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TWO-DIMENSIONAL UNSTEADY LIFT PROBLEMS IN SUPERSONIC FLIGHT

By Max. A. HeasLeET and HARVARD Lomax

SUMMARY

The variation of pressure distribution is caleulated for a two-
dimensional supersonic airfoil either experiencing o sudden
angle-of-attack change or entering a sharp-edged gust. From
these pressure distributions the indicial lift functions applicable
to unsteady lift problems are determined for the two cases.

Resulis are presented which permit the determination of
maximum increment in lift coefficient attained by an unrestrained
airfoil during its flight through a gust. As an application of
these results, the minimum altitude for safe flight through a
specific gust 18 calculated for a particular supersonic wing of
given strength and wing loading.

INTRODUCTION

The study of the unsteady lift of wings in an incompressible
medium has been developed along two different lines. In
reference 1, R. T. Jones introduced the concept of indicial lift
functions for wings of finite aspect ratio and, using as a basis
the work of Wagner (refcrence 2) on the two-dimensional
potential theory of airfoils in nonuniform motion, has shown
how the calculation of lift under various conditions of motion
can be effected. 1In reference 3, Theodorsen considered non-
steady motion in its relation to the general theory of acro-
dynamic instability and the determination of the acrody-
namic forces on harmonically oscillating airfoils. This latter
approach has been extended to include high-speed problems
and in two recent papers Garrick and Rubinow (refercnces
4 and 5) have given results on flutter and oscillating air-force
calculations for wings in supersonic flow.

The present report employs the method of attack intro-
duced by Jones and considers the case of a two-dimensional
airfoil moving supersonically in an arbitrary manner, pro-
vided the assumptions of small perturbation theory are satis-
fied. The principal contribution lies in the determination of
indicial pressure distributions which are readily calculated in
supersonic motion and from which indicial lift, drag, and
pitching moments may be computed. From these results
the indicial lift functions are calculated explicitly. The
methods used to find the pressure distributions also afford
considerable insight into the same problem for airfoils at
subsonic speeds.

As an application of the analysis, the results are applied to
the special case of an unrestrained airfoil entering a sharp-
edged gust. The resultant forces are found to be comparable

869030—50

in magnitude, for Mach numbers in the neighborhood of 1.3,
to those given in reference 1 for subsonic incompressible flow.

SYMBOLS
A acceleration factor
a speed of sound
¢ chord length
(o wing lift coefficient
¢, section lift coeflicient .
cy, section indicial lift coefficient for angle-of-attack
change
Cly scction indicial lift coefficient for wing entering gust
F net lifting force on wing
g acceleration of gravity
M {ree-stream Mach number
m mass
Ap difference in pressurcs between lower and upper
surfaces of airfoil
. 1 R
q free-stream dynamic pressure <-2— 00 Vo‘>
s distance measured in half-chord lengths
arca of wing
P perturbation static pressure

t,T time in seconds
transformed time variable (See equations (7).)

T t/c
Y perturbation velocity component in z direction
Vo free-stream velocity
w perturbation velocity component in z direction
Wy z component of velocity of gust
W weight of wing
x,2 Cartesian coordinates
a angle of attack
n wing-density parameter (2m/pMSc)
) perturbation density
Po free-stream density
7 area over which surface integral is evaluated
d perturbation velocity potential
SUBSCRIPTS
0 free-stream conditions
1 variable of integration
u upper surface
1 lower surface
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ANALYSIS
DERIVATION OF BASIC DIFFERENTIAL EQUATION

The pressure distribution over an airfoil in a compressible
medium is obtainable from the solution of a boundary-value
problem associated with a particular second-order partial
differential equation. The derivation of the linearized form
of this equation, obtained under the assumptions of small
perturbation theory, proceeds as follows:

Let uw,w be perturbation velocity components parallel,
respectively, to the Cartesian axes z’, 2’ and denote by p
perturbation pressure, by p perturbation density, and by a
the velocity of sound. Then if ¢’ denotes time, V, is the
constant free-stream velocity, and p, is the constant free-
stream density, the linearized Rulerian equations are

ou ou 1 op
b—t'+Vo 6;:7 pg bx' (1)
ow ow__ 1op
o TVosw ™= "5 07

The linearized equations of continuity and state are, respec-
tively,

ow
+V0 a$'+p0<b azl>::0 (2)
1
a2 P 3)

After the introduction of the perturbation velocity potential
& integration of equations (1) yields

200, , 8 1
W+ Vo Se’— —p—op—l—constant 4)

while equations (2) and (3) give the expression

(o Voow) = <bz’2+bz’2) (5)

The combination of equations (4) and (5) leads to the desired
partial differential equation

0’® 2M 0*® 1 0%
M2 2=
(1—71%) bz'2+bz’2 “a; 2’0t agf ot 0 ®)
where M is the frec-stream Mach number.
Equation (6) can be reduced to the normalized form of the
two-dimenstional wave equation of mathematical physics by
means of the transformation

z=x"— Mat’
2=z ™
t:aot,

In these variables the equation is written

o'd o' 0%

FI T A P ®)

In accordance with the assumptions underlying the deriva-
tion of equation (8), its application to problems in airfoil
theory is, of course, limited to cases where the induced ve-
locities are small compared to the free-stream velocity and the
effects of viscosity do not alter the results of the potential
flow solution.

The rectangular coordinate system associated with equa-
tion (6) is fixed in the wing which is, in turn, immersed in a
free stream of velocity V, directed along the positive « axis.
The transformations introduced in equation (7) fixes the z, 2
coordinate system in space so that the airfoil moves in the
negative z direction and the free-stream velocity is zero. A
distortion of the time axis is also involved so that the differ-
ential equation appears in canonical form.

SOLUTION FOR GIVEN BOUNDARY CONDITIONS

The boundary conditions which are to be satisfied have the
same property as those encountered in steady-state thin-
airfoil theory; that is, the prescribed data are given in the
2=0 plane. The particular problems with which this report
deals are those of finding pressure distributions over a flat
plate. Thus, w will be specified over a portion of the 2=0
plane and, elsewhere throughout the plane, loading must
be zero.

Two boundary-valuc problems are to be considered: first,
the case of an airfoil either starting from rest at a given angle
of attack « or experiencing along the entire chord a change «
in stream direction without a pitching motion, and second,
the case of a constrained wing entering a sharp-edged gust
with a vertical velocity w,. In the former case the motion is
that of an airfoil suddenly sinking without rotation. These
boundary conditions are more readily pictured with the aid
of figure 1. Figure 1 (a) shows the conditions which must
be satisfied in order to solve the angle-of-attack problem.
The trace of the leading edge of the wing traverses the line
2= —Mst, while the trailing edge lies on 2=c— Mt where ¢ is
chord length. The region bounded by these lines and the
line =0 is the region occupied by the airfoil as time passes.
Since the axes are fixed and the airfoil moves in the negative
z direction, the velocity at which the airfoil travels deter-
mines the inclination of the leading- and trailing-edge traces.
Over the “area’” occupied by the airfoil in the z, ¢ plane, w
mustequal— Via and elsewhere no jump in pressure can occur.
The gust problem (fig. 1 (b)) does not differ essentially from
the previous problem except that here the region over which
the modification of w is cffective is not entirely the region
occupied by the airfoil but rather the region occupied simul-
taneously by the airfoil and the gust. Fixing, for conven-
ience, the edge of the gust along the ¢ axis, this axis will form
the right-hand boundary of the region over which w=—uw,.

Since the partial differential equation is linear and the
solutions are therefore additive, these boundary conditions
clearly should fit the following physical event: A wing of
trapezoidal plan form, indicated in figure 2, flies at a steady
lift and angle of attack prior to t=0; at {=0 the wing either
experiences a change in angle of attack a with no pitching
motion or enters a sharp-edged gust of constant vertical
velocity wy, the gust extending from its edge to all negative
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(a) Supersonic wing after a sudden angle-of-attack change.

(b) Supersonic wing entering a sharp-edged gust at r=0.

FIGURE 1.—Boundary conditions for supersonic wings.

values of . The wing in each casc is then rvestrained so
that, rclative to the original wind vector, the wing remains
at an angle of attack « or, in the gust case, continues fixed
at the same angle of attack.

The solution to similar boundary-value problems has been
discussed at length in reference 6. In that report the
development was adapted to the case where equation (8)
represented the steady-state equation for wing problems in
three dimensions and the characteristic cones of the equation
had the immediate physical interpretation of Mach cones or
infinitesimal shock disturbances. Green’s theorem was
applied to solve the boundary-value problems involved and
it was shown that the solution obtained could be interpreted

“~=--Trace of Mach cones -7
from leoding edge tip---

FIGURE 2.—Type of plan form studied in 'analysis.
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as a surface distribution of sources and doublets. Finally,
the difficulties arising in the discussion of the singularities
on the characteristic cones and the integration of the super-
sonic doublets were overcome through the introduction of an
integration technique which involved using the “finite part”
of the given integrals.

The methods and conclusions obtained in reference 6 can
be adapted immediately to the problems discussed herein for
the mathematical reasoning remains almost identical. The
physical interpretations of the two cases must, of course, be
modified. Thus, the characteristic cones of the differential
equations, traces of which are shown in figures 1 and 3, are
no longer the well-known Mach cones; rather, they represent
the distance to which & disturbance occurring at a point
fixed by the apex of the cone will travel in the time ¢.
Despite the fact that such physical interpretations are
undeniably useful in understanding and applying the results,
the solution of the basic differential equation for the bound-
ary values involved is quite independent of these material

Region A-~ Region B-~ Region C-» ! x

\ Poaaininanl

Time interval I

N5

15PN

Time interval IT

Time interval I

t v

F1GURE 3.—Sketch indicating locations of regions A, B, and C and time intervals used
in analysis.

dissimilarities. It follows that the methods developed and
discussed in detail in reference 6 can be applied directly to
the given problems with only minor changes in notation.
With reference to figure 1, it is evident that for supersonic
flight the air ahead of the wing is unaffected by the approach
of the wing and, further, that the induced velocities on the
upper surface of the airfoil are independent of the shape of
the lower surface. Consequently, the pressure distribution
will be found on the upper surface, as if the airfoil section
were symmetrical, and then, for the flat plate, the pressure
distribution on the lower surface will be equal in magnitude
and opposite in sign. As in reference 6, the solution to such
a problem can be obtained from a distribution of sources.
In the actual computation of the pressures over a section
traveling at supersonic speeds, certain regions are con-
veniently defined. These regions depend on the relative
slope of the traces of the leading and trailing edges and the
trace of the characteristic cone in the 7, t plane (fig. 3). The
perturbation velocity potential is given by the formula

Wy d.’l?ldtl
d):——;f‘ﬁ '\/(t_tl)z_ (x—a)*—2* ©
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where ¢ is the area in the z, ¢ plane of the region occupied by
the wing section and bounded by the trace of the forecone
from the point z, z, £. If p, and p, denote, respectively,
pressures on the upper and lower surface of the wing

V2<bt'+V° af)

Using equations (9) and (10), direct calculation shows that
for a sudden angle-of-attack change, the following relations
hold

Region A (between lines x = —Mt, x=—t, and z=c— M)

4 09

Ap pl .pu VMB_
12
0

q q

(10)

Ap__ 4a

g YM—1 (112)

It follows that in this region the steady-state Ackeret-type
load distribution has been attained.
Region B (between lines 2= —t, x=t, and z=c— M)

4 2__
AEZ):\/Z\TZa—.l l:l arc cos Z‘fj}z \/]7\1_4 ! <2+a1c sin t):l
(11b)
Region C (between lines x=¢, =0, and r=c— M)
Ap 4o

The result obtained for Region C is of particular interest
since it holds for airfoils at subsonic as well as supersonic
speeds. Moreover, the mechanics of the interaction be-
tween the airfoil and the fluid are such that other methods of
derivation, furnishing added insight into the nature of the
phenomenon, may be developed. Consider a flat plate of
infinite aspect ratio flying at a velocity V, either greater than
or less than the velocity of sound @, in the undisturbed air.
The airfoil is assumed to undergo a change in its motion at
the time =0 so that subsequent to this time it has in-
creased its angle of attack by the amount a. It {follows that
the sudden increment in lift can be calculated from a knowl-
edge of the induced effects on the air produced by an added
vertical velocity of the plate equal to —Via. As a result of
this vertical motion two plane Rayleigh waves will emanate
from the plate, a compression wave from the lower surface
and an expansion wave from the upper surface. The
velocities of the wave fronts are equal to a; while the induced
velocities in the waves are equal in magnitude to Via.

The lift on the wing can be determined in two ways: from
impulse relations and from energy considerations. In the
former case, assume that the forces per unit span on the
upper and lower surfaces are f, and f;, respectively. After
an elapse of time A¢ the wave fronts have advanced a distance
a,At and each includes a mass of air equal to peeasAt per unit
span. From Newton’s second law of motion

(fi—fw) At = (pocaoAt) (2V,a)
and, converting to lift coefficient,

= fl_fu _

A 4a
’;“ poVo'e Vo M

Since the force is distributed uniformly along the chord this
result is the equivalent of equation (11c).

In the development of the theory of plane waves of small
amplitude (see, e. g., reference 7) Rayleigh and Lamb have
shown that the energy in a wave is divided equally into
kinetic and potential energy. Denote kinetic energy by

—;— pofffwzdxdydz

where w is the perturbation velocity within the wave. Since
the energy induced in the wave must result from work done
on the plate, it can be seen that

4 oAl

_fu) VoaAt - ’é po VnQaZCdx

or
(fl_fu) At= 2P0 VoacaoAt

This equation is in agreement with the one obtained pre-
viously.

As a consequence of equation (1le) it follows that the
starting lift coefficient of an airfoil is equal to 4a/M for both
subsonic and supersonic flight. The magnitude of ¢, thus
increases as M becomes smaller and for incompressible
theory, where the velocity of sound is indefinitely large,
must necessarily become infinite. This fact was known
previously along with the understanding that the indicial
lift function experiences an infinite discontinuity at #=0.
(See Wagner’s curve in a subsequent figure.) For values of
M other than zero the starting lift is finite and a continuous
lift function results.

For a sudden gust with vertical velocity w, the following
expressions can be found for the corresponding regions

Region A

e N 12
¢ Vo Mi=1 (122)
Region B
A 4w 41
TPZWVO\ZMO?—l arc cos Tj—ﬁ (12b)
Region C
%’-—;»0 (12¢)

APPLICATIONS AND DISCUSSIONS

DISCUSSION OF LOAD DISTRIBUTIONS

Figure 4 shows the variation of the loading on a section
which, while traveling at supersonic speed, is suddenly de-
flected to a new angle of attack. The loading varies accord-
ing to equation (11) for each of the three regions A, B, and C
of figure 3. At t=0 the pressure is discontinuous, jumping
from its original value, just before the sudden deflection in
angle of attack, to 4a/M just after the deflection. Figure 3
shows, however, that the initial load distribution is modified
over the forward portion of the section as time increases

since regions A and B must be considered. For t>ATc—_1’
the wing lies entirely in region A so that

Ap_ 4o
VMEI-1
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ALr
q
Regions
A A 8 c
VME-1 ’
4o
M
Legding edge () Trailing edge
_Lp
q Regions
A 8
4 o
A/AME~ j

Leoding edge (b) Trailing edge
Ap

q

Region
e A
~M2-1

Leading edge () Trailing edge

(a) Time interval I, 0<¢/c<I/(M-1).
(b) Time interval IT, I/(M+1)<t/e<1/(M—1).
(¢) Time interval ITI, 1/(M—1)<t/c.

FIGURE 4.—Variation of Ap/g with chordwise station after sudden change in angle of
attack. Regions defined in figure 3.

and the loading has attained a static valuc agrecing with the
Ackeret type of distribution. The loading in region B varies
between the two constant values of regions A and C, dipping
below that of region C and having its minimum value at
r=0.

The loading produced upon entering a sharp-edged gust
is pictured in figure 5. The loading in region C is zero, since
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that portion of the wing is unaware of the change in stream
conditions. Over the forward portion of the airfoil (region
A) the Ackeret-type loading corresponding to the modified

angle of attack is in evidence and for t>Zle——1 extends over

the entirc chord of the wing. In region B the loading ex-
periences a reduction in magnitude from the value over the
forward portion of the wing.

Ap
qQ
Regions
4w A B c
Vo; ; ﬁ? 2 . a
Leoding edge Trailing edge
(2)
Ap
q
Regions
4w, A 8
Vo Z2~-1
leaqding edge Trailing edge
(b)
Ap
9
Region
4w, A
Vov/M2 -1
Leoding edge Trailing edge
(e)

(a) Time interval I, 0<t/c<<1/(M+1).
(b) Time interval II, 1/(M-+1) <t/e<1/(M—1).
(¢) Time interval III, 1/(M—1)<t/c.

FIGURE §.—Variation of Ap/g with chordwise station after entering gust. Regions
defined in figure 3.
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The load distributions which have been developed were
obtained for flight velocities in the supersonic regime. It is
apparent, however, that the basic differential equation is not
restricted to the case where A/ >-1 and that the method of
analysis affords a means whereby transient load effects can
be studied for subsonic speeds. The essential difference
between the latter problem and the results derived here lies
in the relative position of leading- and trailing-edge traces
in the z,¢ plane and the trace of the characteristic cone.
Thus, for subsonic flight, the trace xz=—¢ does not cut
across the region occupied by the airfoil; whereas the cone
stemming from the trailing-edge point ¢,0 does. A qualita-
tive picture of the problem is obtained if the analogy between
the nonsteady two-dimensional case and three-dimensional
wing theory is used. The loading functions given in equa-
tion (11) are equivalent to loading existing on a swept-for-
ward tip of a three-dimensional wing. Thus, in figure 1 (a),
z can represent distance measured spanwise, £ can represent
distance measured chordwise, and the shaded area can
represent a portion of the plan form of the wing. Using this
analogy, the loading which has been determined is merely
load distribution over the swept-forward tip of a wing with
constant chord and supersonic leading edge. When the
case of the airfoil section traveling at subsonic speeds is to
be considered, the problem becomes one of determining the
loading over the swept-forward tip of a wing with constant
chord and subsonic leading edge.

DEVELOPMENT OF INDICIAL LIFT FUNCTIONS
Since section lift coefficient c; is given by the expression

c,=—1— Ap dz
cJ ¢

the relations presented in equations (11) and (12) are suffi-
cient for the determination of ¢, indicial 1ift cocfficient for

change in angle of attack, and ¢, indicial lift coefficient for
an airfoil entering a gust. As a result of dircet integration,
the following results are obtained:

First time interval 0t 17—: A
Czaz;%[x (13a)
4wol
Cop= 'E%Tl% (1442)

. . c ¢
Second time interval 1+A4\t<211—1

Cla=4:‘[ I:ﬁ (g—l— arc sin c_tMt)-l—

— 2 12 (A {AN\
CEMe—tM? | Gy | (13b)

. .

\/—2‘41—2_—? arc cos

_Awet (. c—Mt
Clg——rVoc (2+alcsm 7 >+
2 2
4w, . arccos Mce+-e2—M%

7 Vo M?—1 ¢ (14D)
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. . . c
Third time interval Z\l———1<t

4
¢, =7 ?—1 (13c)
490,
_ 1
T VM —1 (140)

Values of the lift functions are plotted in figure 6 as func-
tions of s, the distance traveled by the airfoil measured in

half-chord lengths where s=2TM~ The curves shown were

calculated for values of M equal to 1.2, 1.31, and 1.46, since

oo
20
M=/.20
f L=
I L=
1.8 a2 -
| . 1
| , et
| wogner's curve -
o .60 for M=0-p. /'
< K . AL=/.3/
"‘[K , P =
14| : 4]
3 | , Pd
) | ‘ ‘
ﬂ]t/zlc,d / / il M:/.46
5} ‘ l )/ =
) ’ -
c i #
@ 7 1.
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Y 2
- Vax
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o A4
t O
~ ,"I’
~ L]
Q i
s O
£ o
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4
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g 2 A %) 8 1a 12 14

Half-chords traveled, s

FroURrE 6.—Indicial lift functions ¢z (s) and czg(s) for various free-stream Mach numbers.

the asymptotic values of ¢; and ¢, for the three cases agree
with the values given in reference 1 for the subsonic wing at
aspect ratios of =, 6, and 3, respectively. No direct analogy,
of course, can be made between the two cases. It is, how-
ever, worthy of note that the variations in the indicial func-
tions for the supersonic case are of the same order of magni-
tude as those found in the finite-span incompressible case.

From a knowledge of the lift function resulting from a
sudden unit angle of attack, it is possible to express the lift
corresponding to a given variable motion by considering
the given motion as being composed of infinitesimal steps
and summing the lifts corresponding to each step. \lath-
ematically, the problem corresponds to the use of the
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Duhamel or Faltung integral and leads to the so-called
superposition theorem which can be written in the form

ci(t")=a(0)c, (t’)+f e, " —7') da('r) dr'

d
_—_W 0 cta (t’—T,)a(T,)dT, (15)
The primes on the variables in this equation indicate that
true time is used.

MOTION OF AIRFOIL IN GUST

The results which have been obtained will now be applied
to determine the forces on an unrestrained airfoil entering
a gust. Since the motion of the wing is not prescribed it
becomes necessary to equate the dynamical forces in order
to relate the variables involved. Neglecting pitching
moment and using Newton’s second law of motion,

dt'—z forces (16)

where w is the vertical velocity of the wing, m is the mass of
the wing, and the forces to be summed result from the lift
on the wing and the impressed force resulting from the
action of the gust. By means of equation (15), equation
(16) can be rewritten in the form

m % yes f Cr, ' =) alr)dr' = [ G, 0)gS  (7)

Introducing a change of variables such that

tl T,
TZE Ay, TI:? (229

and setting
2m

w_ —m
V_ % H ~—pc,]‘l‘kgc

the equation becomes, finally,

T
ﬂgﬁﬁdilf ) OrlT=T)a(TYdTi=32 O (1) (18)

Since a(0)=0, equation (18) can be integrated to give:

a0 —f Cr (TAT,+ fC’L (T—T)a(TydT,=0  (19)

which is an integral equation of the second kind with a varia-
ble upper limit. The solution to this equation can be obtained

quite satisfactorily by means of Liouville’s method of suc-
cessive substitution. Using the relation €, =g ZC} and per-

forming the proper manipulations gives:

% 0=, (1) -2 f ¥ 0y, (T—T) Gy (T T+
0 M~ Jo

'd 7
|, Ce—10axy (" 0o (11— T O (T T

(20)
Equation (20) is known to converge uniformly for
Mi—1 : :
<”—-——‘/Z\i 1 and in the applications of this report the
maximum lift was always experienced in the region of con-
vergence.

The values of lift coefficient C, determined from the solu-
tion of equation (20) are shown in figures 7 (a), 7 (b), and
7 (c¢) for various values of u and for M=1.2, 1.31, and 1.46.
Figure 8 shows the variation of the maximum lift coefficient
attained plotted as a function of the density parameter u for
the same three values of M. Figure 9 furnishes a comparison
between the maximum lift-coefficient increment given in
reference 1 for an aspect ratio of 6 and the corresponding
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FIGURE 7.—Variation of increment of lift coefficient during fiight through unit
sharp-edged gust.
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Fi6URE 7.—Concluded.

The

results are plotted as functions of u ,=pi§% to correspond with

value calculated in the present report for A=1.31.

the density parameter used by Jones. The correspondence
which was noted for the indicial lift functions with Mach
number replacing wing aspect ratio is still in evidence.
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FIGURE 8, —Maximum increment in lift coeficient attained during fiight through unit
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FORCES DEVELOPED ON GIVEN WING

As an example of the uses to which the results just obtained
can be applied, consider an airplane with wing of plan form
such as the one shown in figure 2. Assume a wing loading
of 40 pounds per square foot, a chord length of 8 feet, and
let it be specified that the wing is flying at a Mach number
equal to 1.2 and that the wing is built to withstand forces
producing accelerations between —3 and 5 times gravita-
tional acceleration. It is proposed to find at what altitudes
the wing may be subjected safely to a gust possessing a
vertical velocity of 50 feet per second.

If F denotes the net lifting force on the wing,

F=W+L, (21)
where W is wing weight and L, is the total lift produced by
the gust. If (ACL)mer 1s the maximum increment in lLift
coefficient attained in a unit gust and A is the acceleration
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factor measured in multiples of g, then equation (21) is
expressible in the form
wy, S
A=1 + (AOL) maz ?0 _W POVO

Since it is required that {A—1| =4, it follows that

6.4
PoVo

(ACL) mazx _S__ (22)

Figure 10 shows the limit curve of (ACL)m.: plotted as a
function of flight altitude. From a knowledge of u=2W/

lncrement in lift For | L/
wing of M=/20 /)
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Fi1GURE 10,—Safe altitudes for wing with loading of 40 Ib/ft ? fiying at M=1.20, based on
50 ft/sec gust velocity and maximum load factors of 55 and —3g.
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lirt ?\)oefﬁc/cnf, A (AC)max
7
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Q 32 40

pogMSe, however, the value of (ACL)me: actually attained
by the wing entering the gust can be calculated. Such
values are also included in figure 10 and indicate that, under
the given conditions, the wing should not fly at an altitude
less than approximately 28,000 feet.

AMES ABRONAUTICAL LLABORATORY,
NarroNaL Apvisory COMMITTEE FOR AERONAUTICS,
Morrerr Figup, Cavir., Dec. 5, 1947.
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