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REPORT 1050

FORMULAS FOR THE SUPERSONIC LOADING, LIFT, AND DRAG OF FLAT SWEPT-BACK WINGS
WITH LEADING EDGES BEHIND THE MACH LINES

By Doris CoHEN

SUMMARY

The method of superposition of linearized conical flows has
been applied to'the caleulation of the aerodynamic properties, in
supersonic flight, of thin flat, swept-back wings at an angle of
attack. The wings are assumed to have rectilinear plan forms,
with tips parallel to the stream, and to taper in the conventional
sense. The inpestigation covers the moderately supersonic speed
range where the Mach lines from the leading-edge apex lie ahead
of the wing. The trailing edge may lie ahead of or behind the
Mach lines from its apex. The case in which the Mach cone
from one tip intersects the other tip is not treated.

Formulas are obtained for the load distribution, the total lift,
and the drag due to lift. For the cases in which the trailing edge
18 outside the Mach cone from its apex (supersonic trailing edge),
the formulas are complete. For the wing with both leading and
trailing edges behind their respective Mach lines, a degree of
approximation is necessary. It has been found possible to give
practical formulas which permit the total lift and drag to be
calculated to within 2 or 8 percent of the accurate linearized-
theory value. The local lift can be determined accurately over
most of the wing, but the trailing-edge-tip region 1s treated only
approximately.

Charts of some of the functions derived are included to facili-
tate computing, and several examples are worked out in outline.

INTRODUCTION

It is customary, in supersonic wing theory, to describe
any straight segment of the boundary of a wing plan form as
supersonic or subsonic accordingly as the segment lies out-
side or is contained within its foremost Mach cone; that is,
as the component of the flight velocity normal to the edge is
greater than or less than the speed of sound. These two
circumstances result in fundamentally different types of flow
over the surface. It is apparent that the real reference is
not to a property of the wing plan form, but to a combination
of plan-form geometry and the velocity of the wing relative
to the speed of sound. Thus (see fig. 1) every swept-back
wing, on entering the supersonic regime, has subsonic leading
and, in most cases, subsonic trailing edges. At a higher Mach
number, the same plan form may have subsonic leading edges
and supersonic trailing edges. Finally, if the Mach number is
increased sufficiently, both leading and trailing edges will
become supersonic.

Interference effects also depend on the flight Mach number,
since the extent of the various disturbance fields is determined
by the angle between the Mach lines. Thus, no single
concise formula or method of treatment has as yet been
developed to predict, even approximately, the aerodynamic
characteristics of an arbitrary wing plan form through the
supersonic speed range.

The present report is concerned with the loading, lift, and
drag, according to linearized theory, of thin, flat, swept-
back wings with rectilinear boundaries and conventional
taper. Various methods are available for the calculation
of these properties when the leading edge is supersonic.
Of these, the method of reference 1 is perhaps the most
convenient. Formulas obtained by this method for the
loading and lift-curve slope of wings with supersonic lead-
ing and trailing edges are presented in reference 2. In the
following, therefore, the emphasis will be on the solution of
the problems arising from the interaction of the flow fields
in the presence of subsonic leading edges (figs. 1 (b), (c),

5 \
/ \\/
(e) M=2/0

3 / ho \
(d) M=/75 (7) M=275

FIGURE 1.—A typical tapered swept-back wing at six supersonic Mach numbers, showing
the Mach lines from the leading- and trailing-edge apexes and from the tips.

and (d)). The case (fig. 1 (a)) in which the Mach number
and aspect ratio are so low that interaction takes place
between the tip flow fields will not be treated. An approxi-
mate solution to this problem may be found in reference 3.

When a wing with a subsonic leading edge is to be studied,
considerable simplification of the problem may be achieved
by making use of the solutions, available in reference 4

1
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and other sources, for the infinite triangular wing.! From

these solutions the aerodynamic characteristics of a variety
of swept-back plan forms can be calculated by the use of
the superposition principle of linearized theory to cancel
any lift beyond the specified wing boundaries. Two methods
of cancellation have been developed: one, presented in refer-
ence 5, uses supersonic doublets and is general enough to
apply to curved boundaries; the other, originally due to
Busemann (reference 6), cancels by means of the super-
position of conical flow fields. In the present report the
conical-flow method is used, since it appears to offer some
advantages for the straight-sided plan forms under
consideration, particularly in determining the integrated lift.

The material presented in this report is largely drawn
from references 7, 8, snd 9, with some simplifications sug-
gested by practical experience. In particular, the formulas
for the total lift have been reworked to substitute, with
no increase in computational labor, a combined ‘primary”
and ‘“‘secondary’’ correction for each of the “primary” cor-
rections in reference 7. Also, the formulas containing elliptic
integrals have been rewritten to take full advantage of
available tables. As in the preceding papers, the final for-
mulas will be derived for unyawed wings with tips parallel
to the stream, but the application of the general method
and the basic solutions to other plan forms and problems
will be apparent. Some numerical examples will be included
in order to show the magnitude of the effects discussed and
to summarize the method. A table summarizing the
formulas is also included.

I—METHOD OF THE SUPERPOSITION OF CONICAL
FLOWS

A conical flow field is oue in which the velocity components
u, v, and w in the stream, cross-stream and vertical directions,
respectively, are constsnt in magnitude along any ray from
the foremost point, or apex, of the field. Such flows are
found as solutions of the linearized potential equation for
supersonic flow. A detailed discussion of their derivation
and use is contained iu reference 4. In the cancellation-of-
lift procedure, only solutions of the so-called ‘“mixed” type
described in section V of reference 4 are required, except for
the basic solution (for the infinite triangular wing) which is
itself of conical form.

SYSTEM OF NOTATION FOR CONICAL FLOWS

The Cartesian coordinate system is placed so that the
origin coincides with the projection of the leading-edge apex
on the horizontal plane, the positive = axis extending down-
stream from the origin and the y axis extending perpendicular
to the z axis in the horizontal plane. (See fig. 2.) For the
conical flow fields, it is further convenient to define a variable
to designate a particular ray in the xzy plane, since the flow
velocities are constant along such a ray. If the apex of the
field is specified, then the ray is most readily described by its
slope, measured from the dowmnstream direction. The
conical solutions of the supersonic flow equation are, how-

1 The present report covers in detail only unyawed wings. However, yawed wings may
be treated similarly, starting with the yawed triangular-wing solutions. This problem

is the subject of a paper, NACA TN 2262, 1950, by Lampert, prepared concurrently with
the present report.
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Ficure 2.—Coordinate system, conical variables, and other symbols.

ever, functions of the ratio of the slope of the ray to the

%of the Mach lines, where 8 is +/ Mz—'l and M is the

free-stream Mach number. For the triangular-wing flow
with its origin at the apex of the wing, therefore, the conical
variable will be chosen as

slope

a=6% (1)

At the Mach lines from the leading-edge apex, a equals +1.
The ray from 0, the wing apex, making the angle tan“%

with the stream will hereinafter be referred to as the ray a,
and the subscript @ will indicate association with a coustant-
load sector (to be introduced later) of which such a ray is
one of the boundaries.

For each of the conical fields to be superposed at the edges
of the wing plan form, a new coordinate system is set up with
its origin at the apex of the field. In conformity with the
notation of reference 4, the conical variable relative to the
displaced origin is called ¢, with subscripts to denote the
location of the origin. Thus, if #,,, is the point of intersec-
tion of the raya with the plan-form boundary and is to serve
as the apex of a canceling conical field,

te=0 Z’%Z_: (2)
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is the ratio of the slope of the ray t, of that field to the slope
of the Mach lines.
If the ratio of the slope of the leading edge to the slope of
the Mach lines is
m=@ cot A (3)

where A is the angle of sweepback, then at the leading edge

a=m, and a ray from the leading-edge tip is designated by

tm. If s is the wing semispan, the leading-edge tip has the
Bs

coordinates e and any poiat x,y has the conical coordinate

y—s
tn=108 (4)
M
m
5 . > Bs
in the field with apex at m S

Other symbols referring to angular locations will be defined
in the same way as needed. A summary of the symbols
will be found in appendix A.

BOUNDARY CONDITIONS FOR CANCELLATION OF LIFT

The general problem of deriving the flow over a wing of
finite dimensions from the known flow over an infinite wing
is the problem of determining the induction effects due to
the edges. These effects may be thought of as associated
with the cancellation of the lifting pressure at the boundaries
of the finite wing. In the linearized lifting-surface theory,
they may be evaluated by the superposition of flow fields
with negative lifting pressure over the portion of the infinite
wing outsideé the boundaries of the finite plan form, provided
the other boundary conditions are not disturbed. In the
case of a flat wing at an angle of attack, the latter provision
means that the canceling field must (1) induce no downwash
within the boundaries of the finite wing and (2) introduce no
new lifting pressure outside those boundaries.

In accordance with thin-airfoil theory, the boundary con-
ditions will be satisfied in the horizontal plane rather than on
the surface of the wing. Also, by thin-airfoil theory, the
conditions on the lifting pressure are converted to conditions
on the velocity field through the relation

k.. ®

In the simplest case, the lift to be canceled will be dis-
tributed uniformly over a semi-infinite region bounded by
two straight lines. The boundary conditions of the problem
may then be said to be conical with respect to the intersection
of the two lines, which become “rays” of the canceling conical
field. The boundary conditions on the canceling velocity
field in this case may be summarized as follows:

(1) The streamwise velocity » must approach values equal
in magnitude and opposite in direction on the upper and lower
surfaces of the horizontal plane.

(2) In the horizontal plane, » must be constant over the
infinite sector in which lift is to be canceled.

(3) The vertical velocity w must be zero in the portion
of the z=0 plane occupied by the projection of the finite
wing.

(4) From equation (5), » must equal zero in the portion
of the horizontal plane not covered by conditions (2) or (3).

(5) In supersonic flow there exists the additional condition
that all the velocities must go to zero on the Mach cone from
the apex of the field.

CANCELLATION OF NONUNIFORM LIFT

The foregoing are the geueral couditions for a uniformly
loaded canceling flow field. Under the proper conditions, a
nonuniform distribution of lift may be canceled by the super-
position of a number of such fields. This procedure is best
explained by a concrete example.

Conusider the problem of a swept-back wing flying at a
high Mach number such that, as in figure 1 (e), the Mach
lines from the leading-edge apex intersect the tips of the
wing. The method of deriving the swept-back wing from
an infinite triangular wing in that case is indicated in figure
3. It may be noted at the start that, according to linear
theory, the lift behind the supersonic trailing édge may be
canceled in any way without affecting the velocities on the
wing. Thus it remains only to counsider the effect of cau-
celing the lift outboard of the tips.

Fi1GURE 3.—Method of cancellation of lift beyond the tip when the leading-edge Mach
line intersects the side edge of the wing.

An infinite triangular wing with supersonic leadiag edges
has a load distribution which is constant over the portions
of the wing between the leading edge and the Mach lines
from the leading-edge apex (see fig. 4). This constant load
may be caunceled outboard of each of the tips of the swept-
back wing by a single negatively loaded triangle of infinite
extent, one side coinciding with the side edge of the wing
and a second side coinciding with the extension of the leading
edge. However, the area to be removed (region BAC, fig.
3) includes also a region over which the pressure varies, and
is conical with respect to 0. Since the boundaries of the
region are conical with respect to A, no one conical solution
can satisfy the requiremeunts of the problem. The problem
is brought within the limitations of the conical solutious by
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FIGURE 4.—Lift distribution on a triangular wing with supersonic leading edges.

considering the lift to be made up of an infinite number of
constantly loaded, overlapping sectors of infihite extent.
(See fig. 3.). These sectors are bounded on one side by the
wing tip; the second side is the extension of a ray from apex
0 of the wing. Between the leading edge (a=m) and the
leading-edge Mach line (¢=1), no division of the field is
necessary since the lift density is constant in that region.

If a sector with apex at A and angle tan“%l is used to cancel

this uniform lift, then the remaining superposed fields must
be used where a<1 (see fig. 4) to restore the difference
between that lift and the loading on the triangular wing.

If u, is the streamwise component of the perturbation
velocity corresponding to the constant loading ahead of the
leading-edge Mach lines, and ua(a) is the same velocity in
the region between the Mach lines, then the magnitude of
the v component of the velocity in the initial canceling
sector will be —u;, and on the remaining sectors (see fig. 3)
minus the increment in u;—ua corresponding to an increment
in a, or % da. (Note that this last quantity is positive, as
required). To determine the total effect of canceling the
loading outboard of the tip, the velocities induced by the
latter infinitesimally loaded elements are integrated and
added to the negative effect of the initial constant-load
sector.

II—LOADING ON WING WITH SUBSONIC LEADING
EDGE

LOAD DISTRIBUTION OVER TRIANGULAR WING
In the notation of this paper, the velocity distribution
over a flat lifting triangle with leading edge behind the Mach
lines may be written

mu,
= ©)
m-—a

REPORT 1050—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

where
mVa

U=t 7
"=BE m) 4
is the (constant) velocity along te cen ter line a=0. In the
expression for u, E’(m) is the complete elliptic integral of
the second kind, of modulus v/1—m?. The load distribution
is obtained from the velocity distribution by equation (5).

SWEPT-BACK WING WITH SUPERSONIC TRAILING EDGE
(TIP CORRECTION) ?

If the problem is now to find the loading on a swept-back
wing with subsonic leading edges, but supersonic trailing
edges, only the tip effects will modify the triangular-wing
distribution. The calculation of the tip effect on a wing
with subsonic leading edge (m< 1) is somewhat complicated
by the fact that the pressure becomes infinite at the leading
edge, but otherwise follows the procedure outlined in the
preceding section.

Tt will first be necessary to present the expression for the
previously described conical field with uniformly loaded sec-
tor to be used as the element in canceling the lift outboard
of the tip.

ELEMENTARY SOLUTION FOR A STREAMWISE TIP

If s is the semispan of the wing, the apex of any element a
(see the section on Notation) is at

R
Ta="17 Ya=$ (8)
and, from equation (2),
Y—s
tazﬁ (9)
b P
a

Then, if u, is the constant perturbation-velocity component
to be canceled over the region between the tip and the exten-
sion of the ray a, the previously listed boundary conditions
for each of the required canceling fields may be written as
follows (see fig. 5):

(1) and (2) When 0 <t, <a, u= +u, (constant for the field)

(3) When £,<0, w=0

(4) When t,>a, u=0

(5) When |t,| =1, u=v=w=0.

The solution of the supersonic flow equation satisfying the
above boundary conditions has been derived in reference 4.°
In the zy plane, the streamwise component of the velocity is

u=-kr.p. %“ cos™! (—Litt“__*_aﬂ'
a

(10)
The signs refer to the upper and lower surfaces, respectively.

In figure 5, the essential features of the solution are
shown. At the top is a detail view of the wing side edge and
shows the boundary conditions. In the center is a typical
plot of the argument of the inverse cosine in equation (10),
against t,. Where this quantity is less than —1 (i. e,
0<t,<a), the real part of the inverse cosine is . Where
the argument is greater than +1 (f,>a and {,<—1), the

2 Approximate formulas, valid when m is close to 1, have been presented for this case in

reference 10.
3 The corresponding solutions for raked-in or raked-out tips may also be found in reference 4,
or deduced from later sections in the present report.
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FIGUrRE 5.—Elementary solution for canceling lift at the tip.

real part of the inverse cosine is zero. On the wing
(—1<t,<0), the argument goes from +1 to —1 and the
inverse cosine is real. Thus in canceling, or subtracting,
the velocity u, between #,=0 and {,—a, the increment in

velocity Ldliots
-1 a a a a

U
u(z,y, az)=-——7r2 cos o
a

(11)

is induced on the wing upper surface.

TIP-INDUCED CORRECTION TO THE LOADING

Following the procedure outlined in Part I, we proceed to
determine the effect of canceling the lift outboard of the
wing tip. Since the value of u, for the initial canceling
field —us(m) and the value for the first incremental field

% da are both infinite when the leading edge is subsonic,
it is first necessary to write the induced velocity at a point
2,y as
ol —uA(a) Ea-Rh i 2a
(AW yip="T0 81— S =
fdus et a+t.+2at, ]
=] ., e b da (12)

976745—52 2

where the limit a, is the value of a corresponding to the
rearmost sector including the point z,7 in its Mach cone.
The value of a, is found by setting ¢, (equation (9)) equal

to —1. Thus, for the tip correction,
PT L
=By —9) f12)

This parameter will be additionally useful as the value of
at which the velocity correction given by equation (11)
goes to zero and its derivative has a singularity.

Before performing the integration of equation (12), ¢,
must be replaced by its expression in terms of z, ¥, and a.
Then integration of the second term by parts results in a
term which, at the upper limit, exactly cancels the first
term, and at the other limit is zero, leaving, after substitution
for ua,

(Au); = SR Vaos—y) da
tip 1l"\«/§ ap (al'._.ﬂy) \/(7n2___a2) (1 +(l) (a_ao)

(14)

This integral is finite and can be evaluated in terms of
elliptic integrals as follows:

(Au)tip=u0[

where

mBl—y) r __ MET
‘/m22

2 (z+By) B*y*
Ao:KoE('P; k')—(Ko—Eo)F('/’: k')

e w)] (15)

(16)

and K, and E, are 2/r times the complete elliptic integrals
K and E of modulus

ks \/(m —ag) (1—m)
2m(a,+1)
In equation (16), F' (¢,k’) and E (y.,k’) are the incomplete
integrals with the complementary modulus %’=+/1—%2? and

argument
w1 [@o(mz+BY)
Heras ﬂs(aﬁ— m)

The functions K,, E,; and A, are tabulated in reference-11* or
may be computed from the tables of reference 12. A plot
of A is given in figure 6.

Value at the side edge.—At the tip, 7 is equal to s and the
first term in equation (15) vanishes. In the second term, y¥
becomes 7/2 and E (¢,k') and F (k') reduce to the complete
integrals E'=E(k’) and K’'=K(k’), respectively. Then,
since, by Legendre’s relation,

K'E—K'K+KE'=x/2

Ao reduces to 1. The induced velocity correction is seen to
be exactly equal to —u,, bringing the lift to zero at the
wing tip.

Drop in lift across tip Mach line.—An interesting effeet
shows itself at the other limit of the tip region, that is, at the
Mach line from the tip of the leading edge. Along this line
only the influence of the leading-edge pressure is felt, so that

4 The quantity Ko is called Fo in reference 11.
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a;=m. Then k=0, k'=1, K==/2, EW,k’) reduces to

sin y = \/mz—rﬁy} and finally
—Us ﬁ-?
e T, o
(AU ip tn=—1)=Au ST e (17a)
or, since along the tip Mach line B(s——g/)zr-_%s,
2l T e i (17b)

 \2(1Fm)(mz—Bs)

This result indicates a finite drop in pressure across the
Mach line from the tip, an effect which is associated with the
cancellation of infinite pressure at the leading edge and con-
sequently does not appear as long as the leading edge is
ahead of the Mach lines. The ratio of the drop in lift across
the tip Mach line to the uncorrected lift can be written

dut | \/(1+a) (m—+a) (18)

2m(1+m)

This ratio is plotted against a/m in figure 7 and shows the
percentage loss of lift at the tip to be very large. In fact,
for any but the lowest-aspect-ratio wings, the lift remaining
in that region is almost negligible. This effect, which should
be of considerable practical interest, was first indicated in
the results of reference 13 for the limiting case of m=0.

100

]

/'
=

80

m=0

70

N\

0| 2 4 & 8 40
a/m LE

FiGURE 7.—Percent drop in lift across Mach line from tip.

SWEPT-BACK WING WITH SUBSONIC TRAILING EDGE

The tip-effect correction just derived applies equally to
wings with supersonic or subsonic trailing edges. The effect
of a subsonic trailing edge is calculated separately, and is
primarily due to canceling the triangular-wing lpading in
the wake region. If, however, the triangular-wing loading

has been modified by the introduction of side edges, then this
modification must also be taken into account when canceling
the lift behind the trailing edge. In the conical-flow method,
the various component flow fields must be canceled individu-
ally. The sections immediately following will discuss the can-
cellation of the triangular-wing loading ; cancellation of the tip-
induced components of velocity will be considered under the
heading “Secondary Corrections.”

PRIMARY TRAILING-EDGE CORRECTIONS

Procedure for canceling lift in the wake region.-—The
basic procedure is again to consider the load to be canceled
to be built up by the superposition of uniformly loaded
sectors, bounded on one side (see fig. 8) by the rays a, and
on the other by the trailing edge of the wing. It is con-
venient at this point to introduce the parameter

m,=pXcot (angle of sweep of trailing edge)

7MYy

fan”

Motif:l _/‘/,/.75 , Tarte Mac;hj{/:e, \
/
/
/
/ /
A p i v s
& s i
-Au
Uqg
-1 0 a m; 4
ta

FIGURE 8.—Oblique constant-lift element (shaded) for cancellation of lift at subsonic
trailing edge, and induced velocity distribution.

The boundary conditions to be satisfied by the » compo-
nent of the elementary canceling velocity field are indicated
for the right span in figure 8; each field must have constant
velocity %, when a <t,<m, and zero streamwise velocity over
the wake region, —1<t?,<a. The concomitant vertical
velocity must be zero on the wing surface. However, when
a is small, the region —1 <¢,<a will include a portion of the
left-hand wing panel. Since in this region the u component
of velocity has already been specified, the vertical velocity
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will not, in general, be zero. Nor is it possible to modify
the field to satisfy the boundary condition on the far wing,
since the area involved is not conical with respect to the apex
of the field.

The error involved in the foregoing procedure is minimized
by the use of a symmetrical flow field to cancel the initial
load u, at a=0, where & single conical field can be made to
satisfy the boundary conditions exactly on both wing panels.
This flow field (see fig. 9) would have its origin at the apex
0,0 of the trailing edge, and the constant-load region would
extend over the entire wake region. Between the trailing
edge of the wing and the Mach lines from ¢,,0 the induced
downwash would be zero in the plane of the wing, while the
pressure would vary as required to satisfy the fundamental
flow equations.

In figure 9, a typical curve of ua is shown, from which it
can be seen that the Joad to be canceled is very nearly
constant over a considerable fraction of the wake region.
Cancellation of the velocity %, by the symmetrical field will
consequently leave only a small variation in % to be canceled
by the oblique fields described earlier in the section. The
resulting violation of the flat-plate condition may be expected
to be small,® and will take place only over a small region
near the tip of the trailing edge.

__A‘_

Y

W

7]

-(4 u)o =

Qo

«] M, my 1

to

FIGURE 9.—Symmetrical ficld for cancellation of %o at subsonic trailing edge.

s Calculations made to check this statement have shown the induced downwash angles to
be less than 0.5 percent of the angle of attack, even in the most unfavorable circumstances.

Symmetrical solution.—For the symmetrical solution we
define the conical variable

A
e (19)

which is zero along the center line of the wing and equals +m,
at either trailing edge. Then the boundary conditions to be
satisfied in the zy plane may be summarized as follows:

—m, <ty < +m,

'mt<lt0|S1

U= =+ Uy
w=0

The required solution is given in reference 14. The u com-

ponent in the zy plane is

L T
P R m ) F(¢,+/1 ‘m,)

where K’(m,) is the complete elliptic integral of the first kind
of modulus v1—m2 and F(¢,4/1-m2) is the corresponding
incomplete integral of argument

[y

) 0

¢$=sIn \/ T
The form of the induced velocity on the wing (see fig. 9) is
very similar to the inverse cosine curves of the tip solutions.

On the wing, ¢ is real and the symbols 7. p. may be omitted.
The velocity induced on the upper surface by cancellation of

“ 1ty behind the trailing edge is therefore

Uy

—K’(m,) F(¢;\i —771,2) (20)

(Au)l):

Oblique solutions for the wake region.—The symbol

t, will be used as before to indicate a ray of the flow field

with apex at z,,7,, the point of intersection of the ray a with

the wing boundary—in this case the trailing edge. Along
the trailing edge,

t

gt (xs—cy)
Ju 6 a 0

Since a=p8 (y./z,), we may solve for z, and v, as functions
of @ and the constants m, and ¢,:

s mCoy

-Ta_mt_d (21)
ol
By"——m,—a (24)
Then
__By(m,—a)—mcoa (23)

z(m,—a)—m,c,

The boundary conditions to be satisfied by the elementary
solution are (for a>>0)

a<t,<m, U=t Uq
mt<tas+1 w=0
—1<t,<a u=0
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The solution satisfying these conditions may be obtained
from the tip solutions by an oblique transformation. (See
reference 4.) In the xy plane, the resulting expression for
the u component is

2 (1 —a)t,—m,)—(m,—a)(1—t,)
(1—m,)(t.—a)

)pi

Then the velocity induced at any point 2,y on the upper
surface of the wing by the cancellation of the infinitesimal
increment of perturbation velocity u, over the sector bounded
by the ray a and the trailing edge is

dAu — U,

d (laH(Au),, 77 (‘OS—I (1—(1) (tn‘-ml)_(ml_a)(]—ta)

(1—m,) (t.—a)

(24)

Correction of loading near the trailing edge.—To deter-
mine the lift at any point z,y near the trailing edge of the
wing, it is first necessary to determine the most rearward
canceling sector @, that will influence that point. Setting ¢,
(equation (23)) equal to 1, we solve for

2—PBy—=co

O
T r—By—muc,

(25)

Then the total correction to the triangular-wing velocity wu,
obtained as a result of canceling that velocity behind the
trailing edge is

(B . (2, y) = (Bu)o+ f ‘@i’fd (264)

The integral in the foregoing expression has been evaluated
in terms of an incomplete elliptic integral of the third kind,
which may be computed with the aid of the tables of refer-
ences 11 and 15. Because it will be necessary to define several
new functions it was thought better to present the results in
an appendix (appendix B). For practical use, graphical or
numerical integration may be preferred, in which case a
convenient form is obtained by rewriting u, as (dua/da) da,
or dua, in equation (24). Thus equation (26a) becomes

Au)r g, (2,y)=(Au)—

1 f"; (ag)
— co
™ Jvo

where #, and ua must be evaluated for selected values of a
between zero and @,. The integrand, of course, goes to zero
at ua(ay). At points along the leading edge (in cases in which
the leading edge extends into the zone of influence of the
trailing edge), the integral takes on a somewhat simpler form,
with the result that the entire trailing-edge correction at
such points can be written

= 1—a){t,— m:)—(m,—a)(l—t
(1—m,) (t.—a)

2 dus (26b)

mz\__, $F($V1—m7)
(AU)T.E.(Iy B it {K(\/l—mtz)
_y lo—m)—m,(1—1)
,,COS Asmyn - T

1 2 (to—m,) 1—a,
T (1—m)°<1—m,>t0[F ("'k)—m_aoEWf)]} (26¢)

Au
where the first term inside the braces is (u) and, in the last
0
term,
Sl Ba,
= -1
Ve \/’m+ao

and

(1—m) (m—+ay)
i \/ om (1—a9

SECONDARY CORRECTIONS

The term ‘“‘secondary corrections’’ is used here to designate
the effect of canceling the lift introduced outside the bound-
aries of the wing in the process of canceling the original tri-
angular-wing loading beyond the tips and behind the trailing
edge. As previously mentioned, cancellation of lift at the
tip introduces new (negative) components of lift to be can-
celed at the trailing edge. The original cancellation of lift
behind the trailing edge, on the other hand, will introduce
negative incremental pressures outboard of the tip and, under
certain circumstances (see figs. 1 (a) and (b)), ahead of the
leading edge. The distribution of lift to be canceled in each
case is no longer part of a single conical field, but is composed
of an infinite number of superposed conical fields originating
at various points along the trailing edge or tip. In order to
cancel these pressures accurately, it would be necessary to
set up, for each of the original canceling elements, an infinity
of positively loaded elements at the opposite boundary.
Thus, each secondary correction would require a double
integration for each point, and would obviously be quite
tedious. The procedure is described in detail in references
7 and 8. The more recent work of Mirels (reference 5) offers
an alternative method which, while no less tedious at the com-
putational state, is somewhat easier to set up for computing.
Nevertheless, the exact calculation of the secondary correc-
tions, and of the suceeeding corrections arising as the second-
ary corrections are in turn canceled at the opposite edges,
appears feasible only with the aid of high-speed computing
machinery.

These corrections may be thought of as a converging
series, since in each case (except in the neighborhood of the
leading edge) the induced effect is smaller than the canceled
lift. Over most of the wing, the secondary correction is of
the same order of magnitude as the tolerable error. Formulas
for obtaining a major part of the secondary corrections can be
given rather simply and should suffice to give results of
practical accuracy in problems (fig. 1(¢c)) not involving lead-
ing-edge corrections. Problems of the type shown in figure
1(b) will be discussed in a later section.

Secondary corrections at the trailing edge.—The pressure
differences induced by the tip are in the main due to can-
cellation of the infinite pressure at the leading edge. It
should therefore be permissible, for the secondary corrections,
to approximate the tip-correction field by a single conical
field from the leading-edge tip. The lift associated with this
field may then be canceled behind the wing (see fig. 10) by a
single infinity of superposed fields, as was the original triangu-
lar-wing loading. If the values of (Au)., calculated for
points 2,,, along the trailing edge are assumed to apply all
along the corresponding rays tm(2s,ys) from the tip, then the
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F1GURE 10.—Sketch for approximate cancellation of extraneous lift introduced behind
the leading edge by the tip correction.

lifting pressure will be exactly canceled along the trailing edge
and the remaining variation of pressure in the wake will have
very little effect on the flow over the wing.

The cancellation fields are of the previously used oblique
type, with a replaced by

4, —PW—9) @7)
B,
Tp—
m

Let the particular point at which the line ¢,=—1 intersects
the trailing edge be designated by z*y* and other symbols
referring to that point be similarly starred. Then the
velocity induced at auy point z,y on the wing by removal of
(Au),;, aloag the trailing edge will be (from equation (24))

—Aur _ 2(t*—m)—(m,+1)(1—t%)

.o A—m)E*+1) e
1 ("tm@0,v0) d(A'lL)up g (1—tm)(tr—m:)_(mt'_tm)(l_tb)
;L ah, R A—m)to—tm) U

(28)
where Au* is given by equation (17),t*aund ¢, are calculated by

+_ Bly—y"
e il

and
_Bly—uy»)
ez = 5 (30)
respectively, and x,,7, is the poiat of intersection of the Mach
forecone from r, 7 with the trailing edge.

The derivative 3(21— (Au) s, would have to be determined
numerically or graphically from a plot of the calculated
values of (Au),;, against t,. Inorder to avoid this procedure,

it is preferable to rewrite expression (28) as
—Au* ST 2¢*—m)—(m,+1) (1 —t%)
™ (l—m,)(t*-l-l)
cos™~! (1 —tm) (tb_ml)_(ml_tm) (1 =

1 (Au) ¢ ip (r9,v0)

B g6

™ J au* (l—mt) (fb'_tm)

‘ 31
aud integrate by plotting the inverse cosine function against
(Au) tip-

As long as the aspect ratio of the wing is greater than 1/8
(a condition already imposed by the exclusion of the problem
shown iu fig. 1 (a)), Au* will be more than half (Au),, at
any other poiat on the trailing edge. Since, moreover, the
integral term in equation (31) has zero slope at the Mach
coune (t*=1), while the first term starts with iafinite slope,
it 1s apparent that the secondary correction may be simplified
still further by omitting the calculation of the integral.
For points near the trailing edge, the loading can usually be
faired to zero with sufficient accuracy.

Secondary correction at the tip.—A similar method of
approximating the secondary correction at the tip caunot be
formulated with equal counfidence. Since, however, over
most of the wing the symmetrical correction (Au), coatrib-
utes the larger part of the total subsonic-trailing-edge
effect, it will again be assumed that thé entire effect coun-
stitutes a single conical field, with its apex at ¢, 0. The u
velocity along each ray f, will have the value (Au)r z. (2, 8)
of the trailing-edge correction at the intersection z,, s of the
ray with the tip. The cauceling fields will have the same
form as those (equation (10)) used in deriving the primary
tip correction, and the total approximate correction to the u
velocity will be

(au) 7, g, (z9,8)
_lf mEE cosmt Bl gy . 32)
wJty=1 b_tO
in which :
_Bly—s)
S 7 (33)
2, is the value of z, which makes ¢{,=—1, and (Au)7, g. i8

calculated for z=z,, y=s by equation (26b).
NUMERICAL EXAMPLE

Before proceeding to consider the problem of interaction
between the leading and trailing edges, which introduces
some radically different effects, the results so far obtained
will be illustrated by a numerical example. The loading
over an untapered wing, with 8 cot A=0.6 and reduced
aspect ratio A=1.92, has been calculated at four spanwise
stations: 25-, 50-, 75-, and 95-percent semispan. The wing
plan form and section lift distributions are shown in figure 11.
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FIGURE 11.—Load distributions calculated for four streamwise sections of an untapered wing; m=0.6; 84=1.92.

.




|
1% REPORT 1050—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

The results of the calculations are presented in the form of
values of B(Ap/ga) (equation (5)).

The various components of lift are presented separately as
calculated. In figures 11 (a) and (b), the discontinuities in
slope show the effect of the cancellation of the finite velocity
u, at the trailing-edge apex. The integrated part of the
trailing-edge correction (component 2) has zero slope at the
Mach line. The two outboard sections (figs. 11 (¢) and (d))
are intersected by the Mach cone from the tip, as indicated
by the finite drop in the load curves. Cancellation of the
finite tip effect at the trailing edge (component 4 in both
figures) results in a sharp discontinuity in pressure gradient
along the reflected Mach line, at 91-percent chord at
y/s=0.75 and at 78-percent chord when y/s=0.95. The
cancellation of the trailing-edge corrections at the tip, which
affects only the last section shown, results in another break
in the load curve at 49-percent chord. Further corrections
enter at the rear of the section as a result of successive can-
cellations of the superposed pressures at the tip and trailing
edge. Their effect has been only estimated.

SWEPT-BACK WINGS WITH INTERACTING TRAILING
AND LEADING EDGES

When, as in figure 1 (b), the Mach cone from the trailing-
edge apex includes a region ahead of the leading edge, the
previously calculated trailing-edge corrections to « must be
canceled in that region, since they represent a discontinuity
in pressure which cannot be supported in the free stream.
Thus there must be calculated a leading-edge correction,
which is one of the previously defined secondary corrections.
However, the location of the disturbed field ahead of the
wing causes its influence on the wing to be so much more
widespread than that of the other secondary corrections as
to require more careful consideration. A new type of flow
field is also required, as discussed in the following paragraphs.

LEADING-EDGE CORRECTIONS

Elementary solution for the region ahead of the leading
edge.—In general, the elementary solution requned for the
cancellation of pressure in the plane of the wing ahead of the
leading edge is one that:

1. Provides consiant streamwise velocity over an infinite
sector bounded on one side by the leading edge of the wing
(extended) and on the other by an arbitrary ray extending
outward into the stream from some point &,, ¥, on the leading
edge. (See fig. 12.)

2. Induces no vertical velocity, or downwash, on the wing.

3. Induces no lift except on the wing and within the sector
described in condition 1.

At first glance these conditions would appear to be satisfied
by the oblique solutions used at the trailing edge, if properly
oriented with respect to the wing, and the same form of solu-
tion might be expected to apply. In reference 4, however, it
has been pointed out that the downwash connected with the
latter solution remains constant over the wing only if the
wing area does not include the line y=constant extending
downstream from the apex of the element. In the case of
the leading-edge element this condition is violated (fig. 12)
and an additional term is needed to bring the downwash to
zero throughout the area of the wing affected by the element.

Leading edge

—~<Trailing- edge Mach line

1
/‘\_
; y

F16URE 12— Leading-edge element and induced-velocity function.

The solution applicable to this case has been given in refer-
ence 4. The u component of the velocity in the plane of the
wing is as follows:

u:ﬁp%[mymmqmu+m—m—wu+m_

TGt
V@ m)<1+t.,>\/ SRR

(1+m)t

where u, is the constant streamwise perturbation velocity
over the element, and t, refers as before to a ray from its
apex. The ray bounding the element originates at a point
on the trailing edge and has been designated, from equation
(24), as t,. When the correction is being made for the sym-
metrical trailing-edge element, ¢, is replaced in equation (34)
by t,.

For brevity, the two parts of the correction function will
be referred to as

. (ta—m) (L -+t —(m—t) (1 2
T Fm) i) (35}

C(t,)=r.p. cos

and

1—Hb

Rt)=r.p. G TRy e 66)

(1+ )

The variation with ¢, of these functions and the induced
velocity (equation (34)) are illustrated in figure 12.
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Leading-edge correction to the loading.—The single conical
field of (Au), will be considered first. (See fig. 13.) The
velocity field to be superposed ahead of the leading edge to
cancel the velocity (Au), induced in the plane of the wing
by the symmetrical solution (equation (20)) can be built up,
as shown in figure 13, of overlapping constant-velocity sec-

// \\

// s

/\/

— - — . — . o—— - —
i~
[N

FI1GURE 13—Cancellation of the pressure field introduced ahead of the leading edge in the
course of canceling uo behind the trailing edge.

tors having one edge along the leading edge of the wing and
one along the extended ray ¢, from the apex of the trailing
edge. The magnitude of the constant velocity on each ele-

d(Aw

ment is 7 Jo dt, or, from equation (20),
0

wo di,
K'(m)+(1—t (ioz—mzz)

Applying equation (34) to the cancellation of the sym-
metrical-correction velocities (Au), ahead of the wing results
in the following induced velocity increment at any point
(z, y) on the wing:

(37)

(Batdo= f d(A“)" [O(te)+R(t)] dto (38)

where 7, is that value of ¢, for which ¢,=—1, and designates
the most rearward leading-edge element containing the
point z, ¥ within its Mach cone. In terms of z and ¥,

gie: m(z+By)
" (z+By)—(1+m)c, Y

976745—52——3

Integration of (to) dt, is not feasible by elementary

d(Au)O Y
dt, 8
means.

Q%Tu-)—o dty as d(Au), to avoid the infinite value of the derivative
0

For graphical integration it is advisable to rewrite

&t t0= 1
The second term of the product in equation (38) can be
integrated in closed form as follows:

d(Aw), _ —4m®uK(k) z+By

f R(lo)dto_‘ml(l —I—m)K’(m,) mx_ﬂyz(\l’: k) (40)

where
2m,(1 = o To)
A (T—m)(rot-my)
and
2, )=E, )~ D Py, b (41)

with

¢=sin“\/——T°+m‘

271y

The function Z(y, k) is tabulated in reference 16; a plot of

Z(Y, k)

k sin ¢
Similarly, for each oblique trailing-edge element a (see

fig. 15), a canceling field can be built up ahead of the leading

edge by the superposition of sectors bounded by the leading

edge and by rays ¢, from the apex z,, 7, of the element a,

and having a constant velocity of the magnitude

o(Au), el ) g1 (1—a)ta:—m)—(m,—a)(1—t,)
o emlne T—m)ta—a) e
(42)

against ¥ is given in figure 14.

(from equation (24)). If the symbol Aug . is used to
designate the total leading-edge correction to the % com-
ponent of velocity at any point, then the part due to canceling
the field of a single oblique trailing-edge element a is

dAuL.E. dtl-—— b(Au)a
da T )7

[C(t)+ B(t,)] dt, (43)

where

m(m,—a)(x+By) —m.co(1+m)a
(m,—a)(z+By)—m.co(1+m)

is the value of ¢, for which t,=—1 and the leading-edge

correction function vanishes.

(44)

Ta=

0(Au),
ot,
stituted in equation (43), it is again impractical to attempt
to write a closed expression for the integral of the first term
b(Au)a

is sub-

When the expression (equation (42)) for

C(t,) of the product. The integral of the second

term 1s
{2 Byt~

—4m yﬁ\/(m,—a)(l—m)(z—}—ﬁy)—m co(l-i-m)(l—a)

(1+m) a (1—m,)(mz—By)
= Za Z(o, ka)
K(ka) [\/ tag (sm xp) Vi—a k. sibn Yo (45)
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F1GURE 14.—The elliptic function
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where

B [Atm)(1—7,)

i (l_mt) (1+7'a)
(m,—a)(1+7,)
(ro—a) (1+m,)

e mt(1+7a)
Sl \/ dAFmy

U,—sin

Trailing-edge
e/emgnf ag e

FiGUure 15—Cancellation of the pressure field introduced ahead of the leading edge by a
single oblique trailing-edge element.

Then the total leading-edge correction to the velocity u at
any point z, y is

@)z, n. =@yt [ LD g (46)

where (A,u), is obtained from equations (38) and (40),

%(% from equations (43) and (45), and

(L+m)co— (1 —m) (x4 By)
A Fmymeco—1—m) @+By) "

(47)

is the value of @ at which 7.(z, y, @) (equation (44)) is equal
to 1.

The last term in equation (46) will seldom be found to
contribute any significant amount to the loading, but will be
needed in calculating the leading-edge thrust.

FURTHER CORRECTIONS

Omitting for the moment any specification of tip location,
it is in any case necessary, as seen in figure 12, to consider
the effect of a further cancellation necessitated by the excess

lift introduced behind the trailing edge by the leading-edge
cancellation field. To compute this effect by the conical-
flow method would be feasible only with the aid of high-speed
computing machinery. The previously mentioned cancella-
tion method of reference 5, being more direct, would be some-
what easier to use in this connection, but the calculations
would still be very lengthy. It will be shown by numerical
example that the effect of the first cancellation at the trailing
edge of the leading-edge correction, which is initially quite
small, may be estimated with adequate accuracy when the
section loading is considered as a whole, provided the fraction
of the chord affected is not too large.

If the product B cot A is low or the aspect ratio high, still
further cancellations will be required (see fig. 16) at both
leading and trailing edges. It is clear that calculation of the
effect of these further cancellations by the conical-flow
method is all but impossible. The doublet-distribution
method of reference 5 does not appear to offer any consider-
able advantage in this application since, in canceling lift
ahead of a subsonic leading edge, it is necessary to find not
only the pressure distribution to be canceled, but the asso-
ciated sidewash distribution as well.

It is apparent that an alternative method must be sought
for describing the flow in the outboard regions of a high-
aspect-ratio wing or a wing the sweep of which is large com-
pared to the sweep of the Mach line. If the wing could be
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FiGURE 16.—Plan view of central portion of high-aspect-ratio wing, showing pattern of
Mach lines arising at feading and trailing edges.
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extended indefinitely, it is known that the flow must even-
tually approach the two-dimensional subsonic flow, in accord-
ance with simple sweep theory. The question then arises,
can the flow at a distarce of the order of a semispan from
the apex of the swept-back wing be related to the two-
dimensional asymptotic flow? While the flow field appears
to be too complex to obtain an answer to this question on
analytical grounds, numerical values, presented in the
following paragraph, suggest a practical approach.

NUMERICAL RESULTS (WITHOUT TIP EFFECT)

Load distributions have been calculated by the conical-
flow method for three combinations of taper, sweep, and
Mach number as follows:

Untapered Tapered
m= 0.2 0.4 0.4
my= 0.2 0.4 0.6

These values of m and m, represent, by virtue of the Prandtl-
Glauert transformation, a variety of sweep angles at Mach
numbers between 1 and 2; as for example, 0.2 would be the
value of m for a wing with 63° sweep of the leading edge at
a Mach number of 1.075, or 75° sweep at a Mach.number of

T
,—~ Triangular-wing
-2 Joading
6+
h
4=
3+
Ap
R : . Joa
qa Final loading - ~
2 -
/=
Leading-edge correction - -
0 [ e =
Oblique trailing-edge correction -
-/
Symmetric trailing-edge correction -~
(a)
-2 1 | | | ]
o 20 40 60 80 /100

Distance from leading edge, percent chord

(a) Section A-A By/co=0.667

1.25. Similarly, m=0.4 would correspond to 45° of sweep
at M=1.08, 60° at M=1.22, or 75° at M=1.80. The
trailing-edge sweep angles at these latter Mach numbers,
if m,=0.6, are 34°13’, 49°, and 68°, respectively.

Figure 17 presents the lift distributions at two stations
of the tapered wing. Each component is plotted independ-
ently in order to show the magnitudes at the leading edge.
Section A—A contains the intersection of the trailing-edge
Mach line with the leading edge, so that the value of the
leading-edge correction is zero at the leading edge of this
section. At points farther back along the leading edge, as
at By/c,=0.8, the correction is minus infinity. However, it
is seen to increase to a small positive value within a fraction
of the chord length at this station.

At both stations it is necessary to estimate the effect of
cancellation of the leading-edge correction at the trailing
edge to satisfy the Kutta condition. Cancellation would be
carried out by means of oblique elements of the type used
previously (equation (24)) in canceling lift at the trailing
edge. The pressure to be canceled is initially (. e., at
25y, (fig. 16)) zero. Then the lift induced on the wing
by this cancellation may be presumed to have the same
general shape as the oblique trailing-edge correction of figure

7r
=== Correction for
Hutta condition
(estimated)
6‘ =
5+ : ;
,~ = Triangular -wing loading
4
3+
A _Aﬁ Final loading-~"
qa
2 =
/-
Leading-edge correction -~
[ - =3
Oblique frailing-edge correction -
=/
Symmetric trailing-edge correction -~
(b)
-2 | | | | d|
0 20 40 60 80 100

Distance from leading edge, percent chord

(b) Section B-B By/co=0.800

FI6URE 17.—Load distributions calculated by the conical-flows method for two streamwise sections of a tapered swept-back wing; m=0.4; m:=0.6.
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~= Triangular-wing
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Leading-edge correction -~
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Symmetric trailing-edge correction - -
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-2 I 1 1 1 )
o 20 40 60 80 /00
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F ——=— Correction for
HKutta condition
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4 -
o ,~ = Triongulor-wing loading
2 -
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Symmetric frailing-edge correction -~
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FIGURE 18.—Load distributions calculated by the conical-flows method for two streamwise sections of an untapered wing; m=0.1.

11, falling along a modified inverse cosine curve from the
value of the error at the trailing edge to zero, with zero
slope, at the boundary of the region affected. With this
boundary (the Mach line from the point ,,7,), it is possible
to draw a satisfactory estimate (dotted curve) of the correc-
tion needed to bring the pressure once more to zero at the
trailing edge.

The untapered wing with the same sweep (m=0.4) relative
to the Mach lines is shown in figure 18, with the load dis-
tributions calculated at the same stations.

Four section lift distributions are presented (fig. 19) for
m=0:2." At %=0.15 only the rear 60 percent is influenced

0
by the subsonic trailing edge. The reflection of this influence
at the leading edge alters the pressure over the rear 40 per-
cent of the section. At section B-B, the leading- and
trailing-edge interaction affects the entire section. A further
reflection of this effect at the trailing edge must be estimated.

At section C-C the influence of cancellation of the leading-
edge correction at the trailing edge extends over the whole
of the chord and any estimate of its magnitude would be
necessarily arbitrary. Also, a second pair of reflections
must be taken into account. The final pressure distribution
has therefore been drawn as a baund within which the true

976745—52—4

curve may be shown to lie. Its height is the error introduced
at the trailing edge by the first leading-edge correction,
except very near the leading edge, where an infinite negative
correction is known to be introduced by the second leading-
edge correction. The calculations were also carried out for
By/coe=0.45. The margin of uncertainty was found not to
have increased by any appreciable amount. (See fig. 19 (d).)

APPLICATION OF TWO-DIMENSIONAL FORMULAS TO CALCULATION OF
LOAD DISTRIBUTION

Correlation of two-dimensional and swept-back-wing
loadings.—It is apparent from the calculated results that,
whenever the plan form and the Mach aumber are such that
the trailing-edge Mach line iatersects the leading edge, the
load distribution behind the Mach lines from the poiat of
intersection resembles in shave the theoretical load distribu-
tion over an infinitely loag flat plate in incomoressible flow.
However, as the results have been plotted, the quantitative
agreement is not good, particularly ia the case of the tapered
wing. Oua the other hand, if the load distributions in
cross sections normal to the stream are examined, a near
proportionality of the curves is observed. In order to
determine the factor of proportionality, it is only necessary
to find the ratio of the streagths of the siagularities at the
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FI6URE 19.—Load distributions calculated by the eoniesl-flows method for four streamwise sections of an untapered wing; m=0.2.
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leading edge. Then aun approximate expression for the
loading on the outer portions of a high-aspect-ratio wing
can be obtained by adjusting the two-dimensional loading
by that factor.

Both the swept-back-wing and the subsonic two-dimen-
sional loadings approach infinity as the reciprocal of the
square root of the distance to the leading edge. In sections
normal to the stream, the distaunce from any poiat z,y to the

! ; 1 m
leading edge may be written ] (mr—By). The value at the

leading edge of the coefficient of (mz— By)~"/* will be referred
to as the strength of the leading-edge singularity.
The subsonic two-dimensional perturbation velocity has

the form
n_B\/ ey (48)

where 7 is the distance to the leading edge, expressed as a
fraction of the chord, and B is a constant. If the section of
the swept-back wing is taken perpendicular to the stream
(z constant), the chord length is

% [mz—m,(z—co)] (49)
and
m'xﬁx j(g?i-co) (50}
Substitution for 7 in equation (48) gives
Then the strength of the leading-edge singularity in u is
B{mz—m (x—cy) (52)

The leading-edge singularity in the loading on the swept-
back wing is initially (region I, fig. 16) that in the triangular-
wing loading. Introduction of the leading-edge corrections
to the load, in region II, reduces the strength of the singular-
ity there through the terms R(f,) and R(f,). (The inverse-
cosine function is always finite.) The coefficient of
(ma—_By) =" in wu, is, from equation (6),

mIu,

\mz+By

at the leading edge.

From equations (40) and (45), decrements to this coeffi-
cient may be derived for the portion of the leading edge just
behind the intersection 7, with the trailing-edge Mach
line, as follows:

reducing to
(53)

—4mu,K(k)
mm K’ (m,) \/1 +m Z:k)

and, for each value of a from 0 to that value a,” which makes
7, equal to one,

dAaC —4m _ w, [(m,—a)z— (1—a)m.c,
da “*T @1t ma i K(ka) X
Ve Z(ﬂl/a, a) A Z(¢v Il)
[‘ 1+a F sin ¢, AT ks 51[;1 Yo (55
where 7, (equation (39)) and 7, (equation (44)) reduce to
e
e,

and
(m,—a)mx—m cqa

T h——
T (mi—a)z—mc,

and the arguments and moduli of the elliptic integrals
follow as for equations (40) and (45).

The coefficient of (mz—pBy)~'* at the leading edge is,
therefore, in region II, figure 16,

Cat @Ot [ a (56)
with a,’ reducing to
NS co—(I1—m)z
w(afo)m i lets @

Equating the two coefficients, expressions (56) and (52),
gives for any one section

Bt 2L St c)[(’A+(AC)0 f g - da] (58)

vmE—m,(x—

For convenience, a nondimensional cofficient

o= [04+(A0)0+ [ 4Ca%]  ©9
is defined, so that
vmz—m,(z—c,)

By substituting for B in equation (51), the loading on the
outer portions of a swept-back wing is obtained as

I;La.: U(I)\/[m 2 by —milz—co)

.2 —m(x—¢o)|(mx—BYy)

(60)

Numerical results.—The closeness with which the fore-
going procedure predicts the theoretical loading over swept-
back wings is indicated by figures 20, 21, and 22, where the
previously calculated load distributions are compared with
those calculated by equation (60). Even in the case of the
highly tapered wing, the agreement is seen to be good.
At the most inboard section of the m=0.2 wing (fig. 19 (a))
there is, of course, no agreement over that portion, forward
of the 60-percent-chord point, where the flow is essentially
conical. At station B-B, however, the agreement is very
good. At sections C-C and D-D, where the exact theoretical
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FIGURE 20—Load distributioris on the tapered wing as calculated by the
conical-flows method, compa-ed with the two-dimensional approximation.

loading had not been determined, the two-dimensional-type
loading lies within the band prescribed by the conical-flow
calculations. Since the discrepancy between the corrected
two-dimensional loading and the exact theoretical distribu-
tion is already, at section B-B (fig. 22 (b)), less than the width
of the bands in figures 22 (¢) and (d) and must diminish to
zero at infinity, it may be supposed that the corrected two-
dimensional curve is at least as satisfactory an approximation
to the correct curves at sections C-C and outboard as
at section B-B. It is probably more satisfactory than can
be obtained by a limited application of the conical-flow
method.

The load distributions derived by simple sweep theory
are included in the last part of each figure to show the magni-
tude of the plan-form effect and also, in the case of the un-
tapered wings, the curves that the load distributions must
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FIGURE 21.—Load distributions on the untapered wing, m=0.4, as calculated

by the conical-flows method, compared with the two-dimensional approxi-
mation.
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FIGURE 22.—Load distributions on the untapered wing, m=0.2, as calculated by the conical-lows method, compared with the two-dimensional approximation.

approach as the distance from the plane of symmetry is
increased. In figures 21 (b) and 22 (b), comparison is also
made with results of the slender-wing theory of reference 3.

Discussion of the ¢ function.—In the calculation of the

‘pressure coefficient at points toward the rear of most of the

sections considered in figures 20, 21, and 22, it was necessary
to find o(z) for values of z greater than x; (fig. 16). In
deriving ¢ (2), it was mentioned that expression (56) applied
to region II. In region III, the strength of the leading-edge

singularity is affected by further modifications of the flow
taking place in region IIb, so that additional terms in ¢ ()
should be considered when z is greater than z;. Kvaluation
of these terms by presently known methods would require,
as suggested earlier, the aid of high-speed computing ma-
chinery. However, the successive terms are all initially
zero and enter with zero slope at z3, zero slope and curvature
at 2;, and so on, so that the three-term expression for ¢ given
by equation (59) may be used with satisfactory accuracy
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for some distance beyond the last value of z for which it is | through the Mach number range for any one wing. The
strictly valid. In practice, the third term in equation (58) | value of , is readily determined:
may also be neglected for values of = only slightly greater
than z;. __Co
Iy= i—m (6 1)

Charts have been prepsred (fig. 23) giving (% \/T%) o

T— T

as a function of for several values of the ratio m/m,.

0
This last parameter is the ratio of the tangents of the semi-
apex angles of the leading and trailing edges and is constant

The curves were computed using equation (59) and are
therefore exact only up to z=z; (shown by a vertical mark
on each curve). Cross marks are drawn at the points z=uz;
to indicate a more practical limit to which use of the curves
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FiGURE 23.—Charts for determining o, the strength of the leading-edge singularity.
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FI1GURE 23— Continued.

may be extended. (These points are off the scale for m,=0.8
and 0.9 in figure 23 (a).) When the wings are untapered
(m/m,=1.0), asymptotes

Boi()is/l=m 1
| S

derived from simple sweep theory, may be drawn.

The curves, for the most part, are regular enough to permit
interpolation within intervals of 0.2 in m, However, at
m,=1.0 the lines diminish to a point on the vertical axis; a
curve for m,=0.9 was therefore inserted in the charts for
values of m/m, equal to or greater than 0.5. When m/m, is
less than 0.5, m=0.9 represents, if the leading edge extends
beyond z,,7;, such extreme taper that the successive reflection
of the Mach lines (at 3, x5 . . .) take place within a very
small fraction of a chord length and no useful curve can be
drawn. No curves are drawn for values of m, smaller than
0.2 because of the tip-interference limitation mentioned in
the introduction.

Calculation of tip effect.—The foregoing assumption of
two-dimensional flow can be extended to give fairly simple

approximate formulas for the tip effect on a high-aspect-
ratio wing. It is assumed that the velocity distribution to
be canceled in the stream outboard of the tip is cylindrical;
that is, is an extension of the velocity distribution calculated
for the tip section along lines parallel to the leading edge.
For this purpose the approximate load distribution given
by equation (60) is used, still further simplified by assuming
o to remain constant at its value at the leading edge of the
tip section. (Where the wing is tapering to a point and ¢
is changing very rapidly, the tip region is so small that the
entire calculation of tip effects could probably be omitted.)

The assumption of constant o results in a failure to cancel
exactly the lift along the tip. The assumption of cylindrical
flow, while reasonable for the untapered wing (compare fig.
21 (a) with fig. 21 (b), for example) would appear to be too
drastic for the tapered wing, where neither the chord nor
the loading remains constant. However, as has been men-
tioned earlier, the major part of the tip effect results from
the cancellation of the infinite pressure along the leading
edge, and this part will be accurately calculated. The
effect of the residual lift on the rearward portion of the tip
section and in the stream should be small.
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The distribution of perturbation velocity at the tip station
y=s, with the simplification of constant o, is, from equation
(60), approximately

U (20, )=0,Ve V'[me [Bs—m, @.—¢)] ¢, o

—m,; (xc—cg)] (ma.—Bs)

where z.,s are the coordinates of a point on the tip and o,
is the value of ¢ at the leading edge of the tip section.

This expression may be more conveniently written in
terms of the parameter

m

p=1 s (63)
and the variable
a8
&= ¢, (64)

which is the distance of z.,s from the leading edge (see fig.
24) expressed as a fraction of the tip chord ¢,. Since

equation (62) may be written

~__0';,"7(1 1_Ec
u(EC‘S)—_m (l—l“gc) &

(65)

where \ is the taper ratio ¢/co.

If the velocity distribution u is assumed to be constant
beyond y=s along lines parallel to the leading edge, it may
be canceled by the superposition of conical flow fields of
which the constant-velocity regions have one edge along the
tip and the other parallel to the leading edge. with apexes
displaced along the tip by increments in &. The velocity
induced at a point z,y by each such element would be

(equation (11))

o
Yo oogm1 ATt 2mi, (66)
T te—m
where
_By—s
e (67)

and u. is the velocity on each sector.

Following the procedure used in deriving equation (14),
the corresponding equation may be written for the pres-
sures induced by canceling the cylindrical flow

Auv)

V(X “p_

—ym(1+m) @—zo [ u (2, $) da, ©8)
mVa 8s [14m) z—zo—ma,] VTo— 2,

where z,,s is the intersection of the Mach forecone from z,y
with the tip.

S

F1GURE 24.—Sketch for derivation of approximate tip correction to loading at 7,v.

If the distances of z,y and 20,8 back of the leading edge,
measured as fractions of the tip chord, are

= (c-2) (69)
and
Eo=21'l (xo—%g (70)
it can be shown that
(1+m) (@—zo)=mc, (§— &) (71)

from which equation (68) can be written (with the substi-
tution for u(z.s) from equation (65))

A o h Eoalsc\/ =
Va)m, r\fr-rz_)\ﬁ =&V (fo—&) (1—pé)ée i

In integrating equation (72), three cases must be distin-
guished: (1) ¢<1 (always true for the untapered wing),

2) 1<£<% (when the point z,y lies more than a tip-

chord length behind the leading edge), and (3) E>%
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(a possible condition for some points near the trailing edge
of a highly swept or tapered wing).
In the first case (¢<1)

Au — o, m =
Vv a)np \nt)\l:”L,(l—#E)\/l—#E«,K-}_

\/ E(i%ﬁg) Wi k):| (73a)
where
sty 7 mé&
k_\/m,(l )
¢‘='Sin_1 =0 (1”"‘#&))_

(I—&) (1—pd)

and A, is the function (equs_ition (16)) plotted in figure 6.
In the second case (1 <t %)

Z(\b27 k)
k sin ¢,

(73b)

Au) o K
llp

sl o ot el
Vo) " Tos sl VE b & Do

where

'l/2=sin‘1\/hm’(:n—s"9

and Z is the function (equation (41)) plotted in figure 14.

In the third case <£>—Ilz>,

Au iry ayids Ao(%y k)
m)hp vm)\E sin \03 (73C)
where
ety pe—1
Y3=sIn i1

Along the Mach line from the leading-edge tip all three
equations reduce to the value

st o,
T (74)
By the procedure just described, approximate cancellation

of all pressure differences outboard of the tip has been

effected, but the pressures induced by such cancellation
now violate the condition of zero lift in the wake. Approxi-
mate cancellation of the induced pressure differences in the
wake region can be accomplished, as before, by making use
of the known value of the tip-induced velocity at the trailing
edge of the wing, but assuming the entire error to originate
at the leading edge of the tip. Equation (31) is directly
applicable, with Au* given by equation (74) and (Aw),, by

equation (73). On the trailing edge of an untapered wing
£=1 and

b

(Au) %
) e O (75)

There is no corresponding simplification for the tapered wing.

Numerical examples, tip effect.—Equations (73) and (31)
have been used to calculate the tip effect in two cases, namely:
m=m,=0.4, Bs=0.94c,; and m=0.4, m,=0.6, Bs=0.86¢,.
The tip effect has been calculated for each wing at 8y=0.8¢,,
where the loading was previously calculated (figs. (17b) and
(18b)) assuming the wing to extend indefinitely. The tip
locations were selected so that in each case only one reflection
of the primary tip effect affected the section at By=0.8c,.

Figure 25 shows the results of the calculations. The heavy
solid curve in each case was calculated entirely by the
corrected two-dimensional theory—that is, by equations
(60), (73), and (31). As a check on the accuracy of the
cylindrical-flow approximation for the flow outboard of the
tip location, the accurate theoretical loading was calculated

6
o
\ 1
4 -~
\
] 8.
g ‘ =
N -
\\ | _-Accurate l AR
X’ theorectical loadin g A
N\ (conical -flows mef oaQ
g4e | NG
9% °| Corrected #wo- ] [
" dimensional loading=>
[ N : 9
L0l i AN =1 ] |
= W/fhouf ip effect|
/ | Final loadingt= =
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0 | =
Cylindrical-f /on_/?é
\_gpproximationr- \
I ~
= Correction __K‘
' for Kutta |
| condition-—7—]
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— | ——£stimated ]
o T i e
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Distonce from /eading edge, percent chord
(a) Untapered wing; m=0.4; 8B4 =1.88. Section at 8y=0.8¢cy, or 85 percent semispan

FI6URE 25.—Load distribution over streamwise section near tip as calculated by two-dimen-
sional formulas, compared with more accurate theoretical values.
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for one point within the region of influence of the tip in each
case. The procedure employed for the exact calculation was
as follows:

The accurate loadings with no side-edge effects had already
been calculated, as has been noted, by the conical-flow
method. A primary tip correction was calculated for each
case by equation (15). This correction is the effect of cancel-
ing the unmodified triangular-wing loading off the tip sta-
tion. The remaining pressure differences to be canceled
consisted of those introduced by the leading-edge and trail-
ing-edge corrections. These pressures were computed by
means of equations (26) and (46) of the present report and
canceled by the method of reference 5.
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The results are designated by the circled points on each
figure. At the point at which the section enters the tip Mach
cone in each case, a second circled point indicates the accurate
theoretical loading. The value differs from that calculated
by the approximate formulas only as the two loadings without
tip effects differ.

It may be pointed out in concluding this section on load
calculations that, while the formulas have been developed for
plan forms with streamwise tips, the procedure may be
adapted by obvious means to raked tips as well. However,
in every case the deviation in the tip regions of the physical
flow from the assumed potential flow must be borne in mind.

III—LIFT ©
GENERAL PROCEDURE FOR CONICAL FLOWS

The total lift for any wing is, of course, the integral of the
loading over the wing area. In general, however, it is difficult
to obtain an analytic expression for the lift by a direct
integration of the lift distribution. In the conical-flow
method, advantage may be taken of the simplicity of the
compouent fields by integrating the lift associated with each
oue and then combining the results in the same way as the
pressure fields.

Conical elements of area are employed for the integrations.
These are infinitesimal triangles bounded by two adjacent
rays of the conical field and the intercepted bouundary of the
wing plan form. Over each of the infinitesimal triangles the
velocity u of the conical field will be coustant. Thus it
remains only to perform a single integration, with respect to
the couical variable of the field, to obtain the total lift
associated with that field.

GENERAL FORMULA FOR THE LIFT INDUCED BY A SINGLE TIP ELEMENT

The lift (AL), induced on the wing by a single canceling
tip element is obtained first. Although the notation of the
solution (equation (11)) used to cancel the triangular-wing
loading is employed, the derivation will hold generally for any
canceling element bounded on one side by the tip of a swept-
back wing, since no use is made of the fact that the other
bouundary of the elemeut passes through the origin of the
z,y axes. We write

(AL),,=2pr01 (Au), % dt, (76)

where (Au), (equation (11)) is the streamwise incremeut of
velocity induced by the canceling field and %? dt, (fig. 26) is
a

the element of wing area S for integration. For simplicity it
will be specified that the Mach cone from the apex of the
element does not include the apex of the trailing edge nor any
part of the opposite tip. Theu (see fig. 26)

S
dt, 2B \m,—t,

(77)

- 6 It may be noted that, as a result of the reversibility property (reference 17), the formulas
for the lift given herein for swept-back wings are equally applicable to the swept-forward
wings having the same plan forms but reversed in heading.
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Troiling edge, o

Bysme(z-co) -

~

»
"
L]

X¢y S

FIGURE 26.—Sketch for the determination of lift induced by a single tip element.

Substituting from equations (11) and (77) and integrating
by parts, we obtain '

(aL),~2Ymd

U(z: —2a)*g(a) (78)

i 1 a(l+a) a =
”“‘)‘m,—a[v m,(1 +mz)_E] 149

and z,—ux, is the distance of the apex of the element from the
trailing-edge tip.

where

GENERAL FORMULA FOR LIFT INDUCED BY OBLIQUE TRAILING-EDGE
ELEMENT .

With the notation of equation (24) for the velocity field of
an oblique trailing-edge element, and on the assumption that
the Mach lines from the apex of the eiement do not cross the
leading edge, the formula for the elementary area of integra-
tion with apex on the trailing edge (fig. 27) is written

F=to
d8=&82t:§@ dt, (80)

where s—y, is the spanwise distance from the apex of the

element to the wing tip. Then the lift associated with the
element is

_, (1—a)(ta—m,)—(mt—a)(1—t,) dS ‘.
5 e ey s
(81)

U [
(AL)a:2PV; m, cos

Integration of equation (81) gives

AD.=p Vio—yrp 2 [ /= 0U=0)_m—a] o,

m, m,

FIGURE 27.—Sketch for the determination of lift induced by a trailing-edge element.

WING WITH SUBSONIC LEADING EDGE

UNCORRECTED LIFT

First, the uncorrected triangular-wing loading (equation
(6)) is integrated over the wing plan form. The element of
area is a triangle formed by two rays from the leading-edge
apex a and a+da and either (1) the trailing edge of the wing
or (2) the wing tip, accordingly as a is less than or greater
than a,, the value of @ corresponding to the ray through the
tip of the trailing edge. (See fig. 2.) In the first case the
differential of area is

mcy’
58 (m,—ay %

and in the second

Bs?
5a? da

so that the total uncorrected lift is

Lo— B [ﬁ 2(771,,—(1)2 Ua da+ 5 2—(12 Ua da] (83)

From the geometry of the wing, the relation

m,co=2—s (m,—a,) (84)

may be deduced. With this substitution, and the substitu-
tion for u, from equation (6), equation (83) may be inte-
grated to obtain

L, 4s® Bu, {m"(m,—a,)"’[ m, (c e mi—m,a,

ge ma Va | mi—m? Vmi—m? m(m,—a,)
g m m m,(m*—m,a,) 2 2}
cos~ !l — +—— S —— e —— Al — 85a
m:) mz] m;—m? v g (%)
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When m,=m, this reduces to

Lo 8O [(m+a)ym*—al—(m—a,)’) (85h)

ga 3malVa

’ L y
It should be noted that, for a given plan form, -qi varies
with Mach number only as u,.
WING WITH SUPERSONIC TRAILING EDGE (TIP CORRECTION)

Proceeding to the calculation of the tip correction to the
lift, we integrate the change in lift (AL), (equation (78))
induced by each element @ over the range a,<a<m. The
quantity ua(m) is substituted for u, of the initial canceling

element and %%A da for u, for the remaining ones. As in

calculating the tip-induced pressure correction, the difficulty
is encountered that ua(m) is infinite, and therefore the total
lift correction must be written in terms of limiting values.
Following the substitution

T, —La=Ps l—l> (86)

a, a

in equation (78), it is convenient to define the function
\___(a'_al)z
G@="1 =7 9@

Then the total induced lift may be written

AL=2,Vm? g lim | —u, @6+ [ G Gada | ()

Integrating by pdrts results in cancellation of the first
term inside the brackets. Since G(a,) is zero, equation (87)
reduces to

where

G’(a)—a a,[(a,

is the derivative of G(a).

Equation (88a) has been integrated (appendix C) in
terms of an incomplete elliptic integral of the third kind.
If the necessary tables are not available, it may be prefer-
able to integrate numerically.” In that case it is noted that

J( Faldee a—a, ]
(ml_a)\(ml+m12)(a+a2)

1 P ey a
Jm—at da m

and ua da is rewritten as

: a
mied (sm‘l —)
m

Equation (88a) then becomes

Ld

AEN : 2 U 2 s - R
(EZ ”D———4m, mpBs Vaﬁiu_,‘%G(a)d (sm ‘R) (88b)

Th this way infinite values in the integrand are avoided.
WING WITH SUBSONIC TRAILING EDGE

The expressions (equations (85)) for the uncorrected_lift
apply regardless of whether the trailing edge is subsonic or
supersonic. The formulas for the tip correction may serve
as a first approximation when the trailing edge is subsonic
if the accuracy of a second correction is not required. For
that' purpose the special value for the untapered wing will
be of interest:

If the wing is untapered the elliptic integrals in equation
(88a) (see appendix C) reduce to the first and second kind

Al L (™ us(a) and the primary induced lift may be written in the following
(q—o[ “,,=—4m‘2ﬁ52ﬁ, Va ¢'(wda (888) | (losed form:
AL\ 4¢ Bu0< : 5 ma,(m?*—a®) { 9 m—a) [2 (@—m)P]
qa)  3mal Va 2(m+a) ym*—a/ TYirmite) (m—a)—2m+ il e, 3m~Le)

om?(14a)? _m+a,}+\/l+m{(m a‘)(m+2a1)F(¢’k) [ﬂ’%‘h)_ﬂ_ﬂ]ﬂ%k)»

a,(1+m)*(m-+a,) 7

where

RS e T \/1___:
Y=sin \/E(l—}-a,) and k=+/—

The primary tip correction, however, is usually quite large.
It may therefore be desirable to take into account the sec-
ondary correction resulting from its cancellation at the sub-
sonic trailing edge. Rather than compute a single secondary
correction to the lift, as an additional item, it is again found
advantageous to treat each superposed field individually, that
is, to cancel each conical tip field at the trailing edge and
find the net effect on the lift, then integrate over all the
tip elements for a combined primary and secondary tip
correction.

7 Or see reference 10 for an approxiraate formula valid when m is close to one.

ma,

m 2ma,(1+m)

(88¢)
Tip correction with subsonic trailing edge.—For the can-
cellation at the trailing edge of a pressure field originating
at a point z,, s on the wing tip, equation (82) is applied,
with the parameter a, which defines one boundary of the
oblique canceling field, replaced by ¢,, referring to a ray from

z,,8. The velocity u, is the gradient

dAw
7T dt,
of the field (equation (11)) to be canceled. The distance
from the apex of the canceling field to the wing tip is express-
ible as
Ti— %y Myt,

ﬂ mt_ta
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Then the effect on the lift of canceling the single field from
258018

(A2L)a=

—me,“(xz—xa)zf“ e ddu,,
B -1 (m,—a)2 dta

[\/(mt_ta) (1 _ta)_‘mt—"ta] dta (89)
m, m,

which may be integrated, after substitution for %tu; to give
‘a

i 2 (x,—x,)? a(l+a) i
@B;L)e=—pVm*u, o {\/mt(1+mt) [1— E, (k)]
a Ao (¢, k)
= [1-2e8D f @)
in which
1—m,
= \/1 +m,
and
G
¢=sin"! *—m,(l—a)

If the foregoing result is added to the lift associated
with the original tip element, given by equations (78) and
(79), it is found that the latter lift is exactly canceled by the
algebraic terms in the reflecied lift, ]eavmg

. (Ir ) 1+a)
(AL),=p Vm, ua m,—a) [’\/m,(l +mt)

(L AO('/’: k)

m, sin ¢

(1)

for the lift induced by one tip element and its cancellation
at the trailing edge. It will generally be found that further
steps in the cancellation process are unnecessary for engineer-
ing accuracy.

For the total tip-induced correction to the lift, it is neces-
sary to write as before

I 5 Vo B fim [—u_a(a)J(a)—}- f % % J(a)da] (92)

where J(a) is

(a—a,)? [\/ a(l+a) o
alta® m,—a m, 1+m,)

An integration by parts reduces equation (92) to

a '\0(‘p: k)]

m, sin ¢

(AL)uy=—2p Vim 28s? f " us(@)J"(@)da 93)
with

J’(a)_i—:’ mé— {[( m,——a)
sl (3-itm] et ) E)—

a—a, a(l+a)
1—a? \/m,(l +m,)K°(k)—

HlGEil =o=y

AO('I’: k)
siny } 94)

If the wing is untapered, J’(a) becomes indeterminate when
a=m. The limiting value is

- 4 m—a, 1—3m fa, 1—a,
J(m)—m‘*a,z(l—m“’){[ 3 '<% =
m—a, 8m
Mo (a- 1) | Bt
l—a, m—a,(1+4+3m
[3 ST T3 e (1—m2)]K°(k)}

Further integration must be performed numerically. In
order to avoid infinite values in the integrand, note again that

us (@)= muq a‘% sin~! % (95)

so that equation (93) may be rewritten

(ﬂ‘ =—4mm2s? %’ [w‘ J’(a) d(sm _> (96)

qa tip a

Trailing-edge corrections.—In deriving the trailing-edge
corrections to the total lift, primary and secondary effects
will again be combined. Further corrections will be
omitted.

For the symmetrical wake correction, the element of area
is obtained from equation (80) by setting 7, equal to zero,
and substituting ¢, for ¢,. Then the decrement in lift in-
duced by the application of the symmetrical canceling ele-
ment at the trailing edge is, from equation (20),

@ Ln=—20V8st gt [* FlgT=m) T2 (o7)

or

(AlL)O —4s? 5”0
i [ K'(m)] @

_2 S
=7‘_K(\1 m,)

where

Ky (m,)

The effect of canceling the pressure field induced by the
symmetrical wake correction at the wing tips is obtained
with the aid of the previously derived formula (equation
(78)) for the lift associated with a single tip element. The
parameter defining the boundary of the canceling tip ele-
ment is now ¢, instead of @, and the velocity on the canceling
sector is

d (Au)o It Up dtO
dt, ; K’ (m,) \/(1 —to) ' —m,d

(99)

The distance from the apex of the canceling sector to the
trailing edge may be expressed as

1 1
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so that the secondary effect of the symmetrical trailing-2dge
correction becomes

171 1Y (to) dt
Do ovmpe o [ (L_1)_atady
b2V ot e T )l VA=t te—mD

(101)

or

ADo_4sBuol, 1 22 Ky()—Eo®)
5t i, e Titm. K m) ] a0z

with k=\/1_2m‘-

Addition of this secondary correction to the primary
effect given in equation (98) results in the single correction

AL) =_832 ﬁuo\/_é—Ko(k)—EO(k) (103)

q_ m, Va 1+m, Ky (m))

By a similar procedure, the effect of canceling one of the
oblique trailing-edge fields at the tip is readily obtained and
added to the primary effect given by equation (82) to yield

BL)=pVB(s—y)r ¥ L [anc) B gy g e

a Jm,
m—a  [T+a
JdtmN o Ay (¥, k)] . (104)
X [ l=my Lrai 1+my)a :
with k——\/l T, and Y-=sin e as the combined

primary and secondary correction to the lift due to a single
oblique trailing-edge cancellation.

For the total correction to the lift due to cancellation of
the gradient of the triangular-wing loading in the wake,
equation (104) is integrated graphically or numerically
across the span as follows:

AL_ —4m Buo (¢ (—ya o ey
ge  m, Vaﬁ (m”—a2)3’2|:E°(k) W

m[—a

it %‘ Aol k)] da (105)

Numerical examples to be presented will show this com-
ponent of the lift to be very small, in general.

WING WITH INTERACTING LEADING AND TRAILING EDGES

In computing the load distribution it was found that,
when interaction takes place between the flow fields of the
leading and trailing edges, the wing plan form appears to
comprise two principal regions separated (see fig. 16) by the
Mach line arising at the point of intersection z;7, of the
trailing-edge Mach line and the leading edge. Ahead of
this line (region I) the flow is most readily described in
terms of conical fields. Behind this line the flow is more
nearly two-dimensional. On this basis, the total lift will
be found in two parts, using for region I the conical-flow

expressions for the loading, and for the remainder of the
wing the quasi-two-dimensional approximation.

LIFT ON INBOARD PORTION OF WING

The uncorrected triangular-wing loading will first be
integrated over region I, shown shaded in figure 28. For

FIGURE 28.—Inboard portion (region I) of high-aspect-ratio wing.

this purpose the region is considered in two parts, separated
by the ray a, from the wing apex to the point z,,y,. When
a is less than a,, the element of area is as before

m ¢y’
58mi—ay “
When a >a,, the element of area is

(1 +m)2002
28(1—m)(1+a)® da

Thus, the uncorrected lift in the entire shaded region is

2ch 2 ay m[2 m (1 +m)2
h==g— [L (m,—ay““d”ﬁz A —my( +ay uAd(T;Jﬁ)
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or
L,_4m u, 2{ 14+m L1 s Vmi—as?|,
qa B Va ’l(1—m) J1—m? m(l+a;) 1+a,

m,2 m ’V —ag )+

me—m?

A ¥ ami—ma, o, m
(wm_—W) ["°S ]| L

with

2mm,
1+m-+m,—m m,

A= (108)

When m,=m (untapered wing), the second part of equation
(107) becomes indeterminate. In this case,

1 1 2+a2 _\/mT—a—z,"’]
(l—m)”[‘/l o lm(l—l—az) 1+a, i

—é[(l e gl s

The trailing-edge corrections to the loading are to be
integrated over the part of the shaded region behind the
trailing-edge Mach lines. Integration of the symmetrical
wake correction (equation (20)) yields

(AL)y,__ —16mPe’®  u, 2 E)(m,)
ga  BATm)I—m) Va{l"l_—?, =it } foe)

L, 4m uo o2 14+m
o Ve

For each oblique element, the reduction in lift is given by

1 dAL
ga da “7
e L, gy, a4/ ]
1511
with u,,:(—idl;da, I“zm":foa and o

The total lift in region I is then given by

L\ _L,, (AL),, 2 (*2dAL
(qa I_Qa+ qo +Qa da da (113)

. o : ]
The quantity T a). is plotted against m, in figure 29 for
several values of the ratio m/m,.
LIFT ON OUTER PORTIONS OF WING

In order to find the total lift (except for tip losses) on the
remainder of the wing (fig. 30), a double integration with
respect to z and ¥ is performed on equation (60). A first
integration, with respect to y, yields for the indefinite
integral

f—;f’—dy o) ‘/—[\/(mx—ﬁy)(mz% m@+BY) |

1Co— (m,—m)x

mz—py
m,co——mzx+ﬂyJ e

vmco—(m,—m)z.tan~!

The values of By to be substituted as limits in equation
(114) are indicated in figure 30. Along the leading edge,
the right-hand member of equation (114) reduces to zero;
along the trailing edge it becomes

m a(x)
Ta Veo Vmco—(m,—m)z

2 B

Then the total lift on the outboard region (both wing
halves), except for tip losses, is

Qa I 8‘/60[] (1')<f1 tan“f"’ f2f3)dx+

[ e@hda— [ o (7 tan+%¢ MS)‘“]

({E1°5)
where

fi= vV mco—(m,—m)z
fo=+/0+m) @—1) fe=+/m(z—Bs/m)
Ji= \/(1 +m,) (x,—x) fi= Vm,(z,—2)

The indicated integrations may be performed numerically
or graphically, using values of ¢(z) taken from the charts of
figure 23.

TIP-INDUCED CORRECTION TO THE LIFT

In deriving a tip correction to the lift, the same simplifying
assumption of completely cylindrical flow will be adopted
concerning the pressure field to be canceled as was used in
obtaining a tip correction to the loading. As in the preceding
section, a combined primary and secondary tip correction
will be derived. All further corrections will be omitted.

If the notation of equation (63) is used the distance from
the apex z.,s of a canceling element to the trailing-edge tip is
¢.(1—¢.), and the lift induced by the element and its cancella-
tion at the trailing edge is, from equation (91),

¢ (1—&)° /m(1+m) m Ao(y,k)
(). plie B(m,— [ m(1+m,) R m, siny

(116)
l_m;
szl"'ml

Lt i [ img—in
Y=sIn —m,(l—m)
since the outer boundary of each element now has the slope
m

B

It is seen that only %, and (1—&)? in the coefficient of
equation (116) vary with the element. For the first element
(£,=0), the velocity u, is the initial value of the uncorrected
velocity along the tip section given in equation (65), and, for
the other elements, the differential of that velocity. Then

where

as before, and
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FIGURE 29.—Chart for the computation of lift in region I.
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eelie
By=my(z-co) — e
x=a,

FIGURE 30.—Boundaries of outboard region of high-aspect-ratio wing, for use as limits of
integration in equation (114).

the combined primary and secondary tip correction on both

wing halves is

AL amzela, [ m(l+m)

m(1+m,)

m Aoy, k) I: - 2\/
m, sin ¥ lm ¢ Ec(l—#Ec

Joa-er dsc\/sc(l—usc i vy

Integration by parts gives, finally,

AL _ 8rmclym [\/m(l—{—m) Eyle)—
qo 3B(m,—m)3‘/)\ m,(1+m,) ~°

2 A [ am—m) Ko Vi) —2m, (2—20) Ex(a) |
(118a)

‘qa B(m,—m)ymx £l

If the wing is untapered, equation (118a) takes on the value

A TN o, K+~ 3mI BB (118D)
Except for the occurrence of g,,¢c, and \ in the coefficients, the
tip correction obtained in the foregoing way is a function of m
and m, only, independent of the tip location. Values of
BV (AL
0sC°\ Q) iy

L
to the chart of (E>x (fig. 29).

have been plotted in figure 31 in a form similar
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F1GURE 31.—Chart for the correction of the lift for tip effect, using two-dimensional
formulas.

APPLICATION OF LIFT FORMULAS

CASES COMPUTED

The lift-curve slope (', has been calculated for two families
of untapered ‘wings with varying aspect ratios as follows:

m=0.2 m=0.4
8 8
B5 BA P BA
0.3 0.6 0.6 1.2
.4 .8 .8 1.6
.6 1.2 1.2 2.4
1.6 3.2

and for two tapered wings:

m=0.4, m¢=0.6 l

It should be noted that the untapered-wing cases (except for
the last one under m=0.4) represent three wings of fixed
geometry at two different Mach numbers such that g is
doubled in going from the first to the second. No calcula-
tion was made for m=0.2 to correspond to the last case

33
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under m=0.4 because at the lower Mach number it was not | obtained entirely by means of the conical-flow formulas, as
possible to calculate satisfactory values of ¢ out to the wing follows:
tip. The ta wings v i
p pered wings were chosen to show, })y comparison  rapecstiuing a—1.6] Giichlnd, ARLS
with the first two of the untapered m=0.4 wings, the effect Component of lift Sqgation
of taper with the span held constant and, by comparison Pligent | Tototal | LGRS
with the second and third untapered m=0.4 wings, the Uncorrected triangular wing....... 5323 2o | 121 2.5 14.0
C - . Ipjeffacts i, oo AL A TR S = ~11. =3 —-23.
effect of taper with a given aspect ratio. Symmetrical trailing-edge correc-
blon s ot h L AR TR it | Y (103) —.159 —9.2 —.340 —18.7
Oblique trailing-edge correction. _ . (105) —. 015 —0.9 —.019 -1.0
SUMMARY OF COMPUTATIONS
: s . e R s e 1720 | 100.0 1.814 100.0
With m=0.4 and Bs/c,=0.6, the trailing-edge Mach lines
do not intersect the leading edge, and the values of O, were | FC:.=PLlasS, perradian.._............ i Fd
(-3
The calculations for the remaining values of A are summarized in the following table:
Untapered wings
Tapered wing
Component of lift Obtained from m=0.2 m=0.4 m=0.4; m=0.6;
- _|1Bs=0.8; pA=24
BA=0.6 BA=0.8 BA=12 BA=1.6 BA=24 BA=3.2
Lift on inboard portion_.....__..____ _____ Fig. 29 or equation (113)__.._____________ 0. 366 0. 366 0. 366 2.128 2.128 2.128 1.981
Lift on outboard portion. . et R GUALION (1T6) - E M S ML ST C) .180 . 386 .830 . 849 2.593 4.459 . 462
Tipcorreation. . _-o._ Sdi 2dli—cni Looe Fig. 31 or equation (118)...______________ —.085 —. 090 —. 098 —.363 —.392 —. 415 —.092
Totals, Phloaet E8ET o0 oo T I T e R e e . 461 . 662 1.098 2.614 4.329 6.172 2.351
8Cp, =BL/goeS, perradiGnii- Mt I DL to SR Sar 9 SIS SO RN ORI LR .77 .83 .92 1.63 1.80 1.93 2.20

DISCUSSION OF RESULTS

The results of the calculations are plotted against the
reduced aspect ratio B4 in figure 32. The curves for the
untapered wings may be seen to be approaching, at the
upper end, the value 27m/y/1—m? given by simple sweep
theory.

At the lower end, the curves should approach the origin

along the line C’La=1§r A given by low-aé%ect-ratio theory

(reference 13). The two points on the m=0.2 curve for
BA<1 are not entirely accurate because no account was
taken of the interference between the flow fields from the
tips. The points are included, however, because, with so
much sweep, the wing areas affected are small and the inter-
ference effects should be negligible. The resulting curve
appears consistent with the corresponding curve calculated

3|
Simple sweep theory-
_é‘
m=0.4
2 / L
s : ’M” ]
2 BAZ"/ /(l)//
£Cy, :
; /| m=02 m=0.2
f 13—
et o Untapered wings
o Topered wings (m= .4’, m, =0.6}
/ ———S8/enader-wing theory (ref.3) ]
o / 3 1, 2

2
A

FIGURE 32.—Variation of lift-curve slope with aspect ratio.

by the slender-wing theory of reference 3, although a dis-
parity in plan form lessens the significance of the comparison.

The slender-wing-theory values are also plotted for m=0.4.
In that case, however, the assumption of extreme slenderness
is no longer justified and introduces an appreciable error.
(It should be mentioned that the asympotote for the slender-
wing-theory curves is below the value given by simple sweep
theory by the factor 4/1—m?.)

An estimate of the accuracy of the lift formulas of the
present report, compared,with results which would take into
account all the successive reflections at the tips and trailing
edge, may be made from the following observations:

The values obtained (in the first table) from equations
(96) and (103), which combine primary and secondary
corrections, differ from values obtainable for the primary
corrections alone by only 1 percent of the total lift in the case
of the tapered wing, and 4 percent of the total lift for the
untapered wing. Third-order corrections would be only a
fraction of those small corrections and would, in turn, be
partly canceled out by a fourth-order correction.

The results in the second table, incorporating the two-
dimensional approximations, agree within 2 or 3 percent
with values calculated entirely by the conical-flow method.

IV—DRAG DUE TO LIFT

The drag due to lift of a wing with supersonic leading
edge is simply the lift times the angle of attack. When the
leading edge is subsonic, the drag is reduced by a suction
force due to the upwash around the leading edge. In the
linearized theory this force appears as the limit of the
product of an infinite velocity across an infinitesimal frontal
area.

The formula for the suction force on a subsonic leading
edge has been derived (see, e. g., Hayes, reference 18) by
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assuming the flow near the leading edge to be essentially
two-dimensional and applying the results of two-dimensional
potential theory. The simple result obtained in that
manner has been verified for the swept-back wing of finite
span by application of the somewhat different approach of
eference 19.

By the two-dimensional approach, the suction force is
found to be proportional to the square of the strength of
the leading-edge singularity in the perturbation velocity u.
The latter is the quantity discussed earlier in connection
with the adjustment of the two-dimensional loading to the
loading on the swept-back wing. With the use of the pre-
vious terminology it is possible to write for the longitudinal
component of the suction force per unit streamwise length
of leading edge,

daT p7r

= VT—mi O (119)

where C, (equation (53)) is the value, at the leading edge,
of the coefficient of (mxz—pBy)=* in ua.

Then, if the trailing-edge Mach line does not intersect the
leading edge, the thrust is merely

Bs
T=p1ru02\/1——m"’J;mz dz
(120)
WZ 2
P 2:7:3 \/1’_

The total drag due to lift is obtained by subtracting the
thrust from the product of the lift and the angle of attack,
or, in coefficient form,

=al,—Cr (121)
where O, is the thrust coefficient 7/¢S. Thus, in the fore-
going case,

CD—— (33) ( )wl—m"’] (122)

When a portion of the leading edge is influenced by the
trailing edge, the leading-edge singularity takes on, for that
portion, the value given by expression (56), which then
replaces Ca in equation (119) for the thrust. The total
thrust is

2f - d:t——2 % \/l—mz{ rlCJ dx+

f [OA+(A0)(.+f°5‘1—A—Oda] dx} (123)

Co
E—m
locates the intersection of the trailing-edge Mach line with

the leading edge. Integrating the first term and reducing
so coefficient form gives

where

X =

2 [Th
C,T=1ra Vvi—m

Ba
Uy 400 m
S [ Va) + 2dz] (124)
so that

2 (o (GRS R T

In ﬁgure 33, — times the drag-rise factor % is plotted
L

B

against the reduced aspect ratio A for two combinations of
sweep and Mach number, m=0.2 and m=0.4, for untapered
wings. Comparison is made with a theoretical minimum for
slender wings in supersonic flight obtained by R. T. Jones
in an unpublished analysis. Using a method similar to Hayes
(reference 18) and assuming the wing to be narrow compared
with the Mach cone, Jones has derived a minimum wave-drag
coefficient

8
Op, =5 O (126)

where A, is the aspect ratio defined in the streamwise,
instead of the spanwise, direction; that is, if I (numerically
equal to z,) is the over-all length of the wing in the stream
direction,

A =P8 (127)

7]
6

\ ——0— Flat swept-back wings

L) ——Theoretical minimum |
5 ) (equation 128)
4 X
- X

1 e
gC N ~N|
N Y~1L [m=0
2 -
Vi }‘ oo
/ | e
o / Z & 4
BA

FicUurRE 33.—Variation of drag-rise factor with aspect ratio for untapered wings.

The wave drag is to be added to the vortex drag, which is
the induced drag of subsonic flow, calculated from the
spanwise loading. Using the minimum induced drag ob-
tained from lifting-line theory gives as the minimum super-
sonic drag-rise factor ®

Cp 1 B2
O A1 2x4, (825

It may be seen that the drag rise of the constant-chord
swept-back wings is fairly close to this minimum, especially
at the lower values of m for which equation (128) was
derived.

V—SUMMARY OF FORMULAS

The formulas for the loading, lift, and drag coefficients are
summarized in the following table, in which the equations
are identified by number.

8 This result hag since been published in The Journal of the Aeronautical Sciences, vol.
18, no. 2, Feb. 1951, pp. 75-81.
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Ap_ 4u A i
Case qa—Va (‘La S o l CD
—— —— Mach lines Region Equations for u Equa. for — Equa. No.
|
1 (6) (85) 4 (88) (122)
2 (6)+(15)°
1| ® (85)+ (96) + (103) +
% (6)+ (15)° (105) (122)
3 (6) 4 (26b)
4 (6)+ (15)*+ (26b)
5 (6)+ (15)*+ (26b) +(31)
6 (6)+ (15)°+(26b) + (32)
7 (6)+ (15)*+ (26b) +- (31) 4 (32)
1 (6) (113)%4(115)°+ (125)
2 (6)+ (26b) (118)°
3 (i1 LA,
4 (60)?+ (73)2:0¢
5| 60)+(@3) e+ (3D)
6 Not evaluated

¢ In evaluating, use fig. 6.
? In evaluating, use fig. 23.
¢ In evaluating, use fig. 14.
¢ or see fig. 29.

¢ or see fig. 31.

AMES AERONAUTICAL LLABORATORY,
NaTioNAL Apvisory COMMITTEE FOR AERONAUTICS,

MorrerT Figup, Cavir., Mar. 15, 1950.
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APPENDIX A
SYMBOLS
GENERAL £
free-stream velocity
free-stream Mach number &

JMF—1

perturbation velocities in streamwise, cross-stream
and vertical directions, respectively

density of air

dynamic pressure <?12- pV2>

pressure difference between upper and lower
surfaces, or local lift

angle of attack, radians

lift -

leading-edge thrust, or component of leading-edge

suction force in flight direction

lift coefficient <£—>
qS

, dC,
lift-curve slope ( da)

. D
drag coefficient (q—S)

)

thrust coefficient 1)
qS

WING DIMENSIONS

root chord

tip chord

semispan

wing area

over-all length in the steamwise direction
angle of sweep of the leading edge

taper ratio (c./c;)

aspect ratio (4s%/S)

streamwise aspect ratio ({%/S)

RECTANGULAR COORDINATES

Cartesian coordinates in the stream direction and
across the stream, in the plane of the wing

coordinates of apex of conical field used to cancel
triangular-wing loading (Equation (8) at tip,
equations (21) and (22) at trailing edge)

coordinates of apex of conical field used in second-
ary cancellations

coordinates of point on tip; apex of conical field
used to cance] assumed cylindrical load

coordinates of intersection of Mach forecone from
z,y with edge at which correction is being made

coordinates of intersection of trailing-edge Mach
cone with leading edge (; given by equation
(61)) .

coordinates of intersection of Mach line from z,,,
with trailing edge (z. given by equation (112))

coordinates of intersection of tip Mach line with
trailing edge

coordinates of intersection of tip and trailing edge

£

streamwise distance of z,y back from leading edge,
as a fraction of the tip chord (equation (69))

distance of x;,s behind leading-edge tip, as a frac-
tion of the tip chord (equation (70))

distance of x,,s behind leading-edge tip, as a frac-
tion of the tip chord (equation (64))

CONICAL COORDINATES

In the following, all slopes are measured counterclockwise

from a line extending downstream from the apex of the wing
or of the pertinent canceling sector:

m

m,

To

Ta

Ua

Au

Uq

Ue

slope of leading edge
slope of Mach lines
slope of trailing edge
slope of Mach lines
slope of ray from the origin
slope of Mach lines
the value of a corresponding to a primary canceling
element of which the apex lies on the Mach fore-
cone of the point at which the load is being
calculated (equation (13) for tip corrections,
equation (25) for trailing-edge corrections)
limiting value of @ for leading-edge correction
(equation (47))
a(zs,y:) (equation (108))
a(x,, s)
slope of ray from apex of element a  _y—vy,
slope of Mach lines _ﬁz—xa
slope of ray from x,,y, _y—v,

=ﬁ ('Ot A

boall
=82

slope of Mach lines T—1T,
slope of ray from z,, BAT” (e
slope of Mach lines ~ "z—z,

slope of ray from leading-edge tip Y—38
slope of Mach lines = z—(Bs/m)

slope of ray from z* y* y—y*
slope of Mach lines TR

limiting value of ¢, for leading-edge correction
(equation (39))

limiting value of ¢, for leading-edge correction
(equation (44))

COMPONENTS OF STREAMWISE PERTURBATION VELOCITY

basic (uncorrected) perturbation velocity as given
by solution for triangular wing (equation (6)
for subsonic leading edge)

value of u, at a=0 (equation (7))

correction to u, induced by cancellation of pressure
differences outside the wing plan form

constant perturbation velocity on sector used in
canceling triangular-wing loading

constant perturbation velocity on sector used in
secondary cancellation

constant perturbation velocity on sector used out-
board of tip in canceling assumed cylindrical
field
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(Au)o symmetrical trailing-edge correction to us (equa- ELLIPTIC INTEGRALS AND FUNCTIONS
tion (20)) % o
(Agu)g correction induced by canceling (Au), at leading mo(gilsl:iiot; Zgi}iﬁﬁpﬁ;egmh detined SHEE
edge (equation (38)) ’ . = ol
(Au), correction to us due to single oblique trailing- k complingsiesy .mo.du.lus (V1—F)
edge element (equation (24)) ¢ ory argulment t(l)f el{:ptlc integrals, defined where used
Au* value of tip correction to ua at the point z*,y* . (also with subscripts)
F(¢,k) incomplete elliptic integral of the ﬁrst kind of
ARBITRARY MATHEMATICAL SYMBOLS modulus k and argument ¢
’ K,K(k) complete elliptic integral of the first kind; that is,
(B value of coefficient of ﬁ in us at the lead- Jri— F<.2’f, k)
ing edge (equation (53)) E(¢,k) incomplete elliptic integral of the second kind of
(AQ), decrement in Cs due to reflection of (Au), at lead- modulus % a.rll)d argumg:nt &
JAC ing edge (equation (54)) E,E(k) complete elliptic integral of the second kind ; that is,
= da  decrement in Cx due to reflection of (Au), at lead- —e(* k)
. ing edge (equation (55)) FNg
v Non-dimensional expression for strength of the K 2 K
leading-edge singularity (equation (59)) 2 T
a5 value of ¢ af leading-edge tip [a ('STZ)] E, % E
M taper parameter (m,——m K K(k')
t ’ ’
g function defined by equation (79) IZZ Bk ¢ g )
C inverse-cosine term of leading-edge correction zebe .unctlon (equation (41))
function (equation (35)) Ao functlon.used. in eyaluation of ellipt,i.c integral of
R radical term of leading-edge correction function the third kind, circular case (equation (16))
(equation (36)) Q function used in evaluation of elliptic integral of
- - - g
r. p. real part the third kind, circular case (equation (B11))
APPENDIX B

EVALUATION OF THE INTEGRAL IN EQUATION (26)

It is first necessary to recall that ¢, is a function (equation
(23)) of z, y, and a. After substitution for t, in equation
(26), we may integrate by parts to obtain

PO S Lol U —(m,—a) (1—t,) dua (@)
L & A—my) ta—0) PRGh
ol +m,) By —2m,(x—co)
~’Uzo[:COS (l—mt)ﬁy

By —m,(x—co
(g By)JI -By— mtcox

da
fo (By—az) y/(1—a) (ap—a) (m—a) (m+a)] &Y

The integral term on the right-hand side of equation (B1)
is an elliptic integral of the third kind which may be eval-
uated through the substitution of

(1—m) (m+ay)

2m (ao— @)
2m (1 —ag)

m+a) (n—a) i

w=sn"!

If the value of w at the lower limit is designated by wo, this
substitution gives

da
(By—az) Y(1—a) (¢, —0a) (m—a) (m—[—a,)_
m+a0
52/ @ \/m (1—ao f 1+n sn’w do (B2)
where
___(m+010) (mx ﬂ’y)
= 2m (By—aox) (B3)
or
da

(By—arv) Ji—a) (@—a) (n—a) (m+a)

mr— /3?/ \/m (1—ay) I:wo (1+§y aox I3 (wo, K, ‘n)] (B4)

where

wg dw
i By [ i
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is the normal form of the elliptic integral of the third kind.
It is first noted that n>>0. For this case it can be shown
that the substitution

(B #) -

sn(v, k') en (v, k')
dn (v, k')

gives

na(wo, k,n):wocnz(v, k’)+ %Ao(k, ¢)+9]

(B6)

p=tan~" \/;2 B7)

is the amplitude of the elliptic function », A, is the function
defined in equation (16), and © is an angular function of %,»
and w, which will be discussed later.

where

If
Sl E 200
Y=sin"! e (B8)
then
w0=F(\II, k) (Bg)

2
From equation (B5), sn(», k,)an——{%?’ en(v, k)=~ /#’cz

and dn(v, k')= \/ - ({}——*I_c?) may be found, so that equation (B6)

may be rewritten without recourse to the Jacobian elliptic
functions as

a(wo, b, n)=——75F(, k)+

==

FQ, k) ]
> Ao(k
Vasoerml £ sk o+e] @0
This expression is to be substituted in equation (B4) and
the result used in equation (B1). As previously mentioned,
the functions K, and A, are tabulated in reference 11 and A,
is plotted in figure 6. 'The function @ is given by *®

2 —1)/*1¢(® sin 2j— sinh 2
QO—tan! ’Zs‘i( ]K yK"

LA —1)I+14G =9 =t
1| 2;( 1)i+1qG cos23K0cos;h2yK0

(B11)

with
_TK!
g=e K
(tabulated in reference 15).

¢ The symbol ¢ in equation (B11) is standard notation for the nome of the Jacobian theta
function, and is not related to the dynamic pressure ¢ of the text.

APPENDIX C
INTEGRATION FOR LOSS OF LIFT AT THE TIP OF WING WITH SUBSONIC LEADING EDGE

From equations (88a) and (6)

__4mims’Bu, (™ _G'(@) C1
( ttp Va L \/mz——az § o

where

G Cg(mc,h— a) [(a; n at) (\/m(ti‘:rjf—%> 7

a—a;
2ym,+m?2ya+a’

The terms in G’(a) are of two types; namely, those that
contain ya-+a?and those that do not. The fornger combine
with the radical Ym*—a? in equation (C1) to form elliptic
integrals of the first, second, and third kinds. The latter
give rise to terms in equation (C1) which are integrable by
elementary means. It is convenient, therefore, to consider
the integral in two parts, writing

w8Gla)

a; \/m —a?

C2)

da Il+12

where I, is that part of the integral not requiring elliptic

integrals.
Then

m a—a,; a, m;—a,; da:
I,=f —a)(?+m

a; a’im.a(m, 1— @/ /m?—a?

1 (77)41—'0/1)2 = mtaz—m2
= 5| ———= cos =
my(mP—m®)| Jm 22— m? m(m.—a,)
2
m@a,—m e
7 mz—“f] ©3)

The remaining terms, involving ya+a® and +m?—a?
are integrated by means of the substitution

m—a 1—m
Snw= WL sz——z (C4)

The result is

= 1 { m,—a, m,—a,_g,_ b
a’m2mm,(1+m,) m, 1+m, m

L [

m,—a, m-ta; .
(a‘ m, > 2a, e ll/]

@ _*E:::')(m;;)z a,) [(1+m T;m >H3(w,,k n)+

2m(1+m) bIIa(w,, k,n) }
Mg_m

0 B, b+

(C5)
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where w,=w(a,), ¥ is its amplitude, and
_72(1 +m,)
T om,—m
From equation C(4),
] zn—at
Y=sin m(iFa)

The elliptic integral

(C6)

(C7)

v @t dw
11 ] = _
s, f,m) J:) 1+n sn’w

is evaluated in equation (B10).

Its derivative with respect

to the parameter n may be obtained for this case (n>0) in

the form
N Wenc a7 R R
o 20 Va+)A+n)l \1+n n+k

S s

A0(¢y k)

Fy, b+

1+n
B) F -

where ¢ and @ are the angles defined in equations (B7) and
(B11) and the elliptic functions ¢nw, and dnw,, obtained

from equation (C4), have the values

a,,(l—i—m)
(1 +a,)

cnw=
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