
REPORT 965

THE LONGITUDINAL STABILITY OF ELASTIC SWEPT WINGS AT SUPERSONIC

By C. W. )?RICK and R. S. CEGEB

SUMMARY

The longitudinal stability characteristics of ela&ic swept
un”ngsof high aspect ratio ezperienoing bending and -torsional
deformations are calculatedfor supersonic speed by the appli-
cation of linearized Fijling-eurjkce theory. A parabolic wing
deflection curm is assumed and the analysis is simplified by
a number of structuralapproximations. The methodis thereby
limited in application to wings oj high aspect ratio for which
the root effects are .&mall. Expressions for the L&t,pitching-
moment, and span load distribution charactem”sticsare dm”ced
in t.wrnsof the elasticproperties of the wing; namely, the design
stress, the modulus of elasticity, the d.eming modulu~,End the
ma:tiznumdesign load factor. The analysis applies to wings
with leading edges swept behind the LMadilines. In all cases,
howewr, -thetrailing edge I%sonic or supersonic. Application
of the method of analysis to wings with leading edges swept
ahead of flu Mach lines is dis.cuwed.

The results of numerical calculationsfor a wing oj as-pect
ratio 3.2 and 60° sweepback oxv presentedfor a Mach nu?nbeT
of 1.~l~ and jor inmrnpressiblej?ow. The e~ects of wing
elastiody on the lijl-cume slope, moment-curve slope, and neut-
ral-point position are. shown. The results indimte that the
primary rariable inzolced in aeroelastio phenomena is the
dynamic prewmre and that the in,jlwmce of the flight Mach
number is smallfor wings swept behind the Mach lines.

INTRODUCTION

h reference 1, R T. Jones has shown that supersonic
fight may be attained with a reasonable degree of efficiency
through the use of swept wings of high aspect ratio. The
use of sweepbac.k, however, involves many problems of
stability and control, not the least of which are associated
with the aerodyntic effects of the elastic deformation of
the airplane structure. In particular, the longitudinal
stability of the aircraft may be affected to & large degree
since the bending and torsiomd deformations of the wing
may shift the center of pressure of the lift forward an appre-
ciable distance.

These aeroelastic phenomena occur under t-hose flight
conditiom where the magnitude and/or the spamvise varia-
tion of the elastic deformation of the wing varies with
angle of attack. Aeroelast.ic effects may therefore occur
either in accelerated flight at constant dynamic pressure or,
under certain conditions, in steady level flight with varying
dynamic pressure. In the latter case, if the loading due to
twist or camber is different than the loading due to change
of angle of attack, the trim change due to elastic deformation
of the wing in steady Ievel fight varies with the dynamic
pressure and influences the stability of the aiqdane as.
indicated by the position of the control stick as a function
of airspeed}

SPEED ,

In soltig aeroela.sticproblems, since t-heinterrelation of
the structw-a.l and aerod-~amic characteristics of the wing
results in mathematical complexity, it is usually necessary
to compromise to some extent either the structural or the
aerod~a.mic aspects of the problem to obtain a solution.
In the present analysis, the structural characteristics of the
wing are compromised to the extent. t.ha.tthe form of the
deflection curve is assumed. This assumption permits the
appIicat.ion of supersonic Iiftiug-surfs.ce theory to the deter-
mination of the load distribution, the lift, and the pitching- ._
moment characteristics of elastic.wings. Addition~ a.n~ysis
is necessary to determine whether it is better to use more
rigorous aerodynamic theory in aeroelast,iccomputations, as
in the present report, or to use a more complete structured
theory as in recent work by Diederich (reference 2) and
MiIes (reference 3).

SYMBOLS

xl, 111Cartesian coordinates.-—
transformed Cartesian coordinates in terms of the

semispan dimension, s
x,y coordinates of the apex of tmy superposed liiting

sector
distance in they, direct-ionfrom the root section to the

intersection of the flexursd axis and the tip Mach
cone

distance along the fle.sural axis from the root section
to the intersection of the flesura.1ask and the tip
Mach cone

distance measured from the. root section along the
fiemral axis

span-wisedistance iu y direction from the root section
to the center of load on the half wing

* area
taper ratio, ratio of tip chord to root chord
a.-reragechord

()Jc’dymean aerodynamic chord —JCdy
local chord parallel to the plane-of symmetry
root chord parallel to the plane of symmetry in terms

of the span dimension, .s
aspect ratio
mgle of s-ireepbackof the flemd axis
slope of the flexural axis in a vertical plane passing

through the flexud axis
ma..ximumload factor
bending moment at any point on the flem.mdaxis
bending moment at the root section of the wing beam

1Thfs prwtisularaemelastiidmracteristick not consideredin the presentreportwhiohfs
soneemedPrbnsrikiwithsceekrrdedflight. Further,thewingisconsideredto M weighffess
so that theameIiorstig influenceof thedistributedmassof thewingisnot tokenintoacoormt
in estirnatfi theeeroebsticchsrocteristics.
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torsional moment at any point on the ffexural axis
torsional moment at the root section of the wihg beam
modulus of elasticity for the -wingbeam material
shearing modulus for the wing beam material
moment of inertia of the wing beam
torsional stiffness constant .
distance between the flexural axis and the center of

pressure of the sectional lift in terms of the local
chord

maximum design stress
maximum thickness of the wing at the root section
angle of attack of the root section of the wing
incremental angle,of attack at any spa.nwisestation of

the wing
angle of attack of the wing section at any spanwise

station
angle of attack of the root section at Which maximum

load factor is developed
~M’– 1 wh&e M is the free-st~eam-$lach number
P times the cotangent of the angle of sweepback of the

wing leading edge
P times the cotangent of the angle of sweepback of the

wing trailing edge
p times the cotangent of the “angle of sweepback of a

ray from the apex of any superposed lifting sector
complete elIiptic integral of the second kind with

modulus ( ~1 —mz)
airplane weight

wing loading

dynamic pressure
()

; pv’ ,where pis the mass density

and V the velocity of the free stream

lifting pressure coefficient

load per unit span
section lift coefficient
lift

()lift coefficient Lqs
lift coefficient at maximum load factor
section pitching moment of a wing section about the

apex of the wing
pitching-moment coefficient about the apex of the wing

in terms of the mean aerodynamic chord and the
wing area

the rate of change of lift coefficient with the angle of
attack of the root section

the rate of change of pitching-moment coefficient with
the angle of attack of the root section

the rate of change of pitching-moment coefficient with
the lift coefficient

ANALYSIS
WING WITH A SUBSONIC LEADING EDGE

the following analysis, for convenience, the aerodynamic
loading due to bending &d that due to” torsion a;e first
treated separately. Expressions for the combined effects oi
bending and torsion are derived later. “

Bending,—The aerodynamic twist 2 duc to bending of n
streamwisesection of an elastic swept wing under accelemtccl
flight conditions is a function of the applied load and the
elastic characteristics of th~ wing beam. In order to arrive
at a solution for the aerodynamic properties of the wing
without becoming involved in laborious graphical tmttlysis,
some simplifying approximations must be made regarding
the elastic properties of the wing.

In a strict sense, a swept wing of conventionrd structuml
design cannot be considered to have a flexuml axis, For
wings of high aspect ratio, however, it will be assumed that
a flexuraI axis exists, since this assumption permits the usc
of simple beam theory auclintroduces only a snlall conscrvn-
tive error.

For the purpose of analysis, the root section of the wing
beam is assumed to be the e-xtensionof the wing beam on n
plane perpendicular to the flexua.1tixis and passing though
the intersection of the flexural axis and the st.rcamwiseroot
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FIGURE1.—Geometricchwecterk.tfcsof the wingbeum.

section. (See fig. 1.) This simplification of the beam ann.ly-
sis is similar to that of reference 4. The lengt,h of the wing
beam s’ is taken as the distance t-alongthe flexural axis from
the root to the intersection of the ffexural axis and the tip
Mach cone. The semispan s of the wing is taken as extend-
ing from the root section to the intersection of the flexural
axis and the tip Mach cone in a direction perpendicular to .
the plane of symmetry. The portion of the wing lying
within the tip Mach cone is ignored since, as shown in

~The changein camberof the airfoilsectionsdue to the dfstort[onof tbo wing surface12,
of courm,ignored.
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FIG~E 2—Coordfrmtesystem for calcufatfonof chwacterfstk of ehstic wins.

reference 5, very little load is carried in this region and the
analysis is thereby simphfied.

The coordinate system is selected as shown in figure 2.
The origin of the coordinate system is placed at. the apex of
the wing, the positive branch of the Z1axis lying dovmst,rerun.

The mathematical treatment may be made less tedious by
trmsforming and nondimensiona]izing the coordinates so
that in the following analysis

~=&l
s

root chordco=
s

In generaI, at both subsonic and supersonic speeds, selec-
tion of the wing plan form for lo-ivdrag leads to a combination
of spanvriseloading and spa.nwisedistribution of the bending
resistante in the wing beam such that t-he wing deflection
curve is essentially parabolic. (The ratio of M to 1 is COn-
stant across the span.) The cleflection curve detiates
a.pprec.iablyfrom a parabola only if t-he aeroelast.ic effects
experienced by the wing are very large.

Since the deflection curve of the flesurcd axis is assumed to
be parabolic, the slope of the fle.suralaxis is

where g’ is measured along the flemral axis.
The incremental a-ngleof attack of streamwise sections of

the wing is related to the slope of the flemrrala.sisas

~=—esin~

The slope of the flexural axis in nonclimensiomdtransformed
coordinates may be written as

The incremental angle of attack of any streamwise section of
the elastic wing is then

ancl the total angle of attack of any st-reamwisesection is

(1)

where a is the angle of attack of the root section of the wing.
Equation (1) gives the magnitude md distribution of twist
across the span of the wing if the magnitude of M/171 is
kno-wu.

The distribution of pressure over the elastic wing due to
twist may be determined by applying known conical-flow
solutions for supersonic flow. In t-heIknearizedtheory, the
principle of superposition of various solutions maybe used to
satisfy the particular boundary conditions of the problem.
For the elastic wing, the flow field may be considered to
consist of the superposition of tw-o distinct flow fields:

1. The flow about a flat rigid -wing at an angle of attack
equal to the angle of attack of the root section.

~. The flo~ about a t.fited wing for which the angle of
attack at the root is zero.

The solut-ionfor t-hefirst flow field is given in references 6
and 7; the second flow field can be obtained by determining
the solution for a differential twist da. at one station and
integrating this solution across the span.

The solution for the pressure distribution corresponding
to a differential tmist must. meet the following boundary
conditions (fig. 3):

1. Outboard of the station of twist, the angle of attack
must be constant and equal to the differential tw-ist.

2. Inboard of the station of tvi%t-,the angle of attack of
the surface must be zero.

3. Between the s-wept leading edge and the Mach cone,
no lifting pressures may exist.
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FIGURE3,—Theboundaryconditionsandpressnredistributionfor the conioal-fiowsolutionfor differentialtwist.

The conical-flow soIution corresponding to these boundary
conditions is that for a special lifting sector given by Lager-
strorn in reference 8 and is expressed in the notation of the
present report as .

Ap 8a m3i2
/–

l+t—.— —— (2)
g Pum+ll m–t

where t defines a ray from the apex of the sector.
Figure 3 shows both a sketch of the boundary conditions

to be met by this solution and a plot of the pressure distri-
bution given by equation (2).

The induced pressure resulting from twist due to bending
of the elastic wing may be found by integrating across the
span of the wing. This integration corresponds to the
superposition of an in.finite number of the lifting sectors
along the span, each sector having a.ninfinitesimal angle of
attack dag.

The pressure due to twist is then given by

()
Ap .=— — — -
T“ F N~~r~m~l ~~ tan A ‘0 * d~o m—t

where

t=!F%@-~)..
x— t m—q

The z and y coordinates of the apex of any superposed sector
are & q.

The integration must be carried out from the root section

of the wing n=0 to the value of ~=TO corresponding to tho
last superposed sector, the Mach cone of which encompmscs
the point z,y under consideration. The vtduc of ~. is found
by placing t equal to –1 and solving for ~.

The integration yields at any point
to twist

()Ap 16
_iiT

’51s tan A ~
‘–~2Z (m+l)z

x,y the pressure due

To this expression must be added the conjugato term clue to
the elastic defopation of the opposite wing panel. The
conjugate term may be obtained by substituting -y for y,
Then

(4)

It should be noted that the addition of the conjugate
terms adds some very small lifting pressure in the region
between the wing leading edge and the lMach cone where no
lifting pressure may exist. These pressuresmay be canceIed
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by the superposition of constant, lift sectors as noted in
reference 9. Since these extraneous pressures, on the
average, amount to about, 3 percent of the average pressure
coefficient o-rer the adjacent wing surface and, since elimi-
nation of those pressures would change the pressures over
t-hesurface only about one-half of 1 percent, it seems that
in tiew of the additional complication involved the can-
cellation of these pressures is nnwa.rrimted.

The totaI lifting pressure for the elastic wing at an angle
of attack is t-hen obtained by adding to equation (4) the
solution for the flat lifting wing. For the elastic wing, then

distribution can be calculated. Since for vrings with para-
bolic deflection curves the maximum stress occurs at the
point of maximum thickness, usualIy the root, the maximum
stress occurring a.tmaximum load factor is*

(9
1% d,

“mu= -r .5

and, since the bending moment at any point on the span is a
linear function of the angle of attack,

iW_2uma a
~– d, ~

where u~a. is the design stress at maximum load factor, d,
is the thickness of the root section and % is the angle of
attack at maximum load factor; an expression for ctnis
derived later.

The equation for the pressure distribution may then be
mitt en as

(6)

(5)

Examination of this equation shows that the relationship
between 3~/EI and a must.be established before the pressure

Al= 4m2ct
‘– tanA~;:[(.+#),=+(.:Y)J=]

32 ~w?

!2 $Z Jm2- (y/x) 2 3j92r(m+l) 2

The load per unit span can be obtained from an integration
of equation (6) with respect to z along any strea.mwisestation
(y-constant),

Y+mtco

+= ’L=e)Y=comts =
m

The integration is carried out from the leading edge bf the
y+-m.,co

wing, x=: to the trailing edge x=— mt and yiekls

1 4n%a ms~ rm~xF a—. —–=~fl(@ –*F ~m+1)2 tan:! ~ ~r ~n3J30 (’0!z

The fuuctionsjl (y) a.ndf2(y) are given in the appendix since
they are somewhat unwieldy.

The lift coeffic.ie.ntmay be obtained by
equation (7), spa.nwieefrom root to tip.

an integration of”

The integration yields 3

The constants F* and i% are given by equations in the
appendix.

This equation may be used to determine the angle of attack
at-maximum load factor an which is neecled in the foregoing
equations:

The pitching-moment characteristics of the elastic wing may

~It may be noted that the rotio @/JSis essentiallythe sameas one-fourthaspeetratiomd
ttmtthe psrametera/d,is directlyrelatedto .e’id,,a commonstructuralmiterion.

be determined by an integration of the pressure distribution
given by equation (6).

For any spa.nwise station, the section pitching moment
about, the apex of the wing is

II+w.

?=-s2J.7%’)-x’z
ii

This integration yields

(lo)

The functions f~(y) andj4(g) are given in the appendix.
The tot-al pitching-moment coefficient about t-heapex of

the wing in terms of the mean aerodynamic chord is found
by integration across the span,

The constants F~ and F4 which are functions of the aspect
ratio, taper, and sweepback are given in the appendk

Torsion,—The previous analysis has ignored the effects of
wing twist- due to torsion. The solutions obtained are, in
reality, those for wings of fiite torsional st.flness. In
general, since the flemrral ati (or toreion center) is behind .
the center of pressure at all spamvise stations of the wing,
the twist of the wing due to torsion witi tend to compensate
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for the twist due to bending. For wings having large angles
of sweepback such as me necessary for efkient supersonic
flight, the aerodynamic twist due to torsion has been calcu-
lated to be about 15 to 20 percent of the twist due to bending
(for thin wings). In such cases, the eilect of the torsional
deformation on the spanwise loading may be neglected in
calculating the torsional moment. Equation (7) may be
utilized in the calculation of the torsional moment in this
instance. A complex simultaneous solution is thereby
~~,oided.

An expression for the torsional moment at the root section
of the wing beam (perpendicular to the elastic axis) may be
obtained by assuming that the distance from the center of
pressure to the fIexuraI axis for any section of the wing is a
constant percentage of the local chord. Then

where c is the local strea.mwisechord given by the equation

C=s co
[ 1

1–(1–A) ;

and h denotes the taper ratio of the wing and f the distance
from the center of pressure of the section lift to the fle.xural
axis in terms of the streamwisechord. The function clescrib-
ing the spanwise loading l/g is given by equation (7).

The equation for the torsional moment at the root maybe
written as

As will be shown later, it is convenient to derive the ratio of
the torsional moment at the root to the bending moment at
tbe root. The bending moment at the root is given as

and

+ cl)Coe?A
r [b-x’]

where

(13)

and corresponds to the spanwise center of pressure for the
load on the half wing. The value of y may be determined
by a mechanical or analytical integration of equation (7).

When the assumption is made that the twist due to torsion
vaxies linearl,y across the span (or that the ratio T/GJ is
constant across the span), the incremental angle of attack
of any section of the wing due to torsional deflection may be
written as

or

and by adding this expression t.o the angle of twist duc to
bending (equation (l)) the t.ota.langle of twist of any section
is

~.=~-WF4?Wl ‘l”)
or

‘ ‘g’FanA-(%)al ‘“b)“=a-2ii, E an B

(lombined bending and torsion,—llxpressions for the
aerodynamic properties of swept wings experiencing both
bending and torsional deformation may be obtained from
equations (6) to (12) if tan A is replaced by

Fan A-(%)al

The equation for the angle of aLtack at maximum load
factor fo~ combined bendin~ and torsion is then

@2“-={~ %+%;(IJ2+1)27 d,an‘- 4m2Fl h [
‘“”Z ~ tan A–

‘::(WW
(15)

where -

[
g=tco $ –(l–k)] COS2A

r

In applying the foregoing analysis to a specific wing, it is
convenient to use the equations to obtain the ratio of C~a
or CL=for the elastic wing to the value for the rigid wing.
Multiplying this ratio by the value of CL=or C~=for tJ~crigid
wing as determined by the complete theory wherein the
region within the hfach cone of the tip, and so forth, is

considered, will then give more accurate parameters for the
elastic wing. Then

.~_4?n2 ~~~‘2.f2(!/) tan A
32 “mm ~

--–[ -(MIga fE ‘1 ‘y) 3P2~(m+ 1)2~ d, a,,
.—. ——

(16)

In usipg the preceding equations, it is neccswwy to solve for
a.. This, in turn, involves finding the ratio T,/hf, which is
determined by the parameter ~ (usually has a value of about
0.40).

A solution of the combined bending and torsional deforma-
tion eftects can be obtained by assuming a value of ~, solving
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for a., and checking the value of ~ from a moment and area
‘integration of a plot of equation (16) to see if a second ap-
proximation is required to determine a. more accurately.

The previous equations a.pplyprimarily to flat Iifting wings
or to twisted and cambered viinga for which the loading clue
to twist. and camber is the same essentially as the loading
due to change in angle of attack. For wings with somewhat-
arbitrary camber and/or twist, these equations apply to all
accelerated flight conditions. A solution for the aeroelastic
characteristics in steady level flight for such wings musk
involve a consideration of the effects of the loading due to
the known arbitra.~ twist..

W’HG WITE A SUPERSO~IC LEADING EDGE

The foregoing a-mdysishas treated wings with the leding
edge swept behind the l$ach cone. The same method,
however, may be applied to wings swept ahead of the Mach
cone. In this ca.s.e,however, the e-xpressionfor the pressure
field for the incremental twist at any spanwise station, cor-
responding to equation (2), ia given by reference 10 as the
rea.1part of

(19)

where a, t, and m are as debed for equation (2).
Expressions for the pressure distribution, lift, moment,

and load distribution may be obtained in the same manner
as for a wing with a subsonic leading edge although the inte-
grations qre more involved.

DISCUSSION’

SUPERSONIC LW!JJXG-SUEFACE TEEOIfY

The results of the foregoing armlysis are best ihstrated
by applying them to a specific wing. For this purpose, the
wing shown in figure 4 was selected, having the geometric

,,-

FIGCRE4.-Sketah of the wingm=edin the cakrdations.

3.2
I

2.8
—— Ri ij win;

?----- E us tic wing

2.4 —: ~----
-- ------ .m.--- -

.$ \ .
L 2.0 /: ‘---

---
~w: /.6 --- --
U* -. --

.?
j

/.2

3 .8

.4
(a)

I
0 /0 20 30 40 50 60 70 80 90 fOO

Perceni semispon
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FIGURE 5.—A comparisonof thas- Ioaddfatributfonafor the rigid and the elsstic wings
fn accderatedtight. X, 1.414r=.., 30,WIpoundspersquareinch;nl?7S,HI poundsper

aque fao~ q, ZU.2poundspersquarefoot.

md structural material characteristics given in the table in
the figure. The calculations were made for various -dues
>f t-heparameter nW7/.Sand for two values of the maximum
iesign stress.4

Span load distributions for the -wingare shown in figure 5
!or a Mach number of 1.414, a value of nW/~ of 150 pounds
per square foot, a design stress of 30,000 pounds per square
itch, and a dynamic pressure of 21] pounds per square foot
Aich corresponds to flight.at 60,000 feet altitude. The load
:listribution curves of part. (a) of figure 5 are for the same
mgle of attack of the root section and show that the elasticity
]f the wing results in an apprecia.ble decrease in Iift-curve
dope. In this case, the reduction experienced by the elastic
wing amounts to 15 percent of the -due for the rigid wing
)f the same plan form. Part (b) of figure 5 shows the load
distribution curves for constant total Iift coefficient. These
load-distributions me of signdica.nce in illustrating how the
~hange in span load distribution due to elasticity may be
xpected to shift the longitudird center of pressure forward.

4CaIcufationsshow that the winghasam?lcientdepth to mfthstandthern@tnum Ioadfng
!ssumedrvitfroutfaflore.
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COMPARISON OF AEROELASTIC EFFECTS AT SUPERSONIC SPEED WITH
INCOMPRESSIBLE FLOW SOLUTIONS

In calculating lift and stability characteristics of elastic
wings, it should be noted that errors resulting from assuming
the extent of the wing beam as given in figure 1 and from
ignoring “thelift within the tip Mach cone may be minimized
by using the ana,lytical expressions which give the ratio of
lift-curve slope or the ratio of moment-curve slope for the
elastic wing to that for the rigid wing. These ratios may be
used with the rigorous values of Chaand CL=from reference 5
to obtain accurate values of C~aand C~afor the elastic wing.

Such ratios have been computed for the wing shown in
figure 4 as functions of the dynamic pressure at a flight
~Mach number of 1.414. For comparison, the same ratios
have been computed as functions of the dynamic pressure
for incompressible flow by the theory of reference 11. Fig-
ures 6 and 7 show the results of these cahdations which
were made for two values of.n W/iYof 150 and 300 pounds
per square foot and two values of design stress, 30,000 and
45,000 pounds per square inch. Figure 8 shows the shift in
neutra~point 5 due to wing elasticity as calculated from the
data of figures 6 and 7.

The results indicate that the adverse effects of the aero-
elastic deformation of the wing are a little more severe at
supersonic speed. At constant dynamic pressure, the differ-
ences in the aeroelastic effects as computed by incompressible
flow theory and by supersonic lifting-surface theory are found
to be due largely to the fact that the center of pressure of
the sectional lift is farther forward at subsonic speed, result-
ing in a difference in torsional deformation which compen-

~Neutralpointfsdefied astheprsitionofthecentsrofgravityalongthemeanaerodynamic
obordforneutralstability.
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FIGURE8.—Variationwith dynamicpressureof the neutralpoint eh!ft for the clfietiawing
in acoeleratadflight.
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sates somewhat for the bending deformation. The compar- lift-curve s~ope. Within such limits it is expected t-hat the
ison indicates t-hat the dymmnic pressure is the prinmry estimate of the neutral point shift due to elasticity vrill~be
variable involved in determin.ing the aeroelastic character- much more accurate than for analyses using elementary
ist.its,at least for wings swept behind the Mach Iines. aerodynamic loading.

In regard to the range of application of the equations,
cahdations made using more rigorous structural theory wit-h
simple strip theory show that the method of the present AMES AERONAUTICAL LABORATORY,
report may be e.xpect,ed to give accurate estimates of aero- N~ATIomm ADVISORY COkI.MITTEE FOR iSEROhlGTIcs,
elastic effects as great as, for instance, a 30-percent loss in X1OFFETT FIELD, CALIF., Dec. 3, 19.48.

MATHEMATICAL

APPENDIX
DERIVATIONOF LOADINGFUNCTIOA’SAINDPLAN-FORM CONSTANTS

The functions jl(g), j,(y) ,j&), andf~(y) and the constants
F,, F,, l%, FAwhich appear in equations (7) to (18) of the
text are given in this appemlix. Analytica.1expressions for
the constants F,, F’S,F4are found to be very long and tedious
to use. It may prove easier to evaluate these constants by
graphicaI integration of the corresponding integral equations.

The functions jl(g) and f,(y) were developed from the
folIowing integral:

which yields

/(m*1),’+~.o,+mw+1(2/)=;2} @–
and

which yields
m m

f,(y) =

[

2272 (y+mtco) +?nty(5?n+3)
4nF??l.t~ 1[ 1

l~(Y+wo+wY) (w/+~ww-wYl +

m:w[’o’h-’ m,~fl+m 1+

2m(y+m,co) +?n,y(n%-1)

[
2m(y+?n,cJ –?n,’y(5m+3)

4m,%n~ 1[ 1
~i(y+?ntco-mty) (?ny+?n?ntcrj+?lhy +

[

3y~(m+l)2
1[

~osh_l 2m(y+m,cJ –mty(?n-l) +
8@PZ nat(?n+l)y 1

[ 4~5@ l-r(:~1)21[c0sh-Lsl

y2(5?n+l) ~~2(1–?n)

The constants FI and 1?!are evaluated as folIows:

F,=
s
,6fl(Y)dY

which yields for ml# I

/9(1 –m?) –?n’co
~1= ~@(l_7@

2
co5_, E@’

o +&+2(l :m,yfl—[ 1

— 1) +~2c0 _ co5-Im .
V=+ 2&n2co+fV(?n~— ?nCo

. .=-

where
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h
cOs-l?n&n+ 1)1

–-%iiig+’-]

where
ii= (m,–+) (m,+ 1) g= (m-+m,)(W&,-1)

d=2m+mm,–mt h=2m–mm,+m,

e=2m+5mm~+3m~ j =%n~+5mmt—2m

For m,=l
f=m,co

F3=&’){
[mc02+&O(3m- 1)+2p2(m– 1)]3;2 (mc02)3/’

6(m–1) }‘6(m-1) +

[

co C!’(’m—1) (7?n+3)
1{[

4~(m–l)+cO(3m–1)——
2m 16m’(m–1) 8(m–1) 1[ 1

4?nco’+/9co(3?n-1) +2&(?n–1) –

[ 1[ 1

co(19m2—10m+3) cos_l 4@(m—l)+co(3m— l)_cos_l 3m-1 +
32@m(l–m)sfl C*(??3+1) m+l

[:

2[8m2c$–4@nco(m+ 1)+3~2(m+ 1)2
157ncoa/z(m+1)3 ‘1 I~mco-1-p(m+l)]_ 16m3’2co I15(m+l)a +

The functions ~a(y) a,ndj4(y) were developed from the integral:

from which
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Then

also
,’J+-natc@ v+mtco

sf,(y) =,“ ~-xd’+s–1=’”(2+-Y) ~ ~~–g : “ (~–Y) \ ~z+y

;

which yields

f,(y) = [<~
[—

8(y+m,co)~+ 2?mn,y(y+?n,co) (7m+5) +“m?y2(3&-22’~+ 15) +
24rnm? 24m3m?—J

[

&(??23-3m’-9??2-5) ~osh_, (2m–”mmt+m,)y+2mmtcO_ cosh-, 3–m
1[ 1

(2m+”m7nt–?nJy+2”rnnw0 ~
16m7/2

WI —c.osh-l
?n’(m+l)y Z?-@n+l)y

[
2 27nzn,y(g/+m,cJ (77n+5) –m,~(3mY+22m+15) _

[4(?/+ %~o–~tY) (~Y+~wo+w)] ‘$:;y? – 24m3m: 1

[

$(3m2+87n:-:; ~- 1
The constant FSis evaluated as:

J
F,= :f, (y)dy

which yields for m~# 1

fl,=”m3~– (my’+ 2@l~–/3’a)3fl ~ ~’, ~osh.~ ‘@+j) +j(a~– 3m~) dm~’+213&–ab’+$+
(hn?mza 6m fhn, 6m2a2

f’(2~j,~m’) cos_, 7n~-aP_cos-, mf
( mm~gco ml=co–)

and for mc=l

2 2 I 9p.m2~o_&(l —m2)]3f2
F3=

m3c03—[m co T.
[

_, m(B+cO)
+& cosh ~

1

+Coip(l —mz) —3m%o]J-m2c02+2@n.2c0-P2(l—mz)+
6m2{l–m~ 6m2(l—mz)2

3 C$(2+7&)
[

~os.l mzco—~(l —m2)_cos_l m
.2(lm-c&2)2+6(1—m2)512 mco 1
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where
A=8mz+14m2m,+10mm, +3m2m?+22mmt’+15m?

B=2mm,c, (8m+7mn,+5m,)

(7=
ma–3m’–9m–5

16n3T12

D=8mz—-14m2mz– 10mml+3na2m?+22mm? +15m?

H=2mm60 (8m—7mm,–5m,)
and for ml=l

9

{[
F,= ~

5c0(3m-l)l+A} {

[mco2+@o(3m- 1)+2p2(m– 1)]‘f’
32m~ ‘– ~2(m–1) 6(m–1) }+{3H2Y:=?I-+KWI+

T cz(37m2–22m+5)
{[24mS 64(m–1)’ I-* RY:G)I+$H {4’(m-:A~Jfm-1) ’’m’’+’’’(3m-1)+2’2(m-1)’+

cOa(m+l)2
[

_, 4fJ(m-l) +co(3m-l)_cO~_, 3m–1 +nal/2c$(3m-1) + “
16~~(1 –m)a/2 Cos co(m+l) m+l 1 8(1–m) 1

c
[[ l+(m~”) {

_, p(m+ 1)+2mco_co~h_l 3–m ~osh., p(3m– 1)+2mco 2&dm2c02+fhnc0(m+ 1)~-
> B4 cos~ ——

“@(m+l) m+l z p(?n+l) 7mco(m+ 1)

4 [8m2cJ–4pmco(m+ 1)+3p2(ti+ 1)2]
[

B* 5f?cO(3m–1) 5c02(3m–I)z 2

35(l+m)4 ~~—
16m(m–1)–48m (m–l)2+64m (m–l)a–6(mc~@ “

co3(63ma—39m2+21m—5) ~o~_1413(m-1)+co(3m—1)_cos-1 3m—1~2p3m(m–l)+Bmco(3m– l)+m~02+3~~~~)4+ ~28~~ @_ 1)3
[ C“(?n+1) 1

—+m+l

5c$(3m– l)’_ met
)]”[ 1{

p4(3m2+8m+ 13)~- + 2C” +(5–m)[2mc0–3fl(m+ l)]+
64(m–1)3 6(m–1)2 – 96mi’/Z 9m(m+l) 90m2(m+l)2

(5–m) [8m2c/– 12flmcO(m+1)+ 15#2@+ 1)2]
)

{Imc$+fico(m+l)]‘t’)–[(mco’)’l~
[

2CQ CO(5—m) 2co(5–m)
420maco(m+l)Z 19m(m+l)+45m(m+l) 2+105m(m+lJa

where

T=25m2+32m+ 15

V=10mco(3nt+ 1)
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