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SOME EFFECTS OF NONLINEAR VARIATION IN THE DIRECTIONAL-STABILITY
AND DAMPING-IN-YAWING DERIVATIVES ON THE
LATERAL STABILITY OF AN ATRPLANE!

By LEOoXARD STERNFIELD

SUMMARY

A theoretical investigation has been made to determine the
effect of nonlinear stability deriratives on the lateral stability
of an airplane. ldfotions were calculated on the assumption
that the directional-stability and the damping-in-yawing
derivatives are functions of the angle of sideslip. The applica-
tion of the Laplace transform to the caleulation of an airplane
motion when certain types of nonlinear derivatives are present is
described in detail. The types of nonlinearities assumed
correspond to the condition in which the ralues of the directional-
stability and damping-in-yawing derivatives are zero for small
angles of sideslip.

The results of the investigation indicated that under certain
conditions the nonlinear stability derivatives assumed in the
analysis caused a motion which had different rates of damping
Jor the large and small amplitudes of motion, with tery [ittle
damping at the small amplitudes. In general, the period of the
resultant oscillation increased with time.

INTRODUCTION

Recent flight tests of several airplanes designed for high-
speed high-altitude flight heve indicated neutrally damped
Iateral oscillations of small amplitude generally referred to
as snaking. TUpon examination of the flight records, the
decrement of the oscillatory motion is found in some cases
to be different for the large and small amplitudes of motion
with & neutrally stable oscillation oceurring at the small
amplitudes. One _of the explanations offered for the cause
of this type of motion is that some of the stability derivatives
are nonlinear; that is, the derivatives have different values
for the large and small amplitudes of motion. The non-
linearity could be caused by boundery-layer effects or flow
separation due to poor fairing -at the junction of the:tail
surfaces.

The present report represents a preliminary investigation
_of the effect of the presence of two nonlinear stability
derivatives, the directional-stability derivative (', and the
damping-in-yawing derivative C,, on the motion of an air-
plane. These derivatives were selected for the analysis
since the damping of the oscillation is a function of C, and

since -C depends upon the C, contributed by the tail.
The derivatives Cyy and Cy, Were both assumed to be fune-
tions of the SIdesIlp angle ﬁ Calculations were made of the

" airplane motion due to a disturbance in sideslip for three

different types of nonlinearities.
- SYMBOLS AND COEFFICIENTS

¢ angle of roll, radians

¥ angle of yaw, radians

8 angle of sideslip, radians except where noted
in figures (3/V)

r yawing angular veloeity, radisns per second

. (dw/de) )

b4 rolling angular velocity, radians per second
(do/dt)

r sideslip velocity along the Y-axis, feet per

’ second

1V airspeed, feet per second

P mass density of air, slugs per cubic foot

g dynamic pressure, pounds per square foot

_ (e7)

b wing span, feet

S wing area, square feet

w _ weight of airplane, pounds
m mass of airplane, slugs (77/g)
g

acceleration due to gravity, feet per second per

) second
Eg relative density factor (m/oSh) :
] inclination of principal longitudinal axis of

airplane with respect to flight path, positive
when principal axis is ebove flight path at
the nose, degrees

¥ angle of flight path to horizontal axis, posﬂwe
in climb, degrees
kx, radius of gyration in roll about principal

longitudinal axis, feet
kz, radius of gyration in yaw ebout principal
vertical axis, feet

principal longitudinal axis (kx,/5)

1 Sopersedes NACA TN 2233, “Some Effects of Nonlinear Vaclation in the Directional-Stability and Damping-In-Yawing Derlvetives on the Lateral Stability of an Alrplane” by

Leonard Sternfleld, 1060,
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nondimensional radius of gyration in roll about
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(7, nondimensional radius of gyration in yaw
about principal vertical axis (kz/b)
Kx *  nondimensional radius of gyration in roll

about longitudinal stability exis
(vEz,? cos? 1+ Kz sin? 1)
K nondimensional radius of gyration in yaw
about vertical stability axis
(VK77 cos? n+Kx, sin’ 1)

Kyy nondimensional product—of—mertla parameter
((Kz ——Kx02) sin 4 cos n)
Cr trim lift coefficient TV cos 7)
G rolling-moment coefficient ( Rolllng moment
N qSb
Ca vawing-moment coefficient (1 awmgsn;.oment
Cy - lateral-force coefficient ( Later;éforco)
ol
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A,
0,,,—35-
ol
Cn" agy =
G- -
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C L > ( p_b. . B
2V
20,
= b
ooy
__oCy _
¥ ﬂ_ b
po
2(%7)
. AN
(_r;- = = -
r rb
(37
ol -
(.-" = '
r rb
°(57)
Ch, vawing-moment constant
t time, seconds
EN nondimensional time pammeter based on span
(Vb)
Dy differential operator ( Ts )
o operator in Laplace transformation
Ty time for amplitude of oscillation to damp tlo

one-half its original value, seconds

The subseript 0 is used to indicate initial eonditions and
u bar is used to denotle variables in the operational equations.

ANALYSIS
NONLINEAR STABILITY DERIVATIVES

The assumptions made with regard to the nonlinearity of
the stability derivatives C,, and C,, are shown in figure 1.
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FirTRE 1,—Three types of nonlinear stability de.lvatlves assumed In the analysls,

For all three cases presented in the figure, (', is equal to zere
for —2°<§<C2°, a region which is subsequently referred to
as o dead spot. Thus when the airplane is within the dead
spot, the value of the directional stability derivative C,,
is zero. .Since the damping-in-yawing derivative (s, is &
direct function of (., contributed by the tail, (%, was also
assumed to be zero for values of —2°<8<2° In the region
outside of the dead spot, cach one of the cases represents a
different type of variation of C, with 8 in order to simulate
the effect of several possible flow conditions on the side force
acting on the vertical surface. For cases 1 and 2, (7,,=0.28
and for case 3, (h,,=0.41. The corresponding value of
C., for all three cases is —0.39. Itshould benoted in figure )

that for cases 2 and 3, C.=0 at 8 of 2° and —2°, whereas
for (.a%e 1, C, has a finite value at g of 2° and —2°, —-

METHOD OF CALCULATING MOTION

Since the nonlinearities shown in figure 1 can he treated
as linear derivatives of different values within and outside of
the dead spot, the airplane motion is calculated on the hasis
of classical linear theory. The equations of motion and the
general method of calculating the motion of an airplanc are
given in references 1 and 2. The methods of references 1
and 2 are based on the Laplace transformation which in-
herently takes into account the initial conditions of the
problem. Because the Laplace transformation considers
the initial displacements and initial velocities of the problem,
this method is directly applicable to the caleulation of the
motion of an airplane which has nonlinear derivalives
similar to the derivatives presented in figure 1.

The nondimensional linearized Iateral cquations of mo-
tion, referred to the stability axes, are for rolling, for yaw-
ing, and for sideslipping, respectively:

2ufKx*Dy*¢-+Kxz D)= C'l,ﬁ'i’";lza, Do+ é C, Dy
2u K22 D+ Ky D)= + C' Ua¢+ Co Dyt G,

2l~‘b(bbﬁ-+ D)= C’Y,ﬁ '!“é‘ Cr, Dyo+ CL¢+}2'CY, Dy
(Cp tan vy

J
€9
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The Laplace transformation of equations (1), with the use of the symbol ¢ for the operator, is
o g 1 _ s 1o N o o s 1 ; 1
( --I-lahx ¢ —50190'_ ¢+(2#0Ktz0"—§(:,_ﬂ'>lll— Cx,ﬁ =2l-£bI1x' {F¢o+(Dn¢)o] —50179504‘ Q#Dsz [0"1’0+(D511’)u] —'§O£,% .

.o . . Oy
(2#°szdg—%c"n G')E—I-(?;LBKZZJQ—%O,!)E_ 0n53= 2p Kz [6¢0+(Db¢)0]_-':];_-'0up b+ 2u K2 [G"!’a_‘i‘(Db!b)O]'—'éOnr\f’o‘i‘Tc - (2)

S

("—%Ox', T— CL)$+(2F00'—%C}',U— Cy tan ‘Y)J‘i“ (2#a0'— CYﬂ)E= —}??C{Y’ ¢n+(2#b—%0r,)%+ 2p080

Equations (2) represent three simultaneous algebraic equations which can be solved for B, @, ¥, and their derivatives by
the method of determinants. For example,

_A_flo) .
- - @
where A is the characteristic lateral-stability equation
(Ae*+ B+ Co®+Do+E)e

and
31=A‘i10*+310':+0102+D10'+E1

The expressions for A, B, (, D, and E, in terms of the mass and aerodynamic pzu'anieters of the airplane, a.re-given' on
pages 27 and 28 of reference 1. The coefficients of the A, equation are

Ai=o 8 (B x*K 7 — K59l
Bl =gy [4[‘-520L(Kx2K22_K3.-52)] —|—(Da¢)0 [2 ﬂszY,(KxiKzz_szz)] ¢ [4#520[‘ tan ¥ (szKzg _szg)l +
(Db‘#)ﬂ [2 #02(0 ¥, —4#5) (K.YZKZ:_KIZE)] _{_ ﬁo [21-152 (szOzr _szonr) +2F-b2(KIzCnn _KZQOI’)]
C’[ =y [F‘bOL (.KIZ‘CIP_szc’nr) +P-DCL (szCnp ——Kz2 | l”)] +(Db¢)o[% ‘IOKIZ(OMPOYr—Oan‘T}") +
2#52 ’xﬂ(szgoL—Cnp) +2P-52sz’(01p —2K-x201;) +';— [.H,sz(c,rc’}-’ _01),0!',)]'{"‘100 [[-LDC’L tan ¥ (K-YZ(-!E,_CH,K.‘CE) + )
ol tany (Kxz(Co) —K7C1 )] +(Db¢)o[?},: BB xz(Ca Cy,—Cr Oy ) +% B A(Cy Oy, —C1 Cr )+
4w Cptany (Bx'Ka'—Kxa)+ 2 (BaCh, —KixsC,) [£8d] §1a(C1,Ca,—C1.Co,) |+
(Ynt [_FbKXZOY, + F—begCrr — 4[.&32[(3!_[
Di=¢, l:% Cs (Otncnr_otrou,)]+(Db¢)0[ﬂbcb tan ‘Y(szcu, —szc'-tp)"i‘ FDCL(KIZCE,_ —-Kf(_",,,r)]—l-
¥ [—-11: Cr tan Y (Orﬂ C"r —CtrC‘p)]_i-(D“r‘lb)o [#QCL(KZE(_,L‘_ _K.\‘Zonr) +I-1bOL tany (szC’n’ —Kz""C’;a )] +

1 . - 1
Guc I:I Cvpcrr—2#Jlxzcrr.+_2ﬂbz\-x201, tan 'Y+F-b(—-,£p '—Zozpor,]

E1=Cn (% CLCI’_—"I; 01’05 tﬂtn ‘Y)

The solution of equation (3), which will result in a time history of 8 as a function of s,. is obtained from the Heaviside
_expansion theorem (reference 3): '

s SO @

where A\, are the roots of F(o) set equal to zero. Similar solutions are derived for ¢, ¥, D¢, Dy, and DpS. The time
scale is readily converted from s, units to ¢ units by the equation t=%s,-

The values of the stability derivatives and mass characteristics used in the calculations aré presented in table I. The

table is divided into two columns which differ only in the values of (', and C of the airplane for the cases where the
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TABLE 1

STABILITY DERIVATIVES AND MASS CHARACTERISTICS
OF THE AIRPLANE CONSIDERED IN THE ANALYSIS

.Dorivative or characteristic ggutgk;gootf W“'I_:g‘;tdead
WIS, Ibfte ___. 0 80
By e ammmm o e s s mm o e e mrm e — 1011 10L1
o, slugs/it 5_ e : - 0.00089 0. 00080
A 758 753
[/ A .- 0.318 0.318
T S T .7
[ U R et e —————————— — 1] ]
J ¢ - R — - . 0. 0573 0. 0573
- U — (. 0063 0. 0060
(S0 0 BT O W —0.462 —0.462
C,., perredian. ..o s —0. 0158 -1, 0155
C:‘, per redlan. .. e em e ammmmma mmmmmmmmeoe _ —0.126 } —0.126
Cy’. perradian.. . oL — - Q 1]
CY,- per mrdian . cim——aaea — . . Q
L . ] =24,0,20 | —-20,0,2.0
Ca,- per tudian. ... - . —0.302 0
Cny (cases 1 and 2), per radian. .. .coolemomee e ['R:.:1 0
Cag (case 8), porradlsn . oo L. a4 0

airplane is either outside of or within the dead spot. From
the analytical solution of the motion, based on the mass and

aerodynamic characteristics of the first column of table T~

and an initial condition of 8=5°, the time history of 8 was
computed for several values of ¢, until the value of s, for
which 8=2° was reached. For values of ¢, greater than the
8, which results in =2°, this analytical solution is incorrect
since the airplane has now entered into the dead spot and the
values of Cy, and C, are zero. Thus, a new solution must
be calculated with the use of the values given in the second
column of table I with new initial conditions. The new
initial conditions are determined by substituting the value of
sy at which =2° in the original analytical solutions of ¢,
¥, Dheé, Dy, and D,8. Once these initial conditions are
known, another set of analytical solutions are computed for
B, ¢, ¥, and their derivatives from equations (3) and (4).
This procedure is followed every time 8 crosses through 2°
or —2° The final resultant motion in sideslip is the sum of
all the analytical solutions in B, each one of which is conect
only for a particular interval of time.

The constant C,_ is introduced into the yawing-moment
cquation of equations (1), since the value of the yawing-
moment coefficient due to sideslip is Cy B +C,, for the con-
dition of the airplane having the dead spot in cases 2 and
3 of figure 1. The values of C, are ;0 00977} and |0.0143]
for cases 2 and 3, respectively. “The sign of C*,, is opp051te
to that of 8. For case 1 of figure 1, C,,=0.

It is apparent that the procedure emp103 ed is a time-
consuming process ‘and subject to the possibility of many
computational errors due to the magnitude of the computa-
tions. The final solution cen be obtained, however, in a

relatively short time through the use of automatic digital

computing machines.
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RESULTS AND DISCUSSION

The effect of the nonlinesr stability derivatives on the
lateral motion was investigated for the airplane described
by the mass and aerodynamic characteristics given in fable
I, with three different values for ihe damping of the lateral
oscillation as calculated on the basis of derivatives constant
with amplitude. Since the damping was varied arbitrarily
by assuming different values for the angle of inclination of
the prineipal longitudinal axis of the airplane to the flight
path 5, three values of 5, —2° 0° and 2° were selected
which correspond to a demping of the lateral oscillation,
expressed in terms of Ty, of 5.6, 3.0, and 1.8, respectively.
The motion of the airplane in sideslip, due to an initial
disturbance in sideslip of 5°, for the three values of 74 is
shown_in figure 2. Since these motions are caleulated on
the assumptlon of derivatives constant with amplitude, the
amplitudes of the motion decrease exponentially with time
and will eventually reduce to zero. As can be noted in the
first ¢olumn of table I, the C,, for cases 1 and 2 is 0.28;
whereas the C, for case 3 is 0.41. The motions presented
in figure 2 are for (,,=0.28; however, the motions for
Cyy=0.41would exhibit osc1Hat10ns of appronmately the same
dampmg and a slightly smaller period.

The motions of the airplane in sideslip, showing the effect
of the nonlinearities illustrated in figures 1(a), 1(b), and 1{c),
are presented in figures 3 to 5, respectively. In all cases,
an initial disturbance in sideslip of 5° was assumed. The
pronounced effect of the nonlinearities on the lateral motion

" is noted by a comparison of figure 2 and ecither one of figures

3,4, or 5. In all three figures (figs. 3 to 5) the motion for
7=2°, "the most stable case, approaches a constant value.
The analyfical solution of the motion for the case of »=2°
in figure 3 indicates that, within the dead spot, the airplane
will oscillate at a period of 6.56 seconds and 7,=3.38
seconds and will eventually approach the value of g=—0.0092°,
Similar motions would be obtainéd for the case of 4=2° in
figures 4 and 5. As g is decreased, the damping of the
oscillatory motion depends upon the nonlinearity assumed
and the values of 3. In figure 3, the motion for y=0°
demps at a slow rate at the large amplitudes until the oscil-
lation reaches an amplitude of approximately 2.4° where
the damping of the oscillation is zero. The period of the
oscillption ingreases from 1.5 to 1.85 seconds. For the case of
n=—2%a very lightly damped oscillation is apparent within
the first few seconds and the ‘airplane may be considered to
be neutrally stable at an amplitude of F4.5°. In figures
4 and 5 the motion for =0° clearly indicates that the damp-
ing is decreasing as the amplitude decrcases and the period
of the oscillation increases; for y=—2°, the oscillatory motion
is slightly unstable. A neutrally stable oscillation would be
expected to oceur in figures 4 and 5 for the combinations of
a value of 5 between 0° and —2° and the dead spot assimed
in the calculations or for =—2° and a smaller dead spot.
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F1oURE 2—Caleulated motion of an airplane due to an nitial disturbance In sideslfp for several values of ¥,
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FIcURE 8.—~The effect of the nonlinear derlvatives described in figure 1(a} on the motlon of an afrplane.
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SCME EFFECTS OF NONLINEAR VARIATION IN C,; AND Cp,  ON LATERAL STABILITY OF AN ATRPLANE
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FInCRE +—The effect of the nonlinear derfvatives deseribed In figure 1(b) on the motfon of an sirpline.
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FioTRE §,—The effect of the nonlinear derivatives described in flgure 1{o) on the motion of an airplane,

In general, the results indicate that the damping of the
lateral oscillation calculated with the use of derivatives con-
stant with amplitude is a determining factor in the type of
motion obtained where nonlinear derivatives are present.
As the inherent damping of the lateral oscillation decreases,
a smaller dead spot will result in a neutrally stable oscillation.
Obviously, if the inherent damping is zero, a neutrally stable
oscillation already exists with zero dead spot.

Some additional calculations were made for the case where
the airplane is disturbed within the dead spot. The motions

for an initisl condition of §=1° were computed for n=—2°
P

and 0° with the assumption of the nonlinearity described in
figure 1 (b). The results are presented in figure 6. 1t should
be noted that the only difference between figures 4 and 6 is
the initial condition assumed in the calculations. In figure 6,
the motion for y=—2° is unstable and gradually approaches
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FIaTRE 6.—The effect of the nontinear derivatives deseribed in fignre 1(b) on the motion of an airplane. Inita] distorbance in sideslip of 1°,

.

the amplitude and period of the motion for the case of n=—2°
in figure 4. The motion for n=0° in figure 6 is slightly un-
stable and will probably incresse until its amplitude and
period are in close agreement with the motion for the case
of 4=0° in figure 4. Celculations have indicated that the
oscillatory motion of the airplane within the dead spot will
double amplitude about every 4 seconds for n=—2° and
about every 30 seconds for y=0°. If the motion is unstable
within the dead spot, either the airplane motion will bs neu-
trally stable with an amplitude equal to or greater than the
amplitude of the dead spot or the motion will be unstable.
The loss in damping and the inerease in period which ap-
peared in some of the Iateral oscillations in figures 3 to 5 can
be attributed to the type of nonlinearity assumed. From
classical dynamic stability theory, it is well known that the
damping of the oscillation is a function of Cy, and the period
of the oscillation is a function of C, 5 If the airplane is con-
sidered as & mass-spring dashpot system, C,, is the equiv-
alent spring constant of the system and O, corresponds to
. the damping constant confributed by the dashpot. Thus as
C’,‘p is reduced the period increases, and as C,, is reduced the
damping decreases.
213637—58—85

CONCLUDING REMARKS

The resulfs of the investigation made fo, determine the
effect of nonlinearities assumed in the ansalysis on the lateral
stability indicate that under certain conditions a motion is
obtained +hich has different rates of demping for the large
and small amplitudes of motion, with very little damping af
the small amplitudes. In general, the period of the resultant
oscillation increases with time.

LaxereEx ABRONATTICAL LiABORATORT,
Narioxan Apvisory COMMITTEE FOR AERONAUTICS,
Lanerey Fiewp, Va., September 19, 1960.
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