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TWO-DIMENSIONAL COMPRESSIBLE FLOW IN TURBOMACHINES WITH CONIC FLOW
‘ ' ‘ SURFACES

By Josn D. SranNirz

SUMMARY

A general method of analysis is developed for two-dimensional,
steady, compressible flow in stators or rotors of radial- and
mazed-flow turbomachines with conic flow surfaces (surfaces of
right circular cones generated by center line of flow passage in
the axial-radial plane). The variables taken into account are:
(1) trp speed of the rotor, (2) flow rate, (3) blade shape, (4) varia-
tion in passage height with radius, (§) number of blades, and
(6) cone angle of the flow surface. Relaration methods are used
to solve the nonlinear differential equation for the stream function.

The analysis indicates that: (1) The solution obtained for a
given turbomachine also applies to certain other (equivalent)
turbomachines with a larger or smaller number of like passages
(same spacing of the blades on the conic flow surface, same blade-
thickness distribution, and so forth) but with different cone
angles; (2) for the same number of similar blades, the blade
loading is less for mized-flow than for radial-flow turbomachines;
and (8) any solution obtained for an oulflow turbomachine with
shockless (smooth) entry is also the solution for an inflow turbo-
machine with shockless entry and with the flow direction and
blade rotation (if any) reversed.

Two numerical examples are presented; one for compressible
and the other for incompressible flow in a centrifugal compressor
with thin, straight blades. The solutions were obtained in a
region of the compressor, including the impeller tip, that was
assumed to be ungffected by the inlet configuration of the im-
peller or by the diffuser vanes (if any). Both examples are for
the same tmpeller (18° included angle between blades on conic
Slow surface) with the same tip speed (equivalent to a tip Mach
number of 1.5 for the compressible-flow example), with the same
flow rate, and with a constant flow area normal to the flow
surface. The results of these examples are given by plots of the
streamlines, constant velocity-ratio lines, and constant pressure-
ratio lines.

It vs concluded from the examples that, if the fluid in high-
speed, rotating, radial- and mized-flow blade systems is com-
pressible, incompressible solutions give poor quantitative results
(exception, the slip factor) and, in some respects, poor gualita-

tiwe results.
INTRODUCTION

Increased knowledge of flow conditions within radial- and
mixed-flow compressors and turbines should indicate means
of improving performance of these turbomachines. For
example, boundary-layer separation, which decreases the
efliciency of these machines, can be minimized or eliminated

by aerodynamic design based on knowledge of the velocity
gradients that result from various design configurations.

For a given set of operating conditions, the flow conditions
within radial- and mixed-flow turbomachines depend on the
geometry of the machine (three-dimensional-flow effects)
and on the properties of the fluid (compressibility and vis-
cosity). Most treatments of the problem have been con-
cerned with the two-dimensional-flow effects for incom-
pressible, nonviscous fluids. (For example, sec references 1
to 5.)

In the analysis reported herein, compressibility is consid-
cred.  This consideration is especially important in radial-
and mixed-flow turbomachines because the large pressure
ratios per stage result in density changes that greatly affect
the fluid velocities, and so forth. The analysis is developed
for two-dimensional, compressible, nonviscous, steady flow
through stators or rotors of radial- and mixed-flow turbo-
machines in which the center line of the flow passage in the
axial-radial plane generates the surface of a right circular
cone when rotated about the axis of the machine. The two-
dimensional-flow pattern is considered to lic upon this surface.

The solution of two-dimensional, compressible-flow equa-
tions can be accomplished by relaxation methods, which
were developed by Southwell (references 6 and 7) and
which have been applied to compressible-flow problems by
Emmons (reference 8). It is essentially the procedure out-
Iined in reference 8 that is employed in the numerical solu-
tion of the differential equation obtained in this analysis.

The analysis is developed for turbomachines with arbi-
trary blade shapes and is applied, in the numerical examples,
to a flow region, including the impeller tip, of a centrifugal
compressor with straight, thin blades that lie on conic radii
(elements). A simplified analysis for straight blades lying
on conic radii is developed that checks the results of the
relaxation solution within the impeller except for the flow
region near the impeller tip.

This analysis was developed at the NACA Cleveland
laboratory in 1947.

ANALYSIS
PRELIMINARY CONSIDERATIONS

This analysis develops a general method whereby the
streamlines, velocity distribution, and pressure distribution
can be determined for steady, two-dimensional compressible
flow in stators or rotors of radial- and-mixed-flow turbo-

" machines with arbitrary blade shapes and varying passage

1
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heights. The radial component of the flow may be in the
direction of increasing radius (outflow turbomachine) or in
the direction of decreasing radius (inflow turbomachine).
Conic flow surface.—The analysis is limited to turboma-
chines in which the center line of the passage in the axial-
radial plane generates the surface of a right circular cone,
with the cone angle o (fig. 1), when rotated about the axis
of the machine. (All symbols are defined in appendix A.)
The two-dimensional-flow pattern is considered to lie upon
this cone surface (hereinafter referred to as ‘conic flow sur-
face’’). For mixed-flow turbomachines the cone angle a is
less than 180° but greater than 0°. For the special case in
which « is 180°, the conic flow surface becomes flat and is
normal to the axis of the machine. Such turbomachines
(a=180°) are designated radial-flow machines. For the
special case in which « is 0°, the conic flow surface becomes
cylindrical and is concentric with the axis of the machine.
Such turbomachines (a=0° are designated axial-flow
machines. Axial-flow machines are not considered in this
analysis for reasons that are subsequently discussed.
Coordinate system.—The developed view of a conic flow
surface is shown in figure 2. The dimensionless, conic
coordinates R and 6 of this conic flow surface are relative to

7
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of rotation

otor blades
.

Fassage
center lines-
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F1GURE 1.—Fluid particle on coordinate system relative to blades. Blades may be stationary
(stator blades) or rotating (rotor blades). Center linc of flow passage generates surface of
right circular cone with cone angle a.

Direction of roftotion
for rotor blodes

i,

-1

FiGURE 2.—Fluid particle on developed view of conic flow surface. This surface may be
stationary (stator blades) or rotating (rotor blades). R and 6, dimensionless coordinates
relative to blades; H, passage-height ratio normal to conic flow surface; U and V, tangential
and radial components, respectively, of relative velocity ratio Q.

the blades. The blades, and therefore the coordinate syvs-
tem, may be stationary (stator blades) or rotating (rotor

blades). The conic-radius ratio R is defined as
r
R:r—T 1

where 7 is the conic radius (distance along conic element from
apex of cone) and where the subscript T refers to the blade tip
(either the nose or the tail of the blade, whichever has the
larger conic radius). The passage-height ratio H (figs. 1 and
2) is normal to the conic flow surface and is a continuous
function of the conic-radius ratio R

. h
H—p. ~f(®) @

where £ is the passage height at any conic-radius ratio R.

Velocity ratios.—A fluid particle on a developed conic
flow surface has a relative tangential-velocity ratio U (fig. 2)
and a radial-velocity ratio 17 (fig. 2) that are related to the
relative velocity ratio @ by

Q=L=w+vy* (33)

where
Uzg (3b)
V=c% (3c)

where

¢ local speed of sound

velocity of fluid relative to blades

u  tangential component of ¢ (positive in direction of
increasing 6)

v radial (along conic element) component of ¢ (positive
in direction of increasing conie-radius ratio)

=
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Subscript:

o absolute stagnation condition in region of uniform
flow upstream of blades

The relative velocity ratio @ is defined on a coordinate sys-
tem that is relative to the blades, therefore the velocity ¢
{and w) is absolute for a stationary coordinate system (stator
blades) and relative for a rotating coordinate system (rotor
blades).

Assumptions and limitations.—This analysis assumes that
the flow varies only along the conic flow surface, that is,
that flow conditions are uniform across the passage normal
to the conic flow surface. In order to satisfy this assump-
tion it is necessary that: (1) The gradient of & with respect
to r be small; and (2) the cone angle « (fig. 1) be sufficiently
large. The allowable variation in « from 180° will depend
on the relative magnitudes of A and » and on the desired
accuracy. For small values of o the flow must be assumed to
exist in concentric annuli, each with negligible passage
height. For the hypothetical limiting case in which the
ratio h/r approaches zero everywhere along the conic flow
surface, the analysis is accurate for all values of a.

The analysis assumes that steady flow exists relative to
the blades. The relative motion between stator and rotor
blades introduces pulsations that make the flow unsteady.
These pulsations rapidly diminish, however, as the stators
and the rotors are moved apart so that the relative flow may
be treated as steady (between boundaries, which are far
enough upstream and downstream of the blades to obtain
uniform flow) provided the stators and the rotors are not
too close together.

DIFFERENTIAL EQUATIONS FOR FLOW IN R¢-PLANE

The differential equations for steady, two-dimensional,
compressible flow are developed from the continuity equa-
tion, the cquation for absolute irrotational motion, and the
general energy equation.

Continuity and stream function.—From steady-flow con-
tinuity considerations for the fluid particle in figure 2

(pﬂ VHR>R+<-p’30 UH>9=0 @

where p is the weight density of the fluid, and where the
coordinate subscripts (/2 and 6, in this case) refer to partial
derivatives with respect to the coordinates.

A dimensionless stream function ¢ satisfies the continuity
equation (4) if defined as

wsf VHR : (4a)
and
Yp= —pﬁ UH (4b)

Absolute irrotational motion.—In the absence of viscosity,
shock, nonuniform heat addition, and so forth, the absolute
motion of a fluid particle is irrotational. The dimension-
less absolute circulation dI' about the particle in figure 2
is therefore zero, and

dT=0=[(RM;+ U)Rd8)dR—[VdR]«0
where the blade-tip Mach number M is defined by

rpsin =
@ @
T 2

My=—p— 5)
where o is the angular velocity of the rotor and where
(BRM,+U) is the tangential component of the absolute
velocity ratio. (For stator blades M is zero.) After simpli-
fication,

—2MT=% + UR—%Q (6)

Substitution of the stream function ¥ as defined by equa-
tions (4a) and (4b) gives

2M-H ~%=¢RR+%€+%‘Z—¢R(IO& H)R_

:
W) hoeD), o

where the double coordinate subscripts (KR and 66, in this
case) refer to second partial derivatives with respect to the
coordinates.

General energy equation.—The general energy equation is
used to determine the density ratio p/p, in the differential
equation (7). When expressed in terms of the velocity
ratios defined by equations (3b) and (3c), the general energy

equation becomes
®

Je, T+ [(RMp+ U2 V2 =Je, T,k

Myc,?
. 7 A—=xy)  (8)

where

J  mechanical equivalent of heat

¢, specific heat at constant pressure

T static (stream) temperature

g  gravitational acceleration

Subscript:

U upstream boundary (boundary in region of uniform flow

upstream of blades)
and where the ‘“whirl”’ ratio N is defined by

AN=R(RM,+U) o
which is the whirl or absolute moment of momentum (radius

times absolute tangential velocity, » sin %X(wr sin g—i—u))

divided by a constant <rT sin %Xc,,)- The last term in equa-

2
tion (8) is the work done on the fluid and is equal to 200
times the change in whirl ratio. The total work done on
the fluid is given by the last term in equation (8) with X equal
to Ap (where subscript D refers to downstream boundary,
the boundary in the region of uniform flow downstream of the
blades). This total work is positive for compressors and




4 REPORT 935—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

negative for turbines. The whirl ratios Ay and Ap are con-

stant in the uniform flow regions upstream and downstream

of the blades (constant absolute moment of momentum).
Rearrangement of equation (8) with

co?=(y—1)Jge, T,

where v is the ratio of specific heats, results in
T v—1 9 ,
4 =1+T [(BM7)?—Q—2M o] (10)

from which

1

ff(TTf:: { 1472 [(RMT>2—Q2—2zva]}7_,I (11)

Also, from cquations (3a), (4a), and (4b)

P Yr\ ¥\

@ =[() +() | (12
Equations (11) and (12) together with the general differential
equation (7) provide three equations with three unknowns:
¥, @, and p/p,. The solution of these equations determines
the steady, two-dimensional flow of compressible fluid
through turbomachines with arbitrary blade shape, with
arbitrary variation in the passage-height ratio, and with
constant cone angle.

METHOD OF SOLUTION

Equation (7), which is nonlinear, can be solved (together
with equations (11) and (12)) by xelaxation methods.

Relaxation methods.—Values of ¢ are estimated at each
point of a grid system placed within the boundaries of the
problem, and the residuals R, which result from the estimated
values of ¢, are computed for each grid point by expressing
the differential equation for ¢ in finite-difference form with
the sum of all terms equal to R instead of zero. The solu-
tion is then obtained by systematically varying (relaxing)
the values of ¢ at the grid points inside the boundaries
until the values of R approach zero.

Transformation of coordinates.—For the numerical solu-
tion of this problem by relaxation methods, it is convenient
(but not necessary) to select a new set of coordinates (refer-
ence 8) so that blades of arbitrary shape in the physical plane
(R,8 coordinates) become thin, straight, and parallel in the
transformed plane (£,7 coordinates). Thus a grid of equally
spaced points can be placed between the blades.  This trans-
formation of coordinates is represented by the general
analytic function

E(R, 0) +in(R, 6) =f[R exp (16)] (13)

where the Cartesian coordinates £ and 5 in the &yp-plane cor-
respond to velocity potential lines ((=constant) and stream
lines (y=constant) in the R¢-planc for incompressible flow
past the blades, which, for purposes of the transformation,
are considered to be stationary (w=0) and to have a con-
stant height (H=1). Equation (13), in specific form for a

given blade shape, determines £ and 5 as functions of R
and 6

} (13a)

1=n(R,0)

Equation (7), in terms of the transformed coordinates £
and 7 given by equation (13a), becomes (appendix B)

2MH p _ _ P\ _ o P
qiz Po_ §[/E£+‘l/m] ‘102 <10ge Pn)S \bﬂ (1ooe Po) T
W) 100 1), 00— (log, H)yu (14)

q

and equation (12) becomes
QL= Wty (15)

where H is now a function of £ and 4 (given by equations (2)
and (13a)) and where the coefficients u;, »;, and ¢, are deriv-
atives of cquation (13a) defined by

ui:_nR:% (163,)

vl:zg:g,e (16b)

g:=w+vH% (16¢)
where the subscript 7 indicates that the coefficients corre-
spond to incompressible velocities in the RZ6-plane.

For certain simple blade shapes, equation (13) is a simple
analytic expression that determines £(R,0) and n(R,0) (equa-
tions (13a)) directly. For arbitrary blade shapes, however, a
specific expression for equation (13) is not readily available
and it is easier to obtain £(R,8) and 5(R,) by relaxation
solutions of the Laplace equations for & and » in the F9-
plane (appendix C).

Finite-difference equations.—In order to solve the system
of equations (equations (11), (14), and (15)) by relaxation
methods, equations (14) and (15) must first be changed to
finite-diffecrence form. This change is accomplished with
the aid of the following equations (reference 7, p. 19), which
are based on first-order differences: (Note that higher-order
differences could be used, which would result in more com-
plex finite-difference equations but which would enable
larger grid spacing, and therefore fewer grid points, for the
same degree of approximation.)

1
Fs“% (F1—F3)

1
Fy= g (F,—F)
a7

Fy~ gy (Fi4 Fy—2F)

) 1 LN hi
I‘nnzbz (FZ’T_F4_2I() J
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FIGURE 3.—Sample grid showing grid spacing b and numerical subseript convention for
adjacent grid points.

where

F any twice-differentiable function of two variables (¢ and
7, in this case)
b grid spacing
Subscripts:
1,2,3,4 grid points adjacent to point being considered
(F with no subscript)
A sample grid is shown in figure 3. The grid spacing b is
arbitrary. However, the smaller the value of b, that is, the
larger the number of grid points, the greater is the accuracy
of the approximate, finite-difference equations (17).
With the aid of equations (17), equation (14) becomes

ottt vet v 40— 07 (log, P —log, ) —
(2—) P2 1oo PHY_
o 4 (10ge Po logepa)

4;7’ [r—a)vi— (Pa—¥) u] X

[Qog. H,—log. H3)v;— (log, Hy—log, Hy)u;]—

2MTHbz P
“A2ri20 P _ R
sz Po (18)
where the residual R has a nonzero value when the values of
¢ do not satisfy the differential equation (14) from which
equation (18) was obtained.
Equation (15) in finite-difference form becomes

QL =5t [h—v9)*+ a—v) (19)

Po

After the values of ¢ have been estimated at the grid
points inside the boundaries, the system of equations (11),
(18), and (19) provides three equations with three unknowns

p£; @, and R at each grid point. Equations (11) and (19)

determine the values of the density ratios in equation (18),
which is then solved for the residual R.

BOUNDARY CONSIDERATIONS

The values of ¢ at the grid points inside the boundaries
depend upon the values of ¢ at the grid points along the
boundaries. These boundary values of ¥ are determined
by the design characteristics and the operating conditions
of the turbomachine.

Location of boundaries.— The boundaries of the flow field
in the Ré-plane (fig. 4(a)) are the blade surfaces and the
upstream and downstream boundaries at constant values of
R, which are any distance far enough from the blades to
insure uniform flow conditions at these boundaries. The
upstream and downstream houndaries enclose all the blades;

Downstream boundary for outflow
turbomachine, or upstream boun-—
dary for inflow turbomachine,

RD or Ry —--+
l

- - — —@uasi boundaries

E Negative blode
surfoce

~Blade -tip

~FPositive blade radius

B 8-0
h ‘{ < Lud“i/\,
Upstream boundary for outflow=-> n=0
turbomachine or downstream
boundary for inflow turbo-
machine, Ry or Rp
(@)
{a) Physical Ré-plane,
n
———— Quosi boundaries
=10 | |gp=l0
7T 77T, 7777777777
Negate blade surface
R-10 Ry or Ry
R, or Ry
=0 e ,0
e, Fesitive blade surtocey 170
(b) - +£

(b) Transformed £»-plane.

FIGURE 4.—Boundaries of typical two-dimensional flow field for arbitrary blade shape,
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however, from symmetry considerations, the flow conditions
along lines of constant R are cyclic with a period equal to
the blade spacing so that the solution need be obtained only
in a region that encloses the equivalent flow between two
blades. This region is bounded by any two blades, the
upstream and downstream boundaries, and by quasi bound-
aries between the two blades and the upstream and down-
stream boundaries (fig. 4(a)). These quasi boundaries may
have any reasonable, continuous shape but must have the
same angular spacing A6 (fig. 4(a)) as the blades, where

A(9=%r sin % (20)
where B is the number of blades (or passages). It is
convenient to select as the shape of these quasi boundaries
the incompressible, stagnation streamlines (constant 5) that
are determined in appendix C with stagnation points at the
nose and the tail of the blade.

In the &p-plane (fig. 4(b)), the blade surfaces become lines
of constant 5 and the quasi boundaries become extensions of
these same lines. The upstream and downstream boundaries
in the &-plane are straight (appendix C) but, in general,
are not at right angles to the lines of constant ». The two
blade surfaces are generally different lengths in this plane
(fig. 4(b)).

¢ along blade boundaries.—The boundary values of ¥
along the blade surfaces are constant and can be determined
from the following considerations:

The differential flow rate between adjacent streamlines
is shown in figure 5 and is given by

dw= pthTTHRdB—' puhTrTHdR

where w is the flow rate between streamlines. From equa-
tions (3b), (3¢), (4a), and (4b),

dw= pocohTTT (\Pgdﬁ—{— ll/RdR)
or

dw= p,Cohrrrdy (21)

If w and ¢ are assigned values of zero along the positive
blade surface (the blade surface in the direction of increasing
9), equation (21) can be integrated across the passage to the
negative blade surface (the blade surface in the direction of
decreasing 6) to give

%Iz PoC ah TrT‘/’n (2 2)

where W is the total flow rate through the turbomachine
and the subscript » refers to the negative blade surface.
Equation (22) can be simplified by the following consider-
ations:

The flow area ar of the annulus at the tip of the blades is
given by

aT=21r Sin%rThT

from which equation (22) combined with equation (20)
becomes

where the flow coefficient ¢ is defined by

o= (24)

Pol7Ce

Equation (23) determines the boundary value of ¥ on the
negative blade surface as a function of the operating param-
eter ¢ and the design parameter A6.

Equation (23) was developed for through flow in the
direction of increasing radius ratio (outflow turbomachines),
that is, for positive values of the radial-velocity ratio V.
For through flow in the direction of decreasing radius ratio
(inflow turbomachines), that is, negative values of V, the
magnitude of ¢, is given by equation (23) but the sign is
changed from positive to negative.

¢ along quasi boundaries extending from positive blade
surface.—Because the quasi boundaries in the &-plane en-
close the equivalent flow between two blades (see section
Location of boundaries), the values of ¥ at points along the
quasi boundaries extending from the negative blade surface
(fig. 4(b)) are ¢, greater (outflow machine), or ¢, less
(inflow machine) than the values of ¥ at corresponding grid
points (corresponding to the same value of R) along the
quasi boundaries extending from the positive blade surface.
Therefore, the values of ¢ along the quasi boundaries extend-
ing from the negative blade surface are not recorded or
relaxed.

Estimated values of the stream function ¢ along the quasi
boundaries extending from the positive blade surface in the
gqn-plane (fig. 4(b)) can be obtained by assuming, as a first

FIGURE 5.—Fluid particle between adjacent streamlines. Radial component of flow rate,
ovh,r HRAS, tangential component of flow rate, —puh,r, . HdE.
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approximation, that the flow conditions upstream and down-
stream of the blades in the Ré-plane (fig. 4(a)) are uniform,
that is, the flow conditions are a function of only E. The
variation in ¢ with £ along the quasi boundaries extending
from the positive blade surface can then be determined
(appendix D) from continuity and from the whirl ratios Ay
and Ap, which for uniform flow remain constant upstream
and downstream of the blades (conservation of moment of
momentum). The whirl ratio Ay is specified and the whirl
ratio Ap is determined, for a given blade shape and operating
condition, by the Joukowski condition, which requires that
the rear stagnation point occur at the blade tail (or, in the
case of infinitely thin blades or blades with cusped tails, the
flow must be tangent to the blade surfaces at the tail). The
value of Ap can be estimated from considerations given in
appendix D. .

The values of ¢ along the quasi boundaries extending from
the positive blade surface (which values are obtained from
the preceding variation in ¢ with £) are estimated values
and must therefore be relaxed.

¢ along upstream and downstream boundaries.— The
value of ¥ at any point along the upstream or downstream
boundary (fig. 4(b)) is determined by the integrated varia-
tion in ¢ along the quasi boundary from the fixed (zero)
value of ¢ on the positive blade surface and by the integrated
variation in ¢ along the upstream or downstream boundary
to the point in question. The variation in ¢ along the quasi
boundaries was estimated in the previous section, and the
variation in ¢ along the upstream and downstream bound-
arics is constant (uniform flow conditions assumed at these
boundaries) and is of such magnitude that the change in ¢
from onc quasi boundary to the next is equal to ¢,.

The values of ¢ along the upstream and downstream
boundaries (¢ and ¥p, respectively) are considered fixed
during a relaxation solution. But these values of ¢, for the
initial relaxation solution, are dependent upon the estimated
variation in ¢ along the quasi boundaries extending from the
positive blade surface. In general, therefore, these values of
Yy and ¢ do not result in a solution that exactly satisfies the
prescribed whirl ratio Ay upstream of the blades and the
Joukowski condition (which, together with the blade shape
and the operating conditions, determines Ap) downstream of
the blades. It is therefore usually necessary, after the initial
relaxation solution, to adjust (by methods developed in
appendixes E and F) the values of ¥y and ¢p (keeping,
however, the same uniform variation in ¢ along these
boundaries). The relaxation solution is then repeated using
these new values of ¥, and ¢p that satisfy Ay and the Jou-
kowski condition.

ADDITIONAL CONSIDERATIONS

Equivalent turbomachines with different cone angles.—
The flow field for the flow that passes between any two
blades is the same for all blade passages in a given turbo-
machine. Therefore, the solution obtained for the flow
field in a given turbomachine also applies to certain other
(equivalent) turbomachines with a larger or smaller number
of like passages having the same angular spacing of the
blades Af, blade-thickness distribution, and so forth, but

863077—50—2

with different cone angles @. The cone angles for the equiv-
alent turbomachines are determined by the number of
passages B in the machine and are given by equation (20) as

a=2sin™?! BAg
2w
Also, from equation (20),
27
B =455 5

so that a radial-flow turbomachine (@=180°) has more
blades than an equivalent mixed-flow turbomachine
(«<{180°), which has the same blade loading, and so forth.
Furthermore, if the number of blades in the equivalent
mixed-flow turbomachine is increased to equal the number
of blades in the radial-flow turbomachine, the blade loading
in the mixed-flow machine is decreased, so that, in general,
for the same number of similar blades, the blade loading is
less for mixed-flow than for radial-flow turbomachines.

Equivalent outflow and inflow turbomachines. —Any solu-
tion obtained for an outflow turbomachine with shockless
(smooth) entry is also a solution for an inflow turbomachine
with shockless entry and with the flow direction and blade
rotation (if any) reversed. The shockless entry for the out-
flow machine corresponds to the Joukowski condition for the
inflow machine and, vice versa.

Axial-flow turbomachines.—For axial- flow turbomachines,
the cone angle « becomes zero and the flow field is assumed
to lic on a cylindrical surface about the axis of the machine.
For a cylindrical surface, the conic radius r is infinite and
thercfore the angle 8 is zero. As a result, the cylindrical
flow surface degenerates into a single point (1,0) on the
developed conic flow surface (R,0) in figure 2, so that no
solution can be obtained for axial-flow turbomachines on the
developed conic flow surface for which this analysis was

developed.
NUMERICAL PROCEDURE

A detailed outline of the numerical procedures for the
relaxation solution of compressible-flow problems is given
in reference 8. The emphasis is placed herein on those
features of the solution that are peculiar to the flow in
turbomachines with conic flow surfaces.

The complete relaxation solution is conveniently divided
into two scctions. In the first section, the initial relaxation
solution is obtained using approximate values of ¥» and ¥y
that are estimated to satisfy the Joukowski condition and the
prescribed whirl ratio Ay. In the second section, the ap-
proximate values of ¥p and ¢y are adjusted to satisfy the
Joukowski condition and the prescribed Ay, and the final
relaxation solution is obtained. A brief outline of the nu-
merical procedure for the initial relaxation solution follows.

I—INITIAL RELAXATION SOLUTION

Design characteristics and operating conditions.—In
order to solve the system of equations (11), (14), and (15)
for the stream funection ¢, it is necessary that the following
design characteristics and operating conditions be specified:
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FIGURE 6.—Grid layout for cutflow turbomachine on transformed &n-plane.

Design characteristics:
(1) Passage-height ratio H, which is a function of the
conic-radius ratio B

H=f(R)

(2) Cone angle o, which is constant (fig. 1)
(3) Arbitrary blade shape, which determines (appendix C)

E=£(R,0)}

n=n(R,0)
from which the coefficients u;, v;, and ¢;in equations
(14) and (15) are obtained by equations (16a), (16b),
and (16¢), respectively.
(4) Number of blades B, which together with the cone
angle «, determines the angular blade spacing A

2

(13a)

2r .«
Af=-p sin g (20)
Operating conditions:
(5) Whirl ratio upstrcam of blades Ay, where \ is defined
by
A\=R(BM,+U) 9

The value of Ay results from the configuration of the
turbomachine ahead of the blades (design character-
istic) and from the flow rate through the machine
(operating condition).

(6) Tip Mach number M, which is defined as

wr'p SIN %
My= P )
For stator blades M, 1s zero.
(7) Flow coeflicient ¢, which is defined as
w
= prarC, (24)

This coefficient is proportional to the standard equiv-

alent flow-rate parameter W\/ 5/6 (reference 9)

where

6 ratio of upstream absolute stagnation temperature
to standard sea-level temperature

8 ratio of upstream absolute stagnation pressure to
standard sea-level pressure
(8) Ratio of specific heats -, which for a given problem is
considered constant

Boundary values of ¢.—The locations of the boundaries in
the £n-plane are discussed under Location of boundaries in
the section ANALYSIS. The boundary values of ¢ are
determined by the design characteristics and operating con-
ditions outlined in the previous section and by the Joukowski
condition. The various boundary values of ¢ are shown on
the relaxation grid for an outflow turbomachine in the
£n-plane in figure 6. The manner in which these boundary
values are obtained is summarized as follows:

(1) The value of the stream function along the positive
blade surface in figure 6 is arbitrarily set equal to zero.
(See section ¥ along blade boundaries.)

(2) The value of the stream function along the negative
blade surface in figure 6 is given by

‘//n:d’Ae (23)

The stream function ¢, is positive for outflow turboma-
chines and negative for inflow machines. (See section ¥
along blade boundaries.)

(3) The values of the stream function along the quasi
boundaries extending upstrcam and downstream of the posi-
tive blade surface depend on the specified whirl ratio Ay
upstream of the blades and, for a given blade shape and
operating conditions, on the Joukowski condition downstream
of the blades. The method for estimating ¢ along these quasi
boundaries is given in appendix D. Values of ¥ are not
recorded or relaxed along the quasi boundaries extending
from the negative blade surface for reasons given in the
section ¥ along quasi boundaries extending from positive
blade surface.

(4) The values of the stream function along the upstream
and downstream boundaries vary uniformly (steady-flow
condition) in the direction of increasing 7 at the rate of ¢,
per unit of 5. (This rate is positive for outflow turbo-
machines and negative for inflow machines.) The magni-
tude of ¢ is fixed at the intersection of the quasi boundaries
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(extending from the positive blade surface) with the upstream
or downstream boundary by the variation in ¢ along these
quasi boundaries.

Grid layout.—A. system of equally spaced grid points
placed on the flow field in the #p-plane is shown in figure 6.
The grid spacing b is selected so that an integral number of
spacings occur between the blades. The smaller the grid
spacing, the greater is the accuracy of the finite-difference
equations (18) and (19), but also, the greater is the number
of grid points and, therefore the labor involved in obtaining
the solution.

For reasons given in the section y along quasi boundaries
extending from positive blade surface, grid points are not
located on the quasi boundaries extending from the negative
blade surface.

It is convenient (appendix E) to locate the grid system so
that a grid point lies at the blade tail on the positive blade
surface. In this case, the grid point on the blade nose of the
positive blade surface is generally not equally spaced from
the interior grid points. Also, because the upstream and
downstream boundaries are not normal, in general, to the
&-axis (fig. 6), the grid points on thesc boundaries are usually
not equally spaced from the interior grid points. In order to
account for these uncqual spacings of the boundary grid
points, the finite-difference equations (18) and (19) must be
modified at the adjacent interior grid points (to be subse-
quently discussed).

After estimating (or assuming) the values of ¢ at the
interior grid points, the problem resolves itself into two
parts: (1) calculation of the residuals R at the interior grid
points and along the quasi boundaries extending from the
positive blade surface (which residuals result from the
estimated wvalues of ¢ at these points); and (2) relaxation
(elimination) of these residuals by suitable adjustments in
the values of ¥ at these grid points.

Residuals.—The residuals at equally spaced interior points
of the grid system are computed from equation (18). The
density ratios in cquation (18) are determined by equation (11)
with the aid of equation (19). At the interior grid points
adjacent to the blade surfaces, the solution of equation (18)
requires the density ratios at the grid points on the
blade surfaces; these ratios can be determined by extra-
polating the values of p/p, obtained at interior grid points or
by equations (11) and (19) at the boundary grid points
using extrapolated values of ¢ beyond the boundaries.

In general, the grid points along the upstream and down-
stream boundaries are unequally spaced from the adjacent
interior grid points (fiz. 6) so that at these interior grid
points the finite-difference equations (18) and (19) must be
modified to account for the unequal grid spacing (reference 7,
pp. 73-74). This unequal grid spacing also exists, in
general, between the nose of the positive blade surface and
the adjacent grid point on the quasi boundary (fig. 6).

In order to compute the residuals at grid points along the
quasi boundaries extending from the positive blade surface
(fig. 6), equations (18) and (19) require values of ¢, that lie
outside the flow field enclosed by the quasi boundaries
(fig. 7). From symmetry considerations and because the
quasi boundaries enclose the equivalent flow between two

blades (see section Location of boundaries), the values of
¥, equal ¢, less (or greater, for inflow turbomachines) than
the values of ¥ at corresponding positions (same value of
R, that is, same increment of £ from the tail, or nose, of the
blades) along the row of interior grid points adjacent to the
quasi boundary extending from the negative blade surface.
That is, :
' a ¢4=¢A"‘¢n_ (25)

where ., corresponding to ¥, for a given grid point along
the quasi boundary extending from the positive blade sur-
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Ficure 7.—Relaxation grid in £-plane showing values of ¥ used in equation (27).

face, is shown in figure 7. In general, ¥4 does not lie on a
grid point and the value of ¢, is therefore obtained by linear
interpolation between the adjacent grid points ¢z and y¢
(fig. 7). Therefore,

Va=vat Go—vs) (26)

where b’ 1s defined in figure 7. From equations (25) and (26),

b=ttty (Yo—ta) (27)

Equation (27) determines the value of ¥, required by equa-
tions (18) and (19) in order to compute the residuals along
the quasi boundaries extending from the positive blade
surface.

If all the estimated values of ¢ are correct, the value of R
is zero at all grid points. If, however, the estimated values
of ¥ are incorrect, the values of R are finite and may be
positive or negative.

Relaxation.—After the residuals are computed, it remains
to relax (that is, reduce) these residuals by suitable changes
in the values of ¥. In order to determine the magnitude
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of the required changes in ¥ at the equally spaced interior
grid points, all terms of the finite-difference equation (18)
are assumed to remain constant except the terms ¢, -+, -+ +
Yi—4y. A change in the value of ¢ therefore causes a
four-fold change of opposite sign in the value of R, and this
change in ¢ also causes an equal change in the values of R
at each of the adjacent grid points (because relative to these
points the change in ¥ amounts to a change in ¥, ¥s, ¥, or
¥s). At grid points that are unequally spaced from adjacent
points (for example, at the grid points adjacent to the up-
stream and downstream boundaries, fig. 6) a change in
¢ changes R an amount that depends on the coeflicient of ¢
in the finite-difference form of equation (14) developed for
unequal spacing. (See previous section.) Also, the result-
ing change in R at adjacent grid points depends on the coef-
ficients for the terms i, ¥», ¥s, and ¥, in this finite-difference
equation. Inparticular,itshould be noted from equation (27)
that changes in ¢ and Y have a weighted effect upon
the residuals at the corresponding adjacent grid points along
the quasi boundaries extending from the positive blade
surface, and vice versa.

These changes in ¢ and R are recorded on the grid sheet as
the work progresses. By continually reducing (relaxing)
the larger residuals (any desired amount), the values of all
residuals gradually approach zero. When this condition is
reached, the residuals are recomputed using the complete
finite-difference equation and taking into account the new
values of the density ratio. After the new values of R have
been computed, the relaxation procedure is repeated and this
cycle is continued as often as necessary to achieve the de-
sired accuracy.

II—FINAL SOLUTION

The whirl ratio Ay upstream of the blades and the
Joukowski condition downstream of the blades are governed
by the values of the stream function specified along the up-
stream and downstream boundaries ¥y and ¥p). In
section I, these values of ¢y and ¢p» were determined from
the estimated variation in ¥ along the quasi boundaries ex-
tending from the positive blade swrface (see section
Boundary values of ¥) and, in general, do not result in a
solution that exactly satisfies the prescribed value of Ay and
the Joukowski condition. In section II, ¢ and ¢p are there-
fore adjusted to satisfy these conditions and the relaxation
solution is repeated to obtain the final distribution of ¢ in
the flow ficld.

Joukowski condition.—If the Joukowski condition is satis-
fied, the rear stagnation point occurs at the tail of the blade,
or, in case of infinitely thin blades or blades with cusped
tails, the flow is tangent to the blade surfaces at the tail.

In either case, from appendix E,
0=4y,'—6¢p' 4. — ¥ (E2)

where ¢ is the value of ¢ after the Joukowski condition is
satisfied and where the subscripts a, b, ¢, and d refer to the
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FIGURE 8.—Relaxation grid in &n-plane showing values of ¢ used in equation (E2) to check
Joukowski condition.

grid points along the quasi boundary extending from the
positive blade surface on the #g-plane (shown in fig. 8). If
equation (E2) is not satisfied by the values of ¥, ¥4, ¥, and
¢ resulting from the initial relaxation solution (section I),
the values of ¥, along the downstream boundary are adjusted
by methods given in appendix E. As a result of adjusting
¥p, the values of ¢ at all other grid points in the flow field are
changed by amounts that are estimated by methods devel-
oped in appendix E.

Upstream whirl ratio Ay.—If the upstream whirl ratio is
satisfied, the whirl ratio at any point in the region of uniform
flow upstream of the blades is equal to the prescribed value
A, and ¥; at that point is given by equation (F2) developed
in appendix F

ver=r [ wan—L2 1 (g—rM,) |
where ¥:* is the value of ¥, if the specified value of Ay is
obtained. In general, equation (F2) is evaluated at
the upstream boundary where, because conditions are
uniform, ¢; is constant. If : obtained from the initial
relaxation solution (section I) is not equal to the value y:*
given by equation (F2), the values of ¢y along the upstream
boundary are adjusted by methods given in appendix F.
As a result of adjusting ¢y, the values of ¢ at all other
grid points in the flow field are changed by amounts that are
estimated by methods developed in appendix F.

It should be noted that the corrections for Ay affect the
Joukowski condition, and vice versa. For low-solidity
blades these interrelations should be considered, but for
high-solidity blades the effect of changes in ¥, on Ay and the
effect of changes in ¢ on the Joukowski condition arc gen-
erally small and can be neglected.

After the values of ¥p and ¢ have been adjusted and the
resulting changes in ¢ at the grid points in the flow field have
been estimated, the relaxation methods are repeated to
eliminate the small residuals that result from the new values
of ¢ at the grid points in the flow field. After the correct dis-
tribution of ¢ has been determined, the pressure and velocity-
ratio distributions can be obtained from the density
ratio and equations (4a) and (4b). If more detailed infor-

(F2)
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mation of flow conditions in certain regions of the flow field
is desired, the grid spacing b can be reduced and the relaxa-
tion methods repeated in these regions.

Accuracy.—No quantitative evaluation of the accuracy of
relaxation solutions is available (reference 10, p. 176).
Because the computed velocities depend on differences in

the values of ¢ at adjacent grid points, that is, the small

difference of large numbers, however, it is important to know
the valiies of ¥ with sufficient accuracy to assure the desired
accuracy for the velocity calculations. In the numerical
examples of the present report, the values of ¥ were computed
to the nearest 0.00001 compared with the maximum value
of ¥, at the negative blade surface, of 0.15700.

NUMERICAL EXAMPLES

Two numerical examples are presented; one for compressi-
ble and the other for incompressible flow through the im-
peller of a centrifugal compressor. Both examples are for
the same impeller geometry with the same tip speed and
weight flow.

Flow field.—A diagram of the impeller and vaneless por-
tion of the diffuser is shown in figure 9. The cone angle «,
shown in figure 9, is 180° (radial-flow compressor), but the
solution applies to certain other cone angles less than 180°
(mixed-flow compressors) given by equation (20) for an
integral number of similar passages B with the same included
angle Af between blades on the conic flow surface. (See sec-
tion Equivalent turbomachines with different cone angles.)
The solutions are obtained in a flow field (fig. 9) that is
considered to be unaffected by the inlet configuration of
the impeller and by the diffuser vanes (if any); that is, the
impeller inlet and the diffuser vanes must be far enough
removed not to affect the flow appreciably in the flow field
investigated. In this flow field, the impeller blades are
thin and straight and the passage-height ratio 1 varies in
such a manner that the flow area normal to the conic flow
surface remains constant.

The values of the stream function along the boundary
between blades (R==0.6752 in fig. 9) are determined from a
simplified analysis (appendix G), which assumes that for
straight thin blades the component of the relative flow
normal to the blades is zero. This assumption is satisfactory
(appendix G) at radius ratios within the impeller sufficiently
far from the tip (at radius ratios less than 0.80 for the
numerical examples of this report).

Transformation of coordinates.—For thin, straight blades
lying on conic radii (elements), the transformation of co-
ordinates is given directly by the analytic function

. 1 .
Etin=y,log, [R exp (i6)]
from which
_log. BB
£€="p
and
KAV
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Flow region investigoted---

R=12657

R=06752

o =180°

FicurE 9.—Compressor-design characteristics for numerical examples.

so that, from equations (16a), (16b), and (16¢) the coeffi-
cients in equations (18) and (19) become

ui=0

and

1
O 7Y

Incompressible solution.—The incompressible solution
was obtained from equation (18) for the same impeller-tip
Mach number M, and for the same flow coefficient ¢ used
in the compressible solution but with the density ratio p/p,
consant and equal to 1.0. Because for incompressible fluids
the speed of sound is infinite, My, ¢, and the velocity ratios
for the incompressible solution are fictitious quantities, the
definitions of which contain a constant, finite speed of sound
that is equal to ¢, for the compressible solution. The same
value of the impeller-tip speed (and of the compressor flow
rate) therefore results from the same value of A, (and of ¢)
for the compressible and incompressible solutions.

Design characteristics and operating conditions.—The
numerical examples have been computed for the following
design characteristics and operating conditions:

Design characteristics:

(1) Constant flow area normal to conic flow surface,
H=R"

(2) Cone angle «, 180° (or certain other values of « less
than 180° given by equation (20) for the same value
of A6 but for different integral values of B)

(3) Straight thin blades along radii

(4) Number of blades B, 20 (or other integral values of B
less than 20 for the same value of A8 but for certain
different values of a less than 180° given by equa-
tion (20))

(5) Whirl ratio upstream of blades Ay, 0

(6) Tip Mach number My, 1.5

(7) Flow coefficient ¢, 0.5

(8) Ratio of specific heats v, 1.4 (for compressible solution

only)
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(a) Compressible-flow example.

FicrRE 10.—Relative streamlines for flow through centrifugal compressor with straight
blades. Streamline designation indicates ratio of flow between streamline and positive
blade surface (right side of passage) to total flow through passage. Angular blade spacing,
18°; impeller-tip Mach number, 1.5; flow coefficient, 0.5: constant flow area.

From equation (20) the included angle A8 between blades
on the conic flow surface is equal to 18°. The results of the
numerical examples are presented in figures 10 to 12. These
figures are discussed in the following paragraphs.

Streamlines.—The streamline configurations (relative to
the impeller) for the two examples are shown in figure 10.
The streamlines are designated in such a manner (¢/¢,) that
the value of a streamline indicates the ratio of the flow that
lies between the streamline and the positive blade surface to
the total flow in the passage. For a given density ratio, the
streamline spacing is indicative of the velocities relative to
the impeller, with close spacing indicating high velocities
and wide spacing indicating low velocities.

In the compressible-flow example (fig. 10(a)), an eddy is
attached to the positive blade surface. The fluid in this
eddy rotates (relative to the impeller) in the opposite direc-
tion to that of the impeller so that the absolute motion of the
fluid is irrotational. The size of the eddy (for a given im-
peller) depends on the relative magnitudes of the volume
flow rate through the compressor and the impeller-tip speed.
If the flow rate is zero through the rotating impeller, the eddy

occupices the entire flow passage and as the compressor flow
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(b) Incompressible-fiow example. (Tip Mach number and flow coefficient for the incom-
pressible example are fictitious quantities based on the speed of sound co for compressible
example.)

FiaUkrE 10.—Concluded. Relative streamiines for flow through eentrifual compressor with
straight blades. Streamline designation indicates ratio of flow between streamline and
positive blade surface (right side of passage) to total flow through passage. Angular blade
spacing, 1%°; impeller-tip Mach number, 1.5; flow coefficient, 0.5: constant flow arca.

rate increases (for the same impeller-tip speed) the eddy de-
creases in size until it finally disappears. The flow rate at
which the eddy disappears increases as the impeller-tip speed
increases. The eddy does not exist in the incompressible-
flow example (fig. 10(b)) because, although the weight flow
rate is the same for both examples, the volume flow rate is
higher for the incompressible-flow example as a result of the
lower fluid density in the region investigated.

The flow directions in the vaneless diffuser are greatly
different for the compressible- and incompressible-flow ex-
amples. (Compare figs. 10(a) and 10(b).) This difference
results fromn the higher volume flow rate for the incompressible-
flow example. This higher volume flow rate requires
higher radial velocities so that for the same tangential
velocities the flow directions are different in the two examples.
(From considerations of constant moment of momentum in
the vaneless diffuser, the tangential veloeities should be about
the same in both examples because the tangential velocities

are about the same at the impeller tip.
scetion Lines of constant pressure ratio.)

See subsequent
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(a) Compressible-flow example.

FIGURE 11.—Lines of constant velocity ratio relative to impeller.

Lines of constant relative velocity ratio.—Lines of constant
velocity ratio relative to the impeller are shown for the two
examples in figure 11. The constant ¢, in the denominator
of the velocity ratio is the same for both examples and is
equal to the absolute stagnation speed of sound upstream of
the impeller for the compressible-flow example. The general
characteristics of these plots are similar. The velocities
along the negative blade surface are higher than along the
positive blade surface except at the tip of the blade where
the velocities become equal on both blade surfaces (as re-
quired by the Joukowski condition). The maximum velocity
occurs on the negative blade surface at a radius ratio well
within the impeller and the flow decelerates along the surface
of the blade from this point to the blade tip. This decelera-
tion, which becomes rapid near the blade tip, is conducive to
boundary-layer separation, which lowers the compressor
efficiency. If the boundary-layer wake in the vaneless dif-
fuser is neglected, the velocities become essentially uniform
at a radius ratio of about 1.15.

In the compressible example (fig. 11(a)), the velocity
ratios are low at the impeller tip because of the high density
“ratios that result from the high tip speed of the impeller.
These velocities would be considerably higher if the effective

flow area were reduced by boundary-layer separation, which
might be expected in a real compressor.
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(b) Incompressible-flow example.

F1GURE 11.—Concluded. Lines of constant velocity ratio relative to impeller.

Lines of constant pressure ratio.—Lines of constant static-
pressure ratio (local static pressure divided by absolute
stagnation pressure upstream of the blades) are shown for
the two examples in figure 12. The general characteristics
of these plots arc the same. The pressure is higher on the
positive blade surface than on the negative blade surface
except at the blade tip where the pressures are equal. This
difference in pressure accounts for the impeller torque.

The higher pressure ratios in the compressible-flow example
than in the incompressible-flow example result from the
lower relative velocity ratios in the compressible-flow ex-
ample and from the fact that for the same amount of work
per pound of fluid the pressure ratio is greater for compressible
than for incompressible fluids. (That the work per pound
of fAuid is about the same for both examples at correspond-
ing points is seen from the last term in equation (8). This
term is the work per pound of fluid and has about the same
values for both examples because the whirl ratio \ is deter-
mined principally by the tangential motion of the blades,
which is the same in both examples.)

Slip factor.—The impeller slip factor is defined as the ratio
of the average absolute tangential velocity of the fluid at the
impeller tip to the impeller-tip speed. A method for com-
puting the slip factor from a relaxation solution is outlined
in appendix H. The slip factor is 0.899 for the compressible-
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(a) Compressible-flow example.

FIGURE 12.—Lines of constant pressure ratio (local static pressure divided by absolute stagna-
tion pressure upstream of impeller).

flow example and 0.892 for the incompressible example.
It is concluded that the slip factors are essentially equal
for both examples.

Compressibility effects.—Figure 10 indicates a large com-
pressibility effect upon the streamline configuration in high-
speed, rotating, radial- and mixed-flow blade systems.
Figures 11 and 12 indicate large compressibility effects
upon the magnitudes of the velocity ratios and pressure
ratios, but the distribution of these quantities is similar.
(For example, the velocities accelerate and decelerate at
approximately corresponding positions of the flow field in
both examples.) It is concluded that, if the fluid in high-
speed, rotating, radial- and mixed-flow turbomachines is
compressible, incompressible solutions give poor quanti-
tative results (exception, the slip factor) and, in some
respects, poor qualitative results.

SUMMARY OF RESULTS AND CONCLUSIONS

A general method of analysis has been developed for two-
dimensional, steady, compressible flow in stators or rotors of
radial- and mixed-flow turbomachines with arbitrary blade

REPORT 935—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

Pressure
ratio

'65/8 6 141210 8 6 4
Angle, deg

(b) Incompressible-flow example.

FIGURE 12.—Concluded. Lines of constant pressure ratio (Iocal static pressure divided by
absolute stagnation pressure upstream of impeller).

conic flow surfaces (surfaces of right circular cones generated
by center line of flow passage in axial-radial plane).

The analysis indicates that: (1) The solution obtained for
a given turbomachine also applies to certain other (equiva-
lent) turbomachines with a larger or smaller number of like
passages (same spacing of the blades on the conic flow sur-
face, same blade-thickness distribution, and so forth) but
with different cone angles; (2) for the same number of
similar blades, the blade loading is less for mixed-flow than
for radial-flow turbomachines; and (3) any solution obtained
for an outflow turbomachine with shockless (smooth) entry
is also the solution for an inflow turbomachine with shockless

entry and with the flow direction and blade rotation (if any)
reversed.

Two numerical examples are presented—one for compres-
sible and the other for incompressible flow in a centrifugal
compressor with thin, straight blades lying on conic radii
(elements). The solutions were obtained in a region of the
compressor, including the impeller tip, that was assumed
to be unaffected by the inlet configuration of the impeller
or by the diffuser vanes (if any). Both examples are for

shapes, arbitrary variations in the passage height, and with

the same impeller (18° included angle between blades on
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the conic flow surface) with the same tip speed (equivalent
to a tip Mach number of 1.5 for the compressible-flow
example), with the same flow rate (flow coefficient, 0.5),
and with constant flow area normal to the conic flow surface.
The following results were obtained:

(1) In the compressible-flow example, an eddy is attached
to the positive blade surface. The fluid in this eddy rotates
in the opposite direction to that of the impeller. This eddy
does not exist in the incompressible-flow example.

(2) In both examples, the maximum velocity occurs on
the negative blade surface at a radius ratio well within the
impeller and the flow decelerates along the surface of the
blade from this point to the blade tip. This deceleration,
which becomes rapid near the blade tip, is conducive to
boundary-layer separation, which lowers the compressor
efficiency.

(3) If the boundary-layer wake in the vaneless portion
of the diffuser is neglected, the velocities become essentially
uniform at a radius ratio of about 1.15.

(4) The slip factor is 0.899 for the compressible-flow
example and 0.892 for the incompressible example. It is
concluded that the slip factors are essentially equal for
both cases.

(5) If the fluid in high-speed, rotating, radial- and mixed-
flow turbomachines is compressible, incompressible solutions
give poor quantitative results (exception, the slip factor)
and, in some respects, poor qualitative results. )

Lewis Fricar ProruLsioN LABORATORY,
Narionan Apvisory COMMITTEE FOR AERONAUTICS,
CrevELAND, Ouro, November 1, 1948.



APPENDIX A

SYMBOLS
The following symbols are used in this report: £ Cartesian coordinate in transformed #y-plane
ay flow area of annulus at tip of blades (corresponds to incompressible velocity poten-
B number of blades (or passages) tial in nonrotating R6-plane with constant pas-
b grid spacing (fig. 3) sage height, H=1), equation (13a)
¢ local speed of sound I weight density of fluid
¢, specific heat at constant pressure ¢ flow coeflicient, equation (24)
e Cartesian coordinate in transformed ef-plane, | ¥ dimensionless, compressible stream function,
equation (Cla) equations (4a) and (4b)
exp exponential, [exp(z) =¢] w angular velocity of rotor (in direction of increas-
F any twice-differentiable function of two variables ing 6)
f Cartesian coordinate in transformed ef-plane, Subscripts:
equation (C1b) A,B,C grid points defined in figure 7
g acceleration due to gravity a,b,e,d grid points defined in figure 8
H passage-height ratio, &/k, D downstream boundary (boundary in region of
h passage height normal to conic flow surface (fig. 1) uniform flow downstream of blades) (fig. 4)
J mechanical equivalent of heat % indicates that u;, v;, and ¢;, obtained from deriva-
My blade-tip Mach number, equation (5) tives of £(R,8) and 4(R ), correspond to incom-
Q relative velocity ratio, g/c, L pressible velocities
q velocity of fluid relative to blades, 1/u2+v2 n negative blade surface (blade surface in direction
R conic-radius ratio (coordinate of conic flow sur- of decreasing 8) (fig. 4(a))
face, R8-plane) (fig. 2), r/rp ) absolute stagnation condition in region of uniform
R residual flow upstream of blades
r conic radius (distance along conic element from | p positive blade surface (blade surface in direction
apex of cone) (fig. 1) of increasing 6) (fig. 4(a))
T static (stream) temperature T blade tip (either nose or tail of blade, whichever
U relative tangential-velocity ratio, u/e, (fig. 2) has larger conic radius)
U tangential component of ¢ (positive in direction U upstream boundary (boundary in region of uni-
of increasing 6) form flow upstream of blades) (fig. 4)
Vv radial-velocity ratio, v/e, (fig. 2) R6,£m,e, partial derivatives with respect to these coordi-
v radial (along conic element) component of ¢ and f nates
(positive in direction of increasing radius ratio) RR, 00, second partial derivatives with respect to these
w total flow rate through turbomachine &€, mm, coordinates
w flow rate between streamlines £y, ee,
@ cone angle (fig. 1) and ff
T dimensionless absolute circulation 1,2,3,4 grid points adjacent to point being considered
v ratio of specific heats (fig. 3)
Af angular blade spacing (included angle between | Superscripts:
blade camber lines in Rf-plane), equation (20) b’ _ nonunif(?rm grid spacing. deﬁn.ed in figur € 7
Ay changes in ¢ at grid points APt change in 1[/ (at any _grld point) re.sultlng .from
7 Cartesian coordinate in transformed #y-plane ‘ A¢p r?qulrod to Satley Joukowsln cor}d1tlon
. . . Ayt change in ¢ (at any grid point) resulting from
(corresponds to incompressible stream function A equal to unity
in nonrotating Rf-plane with constant passage vt adjusted value of ¢ (at any grid point) after
height, H=1), equation (13a) Joukowski condition is satisfied
0 angle (coordinate of conic flow surface, Bf-plane) | y,* value of ¢ (at any point in region of uniform flow
(fig. 2) upstream of blades) if specified values of Ay is
A whirl ratio, equation (9) obtained, equation (F2)

16



APPENDIX B

TRANSFORMATION OF COORDINATES FROM R¢-PLANE TO -PLANE

If the transformation of coordinates from the Ré-plane to
the &n-plane is represented by the analytic function

£(R,0) +1in(R,0) =f[B exp (i6)] - (13)

where the coordinates £ and 7 in the &g-plane correspond to
velocity potential lines (¢#=constant) and streamlines (n=
constant) in the R6-plane for incompressible flow past the
blades, which for purposes of the transformation are con-
sidered to be stationary (w=0) and to have a constant height
(H=1), then

ui=_7’lR:I§§ (16a)
vi=p=tn (16b)

Also, if Fis any twice-differentiable function of R and 6

FRZszn‘i‘FmR

FRR = FEEERZ - ZFEqER"IR - anﬂkz -+ Fefma‘*‘ FﬂnRR
Fo=Fety+Fyno
Fop=Fy:&9®+ 2 Feofomo+ Fome® + Febop+ F oo

B1)

From equations (16a),
becomes

(16b), and (B1), equation (7)

2MH 2= (et @00+ (nant B+
v (cant 2+ 50—

evi—yus) [dog. H)w,— (log, H),u]—

[ 2), 7 (s 2) J

git=ul+v/

But,
(16¢)

and, because equation (13) is analytie,
bont+ B+ 58 =0

and
NRE + L + 7709 ==

so that equation (7) finally becomes

I L — et g—vie (tog. * ) — ¥ (log. 2) -

‘l/t”iq Yths [Qog. H):vi— (log. H),ui (14)

Equation (12) in like manner becomes

Q2 =i tud* s
17




APPENDIX C

£(R,0) AND 3(R,0) FOR ARBITRARY BLADE SHAPES

The coordinates £ and 5 of the transformed £n-plane are
functions of R and ¢ and correspond to the velocity potential
£(R,8) and the stream function 7(R,8) for incompressible flow
past blades of arbitrary shape in the physical R6-plane,
which blades are considered, for purposes of the transforma-
tion, to be stationary (w=0) and to have a constant height
(H=1). In order to determine £(R,0) and »(RE,0), it is con-
venient first to transform the blades from the Ré-plane to the
ef-plane (e, f Cartesian coordinates). This transformation is
given by

e+if=log. [R exp (16)]

from which

e=log, R (C1a)
f=0 (C1b)

Equations (Cla) and (C1b) relate points in the ef-plane to
points in the Ré-plane and determine a new blade shape in
the ef-plane (fig. 13) that corresponds to the original (arbi-
trary) blade shape in the Ré-plane (fig. 4(a)). In effect the
radial cascade in the Ré-plane is transformed into an axial
cascade in the ef-plane.

—— —— Quos/ boundaries

RU’ or Rp

FIGURE 13.—Relaxation grid in e/-plane used to obtain n(e,f).

The stream function 5(e,f) in the e¢f-plane is determined by
the relaxation solution of Laplace’s equation

nee—*— 77;!=O (02)

for the specified boundary conditions; and the velocity
potential £(e,f) is obtained from 7(e,f) by methods discussed
in reference 7 (ch. IV). Finally, £(R,8) and 5(R,8) are de-
termined from &(e,f) and n(e,f) and from equations (Cla) and
(C1b).

In order to solve equation (C2), it is first necessary to
determine the boundary conditions. Because the distribu-
tion of the variations in 5 along lines of constant e in the
ef-plane is cyclic with a period equal to the blade spacing,
the solution of equation (C2) need be obtained only in a
region (fig. 13) bounded by the surfaces of two adjacent
blades, by lines of constant e that correspond in the R8-plane to
the upstream and downstream boundaries of the compressible-
flow field (fig. 4 (a)), and by quasi boundaries extending along
lines of constant f from the ends of the blade surfaces to the
upstream and downstream boundaries. (Note that these
quasi boundaries do not generally, and need not. correspond
to the quasi boundaries selected for the compressible-flow
field (lines of constant 4). See fig. 13.)

After the location of the boundaries has been determined,
a grid of equally spaced points is placed inside the boundaries
(fig. 13) and this grid is extended to points on the boundaries.
The grid points on the blade boundaries generally are un-
equally spaced from the interior grid points because of the
arbitrary shape of the blades. Values of 4 at points along
the quasi boundaries extending from the negative blade
surface are directly related to values of 4 at points along the
quasi boundaries extending from the positive blade surface
(see related discussion in section ¢ along quasi boundaries
extending from positive blade surface) and, therefore, only
the values of n along the quasi boundaries extending from the
positive blade surface need be recorded (fig. 13) and relaxed.

The values of n at the grid points on the boundaries are
next determined. The boundary values of » at grid points
along the blade surface are arbitrarily set equal to 0 along
the positive blade surface (fig. 13) and equal to 1.0 along the
negative blade surface. The values of 4 at grid points along
the quasi boundaries extending from the positive blade surface
arc estimated in such a manner that the front and rear
stagnation points occur at the intersection of the mean
camber line with the surface of the blade at the nose and the
tail. The direction of the streamlines is then approximately
equal to the direction of the blade camber line at the ends
of the blade. This direction is defined in the ef-plane by

tan B:g,—{ C3)
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But along a streamline, dy equals zero so that
dn=0=nde+ndf

af _ _ 7

de Ny (04)

Also, if uniform flow is assumed upstream and downstream
of the blades, then from equation (Clb) and the specified
boundary conditions

A 1
WJZX;:E (C5)
Theréfore, from equations (C3), (C4), and (C5),
t
ne=—20E (C6)

This variation in  with ¢ determines estimated values of 5
at grid points along the quasi boundaries extending from the
positive blade surface and in particular this variation deter-
mines the values of 5 at the intersections of these quasi
boundaries with the upstream and downstream boundaries
(fig. 13). Along these upstream and downstream boundaries,
the values of 7 Increase uniformly (steady-flow condition)
in the positive direction of f at a unit rate per blade spacing.

After the boundary values of 5 have been determined,
values of # are estimated at the interior grid points. These
estimated values are generally in error and must be corrected
by relaxation methods in which equation (C2) is used in
finite-difference form to compute and to relax the residuals.
In addition, the values of  along the quasi boundaries extend-
ing from the positive blade surface were estimated values
and must therefore be relaxed. After the solution for the
distribution of » has been obtained, the condition that the
stagnation points occur at the nose and the tail of the bladesis

checked (by methods similar to those in appendix E) and,
if not satisfied, the values of 5 at the grid points along the
upstream and downstream boundaries are adjusted (by
methods similar to those outlined in appendix E).

The function 5(e,f) is now known and %(e,f) can be deter-
mined from %(e,f) by methods given in reference 7 (ch. IV).

The functions #(R,6) and §(R,§) are obtained directly
from 7(e,f) and £(e,f) and from equations (Cla) and (Clb).
Also, from equations (16) and (C1), the coefficients u, and
v; in equations (18) and (19) become

Ui=—1p=—T (C72)

v=p=4 (C7b)

The relaxation solution of equations (11), (14), and (15)
in the transformed £y-plane requires less time than the solu-
tion of equations (7), (11), and (12) in the physical R8-plane,
because blades with arbitrary shape in the physical plane
become straight and parallel in the transformed plane,
which results in simpler finite-difference forms for equa-
tions (14) and (15). The transformation of coordinates to the
£n-plane is time-consuming, however, so that, if a solution
for only one set of operating conditions is desired, it would
probably be faster to solve equations (7), (11), and (12) in
the ef-plane where, although the finite-difference equations
must contain coeflicients to account for the unequal grid
spacing along the irregular boundaries, the transformation
of coordinates is given directly by equations (Cla) and (C1b).
If, however, solutions for a number of different operating
conditions for the same blade configuration are desired, then
the transformation of coordinates outlined in this appendix
is desirable, because the same transformation applies to all
sets of operating conditions for the same blade configuration.




APPENDIX D

ESTIMATED VALUES OF y AT GRID POINTS ALONG QUASI BOUNDARIES EXTENDING FROM POSITIVE BLADE SURFACE
IN £-PLANE

Estimated values of the stream function ¢ at grid points
along the quasi boundaries extending from the positive blade
surface in the &n-plane can be obtained by assuming, as a
first approximation, that the flow conditions upstream and
downstream of the blades in the Rf-plane are uniform, that
is, the flow conditions are a function of R only. From the
conservation of absolute moment of momentum (whirl)
upstream and downstream of the blades

A=R(RM;+ U)=constant (D1)
so that equation (4b) becomes
vt 1 (RM—3, (D2)
In addition, because the flow is considered uniform
¢9=constant=1—l/—" (D3)

Af

The variation in ¢ along the quasi boundaries in the £p-plane
(fig. 6) is then given by

Yi=yrR:+¥sb;

which, from equations (D2) and (D3) becomes

_r _A ¥n
vi=2 1 (RM—3) Ret-%5 01 (D4)
where R: and §; are obtained from equations (13a) or ap-
pendix C. Equation (D4) gives the estimated variation in
¢ along the quasi boundaries extending from the positive
blade surface in the £n-plane. .

In order to integrate equation (D4), it is necessary to
know the variation in density with £. The density ratio is
given by equation (11)

1

[

1
p Y £.)2 2 =
=47 (RM — @20y an
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where, from equation (3a),

@=U+V? (D)

But, from continuity considerations assuming uniform flow,

ye— 2\
? HR
Po

so that, from equations (D1), (D5), and (D6),

0 )\7_— 2 ¢ 2
@=(p—BM;) +(£HR>

Po

(D6)

and equation (11) becomes

1

—1 A2 o \*1)7
p N+ oM ) (5 ) —f P (D7)
A A O

Because R is a known function of £ and 5 (equation (13a) or
appendix C), the system of equations (D4) and (D7) can be
solved by numerical methods to obtain the value of ¢ at
grid points along the quasi boundaries extending from the
positive blade surface in the ¢y-plane (fig. 6).

The values of ¢ depend on the value of X\. Upstream of
the blades X has the specified value \y. Downstream of the
blades A has the value \p, which for a given blade shape and
operating condition, is determined by the Joukowski condi-
tion. As a result of the Joukowski condition, the average
flow direction at the exit from the blades is approximately
equal to the blade-exit angle (determined by the mean
camberline). An average value of U, required in equation (9)
to compute an estimated value of \p, can therefore be
obtained from this angle (adjusted as experience indicates)
and from the average value of V given by continuity con-
siderations (equation (D6)).
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APPENDIX E

METHOD OF ADJUSTING VALUES OF y ALONG DOWNSTREAM BOUNDARY TO SATISFY JOUKOWSKI CONDITION

The Joukowski condition requires the rear stagnation point
to occur at the blade tail, or, in case of infinitely thin blades
or blades with cusped tails, the flow must be tangent to the
bhlade surfaces at the tail. (If the blade tail is somewhat
rounded, the stagnation point is considered to occur at the
intersection of the mean camber line with the tail surface
of the blade.) In the y-plane (fig. 6), this rear stagnation
point occurs at the tail of the thin, straight blade. (See
appendix C.) This condition generally is not satisfied by
the initial relaxation solution for ¢ in the £y-plane, because
for this solution the values of ¥ along the downstream bound-
ary (¥p) were obtained from the estimated variation in ¢
along the quasi boundaries (appendix D). In order to satisfy
the Joukowski condition, the values of ¢ at the grid points
along the downstream boundary (¢,) must all be changed
the same required amount (Ayp). This change in y¢p
(denoted by Ayp) results in changes in ¢ (denoted by Ay)
al ecach of the interior grid points and at the grid points
along the quasi boundaries.  The manner in which the values
of ¢ arc changed by the change in ¢, must satisfy the differ-
ence equation (18).  Therefore,

W+ A¢) + (ot Avs) + (faF A¢y) + Wt AYy) —4 (Y- AY) —
f¢gf4¢|)_ (s "r‘Alh) o P' 1o PPY_
4 <locc o log, po>

(_\/’2 ‘t_AI//z) — (st A¢y) o P2__ Py

4;i2 {1+ 2¢) — (s 4 A¢s) o — [(YoAo)— i+ Ay Ju; } X

{ (log, I1,—log, I1)r,— (log, Il,—log, IT)u;}—

QM ITB p
1" p _

R K1
qi Po (4 )

where the change in density ratio resulting from Ay is con-
sidered negligible.  Subtracting equation (18) with R cqual
to zero (which condition has been satisfied by the initial
relaxation) from equation (K1) results in

Mt st st =409 = T8 (log, P —log, )~

Po Po

A (1og, P —og. P) — o [0 — Ap90—(8 — Ay X

[(og, H,—log, Hy)v;— (log. H:—log, H)u,]=R (Ela)

Each of the last three terms on the left sideof equaltion (Ela)
consists of the product of two quantities that approach zero
as the grid spacing & approaches zero. For the small grid
spacing used in relaxation solutions, these terms are there-
fore of secondary importance and may be neglected so that

A+ A+ A+ A —4AY =R (E1b)

The solution of equation (E1b) determines Ay at every
grid point for a specified value of Ayp. Because of the
linearity of equation (E1b), the solution for any specified
value of Ay is equal to the solution for Ay ,=1.0 multiplied
by the specified value of Ayy,. That is, Ay (at any grid
point) resulting from a specified value of Ay is equal to Ay
(at the grid point) resulting for Ayp=1.0 multiplied by the
specified value of Ayp.

The procedure for the solution of equation (E1b) is the
same as for equation (18). The boundary values of ¥ along
the blade surfaces and along the upstream boundary (fig. 6)
are not changed so that Ay must equal zero along these
boundaries. The value of Ay along the downstream bound-
ary (fig. 6) is set equal to unity.

The magnitude of Ayp required to satisfy the Joukowski
condition can now be determined as follows: If the rear
stagnation point occurs at the blade tail (Joukowski condi-
tion), then the extrapolated value for ¢ at the grid point on
the blade tail of the positive blade surface obtained from
the values of ¥ at succeeding points along the quasi boundary
starting at the blade tail must equal zero. The extrapolated
value of ¢ at the blade tail using a third-degree polynomial
and the first four points along the quasi boundary is given by

Vwn=4V.—6¢p+ 4. — v

where the subscripts @, b, ¢, and d refer to the grid points
along the quasi boundary in figure 8. If ¥,.,; equals zero,

0=4y.' — 6y, "+ 4. — E2)

where ¢* signifies values of ¢ after the Joukowski condition
is satisfied. But,

Yi=y+AY? (E3)
where ¢ is the stream function obtained by the initial
relaxation and Ay¢? is the change in ¢ that results when the
Joukowski condition is satisfied. Also, from the first part
of this appendix,

AYl= Ay Ayt (E4)
where Ay’ is the change in ¢ (at any grid point) resulting
from a unit change in ¥, (AYp=1.0) and Ay is the change in

¥p required to satisfy the Joukowski condition. Therefore,
from equations (E2), (E3), and (E4))

Ao Iy T 68, T MY AT

Equation (E5) determines the change in ¢, required to
satisfy the Joukowski condition. The changes in ¢ at all
other grid points are obtained by multiplying A¢?* at each
grid point by Ay ,.  Because the solution for Ay is approxi-
mate, the resulting values of y* must usually be relaxed to
eliminate small residuals computed by equation (18).

21



APPENDIX F
METHOD OF ADJUSTING VALUES OF y ALONG UPSTREAM BOUNDARY TO OBTAIN SPECIFIED WHIRL RATIO Xy

In general, the specified whirl ratio upstream of the blades
Ay 1s not obtained by the initial relaxation solution, because
for this solution the values of ¢ along the upstream boundary
(Yy) were obtained from the estimated variation in ¢ along
the quasi boundaries (appendix D). In order to obtain the
specified value of Ay, the values of ¥ at the grid points along
the upstream boundary (¥) must all be changed the same
required amount (Ayy). This change in ¢, (denoted by
Ayy) results in changes in ¢ (denoted by Ay) at each of the
interior grid points and at the grid points along the quast
boundaries. The effect of AYy on the values of Ay is deter-
mined in the same manner as the effect of Ay, on the values
of Ay (appendix E).

The magnitude of Ay, required to obtain the specified
value of Ay can now be determined as follows: Near the
upstream boundary in the region where flow conditions are
essentially uniform, the whirl ratio A is constant and equal
to A\y. In this region equation (9) gives

Mw=RBEBM,+U) 9

where U is related to the variation in ¥ by equation (4b)

Yr=— ;p UH (4b)
But,
Yr=V¥ifrt 1/’1;’712 (Fl)

where for uniform flow conditions
'ﬁl’n:ELn

so that, from equations (16a) and (16b), equation (F1)

becomes

Y=y — ¥l (F1a)

22

Therefore, from equations (Fla), (4b), and (9)

vty | w2 B (G- Ry ) | ¥2)

where ;* is the value of ¥; at any point in the region of
uniform flow upstream of the blades if the specified whirl
ratio Ay is obtained and where p/p, is considered to be given
by the initial relaxation solution. (In general, equation (F2)
is evaluated at the upstream boundary where, assuming
conditions are uniform, y; is constant.)

If ¢: is obtained by the initial relaxation solution at the
point being considered in the region of uniform flow, the Ay,
required to obtain the value of ¥:* (equation (F2)) corre-
sponding to the specified value of Ay is given by

Yty
Mo="ag),

(F3)

where (Ay); is the variation in Ay with £, at the point being
considered, for a unit change in y,. Equation (F3) deter-
mines the change in Y, required to obtain the specified value
of N\p.

The resulting changes in y at the interior grid points and
at the grid points along the quasi boundaries are determined
from Ay in the same manner as the changes in ¢ were deter-
mined from Ayp in appendix E. It should be noted that the
correction for Ay will affect the Joukowski condition, and vice
versa. For high-solidity blades, however, the effect of Ayp
on Ay and the effect of Ay, on the Joukowski condition is
generally small and can be neglected.



APPENDIX G

SIMPLIFIED ANALYSIS FOR ROTORS WITH STRAIGHT BLADES ALONG CONIC RADII

The relaxation methods used in this report are lengthy.
It would therefore be advantageous to have a quicker, al-
though less accurate, means of estimating the flow conditions.
In this appendix, a simplified analysis is developed for rotors
with straight blades along conic radii.

Velocity-ratio distribution.—This simplified analysis is
based on the assumption-that for rotors with straight blades
along conic radii the tangential component of the velocity

ratio relative to the blades is zero within the rotor. Equa-
tion (6) therefore reduces to
Ve=2RM, (G1)
which, when integrated, becomes
V=V,+2RM6 (G2)

where the subscript p refers to the positive blade surface at
which surface the angle 6 is considered zero. Equation (G2)
gives the distribution of the radial component of the velocity
ratio across the passage at constant values of 2. The con-
stant of integration V, is determined at each value of R
from considerations given in the next paragraph.
Stream-function distribution.—From continuity

dw= pvhrdo
or
dw _ p
PacohTrT_Po VHEdo (G3)

The density ratio is given by equation (11) with @ equal to
V' (because U is assumed equal to zero) and V is given by
equation (G2) so that equation (G3) becomes

d=HR {1+ 75 [(RM*— (V,+
1

2RM10)2—2MT>\U]};__1 (Vo2 2RM0)ds  (G4)

where the left side of equation (G4) was obtained from
equation (21). Equation (G4) is integrated from the posi-
tive blade surface where ¢ and 6 are considered equal to
zero so that

r

{14—1—2_—1 [(BMp)*— (V,+2RM6)2—2M Ay] } 7__1]
(G5)

Equation (G5) gives the distribution of ¥ across the passage

at constant values of R. The velocity ratio V, varies with
R and is obtained from equation (G5) for the condition
1p:¢n
when
0=0,

If the fluid is incompressible, the distribution of ¥ becomes
v=HR(V, 0+ BM6%

Numerical example.—The simplified analysis has been
applied to the compressible-flow example in this report and
the results are compared with those of the relaxation solu-
tion. The velocity ratio V, along the positive blade surface
has been computed from equation (G5) and the results are
compared in figure 14 with the relaxation solution. The
negative values of V, occur where the eddy (fig. 10(a)) is
attached to the blade. The agreement between the re-
laxation solution and the simplified solution is satisfactory

Tar rads rating oraatan

1N tn e rading ratin af ahant N QN For radius ratios greater

Up vV a 1aulud 1aulv Ul avvuL U.0vV.
than 0.80, the agreement is unsatisfactory because the
assumption that U and its derivative arc negligible is no
longer valid.
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F1GURE 14.—Comparison of velocity ratio along positive blade surface for simplified and
relaxation solutions.
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Fi1GURE 15.—Comparison of velocity distribution across passage for simplified and relaxation
solutions.

The velocity-ratio distributions across the passage at radius

ratios of 0.760 and 0.855 have been computed from equation.

(G2) using values of V, obtained from equation (G5) and
the results are compared in figure 15 with the relaxation
solution. At the 0.760 radius ratio, the velocity distribution
is nearly the same for both solutions, but at the 0.855 radius
ratio the simplified solution has begun to deviate from the
more rigorous relaxation solution.
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F1aUre 16.—Comparison of stream-function distribution across passage for simplified and
relaxation solutions.

The stream-function distributions across the passage at
radius ratios of 0.760 and 0.855 have been computed from
equation (G5) and the results are compared in figure 16
with the relaxation solution. At a radius ratio of 0.760 the
stream-function distribution is nearly the same for both
solutions, but at 0.855 the simplified solution has begun to
deviate appreciably from the relaxation solution.



APPENDIX H

PROCEDURE FOR COMPUTING IMPELLER SLIP FACTOR

The impeller slip factor for centrifugal compressors is
defined as the ratio of the average absolute tangential veloc-
ity of the air at the impeller tip to the tip speed of the
impeller

(er sin%—l—u) U
- Slip factor= Pl (H1)
P4 MT
wrp sing

The average value of the tangential-velocity ratio relative -

to the impeller at the impeller tip is obtained from

Bﬂ
J‘ upDhTTT d0
017
Bﬂ
ﬁ pDhTTT dﬁ

Ugp=—
or

_PocahTTT fn P
U= B ﬁ VL do
B

which, from equation (22), becomes

1 On P
Ugo="1, - UV; de (H2)

¥nJo,

Equation (H2) gives a weighted average value of U.
This weighted average is also equal to the unweighted average

0"
1 Uds

0,—0, Jo,

This fact can be shown from considerations of the conserva-
tion of moment of momentum in the vaneless diffuser, which

is based upon the weighted average of U and from considera-
tions of constant absolute circulation in the diffuser, which is
based upon the unweighted average of U.

Combining equations (H1) and (H2) vesults in the follow-
ing expression for the slip factor:

Slip factor=1+ 7 11\4 "ﬁgn UV;‘[i de
n T D o

(H3)

The value of the integrand is obtained from the relaxation

solution.
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