numbers of any Langent to t.. and 
th cr efore satisfy th e relaLion 

lx - my-nz= O 

ubsLiluting the known exprc s ion s for UI, L'J, WI, it follows 
that 

or , using a different notaLioll , 

Consider now Lhe special case when [= 0 and 7n = -nz/y 
Under lh ese conditions 

- - F2 - +- F3 - = 0 n (z) n (x) 
Y x x Y 
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so that 

ince the variables z/x and x/yare eparated, the solution of 
this equation may be written 

where J{ i a constant. R eLul'lling now to the case where 
l , m, and n arc in the ratio x : y: z, direct ubstitution into 
the above quation gives 

- Fl - + - .F 2 - + - F3 - = 0 x (y) y ,(Z) Z (X) 
Y z z x x y 

so Lha t 

~ F ('!f.)+J{Y ..L~ J{ ~= O 
y 1 Z z ' x Y 

and 

Thi equation can, however, be written in the form 

from which it follow that J{= O and Fl = F2= F3= 0. All 
perturbation velocity components arc seen to be zero , con e
quently equation (20) i valid for all case in which the wing 
i swept back of the ::\Iach con . 

A discus ion of condition on Lhe mface A will next be 
given for the case where Lhe leading edge of the wing lie. 
along the y axi (fig. 2 (a)) and where n r epre ent U or w. 
The perturbation-velocity potential 4> may be given by Lhe 
relation 

c/> (x ,y,z) = ( x u (xl ,y, z) dx1 J±z 
where Lhe plus and !pin us ign in the limit apply, 1'e peclive
ly, Lo conditions above and below the xy plane. ince 4> 
must ati fy the ba ic differenLial equation, an added 1'e-
triction is imposed on U and as a result of this condition it 

can be hown that 
OU1 = 0 
OZ 

where Ul is the valu e of U on either the lowel' 01' upper surface 
of the wedge. It follows that th e values of U on the two 
sllrface are 

and, ince Lhe olution i independen t of z, and x i propor
tional to z in both ca e , th final expression arc 

If cI> (x, y , z) is defin ed as an integral involving w, the same 
type of analysis leads to the conclusion tha t w on Lhe two 
surfaces can also be expres cd as functions of y alone . 
P erL mba Lion velocity v will no t be con idered for this type of 

leading edge since the inclusion of u and w cover all com
monly u cd boundary conditions. 

It remain to subs titute Lhe re ult just obLained into 
equation (19) in order Lo study the contribu tion of the in te
gl'als over A. Apparently only one term in each integrand 
need be con idered ~ ince the conormal i perpendicular to the 
y axis and the gradient of Q in that direction vani hes. A a 
preliminary step to etting up the integrals i t i convenient 
to introduce a new coordina te y tern x" , y" , Z" which i 
ob tained by ro tating the axial sy tcm abou t the y axi so 
tha t the x" and Z" axe li e r espectively in Lhe lower and 
upper wedo-e plane while the y" axis coincides with the 
y nXI. The tran [ormation of variable IS 

When n=u, Lhe last two integrals in equation (19) may 
now be written 

1 Ij'Y+.Jx,- z' i eo11e 0 (1) -2 ., , j 2(Yl )dYI ox' r dx" 
7r y- x·-z· 0 c 

ub ti tuting for T e} thi expression become 

or 

It is apparen t that if jl (y )=-i 2(Y) the integrals combin e to 
give zero 0 that equation (20) may again be u ed in all cal
culations ; moreovel', the amc condition applies when n= w. 
The assump tion tha t j l(y )=-i 2(Y) is equivalenL to postu
la ting tha t in all ca (' i l(Y) andi2(Y) arc odd fun ctions of y. 
In application, however, thi property i alway maintained. 

It r emains finally to consider the case when the leading 
edge of a wing is wept ahead of th Mach con e and when n 
is a perturbation-velocity component. As a means of 
avoiding unnecessary complication in treating the problem 
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it is possibh' to substit ut e first UH' trans formation (rC'f('r
('nc(' i5) 

TJ=- ·c + my 

t = \ m" - l z 

" 'h ere Ut(, leading ('dge has th e eq uation y = m.t: , .:= 0, and 
m> l. DirecL calculation shows that the bas ic (lirrer('ntial 
equation and the :'fach con e arc in\'ariant uncler the tran -
formation and that in the 11('''' oblique coordinat(' sys tem Uu' 
leading edge lies along UH' 71 axis ,,·hile th (' plan ('s of the ,,·eclge 
become 

B ecause of th e iuyariant properties of the transfonnatioll , ami 
th e facL that th e z= o plane is rix('<l, equation (19) i appli
cable directly to th e boundary-value problem for the wept 
wing III th e new coordinal e system. The treatment of the 
inl~grals oye r A can therefore be developed algebra ically in 
exactly the sam e manner that appli ('d to the pre\' iolls case, 
h ence u and wa re con tan 1 along the lin es 

n =t = O , TJ = const 

and, again, if conditions of ske" · sy mmetry arc main tain ed 
above and below the z= t = O plane the integration over the 
surfaces A cancel. Thu eq uation (20) is seen to b e , 'alicl for 
Q equal to p erturbation-wloe-ity poten t ial or perturbation 
yeloci Ly for all types of straight leading-edge configmation 
Andthi is the complete analogue of the subso ni c theory. 

APPLI CATIONS 

I N TERPRETATION OF PREVIOUS RESULTS 

As a means of indicating the yarious problems to whi ch 
equation (20) can b e appli ed, three previously publish ed re
sults will be discussed. Th('se applications inclucle, fir t , Ute 
expression for th e perturbation-veloci ty potential of a sym
metrical nonlif ting a irfoil (refC'renc e 6), second, the cale-ula
tion of press ure di stribution oyer a emiinfinite wedge ,,·i th 
leading edge s,,·ept back of the foremost ;"1ach cone (referen("(' 
5) and, th ird, tbe integral equation method for determining 
the load distribution o\'(' r n lifting surface of arbitrary slope 
(reference 7) . 

As in th e case of eq uation (11) fo r subsonic flow , let Q 

rcprcsent velocity potential <I'> and consider the case of a sym
m etrical wing at zero angle of attack. 

Th en oQlI /oz=WlI and oQ r/OZ= WI, wh ere w" and WI arc in
duced y crti cal veloci tics 011 th (' upp('r and lo\\"er surfaces, 
r espectively. :'10reovel" , <1'> ,, -<1'>1 = 0 for the ymmetrical 
case so that, since wu -wl= 2w'l) 

The integral in this equation is finite at r 0 th e finitc parL 
sign may be disregarded and 

(21) 

This equfttion agrees wi th result gi,'en by Puckett (reference 
6) and others. 

A another example consider th e solution u ed by R. T . 
,Tones in referenc (' 5 for a nonlifting symmetrical wing. Set
ting Q equal to W in equation (20) ancl using the fa ct that w 
and u are ["elaled by th e expression 

it fo11o,,·s that 

J'J' W " (~~ ~) dx1dYI 
T u ,;c. l J c s 

1 0 [Z 
ll=- dz 

To o.c , '" (22) 

For a \\·e(lge s\\'l'pL behind the forwarcl :'I1ach cone and having 
as th e ('qw1t ion of its leading edge th e r elation YI = m:CI, the 
expression for u may be wri tten in tIl e form 

wb cre 

.1' ~( y)2 ? (-1 - ) - y - x - ~ + z- . - 1 
y

l

= 1n m 1n-_' __ _ 
1 

- -] 
m2 

P erforming the integration wi t.h respect to Xl , it follows that 

and, after rcye r ing the oreler of in tegration, 

where k= 1 for x> YI /m and - 1 for x< YI/m. Taking the 
partial cleriYatiYe with re pect to x and noting that the value 
of the logm-ilhm at the upper limit is zero, the value of the 
induced yciocity i 

U = - lEu 1 1', .,.=d=y~1 ==== 
To 0 ~(x_;~}_ (Y_YI) 2 _Z2 

and integration yields the final r esul t 
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Using equation (2) and setting wu/V equal to (dz/dx)o the 
lope of the urface, this may be written 

Equation (23) gives the pre sure coefficien t at any point in 
the field produced by a wedge swept behind the Mach cone. 
When z is set equal to zero the pre ure distribu tion over 
the wedge itself is determined and the equation corresponds 
exactly with equation (12) of reference 5. 

When loading is to be prescribed over a thin lifting surface, 
n may be assumed equal to the perturbation velocity u. A 
c1il'ect con equence of thi, assumption i that in equa tion (20) 

oQ u on l 
()Z = ()Z 

since, from conditions of irrotationality, 

By definition 

and load eli tribution m coefficient form t:. p/q IS gIven by 
the relation 

so that 

Equation (20) can therefore be wri tten in the. form 

If equat,ion (24) is transformed to the original space 
variabl es, the relation for u is 

u(X, Y,Z) 
V (25) 

Equation (25) is valid for arbitrary plan forms with known 
load distributions. Particular examples which may be 
worked out witb relative case are the lifting surfaces carrying 
constant load. Once u i known the value of w can be 
determined from the integral 

o JX w=~ udx 
v 2 _ 0> 

alld from w the ordinate z of the surface a a function of x 
and y is given by 

Ix w 
z= -vdxo 

I . •. 

where l. e. denotes the leading edge. A di cus ion of 
trapezoidal, rectangular, and triangular plan forms with 
constant loading is given in r efer ence 2 although the method 
of derivation is different. 

Inter est in constantly loaded wings has been based pri
marily on the fac t that in certain case they can be combined 
to produce uJ'faces of given camber. Thus, a up rpo ition 
of trapezoidal plan forms of variable rake, the constant 
loading over each trapezoid being a function of it rake 
angle, can be used to produce a flat plate of trapezoidal or 
rectangular plan form at an arbitrary angle of attack. In 
thi case t,he loading as a function of rake angle is determined 
so that induced vertical velocity is kept constant. For 
problems in conical flow a lifting element can be cons tructed 
by subtract.ing from a constantly loaded right triangle with 
angle of sweep equal to 0 the constantly loaded right triangle 
with sweep angle equal to o-do. The re ultant element carries 
a constant load and has a sweep angle equal to o. By um
ming these elements it, is possible to find the load distribution 
as a function of 0 such that cer tain fla t lifting surfaces at 
angles of attack are formed. In reference 2, triangular 
wing swept back of the Mach cone were studied by this 
method for arbitrary angles of yaw. Brown (reference 7) 
has used this arne lifting elemen t to t.udy the more r estrictive 
case of the symmetrical trianglliar wing. 

A brief di cussion of differ ences existing between the meth
ods for producing the swept-back lifting element will hed 
ome light on the variou lines of attack. The approach 

u ed in r eference 2 is essentially mathematical in that a par
ticular solu tion of the partial differential equation i u ed in 
conjunction with Green 's theorem to sati fy the boundary 
condition of the problem. The principal critici m of such 
a method i tha t the phy ical interpretation i missing. The 
use of equation (25), however , removes all such Cl'i tici ms 
for precisely a in the case of incompressible flow the lifting 
element is created by dis tributing doublets over the wing. 
In Brown 's solution it was neco sary for him to determine 
fir t a line of ources by means of an integration along the 
line and th en to form the doublet line by differentiating along 
the normal to the line. The order of differentiation for in
compressible flow is immaterial, since the limits in the inte
gral are independ ent of the position of the point P at X , Y , Z. 

upersonic flow de troys thi property and i t is only after the 
introduction of the concept of "fmite part" that the deriva
tive of !l,n integral may be written a the integral of the dif
fer ential coefficient of tbe int grand. Equation (25) thus 
maintains the analogy with previou work. 

LOAD DlSTRIBUTlO FOR ROLLING WING 

The usefulness of equation (20) is not at all r estricted to a 
synthesis of previously known solu tions. A an example of 
its generality consider its application to th e problem of the 
rolling wing witb leading edge swept ahead of the Mach cone. 
Figure 4 hows the boundary condi tions involved. The value 
of w is specified over the wing and, since the Mach cone is 
behind the leading edge, the value of the perturbation veloci
tie u, v, and ware of course zero ahead of the leading edge. 
A um e for the moment that a symmetrical body at zero 
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angle of a ttack i co n idered. It follows that if Q u = wu and 
QI=WI then equation (20) can be writ ten in the form 

(26) 

since, for rca ons of ymmetry, the normal o- racli enLs of W on 
Lhe two surfaces are eq ual. Using now the [a cL that the 
Mach cone is behind the leading edge then the pre ure o\~e r 
the upp er surface is independent of the shape of the 10\H' r 
urface and equation (26) may be appli ed directly Lo the roll

ing flaL pla te if Wu i determin ed from the giv n induced 
velocity on either the upp er or lower surface. This method 
of approach, of cour e, limits the solution to ea es where the 
leading edge is ah ead of the ~1ach cone. 

H the rate of roll is ginn as P radians per seco nd then 
2wu =2PYI and equation (26) becomes 

(27) 

The area T in equaLion (27) is that contained beLween the 
leading edge and the trace of the forecone on Lhe XY plane. 
FiglU'e 5 (a) ho\\~ the configuration for three trace corre
sponding to forccones from the poin ts PI, P2, and P3 . The 
region containing the point P2 is distinguished from that 
containing PI and P3 by Lhe fact that T for P, li es ahead of the 
~ Iach co ne [rom the apc. ~ and, fur thermore, enLirely on the 
right of the X I axis. The regions COlTe poneling to PI and 
P3 differ in the fact that when integraLing from + co to Z 
Lo find u, the upp er limit of the inLeo- ral in the fir t case i 
Lhe ~1ach cone J..."l_{32Y2 _ {32Z2 = 0 whereas in the lattcr ca e 

mX-Y 
Lhe upp er limit is theleacling-edge wedge Z = , ' (m2{32- 1) (fig. 

S (b». The solu tion must be carried ouL eparately for each 
of these r egion bu L only the details for the r egion COlTe-
ponding Lo PI need be given here sin ce the other are imilar. 

I t follows that the induced velocity u at the point Pi gIven 
a the sum of the triple integrals 

(28) 

where A(k,70) is the value of Y I determined by the intersection of the forecone wiLh the leading edge on the right and 
left sides with k eq ual respectively to - 1 and +1. (See fig. 5 (a).) Thus 

After reyersing the order of integraLion and inLegrating wi th re pect to 7,0, it follows that 

Moreover, mee the integrand is zero at y, = A(1c ,7,) the derivative with respect to X can be taken inside the integral and 

Integrat ing in this equation and combining terms it fo llows that induced velocity u is given by the expre sion 

Setting 7 = 0 in equation (29), pressure coefficient Cp = - 2uj V is given by the expression 

_ 2P z{ mB2Y - X .. .. [ m{3zY - X l m{3zy + X .. [ m{32 } ~+ X J m{32Y 7r } 
0,, - 7rV m (m 2{3z_ 1) 3/2 ale Sill (3(mX-Y ) - (m2{32_ 1)3J2 alC sm (3(mX-t Y) + (m2j12_ 1)312 (30) 

when X > {3Y. 
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F IGU HE 4.- Vertical veloci ty distribution for rolling wing. 
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FIGURE 5.- Integration regions used in determining loading over triangular wing swept 
a head o( M acb cone. 

Thi olution holds in both regions containing the points 
PI and P3 . However , in the r egion ahead of the Mach cone 
bu t still on the wing (region corre ponding to P2) it i easy 
to how that 
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FIG HE 6.- Varia tion o( pressure cocill cient (or roll ing t riangular wing swept abead o( M ach 
cone. 

wh ere Y /m< X < /3 Y. Figure 6 hows a spanwi e plot of 

0 11 [1/ C:t) ] for m = 2 and /3 = 1. 

Equations (30) and (3 1) provide sufficient information for 
the calculation of the stability derivative for damping in roll, 
Cip ' Integration of th(' load distribution yield the r esult 
that 

LOAD DISTRIBUTION FO R PITCHING WING 

Another simple application of equation (20) i found in 
the solution to the problem of the pi tching ·wing. Figure 7 
shows the boundary condi tion involved which i tha t the 
ver tical induced velocity be a linear fUllction of Xl . If Q 
is the rate of pi tch in radians per second, then w= QXI on 
the wing. Again the olution i obtained only for wings 
which have leading edges swep t a.head of the M ach cone. 
(Although solutions can be ob tained for leading edge. swept 
behind the M ach cone, they involve integral equations and 
do nothing to illustrate fW' ther the direct methods of this 
repor t .) 



14 REPORT NO. 900-KATIONAL ADYI ORY COMMITTEE FOR AEROXAUTIC 

(a) 

A 

I 

e-4 
V' 

: ' 

A 

w 

Y, 
, , 

" I " "-Mach cone ,: I '.;' 

.+ -~- - 8 

I 
.' 

I 
X , 

w 

Secfion B·B Secf ion A- A 

(b) 

"? 
C\;J 
'-..... 

~~ 
~ 

(a) Plan[orm. 

(b) Sections showi ng distribution. 

F"WRE 7.-Vertieal \'clocity distribution [or pitching wing. 

=~y 
.,' •••. I 

- ~ / ,,' i_ b '" "', 1 
1.2 

1.0 

.8 

. 6 

.4 

. 2 F--

o 

I X 

X 
1)=.25 

-V 

V V 
./5 ...... ....-

-------

.05 

.2 
y 

b 

i 
.3 

~ 
........-

~ 

.4 

~ 

.5 

F,GURE .- Variat ion o[ pressure coeffi cient [or pitching triangular wing swept a head o[ M ach 
cone. 

In the rolling wing case, Q wa et eq ual Lo pcrLmbation 
velocity wand a a rcsult a di tribution of doublets was 
used in equations (27) and 28) . As an xample of the 
manner in which SOUl"ce- ink distribution may be u ed for 
the same type of problem , equation (22) will b e applied in 
the present case. inee the wing is swept ahead of the fore
most Mach cone , induced effects on the upper and lower ur

fa ce are independ ent and 

(32) 

Again three regions containing the points PI , P2, and P3 are 
distinguished (fig. 5 (a» and the solu t ions will be derived 
only for the r egion containing PI. Integrating fu'st with 
respect to Y1 and then differ entiating with re pect to X 
yields 

01' Q T Q j' 8\k,Z) 0 . 
u = AX= - 7i (X - {3Z) + - (3 ~ k X, AX arc Sill 

U /J 7r k=-I,l 0 U 

Y - kmXI 
-J(X-XI?-{32Z2 dX, (33) 

where 
B (k Z) = X-{32Ykm - {3k , /(Xm -kY)2+ Z 2(1-m2{32) 

,m l-m2{32 

Considering the Ii mi t as z~o and integrating gives: 

0
11 
~ (m2{32_ l )3 /2= 2:; -J(X2_ {32Y 2) (m2{32- l )

mX(2-m2{32) -

in (X- {32Ym)+ 
{3Y-{3mX 

mX(2-m2{32)+ Y . (X+ {32Ym) 
7r arc sm {3 Y + {3mX 

(34) 

Formu la (34) is val id [or the region P, and P3 of figure 5 (a). 
For the region P2 the solution is: 

Figure 8 shows a panwise plot of i:;;, [11 (i~)J for m= 2 

and (3 = 1. 

Equations (34) and (35) provide suffieienL informat.ion for 
th e calculation of the s tability derivative for the damping in 
pitch OmQ ' Integration of Lhe load di tribuLion gives the 
result 

Om q o (Qc/2V) 
4 

9{3 

where the axis of rotation is at X = 2c/3. 

AMES AERONAu'rrCAL LABORATORY, 
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z 
Positive directions of axes and angles (forces and moments) are shown by arrows 

Axis Moment about axis Angle Velooities 

Designation Sym-
bol 

LongitudinaL _______ X 
LateraL _____________ Y NormaL _____________ Z 

Absolute coefficients of moment 
L M 

0 1= qbS Om= qcS 
(rolling) (pitching) 

Force 
(parallel 
to axis) 
symbol Designation 

X Rolling _______ 
y Pitching ______ 
Z Yawing _______ 

N 
O"=qbS 
(yawing) 

Sym-
bol 

L 
M 
N 

Linear 
Positive Designa- Sym- (compo- Angular direction tion bol nent along 

axis) 

Y~Z RoIL ___ ____ <P u p 
Z---+X Pitch.. _______ 0 v q 
X---+Y Yaw _______ if! w r 

Angle of set of control surface (relative to neutral 
position), o. (Indicate surface by proper subscript.) 

4. PROPELLER SYMBOLS 

D 
'i> 
p/D 
V' 
V. 

T 

Q 

Diameter 
Geometric pitch 
Pitch ratio 
Inflow velocity 
Slipstream velocity 

Thrust, absolute coefficient OT= 'fD4 
pn 

Torque, absolute coefficient OQ= 9nr. 
pnLF 

p 

0, 

n 

Power, absolute coefficient Op= fDG 
pn 

5/V6 
Speed-power coefficient=-y ~n2 

Efficiency 
Revolutions per second, rps 

Effective helix angle=tan-{2~n) 

5. NUMERICAL RELATIONS 

1 hp=76_04 kg-m/s=550 ft-Ib/sec 
1 metric horsepower=0.9863 hp 
1 mph=O.4470 mps 
l mps=2.2369 mph 

1 Ib=0.4536 kg 
1 kg=2.2046 lb 
1 mi= 1,609.35 m=5,280 ft 
1 m=3.2808 It 


