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FREQUENCY RESPONSE OF LINEAR SYSTEMS
FROM TRANSIENT DATA

By MEeuviNn E. LaAVERNE and AaroN S. BoESENBOM

SUMMARY

AMethods are presented that use general correlative time-
response input and output data for a linear system to determine
the frequency-response function of that system. These methods
gite an exact description of any linear system for which such
transient data are available.

Examples are shown of application of a method to both an
underdamped and & critically damped exact second-order system,
and to an exact first-order system with and without dead time.
Experimental data for a turbine-propeller engine showing the
response of engine speed to change in propeller-blade angle are
presented and analyzed. -

INTRODUCTION

A basic problem confronting the control designer is that
of determining the behavior of the controlled system under
varying conditions of operation. This question becomes
particularly acute when various system parameters, for
example, engine shaft torque or turbine-inlet temperature,
must be closely controlled in order to prevent system damage
or even failure. The problem then becomes one of matching
transient behavior of the control to that of the uncontrolled
system in order to attain & desired response of the controlled
system.

General methods do not exist for the solution of the
equations of motion of nonlinear systems. As a result, the
analysis of such systems may be impracticably difficult, if,
indeed, a solution can be found at all. Because the behavior
of many nonlinear systems may be satisfactorily approxi-
mated by the assumption of system linesrity and because
general mathematical methods and techniques for the analy-
sis of linear systems are readily available and (in comparison
with present nonlinear methods) relatively simple to apply,
the assumption is generally made that the system being
studied is linear. The methods of this report are based on
such an assumption.

Approaches utilized in the anslysis of linear systems
(reference 1, pp. 17-18) are: (1) transient analysis, in which
the characteristic time response of the system is determined
for standard inputs such as step and impulse functions, or
(2) frequency analysis, in which system behavior is char-
acterized by the steady-state amplitude and phase relations
of the system input and output for sinusoidal inputs of
various frequencies.

For inputs such as step or impulse functions, the inherent
system characteristics might be obtained by fitting an

equation to the output function and from it deriving the
differential equation of the system. If the input and output
funections were of any general form, fitting differential
equations to the data might still be possible, but for systems
of inherently high order the accuracy of such a procedure
would be low. In genersal, use of the time-response form of
system description involves dealing with convoluiion in-
tegrals (reference 2, p. 54) when the unit so desecribed is to
be combined with other units. For complex systems, this
descriptive form is not readily adapted to manipulation.

A linear system is known fo be characterized by its
steady-state response to all frequencies of sinusoidal inputs.
The frequency-response form is useful for the description of
linear systems because of the ease with which various system

characteristics can be manipulated in dealing with combina-~ )

tions of units. For example, the over-all amplitude ratio of
output to input for any frequency of input to a system con-
sisting of several units in series is obtained by a simple
multiplication of the amplitude ratios for the several units.
A possible difficulty in the determination of the steady-state
frequency response is the necessity for maintaining a sinu-
soidal input of constant amplitude and frequency for a
length of time sufficient to insure disappearance of transient
effects in the output.

The nature of real physical systems may make actual
imposition or measurement of step or impulse inputs im-
possible; in addition, sinusoidal inputs may prove impracti-
cable. The need thus arises for feasible methods capable of
handling data of any general form. Such methods that use
general correlative time-response data for system input and
output to determine the frequency-response characteristics
of the system were developed at the NACA Lewis laboratory
in 194849 and are presented in this report. These methods
give an exact description of any linear system for which such
data are available.

Three exact methods of obtaining the frequency-response
function of a system are shown for system-equilibrium final
conditions. A graphical approximation to omne of the
methods is also given. M odification of ome of the exact
methods to account for oscillatory final conditions is shown
and treatment of dead time is presented. As an illustration
of one of the methods, three examples are given, two based
on analytically determined system-response curves and one
on experimental data obtained at this laboratory for a
turbine-propeller engine.
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SYMBOLS

The following symbols are used in this report:
A amplitude of system steady oscillation
a,b constants
F(iw) system frequency-response function
F(p) system transfer function
Ni) general function of time
G(p) system transfer function mcludmg dead time
a@® polynomisal approximsation to y{z)
RQt) normalized Gaussian error distribution or prob-

ability pulse .

g order of derivative of u(t)
L Laplace transform

P complex number

q degree plus one of g:(f)

R amplitude ratio of F{iw)
A time, seconds

u(t) unit step function

' (t) unit impulse function

z general time-dependent input

Y general time-dependent output

8 frequency of system steady oscillation, radians
per second

Al system dead time, seconds

e damping ratio

6 phase angle of F(iw), radians

v standard deviation of Gaussian curve

T system time constant, seconds

¢ phase angle of system steady oscillation, radians

o frequency of system sinusoidal mput. radians
per second

Subseripts:

0 last term of differential equation

f final value

ko general term of summation

m highest order derivative in expression for input

n highest order derivative in expression for output

r next to last term of summation

Superscripts: .

rptt mon first, second, third, mth, and nth time deriva-

tives, respectively
ANALYSIS

The system considered in the following derivation is
assumed to be linear. In particular, behavior of the system
is assumed representable by a linear differential equation
with constant coefficients. The block diagram of a system
having an input = and a corresponding output ¥ is shown in
figure 1. The symbol F(p) inside the box represents the
system operator which, acting on the input @, yields the
output y. The linear differential equation relatmg z and y
may be written as -

dnl

an dtﬂ +aﬂ. ldtn_ + +a0y

- b (1)

If the system is initially at rest (or in equilibrium), term-
wise application to equation. (1) of the Laplace transformation
(reference 2, pp. 51-56), defined as

my m—lg
= b Gt by St
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Lif1= | 7o d )

and factoring of the result give

(@nD"+ G+ . . . +a) L)
=(bm27’"+ bm-—lfpm_l'l" o +b0)L (ﬂ.‘)

or
Ly=teldtaat i dthyyy
Equation (3) may be formally written as
where Ly)=F@)L(x) (4)
b — m1
ro—phtentat e

The transfer function of the system F(p) is defined as the
ratio of the Laplace transform of any normal response of the
system to the Laplace transform of the input producing that
response. Normal response is the response of the system
when initially at rest (reference 2, p. 26).

Fp) —»—y

FIGuRE 1.—Block diagram of linear system,

From equdtions (2) and (4), the system transfer function
may be written as .

_L@
F (Z’)-—m'
or
fu ye Pt gt
Flp)y=2——— (8)
xe 2t di

0

EQUILIBRIUM FINAL CONDITIONS

Derivation of frequency-response function.—The frequency-
response function F(iw) is formally obtained directly from
equation (5) by replacing p by iw (reference 1, pp. 96-98).
Then, for a sinusoidal input x of frequency w, the output y
ultimately is sinusoidal at the same frequency but with a
relative magnitude and phase angle equel to the magni-
tude and the phase angle of the complex number F(iw).
The frequency-response function is defined as

F(iw)=——‘f° e ®

f ; xe~tol dt
Q

The term e¢~**is oscillatory and the integrals of equation (6)
may not converge unless j; ly| dt and jo |z{dt converge.

These conditions unduly restrict the choice of functions
that may be used in equetion (6) because of the implied
requirement that x and ¥ vanish as ¢ increases without limit.
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As will be shown, the previous restriction on = and ¥ may
be removed by suitable modification. of equation (6). A
much wider selection of input and output functions is thus
permitted.

For a system initially at rest,

Lif@l=pL{f®] Q)

An alternate expression for the transfer function then is

Fo=2) ®

or, from equations (2) and (8),

J;my’e'l" dt
Flp)y=*

f x’e—P df
1]

The frequency-response function then becomes

Iw y' et di
Flio)="2— )
L x’e it dt

when p is replaced by iw.

For any input or output function ending in equilibrium,
2’'—0 and y’—0, respectively, for ¢—>«. The integrals of
equation (9) therefore converge. - '

From Euler’s relation,

¢~ ft=gos wt—1 sin «t

equation (9) may be written

fuy’ cos wtdt—ifmy' sin of dt

Flig)=2% =0

f z’ cos cutdt—if z’ sin of di
0 g

10)

This form of the frequency-response function can be used

with any data for which the input and the output begin and

end in a steady state.

The integrals of equation (10) can be evaluated in various
ways. One theoretically exact method, which has been used
at the NACA Lewis laboratory, utilizes a rolling-sphere
harmonic analyzer. This {ype of analyzer, the same in
operating principle as the device described in reference 3,
was designed to obtain the Fourier coefficients from cyeclic
data, but the manner in which the coefficients are determined
results in evaluation of integrals of exactly the form of those
in equation (10). The frequency-response function can thus
be obtained for any frequency by operating the analyzer over
the output curve to evaluate the integrals in the numerator
and over the inpui curve to determine the integrals in the
denominator of equation (10) without replotting the data in
any other form.

The frequency spectra for nonperiodic phenomena are de-
termined in reference 4 by evaluating Fourier integrals with
a rolling-sphere harmonic analyzer in a manner similar to
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that followed in-this report in connection with equation (10).
The method of reference 4, however, differs from that of this
report in being restricted to functions that begin and end
at zero. In addition, the concepts of a system transfer or a
system frequency-response function are untreated.

Modifications of frequency-response derivation.—The
frequency response may, at times, be desired directly in
terms of the input and output functions themselves rather
than their time derivatives, For example, if an electronic.
device were used for analysis, the avoidance of the added
complexity and attendant inaccuracy of differentiating eir-
cuits might be desirable.

If both x and y come to a steady state by or before some
time #,, equation (9) may be rewritten as

£

f I'y’e“""‘ dt
)]
t

f ! oot gt
0

because for ¢ > ¢, the integrands of equation (11) are zero.
Integrating equation (11) by parts gives

£
'icuf fye"'“‘ dt+ye i
Flio)=—"7—— —%
iuf o dt+a:e‘“"[o
0

Fliv)= (11)

ty
0

or
£ N t
(f fy cos mtdt—y,sm:t")—i<f Tysin wtdt—i—y,cozwtf)
. 0 2 [}
Fie) b sinwt ./ (% . , . COS wiy
( zcos wt dt—x; —1 zsin widt-+z, )
] @ 0 @

(12)

An alternate procedure, leading to a somewhat simpler
expression, employs the principle of superposition. For
example, ¥ may be considered the linear combination of a
step function whose ordinate is ¥, and & second function

% S
y
t
()
Y
Y Yr
TN
t T
(b}

(a) System-output time function.
{b) Components of system-cutput time function.

FIGURE 2.—Separation of system-output time function into components for equilibrium final
- conditions. )
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whose ordinates are those of y displaced downward by the
value of y, Such a separation of ¥ into its component
functions is shown in figure 2. An analytical expression of
the process may be derived as follows: The transfer function
of the system is

J‘mye"”‘dt
Fp)=2% e

fw:ce""dt
0

Because of the linearity of the transformation

R

F(p)= o

f (x—zre T"dt—l—f ze"? df

f (y—yf)e“”dt-i-&
f(a: a:f)e'?"dt-l- Z

Setting p=1w then gives

f “y—ydeiedir
Fliw) 0” : :;" -
j; (:c—x,)e""**dt—[—i

or : .

f ”(y-—yf) cos wtdt—1 [fw(y—y,) sin wtdtf’;-&:l

Fliw)=2L . F_k-om._.. ;’ |

f @—xy) cos wtdt—1 Lf (@—ax,) sin mtdt—l——’:l

0 0 w
(13)
1) %1 é?- z;s f;t-l t;: t‘m:.‘ f:-i -2:‘,. t:r+1
=
ga(t) -,
(Y 7
:tk-l .E'k
(b}

(2) Piecewise continuous time function,
(b) Piecewise approximation to time function.

FIGURE 3.—General approximetion to time funetion,

Equations (12} and (13) define F(iw) for all frequencies
except =0 and F(0) can readily be shown to be y,/x,.
Approximation to frequency-response funetion.—Let f(£)
be & piecewise continuous function as shown in figure 3.
If within each of the 741 pieces () is approximated by a
polynomial of any degree not greater than g—1, then, for

.tr41 at infinity, the Laplace transform of f(¢) is given by

LUOI=3 35 pemgms U0k 00— £0-26—0)] (410)
Equation (A10) is developed in detail in appendix A.

The expression for L(f) in equation (A10) requires only
the values of the approximation and its derivatives at t=--0
[f(+0), f/(+0), and so forth] together with the jumps
[F¢? (t+0)—f? (£;—0)] in f and in the derivatives of the
approximating polynomials at any points of discontinuity
(t) of the functions or their derivatives. The degree of the
approximating polynomials may be different in the various
pieces but g—1 is the highest degree of polynomial in any
piece.

As an example of the use of equation (A10), let #(t) be a
continuous function (except at =0) approximated, as shown
in figure 4, by a series of straight lines. Here the poly-

— 7ime funclion
------- Approximation fo time function

T

|
|
|
|
1

Fet)

T~

]
N
| ]

Ty tp Eppp

to & ta t; g

tey T

Figurk 4.—Linear approximetion to time function,

nomials are of first degree and ¢g=2. Henece, equation (A10)
becomes

T 2 e—ptk
L(fy= Vo) — =D
(L= 2 G et 00— 26—0)  (19)
Because f is continuous except at t=0 -

JG+0)—flti—
Fl+0)—flt—

0=0 for >0
0)=f(+0) for k=0

and

L) =3 { 25 P et 0= F = O (O} 421+ 0)

- For evenly spaced t's
’ tk+1—tk=t1

Ftoy=Tents
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and for £>0
f@—m=ﬂﬁﬁi
1
with

tlf’(tr'll" 0) =fr+1_fr=0
Then -

L= g oo (Lot B 28 S fOO )|

= 103 e foam 2R i SO+ 21160
15)

In order to get an expression that converges for p=0,
multiply equation (15) by » and use the relation

L(f)=pL() Q)

Then, on setting p=1w and separating real and imaginary
parts as in equation (9), equations (16) and (17) are obtained,
in which the integrals converge for w=0.

[ 5 cosatdim & Sof2Aorsckied] sinaktihSHO) 16)

[ sin ot dt= A Ui fH 1= 35 Bfem ook forlcos wktl}
J—0 [215) k=1
an

where
k tl = t;;

By applying equations (16) and (17) to the input and output
curves of any system and using the results in equation (10),
the approximate frequency-response function of that system
may be determined.

OSCILLATORY FINAL CONDITIONS

The procedures thus far described apply only when the
system comes to rest at some new equilibrium condition.
If the output does not reach equilibrium but continues to
oscillate about some mean value, a modification in the
method is necessary in order to account for the oscillatory
component.

System linearity permits resolution of the output y into
two components 7 and 4., whose algebraic sum is the original
output, as shown in figure 5. The block diagram equivalent
to this resolution of ¥ into components is given in figure 6.
The dashed outline indicates the over-all transfer function of
figure 1. From figure 6, F(p) may be represented as the
linear sum of two transfer functions, F;(p) and Fa(p), operat-
ing in parallel. The following equation may then be written:

F(p)="F\(p)+ F:p)

f 91" cos et di— = sin q&) (f 1 sin wtdt— Z cos qs)
F(‘Lw)—
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or

L) +L(-y 2)
Lz ' L)

_L@)+pLy)
L{z")

Fip)=

(18)

Bee

t @I¢ le— t
(bl
(a)} System-output time function.

(b) Components of system-output time funection.

FIGTRE 5.—Separation of system-output time fonction into components for oscillatory final

conditions.
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FIGTRE B.—Block-diagram representation of linear system for oscillatory final conditions.

If the steady oscillation is simple harmonie, the oscillatory
component of the output may be expressed as

y.=A sin (8t+¢)
for £>0. Then

A .
pL(yz)=Z%§ (8 cos ¢+p sin ¢}
and
’— AP A .
f Y e pdt'[‘ 21‘32(13 COS_@-{-PSIHQS)
(19)
.ﬁz e Pt dt

When p is replaced by ie in equation (19), the frequency-
response function becomes

F(p)=

(20)
f z’ cos wtdt—zf 2’ sin et dt
0 [}
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TREATMENT OF DEAD TIME

Dead time in a linear system is the time difference be-
tween the initiation of a disturbance to. the system and the
beginning of a response to that disturbance. The mathe-
matical equivalent of dead time then is & translation of the
output function along the time axis in a positive direction;

that is, if _

Liy®)=F(p)Lz®)] , 4
for a system without dead time, then for the system with
dead time '

Lly¢—a)]=G(p)L{z@)] (21}

where G(p) is different from F(p). The relation between
Q(p) and F(p) is readily determined by an expansion in a
Taylor’s series of y(t—At) in the neighborhood of #:

2 ]
Y—2)=y@ Ay O+ v O~ 1O+ ..
Then '

Liy(t—At))=Lly®]— ~ Ly o1+

AtL[y'(t)]-i- L[y”(t)]

For initial conditions of equilibrium

Liy*@]l=p"Liy®)]
Hence,

Liye—a9]=Llyl—spLiy+ 22 Liy) 252 Lo+

MY APy )L[y(t)]

=e=4 Ly ()] 22)

From equations (21) and (22)
Liy@)]=e*»G(p) L{z()] (23)
Comparison of equations (4) and (23) shows that
476G (p)=F(p)
6(@)=e42F(p)

from which the corresponding frequency-response functional
relation is

or

Gliwy=e"18F(je) (24)

It can easily be shown that the effect of dead time on the
frequency-response function is to decrease the phase angle
algebraically by the amount Afew, leaving the amplitude ratio
unchanged. In general, F(iw) is a complex number and may
be expressed as

F(iw)=Re*
From equation (24)
G(iw)=¢ ttwRei®
or

G(3)=Ret0-4io
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EXAMPLES

. Examples of the application of the method of this report
to determine the frequency-response function of several
systems are found in figures 7 to 9. The use of thefunction
thus found has not been covered because the detail with
which such use has been treated elsewhere (for example, in
references 1 and 2) makes extensive treatment in this
report unwarranted.

Examples 1 and 2 illustrate the types of frequency response
obtained from several different types of time function.
A method of this report was used with the specified time
functions to determine the points shown in figures 7 and 8.
Frequency-response functions determined directly from tho
known transfer functions of the systems used were also
plotted for companson Example 3 presents data for a
turbine-propeller engme and shows the type of frequency
response obtained, using a method of this report.

EXAMPLE 1

A second-order system having the transfer function

_ 1
F@)‘p2+2§p+1

is shown in figure 7 for both the underdamped and critically
damped cases. The frequency-response function of the
system is obtamed directly from equation (25) by 1ep1acmg

(25)

» byw For g-——
1
F(?,w)—__—wz-m
1_ 2
l—cuz-ci’-w‘* t l—w‘:-l- prd (26)
and for =1
. 1
FeI=—rrrari
1—o? 2w
=TTy TE @n
System response to & unit step input is given for j‘=% by
y—1—2‘3 e 2 ( t+1§r) (28)
and for =1 by
y=1—e {148 (29)

Frequency-response curves calculated from equations (26)
and (27) are shown in figures 7 (¢) and 7 (d). The rolling-
sphere analyzer was used on the transient-response curves
determined from equations (28) and (29) to obtein from
equation (10) the points shown on the frequency-response
curves of figure 7. Because a unit step input was used, the
denominator of the right-hand side of equation (10) is equal
to 1 for all values of frequency and F(iw) can be obtained
by operation of the analyzer over the output curves only.

EXAMPLE 2

-

A first-order system is shown in figure 8. If the system
has no dead time, the transfer function is
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1
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(a) Second-order system representation.
(b) Response of system to unit step input.
(c) Frequency-response function in complex plane.
{d) Amplitude ratio and phase angle of frequeney-response funetion against a.

FIGURE 7.—Frequeney-response funetion for second-order system.
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(a) Representation of exact first-order system with no dead time.
(b) Representation of exact first-order system with dead time,
{c) System response to unit step input.
(d) Frequency-response function in complex plane.
(e} Amplitude ratic and phase angle of frequency-response funetion against re.

FicCRE 8.—Frequency-response function for firsi-order system.
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1 6
=12
and the corresponding frequency-response function is
5
Flio)=— s
1470 #’ ‘%
1 . T
1+ v +72w? (31) y f i
{ i ] i o Blade angle; system input
For a unit step input the output is ) T S 2o, ggeed’_ ﬁysfem g_n‘pu'/'
t
N @2 3
2

If the system has a dead time Af, the transfer function be-
comes '

G e—Atp
and
G(%cu) = e—iAth(?:m) 34)
The response to 2 unit step input then is
| _t—At
y=1l—e - 35)

for t>At. The frequency-response curves in figures 8 (d)
and 8 (e) were calculated from equations (31) and (34).
The function F(iw) was found from equation (31) and G(iw)
was then determined from F(iw) by increasing the phase
angle of F(iw) negatively by the amount Afw, leaving |F(iw)|
unchanged. The rolling-sphere analyzer was used on the
output curves of equations (32) and (35) to obtain from
equation (10) the points shown on the frequency-response
curves of figure 8. The use of a unit step input to the system
makes the denominator of the right-hand side of equation
(10) equal to 1 for all values of frequency. The frequency-
response function can therefore be obtained by operation of
the analyzer over the output curves only.

EXAMPLE 3

Experimental transient data obtained at this laboratory
for the speed response of a turbine-propeller engine to changes
in propeller-blade angle are shown in figure ¢ (a). Because
the frequency-response function is expressed as a ratio,
units of the variables involved are unimportant and the
ordinate of the data curves has been calibrated in relative
values, the difference between initial and final values of the
curves being set equal to unity. ‘

The frequency-response function F(iw) of this engine for
response of engine speed to changes in propeller-blade angle
was found from equation (10). The rolling-sphere analyzer
was used on the data. In figure 9 (b), F(iw) is shown as a
frequency-locus plot in the complex plane; figure 9 (¢) is a
plot of amplitude ratio and phase angle against frequency.

OO0

/ v e e e S “OP—
} 4
vv"
-vy‘y (a)
o 2 4 & 8 10
- i t, seconds :
b o o
; )
3-2
&
S
£ 6 (b)
o 2 4 .6 .8 [0
Real part of Fliw)
v
L0 <
s a _\‘
be S
4 NE.
g . N
g N
E.e hL\
&
, AN
o
\
g -20 Y
q; - ™~
$ -q0 N
g
S _g0 N
© Pa I
8 . N
£ ~80
< ©) iy
~100
.01 .05 ./ 5 L0 20

" w, rodians/sec

(a) Input and output data for turbine-propeller en.gine.

(b) Frequency-response function of turbine-propeller engina plotted in complex plane.
(¢) Amplituderatioand phaseangle of turbine-propeller frequency-response function against .

FIGURE 9,—Frequency-response {function of turbine-propeller engine,
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The Closeness with which the data approach a semicircle in
the complex plane indicates that the response of the system
is substantially first-order. This inference is further borne
out by the amplitude-ratio plot. The asymptotes and the
solid curve were calculated for an exact first-order system.

SUMMARY OF RESULTS

Methods are presented for the determination of the
frequency-response function. of any linear system from
general correlative time-response data for inpuf and output
of that system. Equations were developed for system
equilibrium and oscillatory final conditions and for the effect
of system dead time on the frequency-response function.
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For illustrative purposes, & method of this report was
applied to several linear systems for which the frequency-
response functions were known,

Experimental data obtained at this laboratory for the
speed response of & turbine-propeller engine to change in
propeller-blade angle are presented and anslyzed.

Lewis Fuiear PropuLsioN LlABORATORY,
NaTioxar Apvisory CoMMITTEE FOR AERONATUTICS,
Creveraxp, Omro, April 1, 1949.

APPENDIX A
DEVELOPMENT OF EXPRESSION FOR GENERAL APPROXIMATION TO FREQUENCY-RESPONSE FUNCTION

Let () be a piecewise continuous time function approxi-
mated as shown in figure 3. Thus,

FO=3 70 (A
where
F@=ul—te_Julti—10) g:(t) (42)

and u(f—&-1)u(tx—1%) is a pulse of unit height and duration
fy—ta1. Use of the pulse for defining f;(f) in equation (42)
insures vanishing of the function outside the interval
t1<t<t;. The polynomial g.(f) may be of any degree
not greater than ¢—1 and may be of different degree in
different intervals.

As shown in appendix B, the gth derivative of fx(f) is

Fe® O=ul—t_Dult:—1)g:2 O+ E_q;_) w9 —1p-1) P (i) —

> U -G ) (a3)
j=
Because g.{t) is of degree <¢—1,
g:2(H=0
Then from
1
fom=23 .20 (a4)
and equation (A3)
r+1 ¢
o0 =k2=1 % uP E—te_ g ? (r) —
41 ¢ .
AR AT AL () (Ab)
F=17=1

FOO=32 3 w8 e B~ 0+

3 2000 IO 3 uP—tr)g1: ) (A6)
= J=

The Laplace transform of  may be defined as

L= f_:fe‘“clt (A7)

Then, under the assumed zero conditions at {=—0,
Lf*®l=p* LIf®)]
LiuD ¢ —t)]=pte >%

and, as t, >,
LuDE—t. L )]—0

(A8)

Let

a— — fla—17 L
G192 =f 7(th0)} (A9)

G )= f? [—0)

with f*¢~#(—0)=0 understood. Then equation (A6), when
combined with equations (A8) and (A9), becomes

LUOI=2; 35 gt F 2 Gt 0~ f2G—0) (410

which is the equation used in the text. This expression for
Lf(®] includes the values of f(¥) and its derivatives at
t=--0 but not at ¢=—0.

Note that if the Laplace transform of f had been defined

as

L= f " femvid (A11)
+0

the same answer would have been obtained for L(f) with
Fe?(—0)=0 understood whether such is the case or not.
This result necessarily follows because f is not impulsive at

t=0. When equation (All) is used,
Lifo@l=p LG — 3 P00 (A1)
and
Lu®@]=0 forj>1 (A13)
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APPENDIX B
DEVELOPMENT OF EXPRESSION FOR £, ()

In appendix A, fi(®) is defined by _
Jil)=ult—t_Jults—1}g:(® (A2)

Assume, for the moment, that the derivatives of a finitely
discontinuous funection such as the step and an infinitely
discontinuous function such as the impulse have meaning.
Then, & formal differentiation of equation (A2) gives

S O=ult—t_Jule—8 g/ O+

The impulse ' is different from zero only at its discontinuity.
" Hence,

T O=ul—t_Dult—D g O +w E—t-1) grlle—r) ;u'(tk*.t)gfk)
2)
because
u(tk——t;,_,)= 1

Because ¢4’ is an even function
' (—E) =1 (t—1)
and equation (B2) becomes

¥ O =ul—t_Ju—) g’ O +v E—tin) gulle—) —¥' ¢ —1) gk(g:)
'Differentiation of equation (B3} gives ®
Fi' @ =ul—th-Jut—0g" O+ t—h-Dut— g O —
Ut~ )% G Og' O+ 4"t — - )Gl ) — ¥ E—t) gt
(B4)
If the reasoning used on equations (B1) and (B2) is applied
to equation (B4},
JO=ult—b_Jul—0 g O+ ' (¢— tk;-l)gk,(tk— D+
o E—ts-1) gulle-0] — [0’ C— ) g2’ (&) + 0" E—12) 02 (t)]
(B5)

Continuation of this process shows finally that, in general,

Fi@Q=ul—t-)ult—)9: () +jZ:l) WP~ 1) o () —

g
;Zl" uP E—1) g5 (t) (A3)
An heuristic justification of the procedure for obtaining
equation (A3} will now be given.
A commonly used method of defining the single impulse is
to begin with a pulse such as that used in equation (A2) and
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Fi6URE 10.—Probability pulse A(f—fx) and its first three derivatives.
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then allow the pulse duration to approach zero while main-
taining constant the enclosed area of the pulse (reference 5).
Doublet, triplet, and higher-order impulses may be defined
similerly but such a means of definition does not lend itself
to a consistent interpretation of the meaning of the deriva-
tives of an impulse.

A better means is found in the use of an infinitely differ-
entiable function to define the pulse. Then, the derivatives
of the function are the derivatives of the pulse and when, in
the limit, the pulse becomes the impulse, the derivatives of
the pulse become the derivatives of the impulse. A conven-
ient function is the normalized Gaussian error distribution,

defined by

_1ft=t)e
hit—t)= 1 . 2< “ ) (B6)
-\."27"
From -
-[—m
f h(t—t) dt=1 forall o ®7)
and

Hm AGE—t)=0 (5=t
o—0

a0

h(t—2:) 1s seen to satisfy the requirements for an impulse
occurring at f=#. Equation (B7) holds for «—0; hence
h(t—#;) satisfies the requirement that the step be its integral
as ¢—0 or, conversely, that

Hm A —t) =’ —t)
a0

557

By successive differentiations, followed by letting ¢—0, it
can be seen that

w! (t—t)=lim h’GE—tz)
a0

wt—t)=lm A"/t —t)
a—0
and, in general,

uP G —t)=Tim hY-D@¢—t)
a—{

The function h(t—%;) and its first three derivatives are shown
in figure 10. Note that % and its even derivatives are even
functions; the odd derivatives are odd functions.
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