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FREQUENCY RESPONSE OF LINEAR SYSTEMS

FROM TRANSIENT DATA “

By MELVINE. LAVERXEand .AAEONS. BOKSE.WOM

SUMMARY

Methods are presented that we general correlatiw &hne-
reqmnse input and output data for a linear system to determine
the.frequency-response function of that system. These methods
give an- exact description of any linear s@em for which such
transient data are arailable.

Exa:mples are ~houm of application of a method to both. an
underdamped and a m“tically damped exact second-order system,
and to cm ezact jlrsi%rder system with. and without dead time.
Experimental data for a turbine-propeller engine showing the
response of engine speed to change in propeller-blade angle are
presented and analyzed. .

INTRODUCTION’

A basic probIem confronting the control designer is that
of determining the behavior of the controlled system under
varying conditions of operation. This ques$ion becomes
pa.rticuhdy acute w-hen ~arious system parameters, for
example, engine shaft torque or turbine-inlet temperature,
must be closely controlled in order to prevent system damage
or even failure. The problem then becomes one of matching
transient behavior of the control to that of t-heuncontroIIecI
system in orcler to attain a desired response of the controlled
system.

General methods do not exist for the solution of the
equations of motion of nonlinear systems. As a result, the
anaIysis of such systems may be impracticably &EcuIt, if,
indeecI,a solution can be found at all. Because t-hebehavior
of many nonIinear systems may be satisfactorily approxi-
mated by the assumption of system linemity and because
general m~t.hematica.lmethods and techniques for the analy-
sis of linear systems are readily available and (in comparison
with present nonlinear methods) relat,iveIy simple to apply,
the assumption is generally made that the system being
studied is linear. The methods of this report. are based on
such an assumption.

Approaches utilized in the analysis of linear systems
(reference 1, pp. 17–18) are: (1) transient analysis} in which
the characteristic time response of the s-wtem is determined
for stancIard inputs such as step and tipuke functions, or
(2) frequency ancdysis, in which system behavior is chcw-
m%erizeclby the stcad-y-state ampIitude and phase relations
of the s~-stem input and output for sinusoidal inputs of
various frequencies.

For inputs such as step or impulse functions, the inherent
system characteristics might be obtained by fitting an

equation to t-he output function and from it deriving the
di&rentia.I equation of the system. If the input and output
functions were of any general form, fit.t~hg differential
equations to the data might still be possible, but for systems
of inherently high order the accuracy of such a procedure
would be low. In general, use of the time-response form of
system description involves dealing with convolution in-
tegrals (reference 2, p. 54) -whenthe unit so described is to
be combined with other units. For compIex systems, this
descriptive form is not readily acIapteiIto manipulation.

A I.inear system is known to be characterized by its
steady-state response to all frequencies of sinusoids.Iinputs.
The frequency-response form is useful for the description of
linear systems because of the ease with which varioqs system
characteristics can be manipulated in de~~ with combinat-
ions of units. For exampIe, the over-aII amplitude ratio. of
output to input for any frequency of input to a system con-
sisting of several units in series is obtained by a simple
muhipIication of the amplitude ratios for the several units.
A possibIe difhcult.y in the determination of the steacly-etat.e
frequency response is the necessity for ma.iutaining a sinu-
soidal input of constant ampIitucIe and frequency for a
length of time sufficient to insure disappearance of transient
effects in the outpuk.

The nature of real physical systems may make actual
imposition or measurement of step or impulse inputs im-
possible; in addition, sinusoidal inputs may prove impracti-
cable. The need thus arises for feasible methods capable of
handlii data of an-ygeneral form. Such methods that use
general correlative time-response data for system input and
output to determine the frequency-response cha.racterietics
of the system were developed at the A“AC.&Lewis Iaborntory
in 1948-49 and are presented in this report-. These methods
give an exact description of any Hnearsystem for-which such
data are avaiIable.

Three exact methods of obtaining the frequency-response
function of a system are shown for system-equilibrium final
conditions. A graphical approximation to one of the
methods is ako given. Modification of one of the exact
met-hods to accounh for oscillatory final conditions is shown
and treatment of dead time is presented. As an illustration
of one of the methods, three examples are given, two based
on analytically determined system-response curves and one
on experiment-al data obtaiued at this Laboratory for a
turbim+propeller engine.
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SYMBOLS

The following symbols are used in this report:
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A
a,b
F(ioj
F(p)
f(t)
G(p)
g(t)
h(t)

j
L

P

%
t
u(t)
u’(t)
x

?/
B

At

r
$
a

;
CIJ

Subscripts:

;

‘m
n
T

amplitude of system steady oscillation
constants
system frequency-response function
system transfer function
general function of time
;ystem transfer function inclu&ng dead time
polynomial approximation to y(t)
normalized Gaussian error distribution or prob-

abilityy pulse
order of derivative of u (t)
Laplace transform
complex number
degree plus one of g,(t)
amplitude ratio of F(iu)
time, seconds
unit step function
unit impulse function
general time-dependent input
general time-dependent output
frequency of system steady oscillation, radians

per second
system dead time, seconds
damping ratio
phase t-mgleof F(ia), radians
standard deviation of Gaussian curve
system time constant, seconds
phase.angle of system steady oscillation, radians
frequency of system sinusoidal input, radians

per :econd

last term of difkrcmtitd equation
final value
general term of summation
highest order derivative in expression for input
highest order derivative in expressionfor output
next to last term of summation

Superscripts:
I !/ Ill?~ ,m,n tist, second, third, mth, and nth time deriva-

tives, respectively
ANALYSIS

The system considered in the following derivation is
assumed to be linear. In particular, behavior of the system
is assumed representab~e b.y a linear differential equation
with constant coefficients. The block diagram of a system
having an input x and a correspo@ng output y is shown in
figure 1. The symbol F(p) inside the box represents the
system operator which, acting on the input x, yields the
output y. The linear differential equation relating z and y
may be written”as .

(1)

If the system is initially at rest (or in equilibrium), term-
wise application to equation (1) of the Laplace transformation
(reference 2, pp. 51-56), defined as

~[.f(Ol=~o” jf(t)e-” dt (2)

and factoring of the result give

((znp”+a._@-’+ . . . +ao)L(y)

=(b~p~+b,._,p ~-’+ . . . +bo)L(*)

or

L(y)=
b~p~+b~_lp~-l+ . . . + boL(zl
a~pfl+”i.”-l pa-l+ . . . +aO (3)

Equation (3) may be formd.Iy written as ‘

L(y) =F(p)L(z) (4)
-where

F(p)=
b~pm+b~_lp~-l+ . . . +bO
u.p’+am_lp~-l+. . . +ao

The transfer function of the system F(p) is clcfincd as the
ratio of the Laplace transform of any normal rcsponee of the
system to the Laplace transform of the input producing that
response. iSormal response is the response of the system
when initially it rest (reference 2, p. 26).

---m---
FIGUREl.—Block diagramof ]inca~sys~~m,

From equtitions (2) and (4), the system transfer function
may be written as

L(y)
F@=~

or

J
mYe-retd~

F(p)= ‘m

J
xe’@ dt

o

(5)

EQUILIBRIUMFINAL CONDITIONS

Derivationof frequency-response function.-The frcquency-
response function F(h) is formally obtained directly from
equation (5) by replacing p by iu (reference 1, pp. 96-98).
Then, for a sinusoidal input x of frequency u, the output y
ultimately is sinusoidal at the same frequency but with a
relative magnitude and phase angle equal to t,hc magni-
tude and the phase a.nglc of the complex number F(iu).
The frequency-response function is defined as

J

m

ye -{U’d
I@)= 0=

J
Xe-<uldt

The term e-fmfis oscillatory and the integrals

may not converge unless Jll I jy dt and ~“

(6)

of equation (6)

Ixldt converge.

These conditions unduly restrict the choice of functions
that may be used in equation (6) because of the implied
requirement that z and y vanish as t increases without limit.
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.Aswill be shown, the previous restriction on r and y may
be remo~ed by suitable modification of equation (6). ~
much -widerselection of input and outputt fimctions is thus
permitted.

For a system initially ah rest,

Ly(t)] =&L~@)] (7)

.+ alternate expression for the transfer function then is

L(y’)m=~

or, from equations (2) and (8),

J
m#e-PS d~

l?(p)= 0=

s
xfe-~t d~

o

The frequency-response function then becomes

when p is replaced

J
m~~e–iut&

l’(b)= 0=

J
~re–id &

o

by im

(8)

(9)

For any input or output function ending in equilibrium,
x’+() and y’+0, respectively, for t+-. The integrals Of
equation (9) therefore converge.

From Euler’s relation,

@t=~oscd—i sin d

equation (9) may be written

J J
“y’ COS cddt—i j’ SiU d dt

F(iw)= 0=
. 0

J J

m- (10)

X’ COS d dt—i X’ Sill d dt
o 0

This form of the frequency-response func~ion can be used
with any data for -whichthe input and the output begin and
end in a steady state.

The integrals of equation (10) can be evaluated in various
viays. One theoretically exact method, -whichhas been used
at the XAC.1 Liewis laborat.ory, utilizes a rolling-sphere
harmonic analyzer. This type of amdyzer, the same in
operating principle as t-he device described in reference 3,
m-asdesigned to obtain the Fourier coefficients from cyclic
data, but the manner in which the coefficients are determined
results in evaluation of integrals of exactly the form of those
in equation (10). The frequency-response function can thus
be obtained for any frequency by operating the analyzer over
the output curve to evaluate the integrals in the numerator
and over the input curve to determine the integrals in the
denominator of equation (10) without-repotting the data in
any other form.

The frequency spectra for nonperiodic phenomena are de-
termined in reference 4 by evaluating Fourier integrals with
a rolling-sphere harmonic analyzer in a manner similar to
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that foIIowed indis report.in connection with equation (10).
The method of reference 4, however, &Hers from that of this
report in being restricted to functions that be@ and end
at zero. In addition, the concepts of a system transfer or a
system frequency-response function are untreated.

Modillcations of frequency-response derivation.-The
frequency response may, at times, be desired directly in
terms of the input and output functions themselves rather
than their time derivatives. For example, if an electronic.
device -were used for analysis, the avoidance of the added
complexity and attendant inaccuracy of differentiat&~ cir-
cuits might be desirable.

If both z and y come to a steady state by or before some
time tJ,equation (9) maybe rewritten as

J

tf
g’e-~ fit

F(b) = ‘% , -itdt

J

(11)
xe

o

because for t > tr the integrands of equation (11) are zero.
Integrating equation (11) by parts gives

J

tf
‘h : ye -id d~+ye-ia$

F(’ice)= ,f
o

J

tf
‘iGS ~e-id dt+xe-id

o 0
or -

(Jtf

) (J
sin C& t~

)

Cos cdf
ycoswtdt—y~— —i @Il cotdt+yrY

F(@= ‘tr
a o

(J J (J
sin + tf

)

Cos cdtf
XCOS utdt—xfY —i XSiIl titdt+xf—

0 0 a

(12)

h alternate procedure, leading to a somewhat simpler
expression, employs the principle of superposition. For
example, y ma-y be considered the linear combination of a
step function whose ordinate is yr and a second function

??%P--------------------
Y

(:)

9!$

(b)
(@System-outputtimefunctiom

(b) Componentsof sj-stem*utpnttfmefnnctiim

FIGCSE2.-Sepomtion ofsystem-outptittimefunctioninto samporrentsforequilibriumfind
mndftiom”.
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whose ordinates are those of y displaced downward
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by the
value of Vfi Such a sepma~on of y into its component
functions is shown in figure 2. An analytical expression of
the process may be derived as follows: The transfer function
of the system is,

J

.
ye-p’dt

F(p)= “0=

J

(5)
xe-pidt

o

Because of the linearity of the transformation

J
“(y–yJe-P’dt+

J
Omy,e-P~dt

F(p)= ‘ms J
(X–Zr)e-P’ cW+ ‘zfe-p’ dt

o 0

s,“(y–y~)e-p’dt+~
=

J
‘(x–xf)e-’’dt+~

o

Setting p= iu then gives

J
‘(y–yf) e-j”~dt+~f

F(k)= o. Iu

s(z–zJ)e-i’’dt+~ ‘“
0 ‘LW

or

J
“@-yf) COS (ddt–i

[s._
O“(Y-YJ s~ ddq

F(iw)= ‘m

J
(x–q) COS d dt– ‘i

o
~]

o w

(13)

(a) I?iecewk continuoustimefunction.
(b) Pieeewiseapproximationto timefunction.

FIGURE3.—@nerd appmximdionto timefunction,

Equations (12) and (13) define F(iu) for all frequencies
except W= O and F(O) can readily be shown to be yf/zf.

Approximation to frequency-response function.—Let, f(t)
be d piecewise continuous function as shown in figure 3.
If within each of the ~+ 1 pieces j(t) is approximated by ~
polynomial of any degree not greater than q—1, then} for
t,+lat infinity, the Laplace transform of j(t) is given by

Qf(t)] =$,+= ._,+,Lf(’-fi(t,+O)–f(f+(tro)] (AIo)k=oj=lp

Equation (A1O) is developed in detail in appendix A.
The expression for z(f) in equation (A1O) requires only

the values of the approximation and its derivatives at t.= +0
[~(+o), y(+o), and so forth] together with the jumps
~(~-~)(t,+o) –j[~-~) (tE–O)] tij and in the derivatives 01 k?
approximating polynomials at any points of discontinuity
(tJ of the functions or their derivatives. The dcgrcc of the
approximating polynomials may be diflerent in the various
pieces but q—1 is the highest degree of polynomial in any
piece.

As an example of the use of equation (A1O), let f(t) be a
continuous function (except at t =0) approximated, M shown
in figure 4, by a series of straight lines. Here the poly-

— ?he function

I
-------.4pproximotion fo flrne funcfi’on

FIGURE4.—LineaFapproximationto timefuncthn,

nomials are of first degree and g=2. Hence, equation (iilo)
becomes

Becausef is continuous except at t=O

j(t,+o)–j(t,–o)=o for k>O

j(k+O)-~(t.-O)=~(+ O) for k=O



FREQUEN-CYRESPOh’SEOF LINEARSYSTEMSFROMTRANSIEN7?DATA 551

and for k>O

f?(&@ =fk–fk-~
tl

with
tf(t,+ o)=j,+l—jr=o

Then -

In order to get an expression that converges for p= O,
multiply equation (15) by p and use the relation

Then, on setting p=iw and separating real and imaginary
parts as in equation (9), equations (16) and (17) are obtained,
in which the integrals corrrerge for w= O.

(17)
where

kt,=t,

By applying equations (16) and (17) to the input and output
mwes of any system and using the results in equation (10),
the appro.xima.te frequency-response function of that system
may be determined.

OSCILLATORY I?LVALCOXDITTOSS

The procedures thus far described apply only -when the
system comes to rest at some new equilibrium condition.
If the output does not reach equilibrium but continues to
oscillate about some mean value: a modification in the
method is necessary in order to account for the oscillatory
component.

System linearity permits resolution of the output y into
two components VIand YZ,whose algebraic sum is the original
output, as shown in figure 5. The block diagram equ.blent
to t-hisresolution of y into components is given in fi~gure6.
The dashed outline indicates the over-all transfer function of
figure 1. From figure 6, F(Y) may be represented a-s the
linear sum of t=ivotransfer functions, F,(p) and F~(p), operat-
ing in parallel. The following equation may then be written:

W)= 17Jp)+F2@) ,

v
t

@

I ~ ----

(18)

(a) System*utput timefunction.
(b) Componentsof system-3utputtime function.

FIGCEE5.=Qeparationof aysternautputtimefunctionfnto componentsfaroscillatoryW
conditions.

--------- — ----------

.My ‘

P+=l-Jv
i 1 ( i
1 I
I____ 1----- ------— ----

“’--F(P)

F[G~E 6.—BlocMiagram representationof liiear Watemfor oseiIIatorFEnd conditions.

If the steady oscillation is simple harmonic, t-he oscillatory
component of the output may be expressed as

y,=ll sin (pt+#)

for t>O. Then

* @ Cos rp+p sin r#)pL(yJ=pz+Pz

and

J
Ap

~=yl’e-pi dt+~ (I9 Cos 4+-p sh 4
F(p)=

s

(19)
a~~-Pt d~

o

When p is replaced by iu in equation (19), the frequency-
response function becomes

.
,. P-

uo yl’ COS atdt—~
) (s

.4/90J
&_.u2 s~ @ –~ ‘~: Sifl utdt——

F(iu) = o /tI’-w’ Cos4 )

J
.

J
(20)

x’ cos atdt—i ‘X’ Sillutdt
c1 a



55.2 REPORT977-NATIONAL ADVISORYCOMMI~EE FOR AERONAUTICS

TREATMENT OF DEAD TIME

~ea.d time in a liqem systerg is the time difference be-
tween the initiation of a disturbance. to the system and the
begiuning of a response to that disturbance. The mathe-
matical equivalent of dead time. then is a translation of the
output function along the time axis in a positive direction;

L[y(t)] =F(p)z[z(t)] (4)

for a system without dead time, then for the system with
dead time

lJv(t–At)]=G(p)L[z(t)] (21)

where G(p) is different from F(p). The relation between
G(p) and F(p) is readily determined by an expansion in a
Taylor’s series of y(t–At). in the neighborhood of t:

I/(t-At)=y(t)-AtI/’(t) +~2 y“(t)-$ y“’(t)+ . . .

Then

~[y(t–At)]=~[y(t)] –At~[#(t)]+~[Y’’(t)] –$~[y’’’(t)]+. . .

For initial conditions of equilibrium

L[y”(t)] =p’L[y(t)]
Hence,

+ib(t.)]+ .,.Z[y(t–At)]=~[Y(t)] –Aty~[y(t)]+%~~(t)] ..

( Atzpg Atap== I–MP+ z! 3!—— — + . ..) U/(t)]

=e-A@L[y(t)] (22)

From equations (21) and (22)

L[y(t)]=@%&OL[x(t)] (23)

Comparison of equations (4) and (23) shows that

or
G(p)= e-A~PF(p)

from which the corresponding frequency-response functional
relation is

G(iu) = #MoF(ia) (24)

It can easily be shown that the effect of dead time on the
frequency-response function is to decrease the phase angle
algebraically by the amount Aiko,leaving the amplitude ratio
unchanged. In general, F(ia) is a complex number and may
be expressed as

F(iu)=li?e’” .

From equation (24)

G(i W)=e-~t~ReiR
or

t7(iw)=Re@-A@

EXAMPLES

Examples of the application of the method of this report
to determine the frequency-response function of several
systems are found in figures 7 to 9. The use of the-function
thus founcl has not been covered because the detail with
which such use has been treated elsewhere (for exmnplc, in
references 1 and 2) makes extensive treatment in this
report unwarranted.

Examples 1 and 2 illustrate the types of frequency response
obtained from several different types of time function.
A method of this report was used with the spccificd time
functions to determine the points shown in figures 7 and 8.
Frequency-response functions determined directly from tho
known transfer functions of the systems used were also
plotted for comparison. Example 3 presents data for a
turbine-propeller engine and shows the type of frequency
response obtained, using a method of this report.

EXAMPLE ]

A second-order system having the transfer function

HP)=P2+2;P+ ~ (25)

is shown in figure 7 for both the underdamped and critically
damped gases. The frequency-response function of the
system is--obtained directly from equation (25) by replacing

*

F(b)= 1.—d+w+ 1

l-d . 6J
‘1 —@2+@@ 1—(02+0’1

and for ~=1

F(iw)= 1
—&f-2tiw+l

(27)

System response to a unit step input is given for j-=; by

‘=1-’$-;sin(%’+9“’28)
and for ~= 1 by

y=l–e-’(l+t) (29)

Frequency-response curves ctilculatcd from equations (26)
and (27) are shown in figures 7 (c) and 7 (cl). The rolling.
sphere analyzer was used on the transient-response curves
determined from equations (28) ancl (29) to obtain from
equation (10) the points shown on the frequency-response
curves of figure 7. Because s,unit step input was used, the
denominator of the right-hand side of equation (10) is equal
to 1 for all values of frequency ml F(iw) crm be obtuined
by operation of the andlyzer over the output curves only.

EXAMPLE 2.

A first-order system is shown in figure 8. If the. system .
has no dead time, the transfer function is



■

. FKEQIJEA-CY RESPONSE OF IJ.N33AR SYSTEMS FROM TRANSIENT DATA

o 2 4 6 8 /0
~ sec

(a) Eeeond-ordersyscenrrepresentation.
(b) Responssof systemto mrftstep input.

(c) Frequency-responsefunctionin complexpl~e.
(d) AmpIituderetioend phaseangleof fieqnency-reeponsefrmetionrigeinst

--1=1-+
(a)

-F=l---
(b)

ra

(a) Representationof exsct drst-ordersystemwith m dead time.
(b) Representationof exactrirst-ordermaterrrwith deed time.

(c) Systemresponseto rudtstep input.
(d) Frequency-responsefunctfonfnsomplexplene.

(e) Arr@itude r3tioand pheseangIeof Gequency-respor.rrefunctionagrdnstrw.

FIGCZE8.—Frequency-responasfunctionforfirst-ordersystem.
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F@)=&

and the corresponding frequency-response function is

1
F(iw)= m

1 . T6J
‘m2— t 1+7%?

For a unit step input the output is

(31)

(32)

If the system has a dead time At, the
comes

and

@).~

transfer function be-

G(iu) =e-~A~”F(iti) (34)

The response to a unit step input then is

t-At-—
gel–e ‘ (35)

for t> At. The frequency-response curves in figures 8 (d)
and 8 (e) were calculated from equations (31) and (34).
The function F(i~) was found from equation (3I) and G(i~)
was then determined from F(iti) by increasing the phase
angle of F(ia) negatively by the amount At~, leaving \.F(iti)\
unchanged. The roiling-sphere analyzer was used on the
output curves of equations (32) and (35) to obtain from
equation (10) the points shown on the frequency-response
curves of figure 8. !Hle use of a unit step inputto the system
makes the denominator of the right-hand side of equation
(10) equal to 1 for all values of frequency. The frequency-
response function can therefore be obtained by operation of
the analyzer over the output curves only,

EXAMPLE3

Experimental transient data obtained at this laboratory
for the speed response of a turbine-propeller engine to changes
in propeller-blade angle are shown in figure 9 (a). Because
the frequency-response function is expressed as a ratio,
utits of the variables involved are unimportant and the
ordinate of the data curves has been calibrated in relative
values, the difference between initiaI and final values of the
curves being set equal to unity. .

The frequency-response function F(iti) of this engine for
response of engine speed to changes in propeller-blade angle
was found from equation (10). The rolling-sphere a~alyzer
was used on the data. ln figure 9 (b), F(iu) is shown as a
frequency-locus plot in the complex plane; figure 9 (c) is a
plot of amplitude ratio and phase angle against frequency.

6

5

I>

(
4

4

t>
0 Bhde angle;system inpu?

3
V Engihe speed; sys+em oufpuf

!

2

i \

I 1 ...----- -. >--..*---- ----

.

t, seconds

u

0

$-20

*“ -40

‘?
o -Go

!!~ ’80

-/00
.01 - .@ .1 .5 Lo 20

w, rodkms/sec

(a) Input and outputdatafor turbine-propdlcrcriginc.
(b) Frequency-responeefnnctionof turbine-prope.llerengineplottedin comphx plnuc,

(c) AmpIituderatiosndphaseangIeofturbine-propcllcrfrequcncy-reeponsefunct[onngainstw

FIGURE9.—Frequency-responsefunctionof turbine-propcIlcrcngino.
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The ~oseness with which the data approach a semicircle in For illustrative purposes, a method of t-his report was
the complex plane indic.at,esthat. the response of the system applied to several linear systems for -ivhich t-he frequency-
is substantiality&&order. T&s inference is further borne response functions were knomu.
out by the amplitude-ratio plot. The asymptotes and the E.xperiruenta.ldata obtained at t-his laboratory for the
soIid curve m-e~ecalculated ~or an exacb &~-order system. speed- response of a turbine-propeller engine to

SUMIMARYOF RESULTS
prope~er-blade angle are presented and a.mdyzed.

change in

~lethocls are presented for the determination of the
fkequency-response function of any Iinear system from
general correhitive time-response data for input and output
of that- system. Eauatione vrere develoued for s.y-stem LEWIS FLIGHT PROPULSION LABORATORY,

equdibri~ and oscilI~tory final conditions ~nd for the-effect I IWAT10x,4LADVISORYC?OMJnTTEEFORAERONAUT1cS,
of system dead time on the frequency-response function. 1 cLEvELA3YD, OEIIO, .4pTil 1, 19~9.

APPENDIX A

DEVELOPMENTOF EXPRESSIONFOR GENERALAPPROX131ATIONTO ~REQUENCY-RESPONSEE’UN”CTION

Let j(t) be a piecetie continuous time function a.pprosi-
mated as show-nin figure 3. Thus,

r+l
j(t)=~, j,(t) (Al)

w-here
jk(t)=u(t–tk_Ju(t.–t) g.(t) (M)

and u(t—t~.l)u(t~—t) is q puke of unit height and duration
&-tk_l. Use of the puke for deflning~t(t) in equation (-A2)
insures vanishing of the function outside the intem-al
G.,<t<tk. The polynomia.1 gt(t) may be of any clegree
not greater than g—1 and may be of different degree in
different intervals.

As shown in appendix B, the @h derivative of j,(t) is

The Laplace transform of fmaybe defined as

z(f)=
J

~fe-”dt

Then, under the assumed zero conditions at t=–Oj

L~@ (t)]=p’L~(t)]

Z[U(’J(t—tJ]=p%-”k

and, aSt~~l~ =J,

L[u~(t–tr+J]+o }
Lefi

gH1(Q-fl(tJ=f(~-f~ (& o)
gk@-JJ(Q= f(Q-fi(tk—o) 1

<

(A7)

(A8)

(A9)

tithj(’-jj(-()) =0 understood. Then equation (A6), when
combined with equations (A8) and (A9), becomes

~~(t)]=~~ ~ ~ ~(’-fi(t,+O)-f(’-’~ (0)] O)] (Alo)

which is the equation used in the test. This .e.xpressionfor
~~(t)] includes the values of j(t) and its derivatives at
t=+O but, not at t=—O.

hlote that if the Laplace transform off had been defined
as

J
L(f)= ‘fe-”dt (Al 1)

+0

the same answer would have been obtained for ~(f) wikh
j(a-n(-()) so understood whether such is the case or not.
This result necessarily follows because j is not irmpukive at
t=o. When equation (.411) is used,

L~f@ (t)]=p’L~(t)] – & pf-’f~’-’~(+0) (A12)jzl
and

iZ[uti]@)]=O for j> 1 (A13)
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APPENDIX B ●

DEVELOPMENTOF EXPRESSIONFORf.# (t) .

In appendix A, jk(t) is defined by

f,(t) =ti(t-t,-,)u(t.-t)gk(f) (A2)

Assume, for the moment, that the derivatives of a. finitely
discontinuous function such as the step and an fi.itely
discontinuous function such a.s the impulse have meaning.
Then, a formal differentiation of equation (Az) gives

ji(t)=u(t–tk_,)u(tk–t)gi(t) +

u’(t–ffi-Ju(tk-t) g*(t)-ti(t-tk_Ju’(t*-t) gfi(t) (B1)

The impulse u’ is different from zero onIy at its discontinuity.
Hence,

fi(t)=u(t–tk-Jti(tk-t) gi(t)+u’ (t–tk-,)gk(tk-,) –u’(tk–j)gk(tk)
(?32)

because
I&-&l)=l

Because u’ is an even function

U’(tk—t)=u’(t—tk)

and equation (B2) becomes

fk’(t)=u(t–t,. Ju(tr-t)gk’(t)+d (t–k,)gk(t.-,) –U’(t+g,(k)
(B3)

Differentiation of equation (B3) gives

jt”(o =U(t–tk-,)u(t.–t) g:’(t) +U’(t–t,.-,)u(tk-t)gi(t) –

I@ —t&,)u’(tr-t)gk’{t) +’d’(t—&.-Jg&J —u’’(t—&)g&)

(B4)

If the reasoning used on equations (Bl) and (B2) is applied
to equation (B4), .

jf(t)=u(t–t,--,)u(tk-t)gi’(t)+ [U’(t–t,-,)gi(tk-,)+

u“(t-t&Jg&-J] —[u’(t–tJgJ(tJ +ti’’(&.-tJg&)]

(B5)

Continuation of this process shows finally that, in general,

An heuristic justification of the procedure for obtaining
equation (A3) will now be given.

A commonly used method of defining the single impulse is
to begin with a pulse such as that used in equation (A2) and

,4-

6h.2 \

.

? y

.4 I \ I \ I

-.

.61 1 1 1 I 1 ) I I

FIGURE10.—Prob8bilitypuke h(t-tk) and its first three derivatives.
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t-hendlo-iv t-hepuke duration to approach zero vihile maint-
aining constant the enclosed mea of the pulse (reference 5].
130ublet, tripk%, and higher-order impulses may be defined
similarly but such a means of definition does not lend itself
to a consistent interpretation of the meaning of the deriva-
tives of an impulse.

A better means is found in the use of an ir&nitely dHer-
entiable function to define the puke. Then, the derivatives
of the function are the derivatives of the puke and -when,in
the limit, the ptise becomes the impulse, the derivatives of
the pulse become the derivati-res of the impulse. ..1con-ren-
ient function is the normahzed Gaussian error distribution,
defiued by

(B6)

From

J

+-
h(t–tk) dt=l for all a (B7j

—m
and

lfi h(t-t.)=o (t#f.)

Iim L(t–th)=+ ~ (t=tt)

h(t–tk) is seen to satisfy the requirements for an impulse
occurring a-t t=th. Equation (B7) holds for m~O; hence
h(t–h) satisfies the requirement t-hatthe step be its int.egral
as r~O or, conversely, t-hat

& h(t–t~=u’(t–t~
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By successive differentiations, followed by letting a~O, it
can be seen that

d’(t—tk)=~ h’(t—h)

z/’’(tJtJ =5 h“(t-tk)

and, in general,

lf.(fl@-tJ =lim L(J”-1)(t—tJ
a-o

The function h(t—%) and its tit three deri-rat-ivesare shown
in figure 10. A?ote t-hatA.and its even deri~atives are even
functions; the odd derivatives are odd functions.
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