NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

REPORT 967

ELASTIC AND PLASTIC BUCKLING OF SIMPLY SUPPORTED SOLID-CORE SANDWICH PLATES IN COMPRESSION

By PAUL SEIDE and ELBRIDGE Z. STOWELL

1950

For sale by the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C. Yearly subscription, $3.50; foreign, $4.50; single copy price varies according to size. - - - - - - - Price 15 cents
AERONAUTIC SYMBOLS

1. FUNDAMENTAL AND DERIVED UNITS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Metric</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unit</td>
<td>Abbreviation</td>
</tr>
<tr>
<td>Length</td>
<td>ft</td>
<td>ft or mi</td>
</tr>
<tr>
<td>Time</td>
<td>sec</td>
<td>sec or hr</td>
</tr>
<tr>
<td>Force</td>
<td>lb</td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td>horsepower</td>
<td>hp</td>
</tr>
<tr>
<td>Speed</td>
<td>mph</td>
<td></td>
</tr>
</tbody>
</table>

2. GENERAL SYMBOLS

W Weight = mg

\(g \) Standard acceleration of gravity = 9.80665 m/s² or 32.1740 ft/sec²

m Mass = \(\frac{W}{g} \)

I Moment of inertia = mk². (Indicate axis of radius of gyration \(k \) by proper subscript)

\(\mu \) Coefficient of viscosity

3. AERODYNAMIC SYMBOLS

\(S \) Area

\(S_w \) Area of wing

\(\varphi \) Gap

b Span

c Chord

A Aspect ratio, \(\frac{b}{c} \)

V True air speed

q Dynamic pressure, \(\frac{1}{2} \rho V^2 \)

L Lift, absolute coefficient \(C_L = \frac{L}{qS} \)

D Drag, absolute coefficient \(C_D = \frac{D}{qS} \)

\(D_0 \) Profile drag, absolute coefficient \(C_{D_0} = \frac{D_0}{qS} \)

\(D_I \) Induced drag, absolute coefficient \(C_{D_I} = \frac{D_I}{qS} \)

\(D_p \) Parasite drag, absolute coefficient \(C_{D_p} = \frac{D_p}{qS} \)

C Cross-wind force, absolute coefficient \(C = \frac{C}{qS} \)

\(\alpha \) Angle of attack

\(\varepsilon \) Angle of downwash

\(\alpha_0 \) Angle of attack, infinite aspect ratio

\(\alpha_e \) Angle of attack, induced

\(\alpha_s \) Angle of attack, absolute (measured from zero-lift position)

\(\gamma \) Flight-path angle
REPORT 967

ELASTIC AND PLASTIC BUCKLING OF SIMPLY SUPPORTED SOLID-CORE SANDWICH PLATES IN COMPRESSION

By PAUL SEIDE and ELBRIDGE Z. STOWELL

Langley Aeronautical Laboratory
Langley Air Force Base, Va.
National Advisory Committee for Aeronautics

Headquarters, 1724 F Street NW., Washington 25, D. C.

Created by act of Congress approved March 3, 1915, for the supervision and direction of the scientific study of the problems of flight (U. S. Code, title 50, sec. 15). Its membership was increased from 12 to 15 by act approved March 2, 1929, and to 17 by act approved May 25, 1948. The members are appointed by the President, and serve as such without compensation.

JEROME C. HUNSAKER, Sc. D., Massachusetts Institute of Technology, Chairman

ALEXANDER WETMORE, Sc. D., Secretary, Smithsonian Institution, Vice Chairman

DEITLW W. BRUNER, Ph. D., President, Johns Hopkins University.

JOHN H. CASSANDY, Vice Admiral, United States Navy, Deputy Chief of Naval Operations.

EDWARD U. CONDON, Ph. D., Director, National Bureau of Standards.

HON. THOMAS W. S. DAVIS, Assistant Secretary of Commerce.

JAMES H. DOOLITTLE, Sc. D., Vice President, Shell Union Oil Corp.

R. M. HAZEN, B. S., Director of Engineering, Allison Division, General Motors Corp.

WILLIAM LITTLEWOOD, M. E., Vice President, Engineering, American Airlines, Inc.

THEODORE C. LONQQUEST, Rear Admiral, United States Navy, Deputy and Assistant Chief of the Bureau of Aeronautics.

DONALD L. PUTT, Major General, United States Air Force, Director of Research and Development, Office of the Chief of Staff, Materiel.

ARTHUR E. RAYMOND, Sc. D., Vice President, Engineering, Douglas Aircraft Co., Inc.

FRANCIS W. REICHLDERFER, Sc. D., Chief, United States Weather Bureau.

HON. DELOS W. RENTZEL, Administrator of Civil Aeronautics, Department of Commerce.

HOYT S. VANDENBERG, General, Chief of Staff, United States Air Force.

WILLIAM WEBSTER, M. S., Chairman, Research and Development Board, Department of Defense.

THEODORE P. WRIGHT, Sc. D., Vice President for Research, Cornell University.

HUGH L. DRYDEN, Ph. D., Director

JOHN W. CROWLEY, JR., B. S., Associate Director for Research

HENRY J. REID, D. Eng., Director, Langley Aeronautical Laboratory, Langley Air Force Base, Va.

SMITH J. DEFRANCE, B. S., Director Ames Aeronautical Laboratory, Moffett Field, Calif.

EDWARD K. SHARP, Sc. D., Director, Lewis Flight Propulsion Laboratory, Cleveland Airport, Cleveland, Ohio

TECHNICAL COMMITTEES

AERODYNAMICS

POWER PLANTS FOR AIRCRAFT

AIRCRAFT CONSTRUCTION

Operating Problems

Industry Consulting

Coordination of Research Needs of Military and Civil Aviation

Preparation of Research Programs

Allocation of Problems

Prevention of Duplication

Consideration of Inventions

LANGLEY AERONAUTICAL LABORATORY, Langley Air Force Base, Va.

LEWIS FLIGHT PROPULSION LABORATORY, Cleveland Airport, Cleveland, Ohio

AMES AERONAUTICAL LABORATORY, Moffett Field, Calif.

Conduct, under unified control, for all agencies, of scientific research on the fundamental problems of flight

OFFICE OF AERONAUTICAL INTELLIGENCE, Washington, D. C.

Collection, classification, compilation, and dissemination of scientific and technical information on aeronautics
ELASTIC AND PLASTIC BUCKLING OF SIMPLY SUPPORTED SOLID-CORE SANDWICH PLATES IN COMPRESSION

By Paul Seide and Elbridge Z. Stowell

SUMMARY

A solution is presented for the problem of the compressive buckling of simply supported, flat, rectangular, solid-core sandwich plates stressed either in the elastic range or in the plastic range. Charts for the analysis of long sandwich plates are presented for plates having face materials of 24S-T3 aluminum alloy, 75S-T6 Alclad aluminum alloy, and stainless steel.

A comparison of computed and experimental buckling stresses of square solid-core sandwich plates indicates fair agreement between theory and experiment.

INTRODUCTION

The necessary condition that the wing surfaces of modern high-speed aircraft remain smooth under high loads has led to the use of the sandwich plate as a substitute for sheet-stringer construction. Sandwich plates consist of two thin sheets of metal separated by a low-density, low-stiffness core which, though contributing little to the strength of the plate, serves to increase tremendously the flexural stiffness of the load-carrying faces. The increase in flexural stiffness is somewhat offset, however, by deflections due to shear which become appreciable because of the low stiffness of the core.

Several papers, which extend ordinary plate theory to take into account deflections due to shear, have appeared recently in this country. The extension is made approximately in reference 1 by means of the assumption that any line in the core that is initially straight and normal to the middle surface of the core will remain straight after deformation but will deviate from the normal to the deformed middle surface by an amount that is proportional to the slope of the plate surface, the proportionality factor being the same throughout the plate. The theory is used to obtain approximate criterions for the compressive buckling of plates with various edge-support conditions. The criterions are corrected for the effects of plasticity by replacing the Young's modulus of the face material everywhere it appears in the buckling formulas by a reduced modulus, this method of correction being partly justified by the consideration of its theoretical effectiveness in connection with the plastic buckling of simply supported sandwich columns. Reference 2 presents a large-deflection analysis of elastic isotropic sandwich plates and reduces the equations to small-deflection form to solve the problem of the compressive buckling of simply supported sandwich plates. The theories of references 2 and 3 can be shown to reduce to that of reference 1 in the case of the problem of the compressive buckling of simply supported plates.

In the present report the theory of reference 2 is applied to the problem of the compressive buckling of simply supported solid-core sandwich plates. The particular sandwich considered (fig. 1) is one for which face-parallel stresses in the core may be neglected so that all the applied load is carried by the faces. Furthermore, the faces are assumed to be very thin compared with the core. The stability criterion obtained is similar to those given in references 1 and 3. The theory is also extended to the plastic range in much the same manner as was done in reference 4 for solid plates and is used to determine the plastic compressive buckling stress of simply supported solid-core sandwich plates. Charts for the analysis of long sandwich plates stressed in the elastic range or in the plastic range are presented for plates having face materials of 24S-T3 aluminum alloy, 75S-T6 Alclad aluminum alloy, and stainless steel.

The theory is checked by a comparison of computed and experimental results for square sandwich plates with 24S-T Alclad aluminum-alloy faces and end-grain balsa cores. The experimental results were obtained from reference 5. Fair agreement is found between theory and experiment.

![Diagram of Simply Supported Solid-Core Sandwich Plate under Compression](image)
SYMBOLS

\(x,y \)
coordinate axes (fig. 1)

\(E_s \)
Young’s modulus for face material

\(E_t \)
secant modulus for face material

\(E_T \)
tangent modulus for face material

\(C_i = \frac{1}{4} \left[1 + \frac{3}{4} \frac{E_s}{E_T} \right] \)

\(\frac{C}{E} \)
Poisson’s ratio for face material

\(G_s \)
shear modulus of core material

\(t_f \)
face thickness

\(h_c \)
core thickness

\(D \)
flexural stiffness per unit width of sandwich

\(B \)
flexural stiffness per unit width of sandwich

\(a \)
plate length

\(b \)
plate width

\(\beta \)
plate aspect ratio \((a/b) \)

\(\sigma_{cr} \)
buckling stress

\(k \)
elastic-buckling-stress coefficient \(\left(\frac{2b^2\sigma_{cr}t_f}{\pi^2D} \right) \)

\(k' \)
elastic-buckling-stress coefficient based upon

\(\mu_f = \frac{1}{2} \left(\frac{3b^2\sigma_{cr}t_f}{2\pi^2B} \right) \)

\(k_{pl} \)
plastic-buckling-stress coefficient \(\left(\frac{2b^2\sigma_{cr}t_f}{\pi^2D} \right) \)

\(k'_{pl} \)
plastic-buckling-stress coefficient based upon

\(\mu_f = \frac{1}{2} \left(\frac{3b^2\sigma_{cr}t_f}{2\pi^2B} \right) \)

\(r \)
core shear-stiffness parameter for sandwich

\(s \)
core shear-stiffness parameter for sandwich

\(m \)
number of half-waves in buckled plate deflection surface in direction of loading

RESULTS AND DISCUSSION

Compressive buckling formulas for simply supported flat, rectangular solid-core sandwich plates are derived in the appendixes for buckling in either the elastic range or in the plastic range. The equation for compressive buckling in the elastic range is obtained in appendix A by use of the theory developed in reference 2. The theory is modified in appendix B to obtain the equation for compressive buckling in the plastic range.

Elastic range.—For finite plates the buckling-stress coefficient is given by equation (A7) of appendix A as follows:

\[
k = \frac{(m + \frac{\beta}{m})^2}{1 + r(1 + \frac{m^2}{\beta^2})}
\]

Consecutive integral values of \(m \) are substituted into equation (1) until a minimum value of the buckling coefficient is obtained for given values of \(\beta \) and \(r \). For infinite plates the coefficient reduces to

\[
k = \frac{4}{(1+r)^2} \quad (r \leq 1)
\]

and

\[
k = \frac{1}{r} \quad (r \geq 1)
\]

When the core shear stiffness is infinite \((r=0)\), equations (1) and (2) reduce to the well-known buckling criteria for isotropic plates with deflections due to shear neglected.

Equations (1) to (3) are presented graphically in figures 2 and 3. Figure 2 shows that the effect of finite core shear stiffness is not only to decrease the buckling stress but also to increase the number of half-waves in the buckled plate. If the core shear-stiffness parameter is equal to or less than 1.0, the wave length of buckle becomes infinitely small, in
which case the restraint to buckling offered by the side supports has no effect. The buckling-stress coefficient is then independent of the plate aspect ratio \(\beta \) and is determined by the shear strength of the core.

Plastic range.—When the buckling stress is in the plastic range the buckling coefficients are given by the appropriate one of equations (B10) to (B13) of appendix B. Since the buckling coefficient is given by these equations as a function of the buckling stress, a graphical method must be used to analyze a given plate. The buckling coefficient given by equations (B10) to (B13) is defined as

\[
k'_{pl} = 3 \frac{b^2 \sigma_{pl}}{2 \pi^2 B}
\]

Equation (4) can be rearranged to give

\[
\frac{\pi^2 B}{b^2 t_f} \frac{3 \sigma_{pl}}{2 k'_{pl}}
\]

so that \(\pi^2 B \) is now given in terms of the buckling stress, the shear-stiffness parameter \(\frac{\pi^2 B}{b^2 G_e h_e} \) and the plate aspect ratio \(\beta \), all of which are contained in \(k'_{pl} \). For a given value of \(\beta \), curves of \(\pi^2 B \) against buckling stress can be plotted for various values of the shear-stiffness parameter \(\frac{\pi^2 B}{b^2 G_e h_e} \). Then for a given plate, \(\pi^2 B \) and \(\pi^2 B \) are defined by the plate dimensions and material properties and the buckling stress may then be obtained from the appropriate curve.

![Figure 3](https://example.com/figure3.jpg)

Figure 3. Compressive-buckling coefficients for infinitely long solid-core sandwich plates stressed in the elastic range. \(k = \frac{4}{3 (1 + \mu_f)} \) for \(r \leq 1 \); \(k = \frac{1}{r} \) for \(r \geq 1 \).

Since equations (B10) to (B13) are valid only for plates with a Poisson's ratio of \(\frac{1}{2} \), the buckling stresses computed by the foregoing method from those equations are in error for plates having other Poisson's ratios and must be corrected. The correction process used in the present report is the following: For a given plate, the plastic buckling stress based on a Poisson's ratio of \(\frac{1}{2} \) is computed by the foregoing method. The buckling stress for a perfectly elastic plate is also computed by using the appropriate one of equations (B14) to (B16) which are also based upon a Poisson's ratio of \(\frac{1}{2} \). It is assumed that for given values of \(\frac{\pi^2 B}{b^2 t_f} \) and \(\frac{\pi^2 B}{b^2 G_e h_e} \) the ratio of the plastic and elastic stresses is independent of Poisson's ratio. Then for any other value of Poisson's ratio the corrected buckling stress is given by:

\[
\sigma_{cr} = \eta \times \text{Elastic buckling stress for actual value of } \mu_f
\]

\[
= \frac{\pi^2 B}{2 b^2 t_f} \frac{k}{1 - \mu_f^2}
\]

where \(\eta \) is the ratio of the plastic and elastic buckling stresses computed on the basis of \(\mu_f = \frac{1}{2} \) and \(k \) is determined from equations (1) to (3) for finite plates as

\[
k = \frac{\left(m + \frac{m}{\beta} \right)^3}{\pi^2 B}
\]

and for infinitely long plates as

\[
k = \frac{4}{\left(\frac{\pi^2 B}{b^2 G_e h_e} \right)^2} \left(\frac{\pi^2 B}{b^2 G_e h_e} \cong 1 - \mu_f^2 \right)
\]

Curves of \(\pi^2 B \) against the corrected buckling stress for various values of \(\frac{\pi^2 B}{b^2 G_e h_e} \) may now be drawn. Different sets of curves are obtained for different values of \(\mu_f \). Charts for the analysis of infinitely long sandwich plates were constructed by the foregoing method for face materials of 24S-T3 aluminum alloy, Alclad 75S-T6 aluminum alloy, and stainless steel and are presented, together with the typical
stress-strain curves on which they are based, as figures 4, 5, and 6, respectively. In each case \(\mu_r \) was taken as \(\frac{1}{3} \). Since the equations used do not depend on the stress-strain curve itself but upon its shape as given by the curves of \(\frac{E_s}{E_f} \) and \(\frac{E_T}{E_f} \) as functions of stress (figs. 4(b), 5(b), and 6(b)), solid-core sandwich plates having faces of any material for which curves of \(\frac{E_s}{E_f} \) and \(\frac{E_T}{E_f} \) against stress are similar to those used may be analyzed by means of the corresponding chart.

The charts of figures 4, 5, and 6 for infinitely long sandwich plates may be used with little error for finite plates, the aspect ratios of which are greater than 3. An extension of the curves of figure 2 would indicate that in this range of aspect ratio the buckling coefficient is essentially given by that for the infinitely long plate, especially if the core shear stiffness is low.

Comparison of theory and experiment.—An experimental check of the equations derived in this report for the compressive buckling of simply supported solid-core sandwich plates was obtained by a comparison of computed and experimental buckling stresses of square plates having 24S-T3 Alclad aluminum-alloy faces and end-grain-balsa cores of various thicknesses (fig. 7). The experimental results were obtained from reference 5.

As indicated by figure 7 the agreement between computed and experimental stresses is fair, the computed stresses being on the average 8 percent higher than the experimental stresses. In individual cases, however, the deviation is as
high as 25 percent on the unconservative side. An investigation of the experimental data reveals that some of this deviation can be traced to a scattering of the experimental buckling stresses for plates having essentially the same dimensions. Some error is also involved in the computation of the buckling stresses with the use of an average stress-strain curve for the face material.

The theoretical buckling stresses obtained by using the results of the present report agree reasonably well with the theoretical results obtained in reference 5 by using the stability equation of reference 1. Differences in these theoretical results arise mainly because the flexural stiffnesses used in the present report are theoretical, whereas those used in reference 5 were obtained experimentally.

FIGURE 5.—Charts for long solid-core sandwich plates with 75S-T6 Alclad aluminum-alloy faces. \(\mu = \frac{1}{2} \).

FIGURE 5. Concluded.

LANGLEY AERONAUTICAL LABORATORY,
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS,
LANGLEY AIR FORCE BASE, VA., DECEMBER 80, 1948.
(a) Design chart.

Figure 6. Charts for long solid-core sandwich plates with stainless-steel faces. $\pi^{\frac{2}{3}} \frac{B}{b^2 t_f h_f} = 0.15, 0.30, 0.45, 0.60, 0.75$.

(b) Typical stress-strain relations for stainless steel.

Figure 6. Concluded.

Figure 7. Comparison of calculated and experimental buckling stresses for square solid-core sandwich plates with 2024-T aluminum-alloy faces.
APPENDIX A

DERIVATION OF COMPRESSIVE BUCKLING EQUATION FOR SIMPLY SUPPORTED SOLID-CORE SANDWICH PLATES STRESSED IN THE ELASTIC RANGE

The compressive buckling criterion for simply supported solid-core sandwich plates (fig. 1) stressed in the elastic range may be derived by means of equations (5a) to (6c) of reference 2. In the equations seven physical constants of sandwich plates (two Poisson's ratios, two flexural stiffnesses, a twisting stiffness, and two shear stiffnesses) must be specified. In order to determine the physical constants, the following assumptions are made in the present report:

1. The faces and core are isotropic.
2. Face-parallel stresses in the core may be neglected so that the applied loads are carried only by the faces.
3. Vertical shear forces are carried only by the core and are distributed uniformly across the thickness of the core.
4. The faces are assumed to be very thin compared to the core so that the variation of face-parallel stresses across the thickness of the faces may be neglected.

Under these assumptions the physical constants of solid-core sandwich plates are

\[
\begin{align*}
\nu_x &= \nu_y = \nu_f \\
D_x &= D_y = (1 + \nu_f) D_{xy} = \frac{E_t (h_x + h_t)}{2} \\
D_{Q_x} &= D_{Q_y} = G_t h_t
\end{align*}
\]

(A1)

Equations (5a) to (6c) of reference 2 may then be written as

\[
\begin{align*}
M_x &= -D \left[\frac{\partial}{\partial x} \left(\frac{\partial w}{\partial x} - \frac{Q_x}{G_t h_c} \right) + \nu_f \frac{\partial}{\partial y} \left(\frac{\partial w}{\partial y} - \frac{Q_y}{G_t h_c} \right) \right] \\
M_y &= -D \left[\frac{\partial}{\partial y} \left(\frac{\partial w}{\partial y} - \frac{Q_y}{G_t h_c} \right) + \nu_f \frac{\partial}{\partial x} \left(\frac{\partial w}{\partial x} - \frac{Q_x}{G_t h_c} \right) \right] \\
M_{xy} &= \frac{1 - \nu_f}{2} D \left[\frac{\partial}{\partial x} \left(\frac{\partial w}{\partial y} - \frac{Q_y}{G_t h_c} \right) + \frac{\partial}{\partial y} \left(\frac{\partial w}{\partial x} - \frac{Q_x}{G_t h_c} \right) \right] \\
\frac{\partial^2 M_z}{\partial x^2} - 2 \frac{\partial^2 M_{xy}}{\partial x \partial y} + \frac{\partial^2 M_y}{\partial y^2} &= 2 \sigma_c t_f \frac{\partial^2 w}{\partial x^2} \\
Q_x &= -\frac{\partial M_{xy}}{\partial y} + \frac{\partial M_y}{\partial x} \\
Q_y &= -\frac{\partial M_{xy}}{\partial x} + \frac{\partial M_x}{\partial y}
\end{align*}
\]

(A2)

(A2a) to (A2c) into equation (A2d) yields

\[
-D \nabla^4 w + \frac{D}{G_t h_c} \nabla^2 \left(\frac{\partial Q_x}{\partial x} + \frac{\partial Q_y}{\partial y} \right) - 2 \sigma_c t_f \frac{\partial^2 w}{\partial x^2} = 0
\]

(A3)

But, from equations (A2d) to (A2f),

\[
\frac{\partial Q_x}{\partial x} + \frac{\partial Q_y}{\partial y} = 2 \sigma_c t_f \frac{\partial^2 w}{\partial x^2}
\]

(A4)

Hence equation (A3) reduces to

\[
\nabla^4 w + \left(1 - \frac{D}{G_t h_c} \right) 2 \sigma_c t_f \frac{\partial^2 w}{\partial x^2} = 0
\]

(A5)

Equation (A5) is identical with equation (71) of reference 3 for a plate under compression in one direction.

Since the plate is simply supported on all edges, the deflection surface may be taken as

\[
w = A \sin \frac{\pi x}{a} \sin \frac{\pi y}{b}
\]

(A6)

yielding the stability criterion

\[
k = \frac{\left(\frac{m}{\beta} - \frac{\beta}{m} \right)^2}{1 + r \left(1 + \frac{m^2}{\beta^2} \right)}
\]

(A7)

The value of \(m \) to be used in equation (A7) is that which yields the lowest value of \(k \) for given values of \(r \) and \(\beta \).

Equations for elastic buckling of infinitely long simply supported sandwich plates under compression are obtained by minimizing equation (A7) with respect to \(\beta / m \). This procedure yields

\[
\frac{\beta}{m} = \sqrt{\frac{1 - r}{1 + r}} \quad (r \leq 1)
\]

(A8)

and

\[
\frac{\beta}{m} = 0 \quad (r \geq 1)
\]

(A9)

The buckling coefficient given by equation (A9) corresponds to failure of the core material under the action of the core shear forces.

Equations (A7) to (A9) are similar to equations (76), (79), and (79a) of reference 3.
APPENDIX B

DERIVATION OF COMPRESSIVE BUCKLING EQUATION FOR SIMPLY SUPPORTED SOLID-CORE SANDWICH PLATES STRESSED IN THE PLASTIC RANGE

When the faces of sandwich plates are stressed in the plastic range, the buckling theory used in appendix A is no longer applicable. The equations of equilibrium, equations (A2d) to (A2f), remain unchanged but the deformation equations, (A2a) to (A2c), must be modified to include plastic effects. This modification may be readily made by means of the plastic buckling theory of reference 4 which is based on the plastic stress-strain relations characteristic of the deformation theory of plasticity. The stress-strain relations involve the assumptions that the plate material is isotropic and incompressible and that no part of the plate unloads during buckling.

Since in the sandwich plates considered in this report the applied forces are assumed to be carried only by the faces and the stresses arising from these forces are assumed to be distributed uniformly across the thickness of the faces, the bending and twisting moments are given by the equations

\[
\begin{align*}
M_x &= (\delta \tau_z - \delta \tau_y) \frac{t_f h_x^e + t_f}{2} \\
M_y &= (\delta \sigma_z - \delta \sigma_y) \frac{t_f h_y^e + t_f}{2} \\
M_{xy} &= -(\delta \tau_z - \delta \tau_y) \frac{t_f h_x^e + t_f}{2}
\end{align*}
\]

(B1)

where \(\delta \sigma_z, \delta \sigma_y, \delta \tau_{xy}\) are small variations of the average stresses in the faces when buckling occurs from their values before buckling. The superscripts \(U\) and \(L\) refer to the upper and lower faces, respectively. The positive direction of \(M_{xy}\) is taken in accordance with that given in reference 1 and is the negative of that given in reference 2.

Expressions for the variations of the average stresses in the faces may be obtained from the general treatment of reference 2. For the case of a plate compressed in the \(x\)-direction, these equations are

\[
\begin{align*}
\delta \sigma_z &= \frac{4}{3} E_I \left[\left(\epsilon_z + \frac{1}{2} \epsilon_y - \frac{3}{4} \left(1 - \frac{E_I}{E_I} \right) \chi_1 \chi_0 \right) \right. \\
&\left. \right. \\
\delta \sigma_y &= \frac{4}{3} E_I \left[\left(\epsilon_z + \frac{1}{2} \epsilon_y \right) \right. \\
&\left. \right. \\
\delta \tau_{xy} &= \frac{2}{3} E_I \left[\epsilon_z + \frac{1}{2} \epsilon_y \right]
\end{align*}
\]

(B2)

where

\(\epsilon_1, \epsilon_2, \epsilon_3\) variations of middle-surface strains \\
\(\chi_1, \chi_2, \chi_3\) parts of plate bending and twisting curvatures that cause stresses in the faces

\(\chi_0\) coordinate of neutral surface of plate

The upper and lower signs refer to the upper and lower faces of the plate, respectively.

The deformations due to vertical shear consist merely of a sliding of the plate cross sections with respect to one another and hence do not contribute to the face stresses. The curvatures due to shear deflections therefore must be subtracted from the total plate curvatures to give the curvatures used in equations (B2). Then, if the core is assumed to be stressed in the elastic range,

\[
\begin{align*}
\chi_1 &= \frac{\partial}{\partial x} \left(\frac{\partial w}{\partial x} - \frac{Q_x}{G_h} \right) \\
\chi_2 &= \frac{\partial}{\partial y} \left(\frac{\partial w}{\partial y} - \frac{Q_y}{G_h} \right) \\
\chi_3 &= \frac{1}{2} \left[\frac{\partial}{\partial y} \left(\frac{\partial w}{\partial x} - \frac{Q_x}{G_h} \right) + \frac{\partial}{\partial x} \left(\frac{\partial w}{\partial y} - \frac{Q_y}{G_h} \right) \right]
\end{align*}
\]

(B3)

The substitution of equations (B2) and (B3) into equations (B1) yields the modified deformation equations

\[
\begin{align*}
M_x &= -\frac{4}{3} \psi B \left[C_{1x} \frac{\partial}{\partial x} \left(\frac{\partial w}{\partial x} - \frac{Q_x}{G_h} \right) + 1 \frac{\partial}{\partial y} \left(\frac{\partial w}{\partial y} - \frac{Q_y}{G_h} \right) \right] \\
M_y &= -\frac{4}{3} \psi B \left[\frac{\partial}{\partial y} \left(\frac{\partial w}{\partial x} - \frac{Q_x}{G_h} \right) + 1 \frac{\partial}{\partial x} \left(\frac{\partial w}{\partial y} - \frac{Q_y}{G_h} \right) \right] \\
M_{xy} &= \frac{1}{3} \psi B \left[\frac{\partial}{\partial y} \left(\frac{\partial w}{\partial x} - \frac{Q_x}{G_h} \right) + \frac{\partial}{\partial x} \left(\frac{\partial w}{\partial y} - \frac{Q_y}{G_h} \right) \right]
\end{align*}
\]

(B4)

Equations (B4) together with equations (A2d) to (A2f) of appendix A constitute the six fundamental differential equations for plastic compressive buckling of solid-core sandwich plates. Equations (A2d) to (A2f) are

\[
\begin{align*}
\frac{\partial^2 M_x}{\partial x^2} - 2 \frac{\partial^2 M_y}{\partial x \partial y} + \frac{\partial^2 M_{xy}}{\partial y^2} &= 2 \epsilon_{xy} \frac{\partial^2 w}{\partial x^2} \\
Q_x &= -\frac{\partial M_y}{\partial x} + \frac{\partial M_{xy}}{\partial y} \\
Q_y &= -\frac{\partial M_x}{\partial y} + \frac{\partial M_{xy}}{\partial x}
\end{align*}
\]

(B5)
Unlike the elastic buckling theory, the theory for plastic buckling does not yield a single equation in the middle-surface deflection w. The number of equations necessary for the determination of the compressive buckling load may be reduced to three if equations (B4) are substituted into equations (B5), so that

$$\begin{align*}
\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} - 2\pi \frac{\partial w}{\partial x} - 2\pi \frac{\partial w}{\partial y} &= 0 \\
\left(\frac{1}{4} \frac{\partial^2}{\partial y^2} + C_1 \frac{\partial^2}{\partial x^2} - \frac{3}{4} \frac{G_h h_e}{\psi B} \right) \frac{Q_x}{G_h h_e} + \frac{3}{4} \frac{\partial^2}{\partial x \partial y} \frac{Q_x}{G_h h_e} \\
\frac{\partial}{\partial x} \left(\frac{\partial^2}{\partial y^2} + C_1 \frac{\partial^2}{\partial x^2} \right) w &= 0 \\
3 \frac{\partial^2}{\partial x \partial y} \frac{Q_x}{G_h h_e} + \left(\frac{1}{4} \frac{\partial^2}{\partial y^2} + C_1 \frac{\partial^2}{\partial x^2} - \frac{3}{4} \frac{G_h h_e}{\psi B} \right) \frac{Q_y}{G_h h_e} \\
\frac{\partial}{\partial y} \left(\frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial x^2} \right) w &= 0
\end{align*}$$

(B6)

The conditions that must be satisfied at the edges of a simply supported sandwich plate are

$$\begin{align*}
w&=M_x=\frac{Q_x}{G_h h_e}=0 \quad \text{(at } x=0, a) \\
w&=M_x=\frac{Q_x}{G_h h_e}=0 \quad \text{(at } y=0, b)
\end{align*}$$

(B7)

Solutions of equations (B6) that satisfy these boundary conditions are

$$\begin{align*}
w &= A_1 \sin \frac{m\pi x}{a} \sin \frac{\pi y}{b} \\
\frac{Q_x}{G_h h_e} &= A_3 \cos \frac{m\pi x}{a} \sin \frac{\pi y}{b} \\
\frac{Q_y}{G_h h_e} &= A_3 \sin \frac{m\pi x}{a} \cos \frac{\pi y}{b}
\end{align*}$$

(B8)

Substitution of equations (B8) in equations (B6) yields the set of equations

$$\begin{align*}
\frac{m\pi}{a} \left[\left(\frac{\pi}{b} \right)^2 + C_1 \left(\frac{m\pi}{a} \right)^2 \right] A_1 - \left[\frac{1}{4} \left(\frac{\pi}{b} \right)^2 + C_1 \left(\frac{m\pi}{a} \right)^2 + \frac{3}{4} \frac{G_h h_e}{\psi B} \right] A_2 - \frac{3}{4} \frac{m\pi}{a} \frac{A_3}{b} &= 0 \\
\frac{\pi}{b} \left[\left(\frac{\pi}{b} \right)^2 + \left(\frac{m\pi}{a} \right)^2 \right] A_1 - 3 \frac{m\pi}{a} \frac{A_2}{b} - \left[\frac{1}{4} \left(\frac{m\pi}{a} \right)^2 + \left(\frac{\pi}{b} \right)^2 + \frac{3}{4} \frac{G_h h_e}{\psi B} \right] A_3 &= 0 \\
2\pi \frac{\partial^2}{\partial x \partial y} \frac{B}{G_h h_e} \left(\frac{m\pi}{a} \right)^2 A_1 + \frac{m\pi}{a} A_3 + \frac{\pi}{b} A_3 &= 0
\end{align*}$$

(B9)

Since A_1, A_2, and A_3 must have values other than zero, setting the determinant of the coefficients of A_1, A_2, and A_3 equal to zero yields the stability criterion

$$k_{p1} = \psi \left(\frac{\beta}{m} \right)^6 \left[1 + \frac{1}{3} \psi s \right] + \left(\frac{\beta}{m} \right)^4 \left[2 + \frac{1}{3} \psi s \left(4C_1 - 1 \right) \right] + \left(\frac{\beta}{m} \right)^2 \left[C_1 + \frac{1}{3} \psi s \left(5C_1 - 2 \right) \right] + \frac{1}{3} C_1 \psi s$$

(B10)

The plastic compressive buckling load of infinitely long sandwich plates may be obtained by minimizing equation (B10) with respect to β/m. This procedure yields

$$\left(\frac{\beta}{m} \right)^6 \left[1 + \frac{1}{3} \psi s \right] \left(1 + \frac{1}{3} \psi s \right) + \left(\frac{\beta}{m} \right)^4 \left[2 + \frac{1}{3} \psi s \left(1 + \frac{1}{3} \psi s \right) \right] \left[1 + 4C_1 + \frac{8}{9} \psi s \left(2C_1 - 1 \right) \right] \left[1 + \frac{1}{3} \psi s \left(5C_1 - 2 \right) \right] + \frac{1}{3} C_1 \psi s$$

(B11)

Equations (B10) and (B11) then determine the compressive buckling load of infinitely long sandwich plates. For any given values of the buckling stress and the shear stiffness parameter s, equation (B11) is used to find the value of β/m that yields the minimum value of k_{p1}. This value of β/m is then substituted in equation (B10) to determine k_{p1}. If all the values of β/m given by equation (B11) are imaginary; that is, if

$$s > \frac{3}{4} \frac{1}{C_1 \psi}$$

(B12)
\(\beta/m \) must be taken equal to zero in equation (B10), which becomes
\[
k'_p = \frac{1}{4s/3} (B13) \]
which is identical with equation (A9) if Poisson's ratio is taken equal to \(\frac{1}{2} \) in equation (A9).

If the buckling stress is in the elastic range, \(C_1 \) and \(\psi \) are equal to unity and the equations for compressive buckling of finite solid-core sandwich plates reduce to
\[
k' = \frac{\left(\frac{m}{\beta} + \frac{\beta}{m} \right)^2}{1 + \frac{4}{3}s \left(1 + \frac{m^2}{\beta^2} \right)} (B14) \]
and for compressive buckling of infinitely long sandwich plates,
\[
\begin{align*}
\frac{\beta}{m} &= \sqrt{\frac{1 - \frac{4}{3}s}{1 + \frac{4}{3}s}} \\
(4s) &\leq 3 (B15) \\
\end{align*}
\]

Equations (B14) to (B16) are identical with equations (A7) to (A9) if Poisson's ratio in equations (A7) to (A9) is taken to be \(\frac{1}{2} \).

REFERENCES
Positive directions of axes and angles (forces and moments) are shown by arrows.

<table>
<thead>
<tr>
<th>Axis</th>
<th>Designation</th>
<th>Symbol</th>
<th>Force (parallel to axis) symbol</th>
<th>Moment about axis</th>
<th>Angle</th>
<th>Velocities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitudinal</td>
<td>X</td>
<td>Y</td>
<td>Rolling</td>
<td>L</td>
<td>Roll</td>
<td>u</td>
</tr>
<tr>
<td>Lateral</td>
<td>Y</td>
<td>Z</td>
<td>Pitching</td>
<td>M</td>
<td>Pitch</td>
<td>v</td>
</tr>
<tr>
<td>Normal</td>
<td>Z</td>
<td></td>
<td>Yawing</td>
<td>N</td>
<td>Yaw</td>
<td>w</td>
</tr>
</tbody>
</table>

Absolute coefficients of moment

\[
C_l = \frac{L}{q\delta S} \quad \quad C_m = \frac{M}{q\delta S} \quad \quad C_n = \frac{N}{q\delta S}
\]

(rolling) (pitching) (yawing)

Angle of set of control surface (relative to neutral position), \(\delta\). (Indicate surface by proper subscript.)

4. PROPELLER SYMBOLS

\[
P = \text{Power, absolute coefficient } C_p = \frac{P}{\rho n^2 D^4}
\]

\[
C_r = \text{Speed-power coefficient } = \sqrt{\frac{P}{\eta n}}
\]

\[
\eta = \text{Efficiency}
\]

\[
n = \text{Revolutions per second, rps}
\]

\[
\phi = \text{Effective helix angle } = \tan^{-1}\left(\frac{V}{2\pi n}
ight)
\]

5. NUMERICAL RELATIONS

1 hp = 76.04 kg-m/s = 550 ft-lb/sec	1 lb = 0.4536 kg
1 metric horsepower = 0.9863 hp	1 kg = 2.2046 lb
1 mph = 0.4470 mps	1 mi = 1,609.35 m = 5,280 ft
1 mps = 2.2369 mph	1 m = 3.2808 ft