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STABILITY DERIVATIVES AT SUPERSONIC SPEEDS
OF THIN RECTANGULAR l~TGS WITH DIAGONALS AHEAD OF TIP MACH LINES

By SIDNEY M. HAEMON

SUMMARY

Theoretical results are obtained, by mean8 oj the linearized

theq, for the w~ace-celotity-potet itil functions, wrface-

premme di8&ibutiotw, and tibility deriratiw for rariuus

rnotion8 at 8uper80nic 8peed8 of thin $at rectangular m“ng8

m“thout dihedral. T7M inre8tigatian includes steady and accel-

erated rertical and longitudinal motion-s and steady rolling,

yawing, side81ip~”ng, and pitching for Jfach mm berg and

aapect mt iog greater than those for which tie Mach line from

the leading edge of the tip 8ection intersects the tmiling edge

of the opposite tip 8ectian. The 8tability deriratire8 are dem.ced

ol~”th regpe~ to princi~l body ai-eg and then tmwsf ormed to a

8y8te7n of 8tabi[ity axe8. In the ca8eof yawing, a treatmentJor
the infinitely long wing which tah-e8account of the spanwi8e

rariation in the 8tream Mach number is extended to the jnite
wing, and a p[aum.bieralthough not rigorous, 8olution ti obtained
for the wing tip e$ects.

The result8 jor this inre8tigation 8how<dthat potitire yawing
at 8uper80nic speeds may produce a negatire rolling moment
in contra8t to the behavior at 8ub80nia8peed8where a po8itire
rolling moment would be produced. The attainment of super-
sonic 8peed 8hou[d produce a signl~cati change in the pom.tice

direction of the yawing moment per unit rolling relocity. The

rewlts a180 indicate that urwtable tendencie8 are produced by

rertiiwl accekrationa if

M’+1
.4 @?–= > --ij--

where A is wing a8pect mtio and M b stream Mach number.

INTRODUCTION

Recent dem40pments in supersonic airfod theory (refer-
ences 1 to 4) have Ied to the calculation of many of the
supersonic stabihty derivatives for various pkn forms. In
references 5 to 8, various theoretical supersonic stability
derivatives for small disturbances are presented for thin flat
wings of delta plan form. In reference 9, the supersonic
damping due to rollkg is given for triangular, trapezoidal,
and related pIan forms.

In the present paper the methods of references 4, 10, and
1I, which are based on the linearized theory for a uniform
stream Mach number, are used to derive the supersonic
surface-veIocity-po tential functions for thin flat rectangular
wings -without dihedral in steady and accekrated vertical
motions and steady roMng, sidedipping, and pitching
motions. The potential functions that are obtained are then

used to derive formulas for the pressure distributions and the
stability derivatives for the foregoing motions and ak for
steady yawing. In the case of yawing, a simpIe treatment
given in reference 7 for the in6niteIy long wing, which takes
account of the spanwise variation in stream Mach number
associated with yawing, has shown that the ~umption of a
uniform Mach number is far from adeqrmte to describe the
compressibility effects. This treatment is e~tended herein
in order to evahmte the w~~ tip effects for the yawing tit e-
span wing.

The steady motions that are treated herein are assumed
to give small deviations from the undisturbed flight path
and the accelerated motions are assumed to ha-re smrdI
accelerations. Theoretical results based on this assumption
for steady motiops have, in general, been found to be reliable;
however, the reliability of such reauks for unsteady motions
is as yet unvded. The resuhs presented herein cover a
range of Mach number and aspect ratio greater than that
for which the Mach Ike from the Ieading edge of the tip
section intersects the traihrg edge of the opposite tip section.
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SYMBOLS

rectangular coordinates (see fig. 1)
induced flow velocities aIong x- and y-axes,

respectively
coordinate in flight direction if this direction

is inclined to x-asis
incremental flight ~elocities along x-, y-, and

z-axes, respectively (see fig. 2)
deri-rative of u with respect to time
accelerated verticaI motion
undisturbed ilight velocity
locaI @ght velocity after disturbance; used to

indicate inclination of flight direction to
z-axis (see ~. 1)

angular velocities about z-, y-, and z-axes,
re.spectiveIy (see fig. 2)

speed of sound
stream Mach number (’t”/a)

( -’aMach angle sin

wing m@ of attack in steady flight, radians
(w/’t-)

IocaI inclination of airfoiI surface with respect

()
to free stream, radians *U
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derivative of a with respect to time
time following disturbance, seconds
angle of sideslip, radians (v/V)
chord
wing Semispm
wing span
total wiw area

ADVISORY COMMI’M7EE FOB AERONAUTICS

region of- integration over portion of wing
surface (see.fig. 3)

distance of o~gin of stability axes from the
midchord point, measured along x-axis,
positive ahead of midchord point

mass density of air
disturbance-velocity potentiaI on upper sur-

face of airfoil
auxiliary variabks which replace x and y, re-

spectively (see fig. 1)
indicates a transformation of origin of x- and

y-axes or & and ~-axes from leading edge of
center section to leading edge of tip section
(y.=y–h on right half-wing; V==–y–h
on Ieft half-wing)

pressure dfierence between lower and upper
surfaces of airfoil, positive in direction of
lift

nondimensional coefficient expressing ratio of
pressure difference between lower and
upper surfaces of airfoil to free-stream

AP

()dynamic pressure —
; V2

constant given by equation (9)
induced suction force on wing tip per unit

Iength of tip
forces paraIIelto z-, y-, and z-axes, respectively

(see fig. 2)
x

()
longitudinal-force coefficient ——

; V2S

Y“

()lateral-force coefficient —
; Vzs

z

()vertical-force coefficient —
$ ~72s

skin-friction drag coefficient

(
Skin-frickm dra

$ V2S
‘)

moments about z-j g-j and z-axes, respec-
tively (see fig. 2); M is also used to refer to
Mach number

●

cm
()rolling moment coefficient —Z–-

; ~?s~~

M

()

pitching-moment coefficient .-
$ j7%&

N
yawing-moment coefficient

()

_-— .....
; ~72sb

Subscript:
1,2 contributions of normal pressures and skin

friction, respcctivcly, to C.,; also used Lo
indicate component parts of CiB,CZ&, Cm&t
C.u, and C%

Superscript:
WP contributions cauacd by vertical motion and

roIIing motion, respectively
Whenever p, q, r, f?, a, u, b, and u aro used as subscripts,

a nondimensional derivative is indicated and this derivative
is the slope through zero. For example:

Unprimed stability derivatives refer to principaI lx-xl-y
ams; pr_@ecl stability derivative refer to stabiIity axes.

ANALYSIS

GENERAL CONCEPTS

The coordinate axes and tho symbols used in tlw analysis
of the rectangular wing are shown in figuro 1. TIN dcrivatim
of the formulas for the surface-veIocit.y-pokntial functions,
pressure distributions, and stability derivatives is made
initisIIy with reference to principal body a.scswhich nro fixed
in the wing with the origin at the midchord of the ccutcr

section
()
;,0,0,This system of mes is shown in figure 2 (a),

The transformation of these stability derivatives to a syskm
of stabili~y axes (fig. 2 (b)) is discussed in t.hosection entitled
‘TksuIt.s and Discussion.”

The stability derivatives are determined from integrations
of the forces and moments over the wing. For vertical and
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pitching motions -rrbich yieId equaI and opposite suction
forces along the edge of each wing tip, the only resultant
forces and moments acting on the wing, if skin friction is
negIected, are those caused by the pr=ures on the airfoil
surfaces. These pressures are obtained from the familiar
Bernoulli equation. In rolling, yawing, or sidedipping, ho-+v-
mwr, unbalanced suction forces which produce lateral forces
and yawing moments me induced aIong the wing tips in
addition to the forces and moments resulting from the pres-
sure normal to the ming surface. The subsequent analysis
for the calculation of the stability derivatives is then resolved
to a determination of the pressure distribution normaI to the
surface and the unbalanced suction forces along the wing-tip
edges.

The pressure difference between the upper and lower
surfaces (positive upward) at any point on the wing is
determined from the genersl Bernoulli equation for smfl
disturbances as

(1)
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Prlnct@ body axesdotted faremqwhn.

FIGUIW2.—Vdmitfe% forces,and mome-atiralatka to prb.whmfbody and stab~y a=.

where V’ is the Iocal flight velocity and ? refers to a coordi-
nate measured in the @ht direction. The term Zhi@t ex-
presses the effect of any unsteadiness in the fhw. The
velocity potential @ in equation (1) must be determined so as
to satisfy the Linearized partialdifferential equation (with
time dependency if the motion is unsteady) of the flow and
the boundary conditions associated with the particular mo-
tion under consideration. Thus, the potential must give
streamlines that are tangent to the airfoil surface and a pres-
sure field that is continuous at aII points exterior to the
wing. Equation (1) shows that the pressure distribution
on the wing is determined when the surface-potential function
is found.

The method of reference4 isin general adaptabIe to theprcb
lem of obtaining the surface-potential function @ in supemonic
flight to meet boundary conditions a=ociated ~th sma~
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steady motions, such as vertical motions, rolling, sideslipping,
and pitching. The method is an extension, to include tip ef-
fects, of the work of Puckett and others which usw the super-
position of elementary source solutions to obtain the potential
function. In cases where a point on the wing is influenced
by two or more mutually interacting external fields; the inter-
action introduces dif%culties in the solution for the surface
potential. (See also reference 12.) If any point on the wing
is influenced by only one independent external field, however,
the potentiaI function in a region affected by the wing tip
may be obtained by integration of elementary source solu-
tions solely over an appropriate area of the wing. The
strength of these sources is shown to be a function only of the
local slope of the airfoil surface with reference to the free-
stream direction. Inasmuch as the slope of the airfoil sur-
face with reference to the.free-stream direction is known for a
given motion, the distribution of sources is known and, con-
sequently, the distribution of the surface-pot.ential function
is determined by an integration of the elementary source
solutions over an appropriate area of the wing.

As applied to the rectangular wing at supersonic speeds,
the foregoing method of reference 4 for. one independent
external field is valid as long as the foremost Mach wave
from one tip does not intersect the opposite tip, that is, for
Mach numbers and aspect ratios for which A.B> 1. For
this case, the potential at a point on the top surface of a
thin flat wing may be determined by means of equation (14)
of reference 4 and is as foIIows:

where a’ represents the local angle of attack of the airfoil
surface at the point (t,qa). Figure 3 shows a typical region
& for determining the potential at a point (x,vJ in a
rectanguhir wing. The figure shows the boundaries & over
which the integration must he performed, for a point (X,ya)
which is affected by the wing-tip region. If the point
(x,ya) is located at or inboard of the foremost Mach line
from the tip, this point is unaffected by the tip region and
Sw is bounded by the leading edge and the Mach forecone
from (z,yJ, Suppose that the surface potential @(z,y) has
been obtained from equation (2) or by some other method,
then the dHerentiation of @ with respect to the coordinate
in the free-stream direction determines the pressure distri-
bution by means of the Berriiulli relation, equation (l).

The e.xpresaionsfor determining the surface potential and
the pressure coe5cient for unsteady motions are discussed
in the section entitled ‘(Derivation of Formulas.”

DERIVATION OF FORMULAS

The subsequent derivation of formulas for the various
motions will involve first the determination of distributions
of surface potential and then the determination of surface-
preasure diet.ributions and any unbalanced suction forces

along the wing tips. The integrals required for thsc dcriva-
tiom and also those required for tho stability dcrivativos arc
integrabh either directly or after reduction by pwts by mmns
of standard formulas such as arc given in rcferencc ]3;
hence, the detaik for the intcgrat.ions am noL shown.
In the operations involving factoring from radicals, ccu+r
must be used to pm.serve tho correct sign of the fack)~si for
example, if

Ya<o
then

@=4(–Ya)’=–%

For brevity, the find formulas am omit,tmlfrom the deriva-
tions and appear only in tables at the end of tho paprr.
Thus, the distributions of @ ad AcP arc summrwizcd in
table I, and the stability derivative mo sumrnmizcd in
table II.

All the derivations arc made specifically for n wing for
w~~ch .M3> 2, that is, for which the forcmos L Jhwh wwvc
from a tip cloes not intersect tho rcmoto half-wing. The
formulas in table I for the potential # and prwsure cocfikicn~
ACPthat are obtained for JIB>2 can ho appIied to wings in
which 1 ~ All ~.2 by using thu principh? of symmetry and
supcrpming separately each tip effect at the point. under
consideration to the vahm obtained for tho infinitely long
wing. ._Aconsideration of this superposition principle for [lLC

rectangular wing shows, howwer, that tho stability &x+ra-
tives which are obtained for AB>2 apply as well tu wings
for which A.B21. A more det.aiIeddescription of t.able 11
is given in the section entit~ed “RMults and Discussion.”

V l?RTICAh PITCHING, AND LONGITUI)INAL MOTIONS

Derivatives – Cz=and – Cza,—I?or stutidypituhing motion
about a lateral atis through the midchonl poinL-,fllc locnl
slope of the airfoil surface with rcspccL to the frco-strmm
direction is

()+a’=a+—~..-q

where a is the angle of attack in the tibscnco of pitching.
In order to obtain the potential distribution, this wduc of
a’ is substituted into equation (2) and tho doublo integration
for the variables g and q. is pcwformcd bctwccn the limils
indicated in figure 3. The prossure cocflicicnt is then ob-
tained from equation (1) for steady motions as

(3)

These pressurecoefficients arc then diffcrc.ntiatmlwith respect
to a and q. The integrations of the respective disLributious
of ACP over the wing and conversion to nondimensional
units then give the derivativea —Czaand —C’S,.
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Derivatives C== and CmC,—Derivatives Cm= and Cac
are obtained directly from the pressure-coefficient distribu-
tions for angle of attack and pitching, thus

C.=bs:hl’c’(i-’)’r”.
where AcPfor angle of attack and pitching is given in table 1.

Derivatives CX=and ~=c,—At supersonic speeds the re-
suhant pressure force on a rectangulex wing of zero thidcness
acts nornd to the surface as there is no suction at the
leading edge. Thus, the forces in the redirection arise solely
from skin friction. On the assumption that the skin friction
is independent of a and q, the derivatives Cx= and C’xnare
zero.

Derivatives —CzU,C%, and —C~~.—The derivative —C’ZU
is obtained from the equation

–Z= –a’Cz= ~ (V+ U)2LS

Then

1 b [–a’cz=(v+@7H– cz==~ ~

The function– C?z=is obtained from table II. Its depend-
ence on the incremental flight velocity U is indicated by

/
(V+U)2

giving B in the form ~ ~f —I and a’ in the form

i%b”‘hen

–Cz==+;.W(’-’-’d(+)ltio’)lti

The derivative C.a is obtained from the

M=a’cua ; (V+ U)?!YC

Then

105

equation

c%=+& [a’cm=(~+@qM

The function C== is obtained from table H, where its de-
pendence on u is indicated by writing c-e’and B in the same
form ghen pretiously for the derivative —C’z=. Then

c.=+&{3A[-Ju.
The deri~a~ive —Cxu results from .&in friction and is

obtained from the equation

—x= CDO;(V+u)wCos Ci

Then

‘~X==+& [~Do(v+u)2] u+

ACCELERATED .MOTIONS

For accelerated motions in tha vertical p~aneof symmetry,
the pressure coefhcient from equation (1) is

‘.=x%+%’) (4)

The surface potential @in equation (4) for unsteady motions
of thin airfoils in two-dimensional supersonic flovr has been
derived in reference 14. In reference 10, the methods of
references 4 and 12 for steady flow at supersonic speeds are
extended in order to determine solutions for the surface po-
tential and pressure coticient for unsteady motions in three-
dimensional flow. In the present anaIysis the solutions
obtained in reference 10will be utilized to cakulate the deriv-
atives in vertical motions with small constant accelerations.

Derivatives – Cz&,C=&,and – CX&.—The surface potential
@ for uniforndy accelerated motion as obtained for the region
within the tip Mach cone is (reference 10, equation (31))

In converting from the notation of reference 10 for a

rectemguhm wing to the prwent notation, the following

“transformations are made: C7=V, m=ti, a=O, 19=B, c=~I

h=l, u~=o.=~ (z+ IY.B), u.=% (z–Y.B), *=1, and
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C,= –~. In order to obtain 4 in the region between the tip.

Mach cones, VCin equation (5) is set equal to – ~ and,

therefore,

(6)

The pressure coefhient AcF contributed by the vertical
accelerating motion is obtained by partial diilerentiation of
d (equations (5) and (6)) with respect to x and t, by letting
t=o, and then by substituting these expressionsfor ZM@Xand
&f@ in equation (4). This process yields in the region
within the tip Mach cones .. —.

(7)

and in the region between tha tip Mach cones

‘Cp=–$% (8)

Equations (7) and (8) correspond to equation (33) of
reference 10, after the appropriate transformations noted
previously for 4 aro made.

The derivatives –C,& and CmUare then obtained by
integration of the corresponding Acp-distributions and con-
version to nondimensional units. The derivative Cxti is

ahown to be zero by the use of assumptions simihtr to those
noted previously for Gka.

Derivatives –CZti, (7%, and –CXfit-For small accelerations
along the flight path, the potgntial will remain substantially
unchanged, The increments in pressure caused by these
accelerations, therefore, are assumed to be negligible, and the
derivative –G-a, C~ti,and -Cxti are approximately zero.

ROLLING

Derivative CIP.—In steady rolling motion with anguIar
velocity p, the local S1OPGof the airfoil surface with respect
b the flow direction is

In order to obtain the potential distribution this vahe of a’
is substituted into equation (2) and the double integration
for the variables .&’and qa is performed between the limits
indicated in figure 3. Tho pressure coefficient is then ob-
tained from equation (3). The derivative C?lPis obtained
by integrating the moments. of the IRErioulli pressure dis-
tribution for rolling given in table I and by converting this
result to coe5cient form.

Derivatives C~Pand C,P,-In a rolling motion, the lateral
force and yawing moment relative to body axes result entirely

from suction along the tips. These suction forws may be
evaluated by applying a method suggmtcd in rcfcrencc 15
for incompressible flow and modified for coxnprcssibility
effects in reference 3. Thus, if the induced surface velocity
norrmd to the wing tip is expressed as

“=+ (9)

where Q is a constant, then the suetion force pw unit.Icngtb
of tip is

F8=uPP

(A more general expression fo;”~go suction Lbatis still vafirl
when the edge is inclined to the stream is given in rcfcm.wcc3
and recast in reference 7.)

Consider the induced surface velocity normal to the tip of a
wing roll@g with an initial angle of attaclc a. This velocity
ia

where the superscriptsw and p refer to the POtentids ob tuinccl
for a vertical motion and a rolhg motion, respectivcIy.
From table I

and partial clifferentiation of & with respect to y yickls

where y=<O. lTery near the tip, w.~0 and

(11)

The potential in rolling 4P is given in hdh I. By partial
differentiation of & with reepcct to y and tlwn by lcthg
%.+=0, there results

(12)

The resuhnt induced surface velocity nonmd to tho wing
tip as –Y.-O is obtained by adding equations (11) and (12].
Thus

The plus sign before V refers to the right wing tip and the
negative sign refera to the left wiug tip.
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I Yery near the wing tip, equation (13) has the same form
as equation (9) and, therefore, the total suction force per
unit kmgth aIong the wing tip is

give rise to a kited force and a yawing moment vrtich are
obtained by integrating this term aIong the wing tips.
These forces and moments are then corrrerted to non-
dimemiomd form to give the derivatives C=, and ~=p.

SIDESIJP

The pressure coeftlcient obtained
steady flight is

from equation (1) for

where 17’ and 1 are measured in the flight direction. If
sidedip occurs the flight direction is inclined relative to the
x-axis by the sideslip angle B. The rectangular wing in
sidealip, therefore, becomes equivalent to a yawed wing
-withthe leading wing tip raked out and the trailing viing tip
raked in. If the Kutta-Joukowski condition at the trailing

wing tip is neglected, the potential function for the yawed
rectangular plan form mfiy be obtained by the method of
reference 4. In reference 11, the method of reference 4 is
extended in order to obtain scdutions for edges for which the
Kutta-Joukowski requirement must be satisfied.

Physical considerations suggest, however, that for small
sidedip angles, the actual flow for typically rounded wing tips
would in general be unlikely to conform to the Kutta-
Joukowski conditions along the trailing wing tip. The edge
suction for a lifting wing arises because of the flow horn the
bottom surface to the top surface around the side edge. This
flow may be presumed to go around any boundary layer that.
may be present. The local boundary layer thus experiences
the edge suction. Rough calculations suggest that the edge
suction per unit area is approximately constant horn the
leading edge to the point of maximum profile thickness, and
then increases rapidly from the point of ma.fium thickness
to the traiIing edge. The pressure gradient is therefore
favorable and the flow at the side edge is not expected to
separate. This condition should persist for small or moderate
amounts of siddip until the additional pressure increment
caused by sidedip produces a strong adverse pressure
gradient. Further theoretical and e.sperimentalinvestigation
is required to obtain quantitative results regarding these
phenomena. On the basis of the foregoing considerations, it
will be assumed in the present analysis that the Kutta-
Joukowski condition is not sat.isfledalong the traiIing wing
tip. The effect of satisfying the Kutta-Joukowski condition
along the traibg wing tip in sidealip is discussed in this
analysis and ako in the section entitled “Results and
Discussion.”

Derivative Cl@,—The potential corresponding to a thin
rectangukw wing at an angle of attack and a finite angle of
sideslip may be obtained horn reference 4, equation (20).
The corresponding pressure distribution may be obtained
from reference 11, appendix C, equation (C4). These SOIU- ._
tions from references 4 and 11 vreresimplified to the approxi-
mate form for smaLIangles of sidedip @z<<l) and converted
to the present notation with respect to axes shown in figure 1.
The distributions for @ and Acp caused by combined vwrtical
motion and sideslip are given in tabIe I. The regions for
which these rzrpreasionsfor 1$and Acp are applicable are
bounded by Mach lines with respect to the stream velocity
V’ which is incLinedto the x-axis by the sideslip angled. As
noted previously, these expressions do not satisfy the Kutta-
Joukovwki condition along the trailingwing tip. As indicated
in reference 11, however, the Kutta-Joukowski condition ‘—
along the trailing wing tip merely cancels the radical term
in the expression for Acp within the Mach cone from the
trailing wing tip.

A consideration of the foregoing Acp-distributionsindicates
that as a result of sideslip the Iift within the XIach cone from
the leading wing tip is increased, whereas the lift within the
Mach cone from the trailing wing tip is decreased. A rding .“
moment is thereby produced. Furthermore, as a result of
aideslip, the Mach lines are shifted toward the trailing wing
tip, and this shift contributes an additional rding moment.
The magnitude of the rding moment caused by sideslip is
given in table II in terms of the nondimensional derivative .-
(c~)~.

Derivatives C=~ and CmB.—Thederivatives Cr~ and C,d
can result solely horn suction forces which are induced “
at the wing tips. These suction forces for aidedipping motion
were evahmted by a method similar to fiat described pre-
tiousIy for obtainii C=Pand C=n. The treatment for side-
slip was baaed on the conclusion, noted pretioudy, that the
Kutta~oukowski condition is unlikely to be satisfied for
typicaliy rounded wing tips at small angles of side&p. The
potentiaI @ for determining the induced -wIocity normal to
the -wingtip was obtained from table 1. The resdt ant lateral
force and yawing moment are gi-ren @ nondimensional form
in tabIe II.

YAWIXG

In yawing flight, the stream -relocity varies Iinearly along
the span. This effect introduces variations of both dynamic
pressure and impressibility effects along the whg span.
The surface potentkd as expressed in equation (2) satisfies
the linearized potential equation for a uniform stream Mach
number, but is inadequate to account for tie compressi-
bility effects associated with a spanwise variation of stream
Mach number. (See reference 7.) The case of the trapezoidal
wing with tips cut off along the Mach lines (raked tips)
was analyzed in reference 7. It was shown that the pressure
distribution cmdd be obtained by application of the Aclieret
two-dimensional theory moditied by using the local Mach
number at each spantie station as affected by the yawing.
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Inclusion of the sprmwise variation in Mach number was
demonstrated to have a profound effect on the pressure
distribution.

The addition of suitabIe triangular tips to the aforemen-
tioned trapezoidal wing converts it into a rectangular wing.
The added tips lie wholly within the tip Mach cones and
thus their addition doe-snot alter the pressures on the trap-
ezoidal portions. A rigorous solution for the pressures on
the tip portions cannot yet be demonstrated. However, an
expression that appears plausible has been obtainecl. This
pressure distribution for the Lipportions is derived by super-
posing on the Ackeret pressure distribution, as modified by
local Mach number, an appropriate function which. fulfills
the boundary condition for no pressure discontinuities in
the region extrxior to the wing. This function thus repre-
sents the effect of the wing cut-off and is clesignated herein
as the tip effect. The preesure diilerence AP at any point
according to the Ackeret theory based on local Mach number
is (reference 7):

(AP)..m=
2p(v–q/)w

lRK~(’+*) “5)

Equation (15) shows that the pressure distribution for an
infinitely long wing which has a steady yawing veIocity r and
vertical velocity w is expressd by two components. One of
these components is proportional to w, is constant, and gives
the pressure distribution contributed by an angle of attack
in straight flight. The other component. is proportional to
wr, gives a linear antiaymmetrical distribution with respect
to y, and expresses the prexure distribution contributed by
yawing.

It will b.e recaIIed that the solution for steady roIIing,
treated in a preceding section, resulted likewise in a pressure
distribution proportional to y in the region between the tip
Mach cones. The pressuredistributions contributed by roll-
ing and by yawing aro thus proportional in the region be-
tween the tip Mach cones. The wing cut-off is effected by
canceling the disturbance pressures outboard of the desired
tip location by means of a function that satisfies the bound-
ary conditions on the wing. Because the two pressure dis-
tributions to be canceled correspond in the yawing and roll-
ing case9, the incremental preewre function or tip effect for
each case evidently must reduce to fcirma which will have
the same factor of proportionality in the entire plane of the
wing outboard of the tip. It seems reasonable to assume,
therefore, that for srnalI yawing motions the two pressure
distributions will also have very nedy the same factor of
proportionality within the tip Mach cones.

The proportionality constant between the pressure distri-
butions for rolling md yawing motions may be determined
by a comparison of the casesof roiling and yawing in column 4
of table I. The pressure coeflkient per unit yawing veloc-
ity is seen to be a/lP times the pressure coef%cient per unit
rolling velocity, or

(AcP),w.+ (AcP)rwa, (16)

where equation (16) will apply over the whole wing,

Derivative Ct.—The preceding analysis indicated that tho
pressure distribution per unit yawing velocity is in a simplo
ratio to that produced per unit.rolling velocity (equation (16)),
Thus

,The derivative Cl, has been derived prm’iously and is given
in table II.

Derivatives 6fYp and C.y.—When the wing yuws, the
antisymmetrical pressure distribution which is indicated by
equation (15) JViUproduce unbalanced suction forces at Um
right and left wing tips and thereby give rise to lti[eral forces
and yawing moments. In addition, skin friction wiII con-
tribute a yawing moment.

It appems that a reasonabIo although approximate cvnhl-
ation of the tip suction forces in yawing can ho obtai.ucd by
means of the corre5pondencc of yawing with rolling as uti]izcd
previously in deriving equation (16). This proccduro does
not satisfy the Kutta-Joukowski requirement in the sidcslip
component of the stream vdocity in yawing; howcmrj this
theoretical deviation is hlmly to bc very small in tha aclutil
flow. On the basis of these considcrations, tho induced suc-
tion forces on the wing tips per unit yawing velocity will lm
related in the ratio CY/B2to the corresponding induced suctiou
forces per unit rolling velocity which were clcrivcd prcvioualy
(section~titled “Derivative CF, and C.P”). The contri-
butions of the tip suction forces to Cr, and Cm,larc, thereforcl

and

w-hereCYBand Cm=are given in tablo 11.
The effect of skin friction on the yawing moment- due to

yawing is

where the fit bracketed term expresses the squaro of thr
resultant local velocity ancl @ is the local tmglo of sidcslip:

Eliminating second-order
spetrical drag forces
form yields

c.,,== +? J:h
,

terms and terms corresponding to
and converting IV* t.o cocfflcienL

JX(’-Y+2’’X”X”
RESULTS AND DISCUSSION

h noted in the preceding analysis, the nonciimcnsional
stability derivatives which arc presented in table II were
derived with reference to principal body axes with t.hcorigin
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()at point $,0,0 , These resuhs may be transformed by,-
means of the equations in the last cohmm of table II to
apply to stabdity axes tith the origin at m arbitrary dis-
tance ZCCfrom the midchord point. The stability axes are
shown in figures 2 (b) and are obtained by a rotation of the
principal body axes (fig. 2 (a)) through an angle a; the origin
is then shifted a dietante rt~ along the new x-axis. The
conversion to stability axes was obtained by means of the
transformation formulas given in reference 16, with the
omission of relatively unimportant terms compared to unity,
such as a%.

The formulas for the derivatives givem in table II with
reference to principal body axes are shown p~otted in figures 4
and 5 against the parameter M?. (Derivative —CXM ~d
those derivatives equal to zero are omitted from the figures.)
These curves show the variation of the st.abiIityderivatives
with aspect ratio for constant Mach number. The vmia-
tion with Mach number for constant aspect ratio is not

Hdbk-Ftt_
‘.. c~a

I.2 \ K

1 ‘

@ 1

0 4 8 12 f6 20
AB

(a) RoUfn&moment-coetEcIentderivatf- ct~.crlfl+~g

Fmmx 4.–Varfatlcm of superaonlcIaterd stabUfty derhtks with espect ratfc-Mneh
numberparwneter. Deihatives with respectto prfndpalL@ q thh fit raeWguM
wlnr no dthedrd. (SeetableIi forconmrsionto atabllt~ axes.)

directly indicated, although it can be determined from the
curves. These data are shown in figure 4 for the lateral
stability derivatives and in figure 5 for the longitudinal
stability derivatives. The data in figures 4 and 5 are to be
used in conjunction with the transformation formulas pre-
sented in table II to evaluate the derivatives with respect to
stability axes. In the evaluation of these derivatives, many
of the terms are likely to be relatively small; therefore, the
expressionsVW be noticeably simpli6ed when such terms are
negkcted in the computations.

The results of the present investigation hare been derived
on the assumptions of zero thiclmess and small disturbances.
Potential flow is assumed except in the case of Carand CXX
in vrhich skin friction is considered. The practical effec~
of the KuttaJoukowki requirements which are introduced
at the wing tips in sidedip and yawing are not detkiitely
known. On this basis, the data shown in figures 4 and 5 ,
are expected to apply in generaI to thin wing sections for
small steady motions, motions with small accelerationa, or
oscillatory motions of low frequency in which boundary-
layer tiects are not expected to be important. The applica-
bility of the present theory to Mach numbers in the vicinity
of unity, wry high Mach numbers, or for very low aspect
ratios is uncertain.

The data in figure 4 (a) show that at supersonic speeda the
derivative BVIJLXis negative in contrast with the behavior

-.&w

-24

-20

‘./6

-.12

-.08

-.04

0 4 8 12 16 20
AB

(b) Yawing-moment-me5cfentderivatkw.

FIGU’JXL–Ciontlnue&
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2.8

2.4

2.0

1.6

1.2

B

.4

0 4 8 /2 /6 20
AB

(c)Sfd+forc&metlldentdwhatlves.

FI@UnE4.~Concluded.

at subsonic speeds where positive values would be obtained.
This phenomenon was pointed out for the infinitely long
wing in reference 7 rind its physical significance elaborated
upon. For stability axes, the formula for C;’ (table 11)
indicates that another reversal in sign to a positive value

occurs as the Mach number is increased beyond approxi-
mately 1.41 for typicaI rectangular wings. (Also see
reference 7 for the infinitely long wing.)

The suction force at the leading edge of rectangular wings
vanishes at supersonic speeds. This factor should have ~
important iofIuence on the derivatives C~=and C~, as super-
sonic speeds are attained. In the case of C~P’ (stabfity

axes), the results of the present analysis indicate that at
supersonic speeds the sign of Cm‘ will have positive valuea

in many typical cases in contrast 10 negative values normalIy
obtained at subsonic speeds. In the case of C., or cm,’, the

loss of leadirtg-edge suction tenda to be compensated by
the spanwiae compressibility effects associated with super-
sonic speeds.

As noted previously in the anal@, the KuttaJoukowski
condition is unlikely to be satisfied along the trailing wing
tip for a typically rounded wing tip at small angles of sideelip.

(B) c&-cs%+cz%.

(b) CZW-CZ,.+CZ%.

FI~Tr~ES.–VarfaUonof ewmeonfoIonghffnd stabilkg drrivat[wwwltlIaqxwt ratbM,@
number perwaeter. Dorhtlws wftir respect ta princ[palbody ax+ thin flutroctnnguler
wfng. (Seatable11forwnvwdon w stsbillty am.)
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Therefore, the rcmdts for C% in figure 4 (a) are applica-
ble where the Kutta-Joukowski condition aIong the wing
traiIing edge is not satisfied. In order to determine the
efTect on C% of satisfying the Kut ta-Joukowski condition
aIong the traiIing wing tip, the formula for Cl~which meets ‘-
this requirement -wasalso obtained and is as follows:

A comparkon of this formula with the data for Cle given
in figure 4 (a) indicates that the eflect of satisfying the Kutta-
Joukowsk.i condition along the trailing wing tip redu&s
negatively the vahes of C%from those obtBined by neglect-
ing the KuttaJoukowaki condition. For emunple for B= I
and AB=4, when the Kutta-Joukowski condition along the
trailing wing tip is neglected, (?16=—0.083a; and when
the Kutta-Joukowski condition is satisfied along the trailing
- tip, dZd=0.146Ci Thus, it is expected that when
the sideelip angle becomes large, the dihedral effect –C,d
should be reduced significady because of the Kutta-
Joukowski condition along the trailing wing tip.

The longitudinal stability derivativ~ in figure 5 refer to an
axis whose origin is locat ed at the midchord point. The data
in @e 5 (c) for B~=mshow that rectangular wings, with
reference to this origin, have an increasingly unstable
pitching moment with decreasing aspect ratio which cor-
responds to a forward shift in the aerodynamic center. For”
infinite aspect ratio, the aerodynamic center is located at
the midchord point or BCm==O. If the aspect ratio is
decreased to a value of 4 for a Mach number of 1.41, figure 5
indicates a forward shift of the aerodynamic center of
0.025 chord. With constant Mach number, the ratio
BC.=/–BC.a is obtained from figure 5 solely as a function of
All. These data indicate that tith constant aspect ratio
and increasing Mach number, the aerodynamic center will
shift rearward. For an aspect ratio of 4, an increase in
Mach number from 1.4 to 1.9 will shift the aerodynamic
center rearviard 0.01 chord.

The derivative – Cz&given in table II for irdinite aspect
ratio is negative which indicates negative damping or insta-
bility. The ratio – C’.J– Cz&from table II ~ve.s the location
of the center of pressure of the resultant lift contributed
by & By taking this ratio for in6uite aspect ratio, the

center of pressure is found to be located at a point ~ c behind

the leading edge. The negative damping produced by ~,
therefore, gives an unstable pitching moment for center-of-

gravity Iocations ahead of x=; c. These unstable tendencies

caused by & are minimized by the effects of finite span and
ill’+ 1

the instability due to C.&disappears entireIy if ABS~
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CONCLUS1ONS

A theoretical investigation has been made by means of
the linearized theory to obtain formulas for the surface-
veIocit y-potential functions, surface-pressure distributions,
and stabiIity derivatives for various motions at supersonic
speeds for rectangular wings of zero thickness without
dihedral. The investigation included steady and accelerat-
ing vertical and longitudinal motions and steady rolling,
yawing, sideslipping, and pitching for Mach numbers and
aspect ratios greater than those for which the Mach line
from the leading edge of the tip section intersects the trailing
edge of the opposite tip section.

The fo~owing sigrdicant conclusions have been obtained
for this investigation:

1. At supersonic speeds for Mach numbers emalIer than
approximately 1.41, positive yawing generally results in a
negative roMng moment in contrast to the behavior at sub-
sonic speeds where a positive rolling moment is produced.

2. The attainment of supersonic speed produces a sigrM-
cant change in the positive direction of the yawing moment
per unit rolling velocity.

3. For infinite aspect ratio, a constant vertical accelera-
tion causes a negative damping in the vertical motion, and
an unstable pitching moment for center-of-gravity locations

ahead of the ~ -chord point. These unstable tendencies are

minimized by the effects of finite span and the instability
due to the rate of change of Iift with vertical acceleration

disappears entirely if A~~Is ‘~ where A is the

aspect ratio and itf is the hfach number.
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TABLE 1.—I3ISTRIBITTIONS OF ADDITIONfi SURFACE VELOCITY POTENTIAL AND PRESSURE-DIFFERENCE COEFFICI ENT CAUSED BY
VARIOUS WING MOTIONS

[Thin flat rectangular wing; no dihedral; ABZ2; axes are shown in figs, 1 and 2]

Veloc~ty potential on upper surface, +
Pressure-difference coefficient between upper and lower

wrfa(xs, AOF

BiL2ia-”111111111 \

\

(a)

wing

Motion
\

Vmtical, w

Accelemt$
vertical, w

Pitching, g

Rolling, p

%’0’-’(%+1)tla

3

()4x&
‘w km

[
$ & (x–c) Cos-’(*E+l)+
(“+2TB-3’)GT%I

()4q x–;

—m—

4y
1

. .v‘pyX

-E

Combined ~icle-
slipping, u,

and vert~cal, w

Yawing, r

(d)

41%ry
-m

aiw x&—

~ Rmmula applies to right half-wing; for left half-wing, replaee P by -9.
~ Not established rigorously; see text.

● Cr omhatohing fndicab region where formulss are applicable.
b Also infinite aspeot ratio.

.



114 REPORT 925—NATLONAL ADVISORY COMMITTEE FOR AERONAUTICS

TABLE 11.-STABILITY DERWATIVES OF THIN FLAT RECTANGULAR WINGS WITHOUT DIHEDRAL AT SUPERSONIC SPEEDS

Prhmipal body axes StabiIity axea

( “’ig~a’po’%,o,o)) .( (
origin at dietance z., measured positive ahead of midchord point ~-z.,, O,0

)).

Stability
derivative Formula Stability

derivative I Formula
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