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FORMULAS FOR THE SUPERSONIC LOADING, LIFT, AND DRAG OF FLAT SWEPT-BACK WINGS 

WITH LEADING EDGES BEHIND THE MACH LINES 

By DORIS COHEN 

SUMMARY 

The method oj superposition oj linearized conical flows has 
been applied to · the calculation oj the aerodynamic properties, in 
supersonic flight, oj thin flat, swept-back wings at an angle oj 
attack. The wings are assumed to have rectilinear plan jorms, 
with tips parallel to the stream, and to taper in the conventional 
sense. The inpestigation covers the moderately supersonic speed 
range where the Mach lines jrom the leading-edge apex lie ahead 
oj the wing. The trailing edge may lie ahead oj or behind the 
Mach lines jrom its apex. The case in which the Mach cone 
from one tip intersects the other tip is not treated. 

Formulas are obtained jor the load distribution, the total lift, 
and the drag due to lift. For the cases in which the trailing edge 
is outside the Mach conejrom its apex (supersonic trailing edge), 
the jormulas are complete. For the wing with both leading and 
trailing edges behind their respective Mach lines, a degree oj 
approximation is necessary. It has been jound possible to give 
practical jormulas which permit the total lift and drag to be 
calculated to within 2 or 3 percent oj the accurate linearized­
theory value. The local lift can be determined accurately over 
most oj the wing, but the trailing-edge-tip region is treated only 
approximately. 

Oharts oj some oj the junctions derived are included to jacili­
tate computing, and several examples are worked out in outline. 

INTRODUCTION 

It is customary, in supersonic wing theory, to describe 
any straight segment of the boundary of a wing plan form as 
supersonic or subsonic accordingly as the segment lies out­
side or is contained within its foremost Mach cone; that is, 
as the component of the flight velocity norma) to the edge is 
greater than or less than the speed of sound. These two 
circumstances result in fundamentally different types of flow 
over the surface. It is apparent that the real reference is 
not to a property of the wing plan form, but to a combination 
of plan-form geometry and the velocity of the wing relative 
to the speed of sound. Thus (see fig. 1) every swept-back 
wing, on entering the supersonic regime, has subsonic leading 
and, in most cases, subsonic trailing edges. At a higher Mach 
number, the same plan form may have subsonic leading edges 
and supersonic trailing edges. Finally, if the Mach number js 
increased sufficiently, both leading and trailing edges will 
become supersonic. 

Interference effects also depend on the fli,ght 1-1aeh number, 
since the extent of the various disturbance fields is determined 
by the angle between the .Mach lines. Thus, nO single 
concise formula or method of treatment bas as yet been 
developed to predict, even approximately, the aerodynamic 
characteristics of an arbitrary wing plan form through the 
supersonic speed range. 

The present report is concerned with the loading, lift, and 
drag, according to linearized theory, of thin, flat, swept­
back wings with rectilinear boundaries and conventional 
taper. Various methods are available for the calculation 
of these properties when the leading edge is supersonic. 
Of these, the method of reference 1 is perhaps the most 
convenient. Formulas obtained by this method for the 
loading and lift-cUrve slope of wings with supersonic lead­
ing and trailing edges are presented in reference 2. In the 
following, therefore, the emphasis will be on the solution of 
the problems arising from the interaction of the flow fields 
in the presence of subsonic leading edges (figs. 1 (b), (c), 

(al M=1.02 

\ 

FIGURE I.-A typical tapered swept·back wing at six supersonic Mach numbers, showing 
the Mach lines from the leading· and trailing-edge apexes and [rom the tips. 

and (d». The case (fig. 1 (a» in which the 1ach number 
and aspect ratio are so low that interaction takes place 
between the tip flow fields will not be treated. An approxi­
mate solution to this problem may be found in reference 3. 

When a wing with a subsonic leading edge is to be studied, 
considerable simplification of the problem may be achieved 
by making use of the solutions, available in reference 4 

1 
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and other sources, for the infinite triangular wing.! From 
these solutions the aerodynamic characteristics of a variety 
of swept-back plan forms can be calculated bv the use of 
the superposition principle of linearized theo;v to cancel 
any lift beyond the spe(!ified wing boundaries. Two methods 
of cancellation have been developed: one, presented in refer­
ence 5, uses supersonic doublets and is general enough to 
apply to curved boundaries; the other, originally due to 
Busemann (reference 6), cancels by means of the super­
position of conical flow -fields. In the present report the 
conical-flow method is used, since it appears to offer some 
advantages for the straight-sided plan forms under 
consideration, particullLrly in determining the integrated lift. 

The material presented in this report is largely drawn 
from references 7, 8, ~Lnd 9, with some simplifications sug­
gested by practical experience. In particular, the formulas 
for the total lift have been reworked to substitute with 
no increase in comput,ational labor, a combined "pr~ary" 
and "secondary" correction for each of the "primary" cor­
rections in reference 7. Also, the formulas containing elliptic 
integrals have been rewritten to take full advantage of 
available tables. As in the preceding papers, the final for­
mulas will be derived for unyawed wings with tips parallel 
to the stream, but tho application of the general' method 
and the basic solutions to other plan forms and problems 
will be apparent. Some numerical examples will be included 
in order to show the magnitude of the effects discussed and 
to summarize the method . A table summarizing the 
formulas is also included. 

I-METHOD OF THl~ SUPERPOSITION OF CONICAL 
FLOWS 

A conical flow field is one in which the velocity components 
U, v, and w in the stream, cross-stream and vertical directions , 
respectively, are consts,nt in magnitude along any ray from 
the foremost point, or apex, of the field. Such flows are 
found as solutions of Lhe linearized potential equation for 
supersonic flow. A detailed discussion of their derivation 
and use is contained in reference 4. In the cancellation-of­
lift procedure, only solutions of the so-called "mixed" type 
described in section V of reference 4 are required, except for 
the basic solution (for the infinite triangular wing) which is 
itself of conical form. 

SYSTEM OF NOTATION FOR CONICAL FLOWS 

The Cartesian coordinate system is placed so that the 
origin coincides with the projection of the leading-edge apex 
on the horizontal plan€', the positive x axis extending down­
stream from the origin nnd the V axis extending perpendicular 
to the x axis in the horizontal plane. (See fig. 2.) For the 
conical flow fields, it is :further convenient to define a variable 
to designate a particular ray in the XV plane, since the flow 
velocities are constant along such a ray. If the apex of the 
field is specified, then the ray is most readily described by its 
slope, measured from. the downstream direction. The 
conical solutions of the supersonic flow equation are, how-

I The present report covers in dc ~ail only unyawed wings. However, yawed wings may 
be treated Similarly, starting wltli the yawed triangn!ar,wing solutions. This problem 
is the subject or a paper, NACA 1'N 2262, 1950, by Lampert, prepared concurrently with 
the present report. 

Y,V 

~---- s 

x.,u. 
-V 

FIGURE 2.- Coordinate system, conical variables, and other symbols. 

ever, functions of the ratio of the slope of the ray to the 

slope i of the Mach lines, where {3 is M2':""1 and M is the 

free-stream Mach number. For the triangular-wing flow 
with its origin at the apex of the wing, therefore, the conical 
variable will be chosen as 

a=fJ JL 
x 

(1) 

At the Mach lines from the leading-edge apex, a equals ± 1. 

The ray from 0, the wing apex, making the angle tan- 1 ~ 
{3 

with the stream will hereinafter be referred to as the ray a, 
and the subscript a will indicate association with a constan t­
load sector (to be introduced later) of which such a ray is 
one of the boundaries. 

For each of the conical fields to be superposed at the' edges 
of the wing plan form, a new coordinate system is set up with 
its origin at the apex of the field. In conformity with the 
notation of reference 4, the conical variable relative to the 
displaced origin is called t, with subscripts to denote the 
location of the origin. Thus, if Xa,Va is the point of intersec­
tion of the ray a with the plan-form boundary and is to serve 
as the apex of a canceling conical field, 

t ={3 V-Va 
a X-Xa 

(2) 
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is the ratio of the slope of the ray fa of that field to the slope 
of the Mach lines. 

If the ratio of the slope of the leading edge to the slope of 
the ~1 ach lines is 

m={3 cot A (3) 

where A is the angle of sweepback, then at the leading edge 
a=m, and a ray from the leading-edge tip is designated by 
tm • If s is the wing semispan, the leading-edge tip has the 

coordinates {3s, s and any point x,y has the conical coordinate 
m 

t ={3 y-s 
m {3s 

in the field with apex at {3s, s. 
m 

x-­
m 

(4) 

Other symbols referring to angular locations will be defined 
in the same way as needed. A summary of the symbols 
will be found in appendix A. 

BOUNDARY CONDITIONS FOR CANCELLATION OF LIFT 

The general problem of deriving the flow over a wing of 
finite dimensions from the known flow over an infinite wing 
is the problem of determining the induction effects due to 
the edges. These effects may be thought of as associated 
with the cancellation of the lifting pressure at the boundaries 
of the finite wing. In the linearized lifting-surface theory, 
they may be evaluated by the superposition of flow fields 
with negative lifting pressure over the portion of the infinite 
wing outside the boundaries of the finite plan form, provided 
the other boundary conditions are not disturbed. In the 
case of a flat wing at an angle of attack, the latter provision 
means that the canceling field must (1) induce no downwash 
within the boundaries of the finite wing and (2) introduce no 
new lifting pressure outside those boundaries. 

In accordance with thin-airfoil theory, the boundary con­
ditions will be satisfied in the horizontal Iflane rather than on 
the surface of the wing. Also, by thin-airfoil theory, the 
conditions on the lifting pressure are converted to conditions 
on the velocity field through the relation 

LlP_4 (~) 
q - V :-+0 

(5) 

In the simplest case, the lift to be canceled will be dis­
tributed uniformly over a semi-infinite region bounded by 
two straight lines. The boundary conditions of the problem 
may then be said to be conical with respect to the intersection 
of the two lines, which become" rays" of the canceling conical 
field. The boundary conditions on the canceling velocity 
field in this case may be summarized as follows: 

(1) The streamwise velocity u must approach vaiues equal 
in magnitude and opposite in direction on the upper and lower 
surfaces of the horizontal plane. 

(2) In the horizontal plane, u must be constant over the 
infinite sector in which lift is to be canceled. 

(3) The vertical velocity w must be zero in the portion 
of the z=O plane occupied by the projection of the finite 
wing. 

(4) From equation (5), u must equal zero in the portion 
of the horizontal plane not covered by conditions (2) or (3). 

(5) In supersonic flow there exists the additional condition 
that ali the velocities must go to zero on the Mach cone from 
the apex of the field. 

CANCELLATION OF NONUNIFORM LIFT 

The foregoing are the general conditlOns for a uniformly 
loaded canceling flow field. Under the proper conditions, a 
nonuniform distribution of lift may be canceled by the super­
position of a number of such fields. This procedure is best 
explained by a concrete example. 

Consider the problem of a swept-back wing flying at a 
high Mach number such that, as in figure 1 (e), the Mach 
lines from the leading-edge apex intersect the tips of the 
wing. The method of deriving the swept-back wing from 
an infinite triangular wing in that case is indicated in figure 
3. It may be noted at the start that, according to linear 
theory, the lift behind the supersonic trailing edge may be 
canceled in any way without affecting the velocities on the 
wing. Thus it remains only to consider the effect of can­
celing the lift outboard of the tips. 

o 

~----~~~~~~~------~' : 
~----~~~~~~~----~:: 
-*-----~~~~~;L_l_--__I: : : 

" , 

8 

;:: : 
," , 
, ' I I 
,II I 
, I I I 
1 , 1 I 
11' , 

:: 1 : U ::. ~ 
~1..t!,4 

11o-U" 

F,r:URE a.-Method of cancellation of lift beyond the tip when the ieading-edge M ach 
Jine intersects the side edge of the wing. 

An infinite triangular wing with supersonic leading edges 
has a load distribution which is constant over the portions 
of the wing between the leading edge and the Mach lines 
from the leading-edge apex (see fig. 4) . This constant load 
may be canceled outboard of each of the tips of the swept­
back wing by a single negatively loaded triangle of infinite 
extent, one side coinciding with the side edge of the wing 
and a second side coinciding with the extension of the leading 
edge. However, the area to be removed (region BAC, fig. 
3) includes also a region over which the pressure varies, and 
is conical with respect to o. Since the boundaries of the 
region are conical with respect to A, no one conical solution 
can satisfy the requirements of the problem. The problem 
is brought within the limitations of the conical solutions by 
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t 

FIG RE 4.-Lift distribution on a triangular wing with supersonic leading edges. 

considering the lift to b made up of an infinite number of 
constantly loaded, overlapping sectors of infihite extent. 
(See fig. 3.). These sectors are bounded on one side by the 
wing tip; tr.e second side is the extension of a ray from apex 
o of the wing. Between the leading edge (a=m) and the 
leading-edge Mach line (a= 1), no division of the field is 
necessary since the lift density is constant in that region. 

If a sector with apex at A and angle tan-I; is used to cancel 

this uniform lift, then the remaining uperposed fields must 
be used where a<l (see fig. 4) to restore the difference 
between that lift and the loading on the triangular wing. 

If Ul is the streamwi e component of the perturbation 
velocity corresponding to the constant loading ahead of the 
leading-edge Mach line", and u6(a) is the same velocity in 
the region between the Mach lines, then the magnitude of 
the 1[, component of the velocity in the initial canceling 
sector will be -UI, and on the remaining sectors (see fig . 3) 
minus the increment in 'Itl-U6 corresponding to an increment 

in a, or ~:6 da. (Note that this last quantity is positive, as 

required) . To determine the total effect of canceling the 
loading outboard of the tip, the velocities induced by the 
latter infinitesimally loaded elements are integrated and 
added to the negative effect of the initial constant-load 
sector. 

II-LOADING ON WING WITH SUBSONIC LEADING 
EDGE 

LOAD D ISTRIBUTJON OVER TRIANGULAR WING 

In the notation of this paper, the velocity distribution 
over a flat-lifting triangl with leading edge behind the Mach 
lines may be written 

(6) 

where 

Uo 
mVa 

f3E' (m) 
(7) 

is the (constant) velocity aiong te cen tel' line a=O. In the 
expression for UJ, E ' (m) is the complete elliptic in tegral of 
the second kind, of modulus ..jl-m2

. The load distribut ion 
is obtained from the velocity distribution by equation (5). 

SWEPT-BACK WING WITH SUPERSONIC TRAILING EDGE 
(TIP CORRECTION) 2 

If the problem is now to find the loading on a swept-back 
wing with subsonic leading edges, bu t supersonic trailing 
edges, only the tip effects will modify the triangular-wmg 
dIstribution. The calculation of the tip effect on a wing 
with subsonic leading edge (m<l) is somewhat complicated 
by the fact that the pressure becomes infinite at the leading 
edge, but otherwise follows the procedure outlined in the 
preceding section. 

It will first be necessary to present the expression for the 
previously described conical field with uniformly loaded sec­
tor to be used as the element in canceling the lift outboard 
of the tip. 

ELEMENTARY SOLUTION FOR A STREAMWISE TIP 

If s is the seInispan of the wing, the apex of any elemen t a 
(see the section on Notation) is at 

and, from equation (2), 

f3s 
Xa=a' Ya=S 

ta=f3 y-s 
f3s x - ­
a 

(8) 

(9) 

Then, if U a is the constant perturbation-velocity component 
to be canceled over the region between the tip and the exten­
sion of the ray a, the previously listed boundary conditions 
for each of the required canceling fields ' may be wri tten as 
follows (see fig. 5): 

(1) and (2) When 0 ~ta ~a, U= ±ua (constant for the field) 
(3) When ta<O, w=O 
(4) When ta>a, u=O 
(5) When Ital ~ 1, u=v=w=O. 
The solution of the supersonic flow equation satisfying the 

above botmdary conditions has been derived in reference 4 ,3 
In the xy plane, the streamwise component of the velocity is 

_ ± Ua -I a+ta+2ata u- r.p. - cos 
7r ta-a 

(10) 

The signs refer to the upper and lower surfaces, respectively. 
In figure 5, the essential features of the solution are 

shown. At the top is a detail view of the wing side edge and 
shows the boundary conditions. In the center is a typical 
plot of the argument of the inverse cosine in equation (10), 
against tao Where this quantity is less than -1 (i. e., 
o ~ta ~a), the real part of the inverse cosine is 7r. Where 
the argument is greater than +1 (ta>a and ta< - l), the 

2 Approximate formulas, valid when m is close to I, bave been presented for this case in 
reference 10. 

a The corr9sponding solutions [or raked-in or raked-out tips may also be found in reference 4, 
or deduced from later sections in the present rrport. 
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FIGURE 5.-Elementary solution for canceling lift at the tip. 

real part of the inverse cosine is zero . On the wing 
(-l::;ta<O), the argument goes from +1 to -1 and the 
inverse cosine is real. Thus in canceling, or subtracting, 
the velocity Ua between ta=O and ta=a, the increment in 
velocity 

( ) Ua -I a+ta+ 2ata 
U x,Y,a =--COS t 

11" a-a 
(11) 

is induced on the wing upper surface. 

TIP.INDUCED CORRECTION TO THE LOADING 

Following the procedure outlined in Part I, we proceed to 
determine the effect of canceling the lift outboard of the 
wing tip. Since the value of U a for the initial canceling 
field -ut.(m) and the value for the first incremental field 

~:t. da are both infinite when the leading edge is subsonic, 

it is first necessary to write the induced velocity at a point 
x,yas 

(A) _ lim [ -ut.(a) -1 a+ta+2ata+ 
uU IIp- > cos t a- m 11" • a-a 

1 fa dut. -1 a+ta+2ata d ] - -COS a 
11" ao da ta-a 

(12) 

976745-52-2 

where the limit ao is the value of a corresponding to the 
rearmost sector including the point X,y in its Mach cone. 
The value of ao is found by setting ta (equation (9» equal 
to -1. Thus, for the tip correction, 

(3s 
ao x+{3(y-s) (13) 

This parameter will be additionally useful as the value of a 
at which the velocity correction given by equation (11) 
goes to zerO and its derivative has a singularity. 

Before performing the integration of equation (12), ta 
must be replaced by its expression in terms of x, y, and a. 
Then integration of the second term by parts results in a 
term which, at the upper limit, exactly cancels the first 
term, and at the other limit is zero, leaving, after substitution 
for Ut., 

ao(s-y) da 
(

A . ) . _ -m(x+{3y)uof m 

uU I,p-
11" -/8 ao (ax (3y) .J(m2 -aT>; (1 + a) (a-ao) 

(14) 

This integral is finite and can be evaluated 1D terms of 
elliptic integrals as follows: 

(6.) = [ fm{J(s-y) K m~ (k "')J (15) utjp Uo 'V 2 (x+{3y) 0- .Jm2x2_{32y 2 0 ,'/'. 

where 
Ao=KoE(o/;, k')-(Ko-Eo)F(o/;, k') (16) 

and Ko and Eo are 2/11" times the complete elliptic integrals 
K and E of modulus 

k= f(m-ao) (l-m) 
'V 2m(ao+ 1) 

In equation (16), F (>/t,k') and E (>/t,k') are the incomplete 
integrals with the complementary modulus k'=.J1-P and 
argument 

The functlOns K o, Eo and Ao ar'e tabulated in reference·1i 4 or 
may be computed from the tables of reference 12. A plot 
of Ao is given in figure 6. 

Value at the side edge.-At the tip, y is equal to s and the 
first term in equation (15) vapishes. In the second term, >/t 
becomes 11"/2 and E (>/t,k') and F (>/t,k') reduce to the complete 
integrals E'=E(k') and K'=K(k'), respectively. Then, 
since, by Legendre's relation, 

K'E-K'K+KE'=1I"/2 

Ao reduces to 1. The induced velocity correction is seen to 
be exactly equal to -Ut. , bringing the lift to zero at the 
wing tip. 

Drop in lift across tip Mach line.-An interesting effect 
shows itself at the other limit of the tip region, that is, at the 
Mach line from the tip of the leading edge. Along this line 
only the influence of the leading-edge pressure is felt, so that 

, The quantity Ko is called Fo in rererence 11. 
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ao=m . Then k=O. k'=l, K=7r j2, E(if;,k') reduces to 

. !mx+{3 y 
sm if; = -y 2{38 ' and finally 

or, since along the tip .\1-ach line fJ(s-?l)=:C"--~' 

~u* 
,,'2(1 +m)(mx-{3s) 

(17b) 

This result indicates a finite drop in pressure across the 
~rach line from the tip, an effect which is associated with the 
cancellation of infinite pressure at the leading edge and con­
sequently does not appear as long as the leading edge is 
ahead of the ~lach lines. 'rhe ratio of the drop in lift across 
the tip ~fach line to the uncorrected lift can be written 

~u*=_ !(1+a)(m+a) 
u~ -y 2m(1 +m) 

(18) 

This ratio is plotted against aim in figure 7 and shows the 
percentage loss of lift at the tip to be very large. In fact , 
for any but the lowest-aspect-ratio wings, the lift remaining 
in that region is almost negligible. This effect, which should 
be of considerable practical interest, was first indicated in 
the results of reference 13 for the limiting case of m=O . 
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FIGURE 7.-Percent drop In lilt across Mach line Irom tip. 
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SWEPT·BACK WING WITH SUBSONIC TRAILING EDGE 

The tip-effect correction just derived applies equally to 
wings with supersonic or subsonic trailing edges . The effect 
of a subsonic trailing edge is calculated separately, and is 
primarily due to canceling the triangular-wing lo.ading in 
the wake region. If, however, the triangular-wing loading 

has been modified by the introduction of side edges, then this 
modification must also be taken into account when canceling 
the lift behind the trailing edge. In the conical-flow method , 
the various component flow fields must be canceled individu­
ally. The sections immediately following will discuss the can­
cellation of the triangular-wing loading; cancellation of the tip­
induced components of velocity will be considered under the 
heading re. econdary Corrections." 

PRIMARY TRAILING· EDGE CORRECll0NS 

Procedure for canceling lift in the wake region .--The 
basic procedure is again to consider the load to be canceJ ed 
to be built up by the superposition of uniformly loaded 
sectors, bounded on one side (see fig. 8) by the rays a, and 
on the other by the trailing edge of the wing. It is con­
venient at this point to introduce the parameter 

/' 

-1 

m t ={3 Xcot (angle of sweep of trailing edge) 

/" 

o 

Mach Ime, 
ta ' -1···.. ;r'a, Va .... / 

/" 

/' 
./' 

./' 

-4u 

o 
f .. 

a 1 

FIGURE S.-Oblique constant·lilt element (shaded) lor canoeIlation 01 lilt at subsonic 
trailing edge, and induced velocity distribution_ 

The boundary conditions to be satisfied by the u compo­
nent of the elementary canceling velocity field are indicated 
for the right span in figure 8; each field must have constant 
velocity U a when a ~ta ~ m t and zero streamwise velocity over 
the wake region, -1 ~ta<a. The concomitant vertical 
velocity must be zero on the wing surface. However, when 
a is smail, the region -1 ~ta<a will ip.clude a portion of the 
left-hand wing panel. Since in this region the u component 
of velocity has already been specified, the vertical velocity 
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will not, in general, be zero. T or is it possible to modi fy 
the fi eld to satisfy the boundary condition on the far wing, 
since the area involved iE. not conical with r e pect to the apex 
of the field. 

The error involved in Lhe foregoing procedure is minimized 
by the use of a symmeLrical flow fi eld t.o cancel the initial 
load Uo at a= O, where s, single conical field can be made to 
satisfy the boundary conditions exactly on both wing panels. 
This flow field (see fig. 0) would have its origin at t.he apex 
co,O of the trailing edge, and the constant-load r egion would 
extend over th e entire wake r egion. B etween the trailing 
edge of the wing and tILe .\Iach lines from co,O the induced 
downwash would be zero in the plane of the wing, while th(' 
pressure would vary as required to satisfy the fundamental 
flow eq uations. 

In figure 9, a typical curve of Ua is shown, from which it 
can be seen that the loud to be canceled is very nearly 
constant over a consid'~rable fraction of the wake r egion. 
Cancellation of the velocity Uo by the symmetrical field will 
consequently leave only a small variation in u to be canceled 
by the oblique fields d('scribed earlier in the section. The 
resulting violation of thE' flat-plate condition may be expected 
to be small/ and will l"ak e place only over a small r0gion 
near the tip of th e trailing edge. 

Co.a 

/' 

u 

14 

/I 
-1 -rn, a m, 

to 
FIG URE 9.- SymrnetJical fi( 'ld for cancellation of Uo at subsonic trai ling edge. 

• Calculations made to check thi" statement ha"e shown the induced downwasb angles to 
be less than 0.5 percent of the angle of attack, even in the most unfavorable circumstances. 

Symmetrical solution.- For the symmetrical solution we 
define the coni cal variable 

t -~ o­ x-co 
(19) 

which is zero along th e center line of the wing and equals ±ml 

at either trailing edge. Then the boundary conditions to be 
satisfied in the xy plane may be summarized as follovvs: 

u=±uo 

w=O 

The r eq uired solution is given in reference ]4. The u com­
ponC'nt in the X?J plane is 

± uo F( '- - 2) 
r,p'k'(m,) </>,,1-:m, 

where K' (m,) is the complete elliptic intC'gral of the first kind 

of modulus ,IJ -m/ and F(</>,,'i-m !) is the corresponding 
incomplete integral of argument 

. I ] - I 2 
</> =sln -I ... I-- O

-
V 1-m/ 

The form of the induced velocity on the wing (see fig. 9) is 
very similar to the inverse cosine curves of the tip solutions. 

On the wing, </> is real and the symbols r. p. may be omitted. 
The velocity induced on the upper surface h~' cancellation of 

. Uo behind the trailing edge is therefore 

(20) 

Oblique solutions for the wake region.- Th e symbol 
la will be used as beforc to indicate a ray of the flo\\- fi eld 
with apex at Xa,Ya, the point of intersection of the ray a with 
the wing boundary-in this case the trailing edge. Along 
the trailing edge, 

Since a={3 (Ya /Xa ) , ,,' e may solve for Xa and Ya as functions 
of a and the constants m, and co: 

m,co 
(21) Xa'= ---

m,-a 

{3 - m,coa 
Ya-m,-a (22) 

Then 

ta 
f3y(m,-a)-m,coa 

(23) 
x(m,-a)-mtco 

The boundary conditions to be satisfied by th e elementary 
solution are (for a>O) 

m t<ta 5, + 1 

-15,ta<a 

u=±ua 

w=O 

u=O 
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The solution satisfying thes(' conditions may be obtained 
from th(' tip solutions by an ohliqu(' transformation. (See 
I'd('f(,llc(' 4 .) In th(' fy plan(', the 1'(' ulting ('x pression for 
th(' u componl'nt is 

Thl'll th(· velocity inducNl at any point l,V on the upper 
sW'face of thl' wing hy the cancellation of the infinitesimal 
incl'rm('n t of p('rturhation vl'loci ty U a over the sector hounded 
hy thl' ray a and the trailing edge is 

d:lu I _(A ) _ -Ua • _ I (I-a) (t.-m,)-(m,-a) (J -t.) 
d ( a - .:..>11 u- (OS (J) (t ) a 7r -m, a-a 

(24) 

Correction of loading near the trailing edge.-To deter­
minr the lift at any point x,V near the trailing edge of the 
wing, it is first necessary to determine the most rearward 
cancrling sector ao that will influence that point. Setting ta 
(equation (23)) equal to 1, we solve for 

x-~V-co 
ao=mt 

x-~y-mtCO 
(25) 

Then the total correction to the triangular-wing velocity Ut> 
obtained as a result of canceling that velocity behind the 
trailing edg(' is 

raodtlu 
(tlU)r.E . (x, y)=(tlu)o+ Jo -aa da (26a) 

The integml in the foregoing expression has been evaluated 
in terms of an incomplete elliptic integral of the third kind, 
which may be computed with the aid of the tables of refer­
('nces 11 and 15. Because it will be necessary to define several 
new functions it was thought better to present the results in 
an appendix (appendix B). For practical use, graphical or 
numerical integration may be preferred, in which case a 
convenient form is obtained by rewriting U a as (dut>/da) da, 
or dUt>, in equation (24). Thus equation (26a) becomes 

where ta and Ut> must be evaluated for selected values of a 
between Zl'ro and ao. The integrand, of course, goes to zero 
at ut>(ao). At points along the leading edge (in cases in which 
the leading edge extends into the zone of influence of the 
trailing edge), the integral takes on a somewhat simpler form, 
with the result that the entire trailing-edge correction at 
such points can be written 

where the first term inside the brace is (tlu)o and, in the last 
Uo 

term, 

./. '-I~~ '1'= In --
m+ao 

and 

SECONDARY CORRECTIONS 

The term "secondary corrections" is used here to de ignate 
the effect of cancl'ling the lift introduced outside the bound­
aries of the wing in the pro('rss of canceling the original tri­
angular-wing loading beyond the tips and behind the trailing 
edge. As previously mentioned, cancellation of lift at the 
tip introduces new (negative) components of lift to be can­
celed at the trailing edge. The original cancellation of lift 
behind the trailing edge, on the other hand, will introduce 
negati ve incremental pressurE'S outboard of the tip and, under 
certain circumstances (see figs. 1 (a) and (b)), ahead of the 
leading edge. The distribution of lift to be canceled in each 
case is no longer part of a single conical field, but is composed 
of an infinite number of superposed conical fields originating 
at various points along the trailing edge or tip. In order to 
cancel these pres ures accurately, it would be necessary to 
set up, for each of the original canceling elements, an infinity 
of positively loaded elements at the opposite boundary. 
Thus, each secondary correetion would require a double 
integration for each point, and would obviously be quite 
tedious. The procedure is described in detail in references 
7 and 8. The more recent work of Mirels (reference 5) offers 
an alternative method which, while no less tedious at the com­
putational state, is somewhat easier to set up for computing. 
Nevertheless, the exact calculation of the secondary correc­
t.ions, and of the succeeding corrections arising as the second­
ary corrections are in turn canceled at the opposite edges, 
appears feasible only with the aid of high- peed computing 
machinery. 

These corrections may be thought of as a converging 
series, since in each case (except in the neighborhood of the 
leading edge) the induced effect is smaller than the canceled 
lift. Over most of the wing, the secondary correction is of 
the same order of magnitude as the tolerable error. Formulas 
for obtaining a major part of the secondary corrections can be 
given rather simply and should suffice to give results of 
practical accuracy in problems (fig. 1 (c)) not involving lead­
ing-edge corrections. Problems of the type shown in figure 
1 (b) will be discussed in a later section. 

Secondary corrections at the trailing edge.- The pre sure 
differences induced by the tip are in the main due to can­
cellation of the infinite pre sure at the leading edge. It 
hould therefore be permi sible, for the secondary corrections, 

to approximate the tip-correction field by a ingle conical 
field from the leading-edge tip. The lift a ociated with this 
field may then be canceled behind the wing (see fig. 10) by a 
single infinity of superposed fields, as was the original triangu­
lar-wing loading. If the values of (~u) tip calculated for 
points 'J..o,Yo along the trailing edge are assumed to apply all 
along the corresponding rays lm(xo,yO) from the tip, then the . 
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FIGURE IO.- Sketch for approximate cancellation of extraneous Jilt introduced bebind 
the loading edge by the tip L'Orrection. 

lifting pressure will be exactly canceled along the trailing edge 
and the remaining variati.on of pressure in the wake will have 
very little effect on the flow over the wing. 

The cancellation fields are of the previously used oblique 
type, with a replaced by 

(27) 

Let the particular point at which the line tm = -1 intersects 
the trailing edge be designated by x*,y* and other symbols 
referring to that poi-nt be similarly starred. Then the 
velocity induced at any :poin t X,y on the wing by removal of 
(~u) tip along the trailing edge will be (from equation (24)) 

-~u* _I 2(t* -m,)-(m,+ 1)(I-t*) 
- 1I"-cos (l-m,)(t*+I)---

1 f1m (xo,vo) d(~u)ttp -I (l-tm)(tb- m ,)-(m,-tm)(l-tb) dt 
- cos 
11" -1 dtm (1- m,)(tb-tm ) . m 

(28) 

where ~u* is giyen by equation (17), t* and tb are calculated by 

fJ(y-y*) 
x-x* 

(29) 

find 
tb=fJ(y-Yb) 

x-:r~ 
(30) 

re pectively, and 'J.o, Yo is the point of intersection of the ~fach 
for('('onl:' from:r , ?J with the trailing edge. 

The derivative d~m (6U),ip would have to be determined 

numerically 01' graphically from a plot of the calculated 
values of (6u) ,Ip against tm . In order to avoid this procedure, 
it is preferable to rewrite expression (28) as 

-6u* _) 2(t*-m,)-(m,+1)(1-t*) 
- 11"- cos (l-m,)(t*+ l) 

1 f<6U)U P (Xo,vo) _) (l-tm ) (tb-m,)-(m,-tm ) (l-tb) 
- cos (1- ) (t -t ) d(~u) tip 
7r 6u* m, ' b m 

(31) 

and integrate by plotting the inverse cosine function against 
(~u) tip. 

As long as the aspect ratio of the wing is greater than l / fJ 
(a condition already imposed by the exclusion of the problem 
shown in fig . 1 (a)), 6u* will be more than half (6u)t/p at 
any other point on the trailing edge. Since, moreover, the 
integral term in equation (31) has zero slope at the Mach 
cone (t*= 1), while the first term starts with infini:e slope, 
it IS apparent that the secondary correction may be simplified 
still further by omitting the calculation of the integral. 
For points near the trailing edge, the loading can usually be 
faired to zero with sufficient accuracy. 

Secondary correction at the tlp.-A similar method of 
approximating the secondary correction at the tip cannot be 
formulated with equal confidence. Since, however, over 
most of the wing the symmetrical correction (6u)o contrib­
utes the larger part of the total subsonic-trailing-edge 
effect, it will again be assumed that th~ entire effect con­
stitutes a single conical field, with its apex at CO. O. The u 
velocity along each ray to will have the value (6U)r.E. (Xb' s) 
of the trailing-edge correction at the intersection Xb, s of the 
ray with the tip. The canceling fields will have thp same 
form as those (equatlOn (10)) used in deriving t,he primary 
tip correction, and the total approximate correction to the u 
velocity will be 

If(6u)r.E. (XO,3) _) to+t~+2totb 
-- cos t d(6u)r. E. 

7r 10=1 b-to 
(32) 

in which 

(33) 

Xo is the value of Xb which makes tb= -1, and (t.u)r. E. is 
calculated for X=Xb, y=S by equation (26b). 

NUMERICAL EXAMPLE 

Before proceeding to consider the problem of interaction 
between the leading and trailing edges, which introduces 
some radically different effects, the results so far obtained 
will be illustrated by a numerical example. The loading 
over an untapered wing, with fJ cot A=0.6 and reduced 
aspect ratio fJA=1.92, has been calculated at four spanwise 
stations: 25-, 50-, 75-, and 95-percent semispan. The wiq.g 
plan form and section lift distribu tions are shown in figure 11. 
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The results of the calculntions arc presented in the form of 
values of (:3(t:.p/qa) (equation (5)). 

The various componems of lift are presented separately a 
calculated. In figures 11 (a) and (b), the discontinuitie in 
slope show the effect of the cancellation of the finite velocity 
Uo at the trailing-edge a.pex. The integrated part of the 
trailing-edge correction (component 2) has zero slope at the 
~ach line. The two outboard sections (figs. 11 (c) and (d)) 
are intersected by the ::\1ach cone from the tip , as indicated 
by the finite drop in th e load curves. Cancellation of the 
finite tip eJl'ect at the trailing edge (component 4 in both 
figures) results in a harp di continuity in pressure gradient 
along the l'efleeted Mach line, at 91-percent chord at 
y/s= O.75 and at 78-percent chord when y /s= O.95 . The 
cancellation of the trailing-edge corrections at the tip, which 
affects only the last section shown, results in another break 
in the load curve at 49-:percent chord. Further corrections 
enter at the rear of the section as a result of successive can­
cellations of the superposed pressures at the tip and trailing 
edge. Their effect has heen only estimated. 

SWEPT-BACK WINGS WITH INT ERACTI NG TRAILING 
AND LEADING ED GES 

When, as in figure 1 (b), the Mach cone from the trailing­
edge apex includes a region ahead of the leading edge, the 
previously calculated trailing-edge corrections to u must be 
canceled in that region, since they represent a discontinuity 
in pressure which cannot be supported in the free stream. 
Thus there must be calculated a leading-edge correction, 
which is one of the previously defined secondary corrections. 
However, the location of the disturbed field ahead of the 
wing causes its influenc e on the wing to be so much more 
widespread than that of the other secondary corrections as 
to require more careful consideration. A new type of flow 
field is also required, as discussed in the following paragraphs. 

LEADING-EDGE CORRECTIONS 

Elementary solution for the region ahead of the leading 
edge .- In general, the elementary solution required for the 
cancellation of pressure in the plane of the wing ahead of the 
leading edge is one that: 

1. Provides constant streamwise velocity over an infinite 
sector bounded on one side by the leading edge of the wing 
(extended) and on the other by an arbitrary ray extending 
outward into the stream from some point Xb, Yb on the leading 
edge. (See Eg. 12.) 

2. Induces no verticlll velocity, or downwash, on the wing. 
3. Induces no lift except on the wing and within the sector 

described in condition 1. 
At fliSt glance these conditions would appear to be satisfied 

by the oblique solutioll3 used at the trailing edge, if properly 
oriented with respect to th e wing, and the same form of solu­
tion might be expected to apply. In reference 4, however, it 
has been pointed out that the downwash connected with the 
latter olution remains constant over the wing only if the 
wing area does not in ~ludc the line y=constant extending 
downstream from the apex of the element. In the case of 
the leading-edge element this condition is violated (fig. 12) 
and an additional term is needed to bring the downwash to 
zero throughout the area of the wing affected by the element. 

Leading edge 

FIGURE 12-Lcading-edgc element and induced-velocity function. 

The solution applicable to this case has been given in refer­
ence 4. The u component of the velocity in the plane of the 
wing is as follows: 

(34) 

where Ub is the constant streamwise perturbation velocity 
over the element, and tb refers as before to a ray from its 
apex. The ray bounding the element originates at a point 
on the trailing edge and has been designated, from equation 
(24), as tao When the correction is being made for the sym­
metrical trailing-edge element, ta is replaced in equation (34) 
by to. 

For brevity, the two parts of the correction function will 
be referred to as 

(35) 

and 

(36) 

The variation with tb of these functions and the induced 
velocity (equation (34» are illustrated in figure 12. 
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Leading-edge correction to the loading.-The single conical 
field of (t:..u)o will be considered first. (See fig. 13.) The 
velocity field to be superposed ahead of the leading edge to 
cancel the velocity (t:..u)o induced in the plane of the wing 
by the symmetrical solution (equation (20» can be built up, 
as shown in figure 13, of overlapping constant-velocity sec-

-----------

FIGt:RE 13-Cancellatlon of the pressure field introduced ahead of the leading edge in the 
course of canceling Uo hehind the trailing edge. 

tors having one edge along the leading edge of the wing and 
one along the extended ray to from the apex of the trailing 
edge. The magnitude of the constant velocity on each ele-

ment is d~t:)o dto or, from equation (20), 

uodto 
K'(m,).y(1-to'Z) (t02-m,'Z) 

(37) 

Applying equation (34) to the cancellation of the sym­
metrical-correction velocities (t:..u)o ahead of the wing results 
in the following induced velocity increment at any point 
(x, y) on the wing: 

(38) 

where TO is that value of to for which tb= -1, and designates 
the most rearward leading-edge element containing the 
point :/;, y within its Mach cone. In terms of x and y, 

m(x+~y) 
TO=(x+~y)_(l +m)co 

(39) 
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Integration of d(~t:)o C(tO) dto is not feasible by' elementary 

means. For graphical integration it is advisable to rewrite 

cl(~t:)o dto as d(t:..u)o to avoid the infinite value of the derivative 

at to= l. 
The second term of the product in equation (38) can be 

integrated in closed form as follows: 

JI d(t:..u)o R(t )dt = -4m
3/2

u$(k) I x+~y Z(if; k) (40) 
TO dto 0 0 m,(1 +m)K'(mt)'V mx-~y , 

where 

k= 

and 

(41) 

with 
,I, . _1~To+m, 
't'=Sln 

2To 

The function Z(if;, k) is tabulated in reference 16; a plot of 
Z(if;, k) . .. . fi 
k~, agamst if; IS given m gure 14. 

sm't' 

'imilarly, for each oblique trailing-edge element a (see 
fig. 15), a canceling field can be built up ahead of the leading 
edge by the superposition of sectors bounded by the leading 
edge and by rays ta from the apex xa, Ya of the element a, 
and having a constant velocity of the magnitude 

a(t:..u)a dt __ .l ~ -1 (1-a)(ta- m ,)-(m,-a)(l-ta) dt 
ata a- lr

ua ata cos (l-mt)(ta-a) a 

(42) 

(from equation (24». If the symbol t:..UL.E. is used to 
designate the total leading-edge correction to the u com­
ponent of velocity at any point, then the part due to canceling 
the field of a single oblique trailing-edge element a is 

dt:..UL .E. da=! JI a(t:..u)a (C(t.)+ R(t.)] dta (43) 
da 7r T. ata 

where 

Ta 
m(m,-a)(x + ,By)-m,co(l +m)a 
(m,-a)(x+~y)-mtco(l +m) 

(44) 

is the value of ta for which tb= -1 and the leading-edge 
correction function vanishes. 

When the expression (equation (42» for a(~~)a is sub­

stituted in equation (43), it is again impractical to attempt 
to write a clo ed expres ion for the integral of the first term 

a(~U)aC(ta) of the product. The iul.egfl11 of the second 
uta 

term is 

-4m Ua I(mt-a)(l-m)(x+~y)-m,co(l +m)(l-a)X 
7r(l +m) a -V (l-mt)(mx-,By) 

K(k ) [ ,- Z(if;., ka) Z(if;o, ka)] (45) 
a " 1 + a ka sin if;a 1-a k. sin if;o 
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where 

• 

(1 +m t)(l- To) 
(1- m t)(1 + Ta) 

./. . -1 /(m t -a)(I+Ta) 

'f'a=sm V (Ta-a) (1 +mt) 

------

Trailing-edge __ 
e/ementa-/ 

----

FIGURE I5-Cancellation of the pressure field introduced ahead of the leading edge by a 
single ohlique trailing~ge element. 

Then the total leading-edge correction to the velocity u at 
any point x, y is 

(tlu) =(tl u) + L. E. da i aO'd(tlu) 
L. E. 2 0 0 da (46) 

where (tl2U) 0 is obtained from equations (38) and (40), 

d(tl;~L.E. from equations (43) and (45), and 

(1 + m)co- (1-m) (x + (3y) 
(l +m)mtco-(I-m) (x+{3y) mt 

(47) 

is the value of a at which Ta(X, y, a) (equation (44» is equal 
to 1. 

The last term in equation (46) will seldom be found to 
contribute any significant amount to the loading, but will be 
needed in calculating the leading-edge thrust. 

FURTHER CORRECTIONS 

Omitting for the moment any specification of tip location, 
it is in any cll-se necessary, as seen in figure 12, to consider 
the effect of a further cancellation necessitated by the excess 

lift introduced behind the trailing edge by the leading-edge 
cancellation field. To compute this effect by the conical­
flow method would be feasible only with the aid of high-speed 
computing machinery. The previously mentioned cancella­
tion method of reference 5, being more direct, would be some­
what easier to use in this connection, but the calculations 
would still be very lengthy. It will be shown by numerical 
example that the effect of the first cancellation at the trailing 
edge of the leading-edge correction, which is initially quite 
small, may be estimated with adequate accuracy when the 
section loading is considered as a whole, provided the fraction 
of the chord affected is not too large. 

If the product f3 cot A is low or the aspect ratio high, still 
furth er cancellations will be required (see fig . 16) at both 
leading and trailing edges. It is clear that calculation of the 
effect of these further cancellations by the conical-flow 
m ethod is all but impossible. The doublet-distrihution 
method of reference 5 does not appear to offer any consider­
able advantage in this application since, in canceling lift 
ahead of a subsonic leading edge, it is necessary to find not 
only the pressure distribution to be canceled, but the asso­
ciated sidewash distribution as well. 

It is apparent that an alternative method must be sought 
for describing the flow in the outboard regions of a high­
aspect-ratio wing or a wing the sweep of which is large com­
pared to the sweep of the Mach line. If the wing could be 

~~--------------------------. y 

z 

- -- Mach lines 

~'IGURE 16.-Plan view of central portion of high·aspect·ratio wing, showing pattern of 
Mach lines arising at reading and trailing edges. 
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extended indefinitely, it is known that the flow must even­
tually approach the two-dimensional subsonic flow, in accord­
ance with simple sweep theory. The question then arises, 
can the flow at a distance of the order of a semispan from 
the apex of the swept-back wing be related to the two­
dimensional asymptotic flow? While the flow field appears 
to be too complex to obtain an answer to this question on 
analytical grounds, numerical values, presented in the 
following paragraph, sug;gest a practical approach. 

NUMERICAL RE:mLTS (WITHOUT TIP EFFECT) 

Load distributions ha,ve been calculated by the conical­
flow method for three combinations of taper, sweep, and 
:Mach number as follows: 

m= 
m,= 

Un tapered 

0.2 0.4 
0.2 0.4 

Tapered 

0.4 
0.6 

These values of m and m t represent, by virtue of the Prandtl­
Glauert transformation, a variety of sweep angles at Mach 
numbers between 1 and 2; as for example, 0.2 would be the 
value of m for a wing with 63° sweep of the leading edge at 
a Mach number of 1.07 ,or 75° sweep at a Mach,number of 

7 

6 

5 

:1 

Ap 
PTa 

2 

-I 

,-- Trionqular-winq 
loodmq 

Final loading - .../ 
, 

Leading-edqe correction - '" 

Symmetric trailing-edge correction _../ 

(a) 

-2o=-------2~0~----~4~~----~6~O~-----8~0~-----/~OO 
Distance from leading edge, percent chord 

(1\) Section A-A fMc.=O ,667 

1.25. Similarly, m=O.4 would correspond to 45° of sweep 
at M=1.08, 60° at M=1.22, or 75° at M=1.80, The 
trailing-edge sweep angles at these latter Mach numbers, 
if mt=O.6, are 34°13',49°, and 68°, respectively. 

Figure 17 presents the lift distributions at two stations 
of the tapered wing. Each component is plotted independ­
ently in order to show the magnitudes at the leading edge. 
Section A- A contains the intersection of the trailing-edge 
Mach line with the leading edge, so that the value of the 
leading-edge correction is zero at the leading edge of this 
section. At points farther back along the leading edge, as 
at {3y/co=0.8, the correction is minus infinity, However, it 
is seen to increase to a small positive value within a fraction 
of the chord length at this station. 

At both stations it is necessary to estimate the effect of 
cancellation of the leading-edge correction at the trailing 
edge to satisfy the Kutta condition. Cancellation would be 
carried out by means of oblique elements of the type used 
previously (equation (24» in canceling lift at the trailing 
edge. The pressure to be canceled is initially (i. e., at 
X-Z,Y2 (fig. 16» zero. Then the lift induced on the wing 
by this cancellation may be presumed to have the same 
general shape as the oblique trailing-edge correction of figure 

7 

() 

5 

4 

3 

flp (3q;; 
2 

-I 

Correction for 
Kutta condition 
(estimated) 

,~ - T rionqular -winq loading 

Final loading- ~ 

Leading-edge correction - "', 

Symmefric trailing-edge correction - .../ 

(b) 

• 

-20~------~------~------~~----~1~----~1 
20 40 60 80 lOa 

Distance from leading edge, percent chord 

(b) Section B-B fJv/c.=O.800 

FIOURE 17.-:Load distributions calculated by the conical-Haws method (or two ~treamwlse sections o( a tapered swept-back wing; m=O.4; m.=O.6. 
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(b) Section B-B fJv/co=O.800 

Flr.URE IS.-LoRd distributions calculated by the conica l·flows method for two streamwise spctions of an untapered wing; m=OA. 

11 , falling along a modified inverse cosine curve from the 
value of the error at thc trailing edge to zero, with zero 
slope, at the boundary of the region affected. With this 
boundary (the Mach line from the point X2,Y2), it is possible 
to draw a satisfactory estimate (dotted curve) of the correc­
tion needed to bring the pressure once more to zero at the 
trailing edge. 

The untapercd wing with the same sweep (m=O.4) relative 
to the :\lach lines is shown in figure 18, with the load dis­
tribu tions calcula ted at the same stations. 

Four section lift distributions are presented (fig. 19) for 

m=0.2. At (3y =0.15 only the rear 60 percent is influenced 
Co 

by the subsonic trailing edge. The reflection of this influence 
at the leading edge alters the pressure over the rear 40 per­
cent of the section. At section B- B , the leading- and 
trailing-edge interaction affects the entire section. A further 
reflection of this effect at the trailing edge must be estimated . 

At st'ction C-C the influence of cancellation of the leading­
edge correction at the trailing edge extends over the whole 
of the chord and any estimate of its magnitude would be 
necessarily arbitrary. Also, a second pair of reflections 
must be taken into account. The final pressure distribution 
has therefore been drawn as a band within which the true 

976745-52--4 

curve may be shown to lie . Its height is the error introduced 
at the trailing edge by the first leading-edge correction, 
except very near the leading edge, where an infinite negative 
correction is known to be introduced by the second leading­
edge correction. The calculations were also carried out for 
(3y /co= 0.45. The margin of uncertainty was found not to 
have increased by any appreciable amount. (See fig. 19 (d).) 

APPLICATION OF TWO-DIMENSIONAL FORMULAS TO CALCULATION OF 
LOAD DISTRIBUTION 

Correlation of two-dimensional and swept-back-wing 
loadings.--It is apparent from the calculated results that, 
whenever the plan form and the ~lach number are such that 
the trailing-edge Mach line intersects the leading edgt', the 
load distribution behind the ~lach line from the point of 
intersection resembles in shape' thl' theoretical load distribu­
tion over an infinitely long flat plate in incompressible flow. 
However, a the result have been plotted, the quantitative 
agreement i not good, particularly in the case of the tapered 
wing. On the other hand, if the load distributions in 
cross sections normal to the stream are examined, a near 
proportionality of the curves is observed. In order to 
determine the factor of proportionality, it is only necessary 
to find the ratio of the strengths of the si:J.gularities at the 
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leading edg('. Thr>n an approximate expression for the 
loading on the outer portions of a high-aspect-ratio wing 
ean hI' obtain('d by adj listing the two-dimensional loading 
hy that factor. 

Both the SW('pt-hack-\\'ing and the subsonic two-diml:'n­
sional loadings approach infinity as the reciprocal of the' 
squal'(' root of the distanc(' to the lrading edg(·. In sections 
normal to tll(' stream, tIl(' distallce from any point x,y to the 

kading ('clg(' may 1)(' writt(,l1 -k (m f-(3y ) . Thp va lu(' at tIl(' 

leading ('dge of the coefficient of (m..c -(3y) -1 /2 ,,·ill be rrferrcd 
to as the strength of the leading-edge singularity. 

The suhsonic two-dimensional prrturbation velocity has 
thr form 

. / 1-1/ 
1L=B-Y - 1/ - (48) 

whrre 1/ is the distanGe to the leading edge, expressed as a 
fraction of the chord, and B is 11 constant. If the section of 
the swept-back wing is taken pf'rpendicular to the stream 
(x constun t), the chord length is 

1 
fj [mx - m,(x-co) 1 (49) 

and 
mx-{3y 

1/= -- .- ----
mx-m,(x-co) 

(5 0) 

Substitution for 1/ in equation (48) gives 

(51) 

Then the strength of the leading-edge singularity in u is 

(52) 

The leading-edge singularity in the loading on the swept­
back wing is initially (region I, fig. 16) that in the triangular­
wing loading. Introduction of the leading-edge corrections 
to the load, in region II, reduces the strength of the singular­
ity there through the terms R(to) and R(ta). (The inverse­
cosine function is always finite.) The coefficient of 
(ml-(3y)-1/2 in Ut. is, from equation (6), 

mxuo 

.Jmx +- {3y 
reducing to 

(53) 

at the leading edge. 
From equations (40) and (45), decrements to this coeffi­

cient may be derived for the portion of the leading edge just 
behind the intersection II,Yl with the trailing-edge ~1ach 
line, as follows: 

and, for each value of a from 0 to that value ao' which makes 
Ta equal to one, 

\\·hC'/"t· TO (equation (39» and Ta (equation (44» reduce to 

and 

mx 
T O= - ­

x-co 

(m,-a)mx-m,coa 
Ta-= -

(m,-a)x-m,co 

and the arguments and moduli of the elliptic integrals 
follow as for equations (40) and (45). 

The coefficient of (mx-{3y)-1/2 at the leading edge IS, 
therefore, in region II, figure 16, 

r ao'dt:.C (\ + (~C)o+ .J 0 da da 

with ao' reducing to 

(56) 

(57) 

Equating the two coefficients, expreSSiOns (56) and (52), 
gi ves for anyone section 

J~= -===l=-(:--=, ) [(1t.+(t:.C)0+ rao' dzt:.£ eta] 
... mx-m, X-CO Jo G a 

For convenience, a nondimensional cofficient 

is defined, so that 

u(x) .JZo 
B= V a --==::':::::::~'==' 

..,;mx-mt(x-co) 

(58) 

(59) 

By substituting for R in equation (51), the loading on the 
outer portions of a swept-back wing is obtained as 

(60) 

Numerical results.-The closeness with which the fore­
going procedure predicts the theoretical loading over swept­
back wings is indicated by figures 20, 21, and 22, where the 
previously calculated load distributions are compared with 
those calculated by equation (60). Even in the case of the 
highly tapered wing, the agreement is seen to be good. 
At the most inboard section of the m=0.2 wing (fig. 19 (a») 
there is, of course, no agreement over that portion, forward 
of the 60-percent.-chord point, where the flow is essentially 
conical. At stati.on B-B, however, the a.greement i.s very" 
good. At sections C-C and D-D, where the exact theoretical 
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FIGURE 2O-Load distributions on the tapered wing as calculated by the 
conical-flows m~tbod, eompa oed with the two-dim~nsional approximation. 

loading had not been drtermined , the two-dimt'nsional-typc 
loading lies within the band prescribed by tht' conical-flow 
calculations. Since the discrt'pancy bel\\-een thr corrected 
two-dimensional loading and the exact theoretical distribu­
tion is already, at section B- B (fig. 22 (b», It'ss than the width 
of th e bands in figures 22 (c) and (d) and must diminish to 
zero at infinity, it may be supposed that the cOlTrcted two­
dimensional curve is at least as satisfactory an approximation 
to the correct curves at sections C-C and outboard as 
at section B- B . It is probably more satisfactory than can 
be obtained by a limited application of the conical-flow 
method . 

The load distributions deri,-ed by simple sweE'p theory 
are included in the last part of each figurr to show the magni­
tude of the plan-form effect and also, in the rase of the un­
tapered wmgs, the curves that thr load distributions must 
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FI(;nRE 21.-Load distributions on the untapered wing, m=O.4, as calculated 
by the conjcal-flows method, compared with the two·dimensional appro\i­
matioD. 
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FIOURE 22.-Load distributions on the untapered wing, m~ O .2 , as calculated by the conlcal·flows method, compared with the two-dimonsional approximation. 

approach as the distance from the plane of symmetry is 
increased. In figures 21 (b) and 22 (b), comparison is also 
made with results of tue slender-wing theory of reference 3. 

Discussion of the u function.-In the calculation of the 
·pressure coefficient at points toward the rear of most of the 
sections considered in figures 20 , 21, and 22, it was necessary 
to find u(x) for values of x greater than X3 (fig. 16). In 
deriving u(x), it was mentioned that expression (56) applied 
to region II. In region I II, the strength of the leading-edge 

singularity is affected by further modifications of the flow 
taking place in region lIb, so that additional terms in u(x) 
should be considered when x is greater than Xa. Evaluation 
of these terms by presently known methbds would require, 
as suggested earlier, the aid of high-speed computing ma­
chinery. However, the successive terms are all iilitially 
zero and enter with zero slope at Xa, zero slope and curvature 
at xs, and so on, so that the three-term expression for u given 
by equation (59) may be used with satisfactory accuracy 
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for some distance beyond the last value of x for which it is 
strictly valid. In practic:e, the third term in equation (58) 
may also be neglected for values of x only slightly greater 
than Xl. 

Charts have been preps,red (fig. 23) giving (! .Jl :m) (J 

as a function of X-Xl for several values of the ratio in/m,. 
Co 

This last parameter is the ratio of the tangents of the semi­
apex angles of the leading and trailing edges and is constant 
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FWURE 23.-Charts for determining IT. the strength of tho loading-edge singularity. 
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(g) m/mt -0.4 

may be extended. (These points are off the scale for mt=0.8 
and 0.9 in figure 23 (a).) When the wings are untapered 
(m/m t = 1.0), asymptotes 

derived from simple sweep theory, may be drawn. 
The curves, for the most part, are regular enough to permit 

interpolation within intervals of 0.2 in mt. However, at 
m t=1.0 the lines diminish to a point on the vertical axis; a 
curve for mt= 0.9 was therefore inserted in the charts for 
values of mlmt equal to or greater than 0.5. When mlmt is 
less than 0.5, m=0.9 represents, if the leading edge extends 
beyond X},Yl, such extreme taper that the successive reflection 
of the Mach lines (at Xa, xs, ... ) take place within a very 
small fraction of a chord length and no useful curve can be 
drawn. No curves are drawn for values of m t smaller than 
0.2 because of the Lip-interference limitation mentioned in 
the introduction. 

Calculation of tip effect.-The foregoing assumption of 
two-dimensional flow can be extended to give fairly simple 

approximate formulas for the tip effect on a high-aspect­
ratio wing. It is assumed that the velocity distribution to 
be canceled in the stream outboard of the tip is cylindrical; 
that is, is an extension of the velocity distribution calculated 
for the tip section along lines parallel to the leading edge. 
For this purpose the approximate load distribution given 
by equation (60) is used, still further simplified by assuming 
(J' to remain constant at its value at the leading edge of the 
tip section. (Where the wing is tapering to a point and (J' 

is changing very rapidly, the tip region is so small that the 
entire calculation of tip effects could probably be omitted.) 

The assumption of constant (J' results in a failure to cancel 
exactly the lift along the tip. The assumption of cylindrical 
flow, while reasonable for the untapered wing (compare fig. 
21 (a) with fig. 21 (b) , for example) would appear to be too 
drastic for the tapered wing, where neither the chord nor 
the loading remains constant. However, as has been men­
tioned earlier, the major part of the tip effect results from 
the cancellation of the infinite pressure along the leading 
edge, and this part will be accurately calculated. The 
effect of the residual lift on the rearward portion of the tip 
section and in the stream should be small. 

- I 
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The distribution of pe:rturbation velocity at the tip station 
Y=S, with the simplification of constant (J, is, from equation 
(60), approximately 

where Xc,S are the coordinates of a point on the tip and (J. 

is the value of (J at the leading edge of the tip section. 
This expression may be more conveniently written in 

terms of the parameter 

and the variable 
{3s x - ­

c m 
~c=-C-t-

(63) 

(64) 

which is the distance of Xc,S from the leading edge (see fig. 
24) expressed as a fraction of the tip chord Ct. Since 

equation (62) may be written 

(65) 

where X is the taper ratio ct!co· 
If the velocity distribution u is assumed to be constant 

beyond y=s along lines parallel to the leading edge. it may 
be canceled by the superposition of conical flow fields of 
which the const,aIH-velo ity re~ions have one edge along the 
tip and the other parallel to tile leaciing edge. with apexes 
displaced along the tip b:- incremem in ~(. The velocity 
induced at a point :c .y by each such elemen t would be 
(equation (11» 

(66) 

where 

tc {3 (y-s) 
X-Xc 

(67) 

and u c is the velocity on each sector. 
Following the procedure used in deriving equation (14), 

the corresponding equation may be written for the pres­
sures induced by canceling the cylindrical flow 

where Xo,S is the intersection of the Mach forecone from X,y 

with the tip, 

Co,O , 

I 
I 

I , 

I , 
I , 
I 
i , 
~ , 
I Mach line 
, 

I , 

r--
FI() UR E 24.-Skp(ch lor derivation 01 approximate tip correction to loading at ,,V. 

If the distances of x,y and Xo,S back of the leading edge, 
measured as fractions of the' tip chord, are 

~=.!. (x _ (3y) 
C t m 

(69) 

and 

(70) 

it can be shown that 

(71) 

from which equation (68) can be written (with the substi · 
tution for u(xc,s) from equation (65» 

In integrating equation (72), three cases must be distin­
guished: (1) ~<1 (always true for the untapered wing), 

(2) 1 <~<.!. (when the point X,y lies more than a tip­
p. 

chord length behind the leading edge), and (3) ~> 1:. 
IL 
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(a possible (,ondition for some points near the trailing edge 

of a llighly swept or tap('r('d \ring) . 

In th e first ('3S (, (~< l ) 

(73a) 

where 

and Ao is the function (equation (16)) plotted in figure 6. 

In the second case ( 1 < ~< !J 

(t.U) U s K o [ ,- Z('h, k)] - = - -= "~-~o-, (~-l)~o-.-
Va li p ..jmA ~ ..j l-!l~O k sm¢'2 

(73b) 

where 

and Z is thl' function (equation (41)) plotted in figure 14. 

In the third case ( ~>.;} 

(73c) 

where 

Along the Mach line from the leading-edge tip all three 
equations rl'duce to the value 

t.u* - U s 

Va= ..jmA~ (74) 

By the procedure just described, approximate cancellation 
of all pressure differences outboard of the tip has been 
effected, but the pressures induced by such cancellation 
now violate the condition of zero lift in the wake. Approxi­
mate cancellation of the induced pressure differences in the 
wake region can be accomplished, as before, by making use 
of the known value of the tip-induced velocity at the trailing 
edge of the wing, but assuming the entire error to originate 
a t th e leading edge of the tip . Equation (31) is directly 
applicable, with t.u * givl'n by equation (74) and (t.U) l i p by 

equation (73) . 
~= 1 and 

On the t railing edge of an untapered wing, 

(
t.U ) -us - = - kif(, 
V a ~ _ I "'m 0 

(75) 

There is no corresponJ ing simplification for the tapered wing. 
Numerical examples, tip effect. - Equations (73) and (31) 

lIa ve been used to calculate the lip effect in two cases, namely: 
m = m l= OA , {Js= O.94co ; and m = O.4, m l= O. 6, ,Bs= O. 86co' 

The tip effect h as been calculated for each wing a t {Jy = O. 8co, 

where the loading was previously calculated (figs. (1 7b) and 
(18b)) assuming th e wing to extend indefini tely. The tip 
locations were selected so that in each case only one refl ection 
of the primary tip effec t affected th e section a t {Jy= O. 8co' 

Figure 25 shows th e results of the calculations. The h eavy 
solid curve in each case was calcula ted en tirely by the 
corrected two-dimensional theory-that is, by equations 
(60), (73), and (31 ). As a ch eck on the accuracy of th e 
cylindrical-flow approximation for the flow outboard of th e 
tip location , the accurate theoretical loading was calculated 

./ ..... 
~ ..... ..... 

, I 
\ .; 

, ..... 
.-' ..... ..... ..... ..... J- i--

.-' 
.-' A t--

./ 

1\ 

~ o'~}-}-}-}-}-}-}-}-~~~~~~~~~v~Fr~ 
1-+-+--1---1---t--t---I--t--t--H-cy / mdrica /- f /o ...... """/-+--+t-+--I 

approx imatianr, 
\ 

\ 

-/ +-+-+--1---1---t--t---I--t--t--t--t--+-+-+ CorrecTion -~ 
f or K/l f fo .l 

I-+-+-+-+-+--I---I--+---I---I---I--t-+-+
I 

co I n difi I on
l
- - '-­

t-- 0 AccuraTe t heore f i ca /++-+-l--t--t-+-t-t-i 
values I ~ 1 J 

~ -~~st~m1t~q +-+-+--1--+-+---I--t--t-+-+-+-+-l 

-20 20 40 60 80 100 
Distance from leading edge. percent chord 

(a) Un tapered wing; m=O.4; flA =1.88. Section at /lV=O.8ro, or 5 percent semispan 

FIGU RE 25.-Load distribution /)ver st reamwisc section near lip as calculated by two·d imen­
sional form ulas, compared with more accurate theoretical values. 



-- ~ .-- ------

26 REPORT I05O---NATIONAL ADVISORY COMMITTEE FOR AERO AUTICS 

7 

6 

5 

4 

3 

r-

o 

I 

-2 

-
-

-3 
o 

r----

-

-

I I I 

1\ ...- ...- ..... ..... I 
..... 

\ 
..... 

"-

\\ > , 
...- i "-

"- ..... ..... r- r-
~\ ..... 

r-
[1\ - ..- A t-j\ -- IA -

\\ 
'\ 
~\ 
'\ 

i\~ --Accurate theoretical loading 
0!conical-flaws method) t-t-

~ 

'" Corrected Iwo- I" dImensional ~oading- -'" 
"~ 
~ 

~t--

'" ~ 
Fmallaading -- ~ 

~ 
~ 

~ 

L 
Cylindncal-

\-fl owapprox-
r---; imation.,-. r-

I"'" --' 0..,, - r--H 
]'1~ 

1"1 
\ 

o Accurate theoretical 
values 

- -Estimeted 
~ ~I I J " 

1 1 
20 40 60 80 

Distance f'ram leading edge, percent chord 
100 

(h) Tapered wing; m=O.4; m ,=0.6. Section at fJV=O,&:o, or 93 percent semispan 

FIGt RE 25-Continued 

for one point within th e region of influence of the tip in each 
case. The proeedure employed for the exact calculation was 
as follows: 

The accmate loadings with no side-edge effects had already 
been calculated, as has been noted, by the conical-flow 
method. A primary tip correction was calculated for each 
case by equation (15). This correction is the effect of cancel­
ing the unmodified triangular-wing loading off the tip sta­
tion. The remaining pressme differences to be canceled 
consisted of those introduced by the leading-edge and trail­
ing-edge corrections. These pressures were computed by 
means of equations (213) and (46) of the present report and 
canceled by the method of reference 5. 

The results are designated by the circled points on each 
figure. At the point at which the secLion enters the tip Mach 
cone in each case, a second circled point indicates the accurate 
theoretical loading. The value differs from that calculated 
by the approximate formulas only as the two loadings without 
tip effects differ . 

It may be pointed out in concluding this section on load 
calculations that, while the formulas have been developed for 
plan forms with streamwise tips, the procedure may be 
adapted by obvious means to raked tips as well. However, 
in every case the deviation in the tip regions of the physical 
flow from the assumed potential flow must be borne in mind. 

III- LIFT 6 

GENERAL PROCEDURE FOR CONICAL FLOWS 

The total lift for any wing is, of course, the integral of the 
loadmg over the wing area. In general, however, it is difficult 
to obtain an analytic expression for the lift by a direct 
integration of the lift distribution. In the conical-flow 
method, advantage may be taken of the simplicity of the 
component fields by integrating the lift associated with each 
one and then combining the results in the same way as the 
pressme fields. 

Conical elements of area are employed for the integrations. 
These are infini tesimal triangles bounded by two adjacent 
rays of the conical field and the intercepted boundary of the 
wing plan form. Over each of the infinitesimal triangles the 
velocity u of the conical field will be constant. Thus it 
remains only to perform a single integration, with respect to 
the conical variable of the field, to obtain the total lift 
associated with that field. 

GENERAL FORMULA FOR THE LIFT INDUCED BY A SINGLE TIP ELEMENT 

The lift (t..L)a induced on the wing by a single canceling 
tip element is obtained first . Although the notation of the 
solution (equation (11)) used to cancel the triangular-wing 
loading is employed, the derivation will hold generally for any 
canceling element bounded on one side by the tip of a swept­
back wing, since no use is made of the fact that the other 
boundary of the element passes through the origin of the 
x,y axes. We write 

f a dS 
(t..L)a= 2 p V -1 (t..U)a dt

a 
dta (76) 

where (t..u)" (equation (11)) is the streamwise increment of 

velocity induced by the canceling field and ~~ dt" (fig. 26) is 

the element of wing area S for integration. For simplicity it 
will be specified that the Mach cone from the apex of the 
element does not include the apex of the trailing edge nor any 
part of the opposite tip. Then (see fig . 26) 

dS _ ml (X t -x,,)2 
dt. - 2fJ mt-t. (77) 

, • It may be noted that, as a result of the reversihil ity property (reference 17), the formulas 
for the lift given herein for swept·hack wings are equally applicable to the swept,forward 
wings having the same plan forms but reversed in heading. 
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FIGURE 26.-Sketcb for tbe determination of lift induced by a Single tip element. 

Substituting from equations (11) and (77) and integrating 
by parts, we obtain 

(AL)a=P Vf3m/ ua(x :-xa)2g(a) (78) 

where 

~] (79) 

and Xt-Xa is the distance of the apex of the element from the 
trailing-edge tip. 

GENERAL FORMULA }'OR LIFT INDUCED BY OBLIQUE T R AI LI NG· EDGE 
ELEMENT 

With the notation of equation (24) for the velocity field of 
an oblique trailing-edge element, and on the assumption that 
the Mach lines from the apex of the element do not cross the 
leading edge, the formula for the elementary area of integra­
tion with apex on the trailing edge (fig. 27) is written 

dS=f3(S-Ya? dt 
2ta2 a (80) 

where S-Ya is the spanwise distance from the apex of the 
elElment to the wing tip. Then the lift associated with the 
element is 

Integration of equation (81) gives 

(AL)a=P V(s-Ya)2 f3 Ua [ /(m,-a)(l-a) - mt-aJ (82) 
a ~ m, m t 

t-------s -----~ 

dS 
-lit" dt. 

FIGURE 27.-Ske~cb for the determination of lift induced by a t railing-edge element. 

WING WITH SUBSONIC LEADING EDGE 

UNCORRECTED LIFT 

First, the unconected triangular-wing loading (equation 
(6» is integrated over the wing plan form. The element of 
area is a triangle formed by two rays from the leading-edge 
apex a and a+da and either (1) the trailing edge of the wing 
or (2) the wing tip, accordingly as a is less than or greatell 
than at, the value of a corresponding to the ray through the 
tip of the trailing edge. (ee fig. 2.) In the first case the 
differential of area is 

and in the second 
f3s 2 
2.a2 da 

so that the total uncorrected lift is 

4p V [ra
, m/co2 f"' f3 2s2 ] 

L O= - f3 - Jo 2(m,-a)2 u~ da+ at 2a2 UA da (83) 

From the geometry of the wing, the relation 

f3s 
mtco= - (mt-a,) 

at 
(84) 

may be deduced. 
tion for UA from 
grated to obtain 

With this substitution, and the substitu­
equation (6), equation (83) may be inte-

Lo 4s2 f3uo {m2(mt-at)2[ m t ( -1 m 2-mta, 
tIa = ma/ Va m/-m2 .Jm,2-m2 COS m(m,-a,) 

(85a) 



r - - - - -

28 REPORT l05G--NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

When mt=m, tbis reduces to 

(8.5 b) 

It should be noted that, for a given plan form, Lo yaries 
qa 

with Mach number only as uo. 

WING WITH SUPERSONIC TRAILING EDGE (TIP CORRECTION) 

Proceeding to the calculation of the tip correction to the 
lift, we integrate the change in lift (t::.L)a (equation (78» 
induced by each element. a over the range a,~a~m. The 
quantity u6(m) is substituted for U a of the initial canceling 

element and d:la,6 da for U a for the remaining ones. As in 

calculating the tip-induc(:d pressure correction, the difficulty 
is encountered that u6(m) is infinite, and therefore the total 
lift correction must be written in terms of limiting values. 
Following tbe substitution 

(86) 

in equation (78), it is convenient to define the function 

Then the total induced lift may be written 

t::.L=2p Vm/ (3s2lim [ .-uA(a)G(a)+ fa 'dduA G(a)da] (87) 
tl--+m Jat a 

Integrating by parts results in cancellation of the first 
term inside the brackets Since G(a t) is zero, equation (87) 
reduces to 

(
t::.L) _ , 2{3 2i

m 
uA(a) G'( )d - --·~mt 8 - - a a 

qa lip at Va 
(88a) 

where 

G'(a)=a-~[(al+ml-at)[J(a)_ -' a-a, ] 
a/a2 a mt-a ~(mt-ah (mt+m/)(a+a2) 

is the derivative of G(a). 
Equation (88a) has been intC'grated (appendix C) in 

terms of an incomplete ellipti(' integral of the third kind. 
If the llC'cessary tables are not a ,-ailable, it rna." be prefer­
able to integrate numerically.1 In that ('ase it is noted that 

1 d. -I a 
--=-SIl1 -

'\ m2-a2 da m 

and u~ da is rewritten as 

muod (sin- I ~) 
Equation (88a) then becomes 

.. 
( t::.L) =-4mlm{382;O (2 a,G'(a)d (Sin-I !!...) (88b) 

q a 1111 a J S10- 1 m m 

Ih this way infinite values in the intC'grand are avoided. 

WING WITH SUBSONIC TRAILING EDGE 

The expressions (equations (85» for thC' uncorrected:lift 
apply regardless of whether the trailing C'dge is subsonic or 
supersoniC'. The formulas {or the tip correction may serve 
as a first approximation whC'n the trailing edge is subsonic 
if the accuracy of a second ('orrection is not required. For 
that ' purpose the special value for the untapered wing ,\ill 
be of interest: 

If the wing is untapered the C'lliptic integrals in equation 
(88a) (see appencli..x C) reduce to the first and second kind 
and the primary induced lift may be written in the following 
closed form: 

(
t::.L) 482 {3t~o ( 2 2 mat(m2-a?) {~(m-a )-2m+ (l1!-a t)2 [~- (1-m)3 J-
qa tip=-:1ma? Va 2(m+ath,m -at + (1 + m)(l+a,) m t m(1+m)2 at 2(m+a,) 

2m2(1 +al)3 _ m+al} + I 2 {(m-at)(m+2a,) F(>/; k)_[2(m+at) ~_ ~m ____ al)2 JE( k)}) 
at (1 +m)2(m+at) 2 -y 1 +m mat ' at m 2ma t (1 +m) >It, 

where 

. -I 171-at I-m ,---- ~--

>/;=SIll -V mel +a
t
) and k= - -2-

The primary tip corre.ction, however, is usually quite large. 
It may therefore be desirable to take into account the sec­
ondary correction resulting from its cancellation at the sub­
sornc trailing edge. Rather than compute a single secondary 
correction to the lift, as an additional item, it is again found 
advantageous to treat each superposed field individually, that 
is, to cancel each corneal tip field at the trailing edge and 
find the net effect on the lift, then integrate over all the 
tip elements for a combined primary and secondary tip 
correction. 

7 Or see reference 10 for an approximate formula valid when m is close to one. 

(88c) 
Tip correction with subsonic trailing edge.-For the can­

cellation at the trailing edge of a pressure field originating 
at a point Xa, 8 on the wing tip, equation (82) is applied, 
with the parameter a, which defines one boundary of the 
oblique canceling field, replaced by ta, referring to a ray from 
Xa,8. The velocity U a is the gradient 

dt::.u 
dt

a 
dta 

of the field (equation (11» to be canceled. The distance 
from the apex of the canceling field to the wing: tip is express­
ible as 

Xt-Xa mlta -------
fJ m,-ta 
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Then the effect on the lift of canceling the single field from 
Xa,S IS 

in which 

and 

If the foregoing result is added to the lift associated 
with the original tip element, given by equations (78) and 
(79), it is found that the latter lift is exactly canceled by the 
algebraic terms in the reflected lift, leaving 

(t:.L) = Vm 2U (X I -Xa)2 [ / aU +a) E _~ Ao~if;'}lJ 
a P ,a{3(m,-a) 'Vm,(l +m,) 0 m, smif; 

(91) 

for the lift induced by one tip element and its cancellation 
at the trailing edge. It will generally be found that further 
steps in the cancellation process are unnecessary for engineer­
ing accuracy. 

For the total tip-induced correction to the lift, it is neces­
sary to write as before 

where J(a) is 

(a-a,)2 1 [ / a(1 +a) Eo-~ ~(t.. k1J 
a,2a2 m,-a 'V m,(1 +m/) m, sin if; 

An integration by parts reduces eq uat ion (92) to 

(t:.L)ttp= -2 p Vm/{3 s2 { m ut:.(a)J' (a)da Ja, 
with 

J'(a)=a-a,_l_ {[(a,+m,-a;)_ 
a/a2 mt-a a m,-a 

(92) 

(93) 

(94) 

If the King is un tapered , J'(a) becomes indeterminate when 
a=m. The limiting value is 

m-a, (3- 8m
2 

)]E (k)+ 
10m l-m2 0 

2m [1. (a,+ l-a,)_ m-a, (1 +3m)] K (k)} 
3 m I-m 10m I-m2 0 

Further integration must be performed numerically. In 
order to avoid infinite values in the integrand, note again that 

u .. (a)=muo dd sin-I!!:... 
a m 

(95) 

so that equation (93) may be rewritten 

( t:.L) 4 2 2 (3u~ r"/2 J'( )d( . -1 a) (96) - = - m m,.· - a sIn-
qa lip Va. siD-'~ m 

m 

Trailing-edge corrections .-In deriving the trailing-edge 
corrections to the total lift, primary and secondary effects 
will again be combined. Further corrections will be 
omitted. 

For the symmetrical wake correction, the element of area 
is obtained from equation (80) by setting Ya equal to zero, 
and substituting to for tao Then the decrement in lift in­
duced by the application of the symmetrical canceling ele­
ment at the trailing edge is, from equation (20) , 

( L) - V 2 UO JI F( / 2) dt" t:.l o--2p tJS K'() </>"l-m, -t2 m, m, 0 
(97) 

or 

(98) 

where 

The effect of canceling the pressure field induced by the 
Symmetrical wake correction at the wing tips is obtained 
with the aid of the previously derived formula (equation 
(78» for the lift associated with a single tip element. The 
parameter defining the boundary of the canceling tip ele­
ment is now to instead of a, and the velocity on the canceling 
sector is 

(99) 

The distance from the apex of the canceling sector to the 
trailing edge may be expressed as 

(100) 
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so that the secondary effect of the symmetrical trailing-zdge 
correction becomes 

(fl2L)o=2pVm/{3s2 ~-JJ (1-_!)2 g (to) dto 
K' (m t) m, m t to -Vel-to'!) (to2 - m t '!) 

(101) 
or 

- h k /1-m t 
WIt =-Y - 2- -

Addition of this secondary correction to the primary 
effect given in equation (98) results in the single correction 

By a similar procedure, the effect of canceling one of the 
oblique trailing-edge fields at the tip is readily obtained and 
added to the primary effect given by equation (82) to yield 

(104) 

- h k /l-m t d . 1 /(l+mt)a h b· d 
WIt =-y 1 +mt an tf ,= sm- -y m t (1 +a) as t e com me 

primary and secondary eorrection to the lift due to a single 
oblique trailing-edge cancellation. 

For the total correction to the lift due to cancellation of 
the gradient of the triangular-wing loading in the wake, 
equation (104) is integrated graphically or numerically 
across the span as follows: 

Numerical exam{>les 1,0 be presented will show this com­
ponent of the lift to be very small, in general. 

WING WITH INTERACTING LEADING AND TRAILING EDGES 

In computing the load distribution it was found that, 
when interaction takes place between the flow fields of the 
leading and trailing edl~es, the wing plan form appears to 
comprise two principal regions separated (see fig. 16) by the 
Mach line arising at the point of intersection Xl,Yl of the 
trailing-edge Mach line and the leading edge_ Ahead of 
this line (region I) the flow is most readily described in 
terms of conical fields. Behind this line the flow is more 
nearly two-dimensional. On this basis, the total lift will 
be found in two parts, using for region I the conical-flow 

expressions for the loading, and for the remainder of the 
wing the quasi-two-dimensional approximation. 

LIFT ON INBOARD PORTION OF WI G 

The uncorrected triangular-wing loading will first be 
integrated over region I, shown shaded in figure 28. For 

o 

F1GUR~ 28.- Inboard portion (region I) or high-aspect-ratio wing. 

this purpose the region is considered in two parts, separated 
by the ray ~ from the wing apex to the point X2,Y2. When 
a is less than a2, the element of area is as before 

When a>a2, the element of area is 

(1 +m)2co2 

2{3(1-m)2(1 +a)2 da 

Thus, the uncorrected lift in the entire shaded region is 
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01' 

(107) 

with 

(lOS) 

When m,=m (un tapered wing), the second part of equation 
(107) becomes indeterminate. In this case, 

Lo 4m Uo 2{ 1 +m [1 -I m2+a2 ..jm2-a22]+ 
qa=TVa co (1-m)3 ..j1~m2cos m(1+a2) I+a2 

(109) 

The trailing-edge corrections to the loading are to be 
integrated over the part of the shaded region behind the 
trailing-edge Mach lines. Integration of the symmetrical 
wake correction (equation (20» yields 

(I).L)o -I6m2c
0
2 

U o {1 _ _ 2_ [l_Eo'(m,) ] } (110) 
qa !3(l+m,)(1-m)2 Va I-m, K o'(m,) 

For each oblique element, the reduction in lift is given by 

~dl).L da= 
qa da 

2ua l+m,( )( )2[ /(l+m,)(I-a) 
-,8Va l+a m,-a X2 - X

a -V 2(m,-a) 
(111) 

. h dUlJ.d m,co d WIt Ua= -d a, Xa=-- an a m,-a 

X2=G ~: + m) 1 ~om, (112) 

The total lift in region I is then given by 

(.f..) = Lo + (I).L) 0 +~ ra2 dl).L da 
qa I qa qa qaJo da (113) 

The quantity ~2 2 (.f..) is plotted against m, in figure 29 for 
m Co <;.a I 

several values of the ratio mlm,. 

LIFT ON OUTER PORTIONS OF WING 

In order to find the total lift (except for tip losses) on the 
remainder of the wing (fig. 30), a double integration with 
respect to x and y is performed on equation (60). A first 
integration, with respect to y , yields for the indefinite 
integral 

J-U_ dy= q(X)..fCo[ /(mx-!3y) (m,co-m,x+!3y) + 
Va ,8 -V m,co-(m,-m)x 

..jm,~o-(m,-m)xtan-I / mx-,8~ J (114) -V m t co-m, x ,8y 

The values of ,8y to be substituted as limits in equation 
(114) are indicated in figure 30. Along the leading edge, 
the right-hand member of equation (114) reduces to zero; 
along the trailing edge it becomes 

Then the total lift on the outboard regIOn (both wmg 
halves), except for tip losses, is 

(.f..) =S .. .;Co[ rX2 
U(x) (11 tan-I!2+hh)dX+ 

qa II ,8 JXl 13 11 

~l:' tY(x)11 dx-J;' q(x) (11 tan- l 1s+¥) dxJ 
". 

(115) 

where 

1,= ..jm(x -,8sl m) 

j3= ..j(1 +m,) (X2-X) j5= ..jm,(x,-x) 
The indicated integrations may be performed numerically 
or graphically, using values of tY (x) taken from the charts of 
figure 23. 

TIP.INDUCED CORRECTION TO THE LIFT 

In deriving a tip correction to the lift, the same simplifying 
assumption of completely cylindrical flow will be adopted 
concerning the pressure field to be canceled as was used in 
obtaining a tip correction to the loading. As in the preceding 
section, a combined primary and secondary tip correction 
will be derived. All further corrections will be omitted. 

If the notation of equation (63) is used the distance from 
the apex Xc,S of a canceling element to the trailing-edge tip is 
c,(I-~C>, and the lift induced by the element and its cancella­
tion at the trailing edge is, from equation (91), 

L) V 2 c/(l- ~c)2 [ 
(I). c= P m, Uc !3(m,-m) 

m(l +m) Eo(k)-!!!:... A~(if;,k)] 
m,(l +m,) m, sm if; 

(116) 

where 

as before, and 

since the outer boundary of each element now has the slope 
m 
,8 
It is seen that only U c and (l-~Y in the coefficient of 

equation (116) vary with the element. For the first element 
(~c=O), the velocity Uc is the initial value of the uncorrected 
velocity along the tip section given in equation (65), and, for 
the other elements, the differ~tial of that velocity. Then. 

-l 
I 
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{31/ -(1 + ~.r,-.r j3y-mz 

/ly=j38 

.r=3!t 

FIc,nIE 3O.-Boundaries of outboard region of bigh·aspect·r~tio wing, for use as limits of 
integration in eq uation (1 14). 

In tegration by parts gives, finally, 

If the wing is untapered, equation (lISa) takes on the value 

I1L 7rco2.,fm 
qa = - ~ (1-m2) er, [2mKo(k)+(l-3m)Eo(k)] (11Sb) 

Except for the occurrence of a .,c, and }I. in the coefficients, the 
tip correction obtained in the foregoing way is a function of m 
and m, only, independent of the tip location. Values of 

~~(~) have been plotted in figure 31 in a form similar 
er,C , qa Itp 

to the chart of (~) (fig. 29). 
qa I 
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F l r-URE 31.- Cbart for the correction of the lift for tip e ff~ct . using two·dimensional 
CormullS. 

APPLICATION OF LIFT FORMULAS 

CASES COMPUTED 

The lift-curve slope CL has been calculated for two families 
Ct 

of un tapered 'wings with varying aspect ratios as follows: 

m - 0.2 m -O.4 

fl!' 
c, fl A fl~ 

c, fl A 

0.3 0. 6 0. 6 1. 2 
. 4 . 8 . 8 1. 6 
. 6 1.2 1.2 2.4 

1.6 3. 2 

and for two tapered wingS: 

m=O.4. m,-0.6 

I 
{J !. {JA >. 

Co 

0. 6 1. 6 ~ , 

2. 4 ~3 

It. should be noted that the untapered-wing cases (except for 
the last one under m=OA) represent three wings of fixed 
geometry at two different Mach numbers such that ~ is 
doubled in going from the first to the second. No calcula­
tion was made for m=O.2 to correspond to the last case 
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under m=OA because at the lower Mach number it was not 
possible to calculate satisfactory values of (f out to the wing 
tip. The tapered wings were chosen to show, by comparison 
with the first two of the untapered m= O.4 wings, the effect 
of taper with the span held constant and, by comparison 
with the second and third untapered m=OA wings, the 
~ffect of taper with a given aspect ratio. 

SUMMARY OF COMPUTATIONS 

With m=OA and f3s/cc= O.6, the trailing-edge Mach lines 
do not intersect the leading edge, and the values of CLa were 

obtained entirely by means of the conical-flow formulas , as 
follows: 

Tapered wing, /lA = 1.6 Unt3pered, /lA = 1.2 

Component of lift 
E~~tionl ___ ---r ___ I ____ ~ __ 

(JI L/qaco' % total (JI L lqaco' % total 

Uncorrected triangular wing_ ...... (85) 2.093 121.1 2. S9S 143. 0 
Tip etrect ... ..•....... ........... . (00) -.100 -11.0 - . 422 -23.3 
Symmetrical t railing·edge correc· 

tion ... .......................... (103) - . IS9 -9.2 -.340 -IS. 7 
Oblique trailing-edge correction. __ (1 OS) - . OIS -0.9 -.019 -1.0 

Totals .... _ .................. _ ........ . 1.729 100. 0 I. S14 100.0 

/lCL. =/lL/qaS, per radian ........ _ ........... 1. 920 1. S12 

The calculations for the remaining values of f3A are summarized in the following table: 

Un tapered wings 

Component of lift Obtained from m=0.2 m=O.4 
Taperec\ wing 

m =O.4 ; m,=0.6; 
/I&=O.S; /104=2.4 

/lA=0.6 /lo4=O.S /lA=1.2 /104=1.6 /104=2.4 /104=3 .2 

Lift on inboard portion ..... ...... __ .... _ .. Fig 29 or equation (113) 
Lift on outboard portion ............ .... _.. . ........ ---- .... . T' . Equation (IIS) ...................... __ .. 

Ip correctlOn __ .. __ ...... _ ............. _ .. Fig. 31 or equation (US) ................ . 

(lCL. !POZ:.f.{j~~~i;;n::::::::::::::::: ::::::: :::::: ::::::::::::::::::::::::::::::: 

DISCUSSION OF RESULTS 

The results of the ca,lculations are plotted against the 
reduced aspect ratio f3A in figure 32. The curves for the 
untapered wings may be seen to be approaching, at the 
upper end, the value 27rm!..j1-m2 given by simple sweep 
theory. 

At the lower end, the cm ves should approach the origin 

.along the line CLa =~ A given by low-aspect-ratio theory 

(reference 13). The two points on the m=O.2 cmve for 
f3A < 1 are not entirely accmate because no account waR 
taken of the interference between the flow fields from the 
tips. The points are included, h owever, because, with so 
much sweep, the wing areas affected are small and the inter­
ference effects should be neglig,ible. The resulting cm ve 
.appears consistent with the corresponding cm ve calculated 
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o Unfapered wings 
o Tapered wings (m=o.4; m e =0.6) 
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FIGURE 32.-Variation of lift-curve slope with aspect mtio. 
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2.S93 4.4S9 .462 
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4.329 
6.

172
1 

2.351 
1. SO 1.93 2.20 

by the slender-wing theory of reference 3, although a dis­
parity in plan form lessens the significance of the comparison. 

The slender-wing-theory values are also plotted for m=O.4. 
In that case, however, the assumption of extreme slenderness 
is no longer justified and introduces an appreciable error. 
(It should be mentioned that the asympotote for the slender­
wing-theory curves is below the value given by simple sweep 
theory by the factor ../1-m2

.) 

An estimate of the accuracy of the lift formulas of the 
present report, compared,with results which would take into 
account all the successive reflections at the tips and trailing 
edge, may be made from the following observations: 

The values obtained (in the first table) from equations 
(96) and (103), which combine primary and secondary 
corrections, differ from values obtainable for the primary 
corrections alone by only 1 percent of the total lift in the case 
of the tapered wing, and 4 percent of the total lift for the 
untapered wing. Third-order corrections would be only a 
fraction of those small corrections and would, in turn, be 
partly canceled out by a fourth-order correction. 

The results in the second table, incorporating the two­
dimensional approximations, agree within 2 or 3 percent 
with values calculated entirely by the conical-flow method . 

IV- DRAG DUE TO LIFT 

The drag due to lift of a wing with supersonic leading 
edge is simply the lift times the angle of attack. When the 
leading edge is subsonic, the drag is reduced by a suction 
force due to the up wash around the leading edge. In the 
linearized theory this force appears as the limit of the 
product of an infinite velocity across an infinitesimal frontal 
area. 

The formula for the suction force on a subsonic leading 
edge has been derived (see, e. g., Hayes, reference 18) by 
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assuming the flow near the leading edge to be essentially 
two-dimensional and applying the results of two-dimensional 
potential theory. The simple result obtained in that 
manner has been verified for the swept-back wing of finite 
span by application of the somewhat different approach of 
reference 19. 

By the two-dimensional approach, the suction force is 
found to be proportional to the square of the strength of 
the leading-edge singularity in the perturbation velocity u. 
The latter is the quantity discussed earlier in connection 
with the ad justment of the two-dimensional loading to the 
loading on the swept-back wing. With the use of the pre­
vious terminology it is possible to write for the longitudinal 
component of the suction force per unit streamwise length 
of leading edge, 

ciT _ P7r /-1--2 a 2 
dx - m "' -m ~ (119) 

where a~ (equation (53» is the value, at the leading edge, 
of the coefficient of (mx-{3'Y)-~ in u~. 

Then, if the trailing-edge Mach line does not intersect the 
lea.ding edge, the thrust is merely 

(120) 

The total drag due to lift is obtained by subtracting the 
thrust from the product of the lift and the angle of attack, 
or, in coefficient form, 

(121) 

where aT is the thrust coefficient TjqS. Thus, in the fore­
going case, 

(122) 

When a portion of the leading edge is influenced by the 
trailing edge, the leading-edge singularity takes on, for that 
portion, the value given by expression (56), which then 
replaces a~ in equation (119) for the thrust. The total 
thrust is 

fH 
{iii dT p7r ~{ {XI 

2 Jo dx dx=2 Tn -yl-m2 .Jo O~2 dx+ 

(123) 

where 
Co 

x1= I_m 

locates the intersection of the trailing-edge Mach line with 
the leading edge. Integrating the first term and reducing 
so coefficient form gives 

1H:i{f=m2 [(~)2 X1 2+ 4co {~u2dX] 
S Va mJXI (124) 

so that 

In figure 33, ~ times the drag-rise factor g;2 is plotted 

against the reduced aspect ratio {3A for two combinations of 
sweep and Mach number, m=O.2 and m=O.4, for un tapered 
wings. Comparison is made with a theoretical minimum for 
slender wings in supersonic flight obtained by R. T. Jones 
in an unpublished analysis. Using a method similar to Hayes 
(reference 18) and assuming the wing to be narrow compared 
with the Mach cone, Jones has derived a minimum wave-drag 
coefficient 

(126) 

where Ax is the aspect ratio defined in the streamwise, 
instead of the spanwise, du·ectionj that is, if l (numerically 
equal to XI) is the over-all length of the wing in the stream 
direction, 

.7 

.6 
\ 

\ ~ =0.": 

\ .5 

\ 
.4 \'. 

.... 1', 

....... il-, 
~, r-..... . 2 

.I 

o 

(127) 

--0- Flat swept-back wings 
--Theoretical minimum '''-

(e9ualion 128) I- '--

...... m=04 ...... 
r--r-- - .- - -

2 
fJA 

---
3 

r-

4 

F'f1URE 33.-Variation o( drag-rise factor with aspect ratio (or untapered wings. 

The wave drag is to be added to the vortex drag, wh~ch is 
the induced drag of subsonic flow, calculated from the 
spanwise loading. Using the minimum induced drag ob­
tained from lifting-line theory gives as the minimum super­
sonic drag-rise factor 8 

(128) 

It may be seen that the drag rise of the constant-chord 
swept-back wings is fairly close to this minimum, especially 
at the lower values of m for which equation (128) was 
derived. 

V-SUMMARY OF FORMULAS 

The formulas for the loading, lift, and drag coefficients are 
summarized in the following table, in which the equations 
are identified by number. 

I This result has since b'!en published in The Journal of the A.eronautical Sciences. vol. 
18. no. 2. Feb. 1951, pp. 71>-81. 
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I --------c-a-se----- ----------

-- - - Mach lines Region 

1 
2 

(6) 
(6)+(15)" 

Equations for u 

1 L CL = - .­
- a S qa 

L 
Equa. for-­

qa 

(85) + (88) 

Equa. :\0. 

(122) 

1----_1:---1---------:------1--
1 
2 
3 
4 
5 
6 
7 

1 
2 
3 
4 
5 
6 

(6) 
(6) + (15)" 
(6)+ (26b) 
(6) + (15)"+ (26b) 
(6) + (15)" + (26b) + (31) 
(6) + (15)"+ (26b) + (32) 
(6) + (15)" + (26b) + (31) + (32) 

(6) 
(6)+ (26b) 
(60) b • 

(60)b+ (73)a.b.c 
(60)0+ (73)a.o.c+ (31) 
Not. evaluated 

a In evaluating, use fig. 6. 
o In evaluating, use fig. 23. 
c In evaluating, use fig . 14. 
cl or see fig. 29. 
• or see fig. 31. 

(85) + (96) + (103) + 
(105)a (122) 

(113)cl+ (115)0 + 
(118)0 .• 

AMES AERONAUTICAL LABORATORY, 

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS, 

MOFFETT FIELD, CALIF., Mar. 15, 1950. 

~-- --- - --- -- - - -.- - -- ---- - -- - - -- -------- -- ----------- --
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V 
M 

f3 
u, C, W 

p 

a 

L 
T 

Co 

Ct 

S 

8 
l 
Po. 
A 
A 
Ar 

X,Y 

Xo,Yo 

XI,YI 

X*,y* 

APPENDIX A 

SYMBOLS 

GENERAL 

free-stream velocity 
free-stream .\Iach number 
..jJI2-1 

perturbation velocities in streamwise, cross-stream, 
and vertical directions, respectively 

densil,\- of air 

dynamic pressure (~ pV2
) 

pressure difference between upper and lower 
surfaces, or local lift 

angle of attack, radians 
lift 
leading-edge thrust, or component of leading-edge 

suction force.in flight direction 

lift coefficient C~) 
lift-curve slope (dIaL) 
drag coefficien t (q~) 

thrust coefficient C{s) 

root chord 
tip chord 
semlspan 
wing area 

WI G DIMENSIONS 

over-all length in the steamwise direction 
angle of sweep of the leading edge 
taper ratio (ct/co) 
aspect ratio (4s 2/8) 
streamwise aspect ratio (l2/8) 

RECTANGULAR COO RDINATES 

Cartesian coordinates in the stream direction and 
across the stream, in the plane of the wing 

coordinates of apex of conical field used to cancel 
triangular-wing loading (Equation (8) at tip, 
equations (21) and (22) at trailing edge) 

coordinates of apex of conical field used in second­
ary cancellations 

coordinates of point on tip; apex of conical field 
used to cancel assumed cylindrical load 

coordinates of intersection of Mach forecone from 
X,Y with edge at which correction is being made 

coordinates of intersection of trailing-edge Mach 
cone with leading edge (XI given by equation 
(61) 

coordinates of intersection of Mach line from Xl, YI 
with trailing edge (X2 given by equation (112» 

coordinates of intersection of tip Mach line with 
trailing edge 

coordinates of intersection of tip and trailing edge 

~ 

~o 

streamwise distance of X,Y back from leading edge, 
as a fraction of the tip chord (equation (69) 

distance of Xo,s behind leading-edge tip, as a frac­
tion of the tip chord (equation (70» 

distance of XCI oS behind leading-edge tip, as a frac­
tion of the tip chord (equation (64» 

CONICAL COORDINATES 

In the following, all slopes arc measured counterclockwise 
from a line extending downstream from the apex of the wing 
or of the pertinent canceling sector: 

slope of leading edge _ {3 t \ 
m slope of Mach lines - co 1 

a 

t* 

7'0 

slope of trailing edge 
slope of Mach lines 

slope of ray from the origin _ fJ'J!... 
slope of Mach lines - X 

the value of a corresponding to a primary canceling 
element of which the apex lies on the Mach fore­
cone of the point at which the load is being 
calculated (equation (13) for tip corrections, 
equation (25) for trailing-edge corrections) 

limiting value of a for leading-edge correction 
(equation (47» 

o,(x2' Y~) (equation (108» 
o,(x" s) 
slope of ray from apex of element a fJY-Ya 

slope of Mach lines X - Xa 

slope of ray from Xb, Yb {3Y-Yb 
slope of Mach lines X - Xb 

slope of ray from Xc, s fJ y-s 
slope of Mach lines X - Xc 

slop'e of ray from leading-edge tip y-s 
slope of Mach lines {3 x-({3s/m) 

slope of ray from x*, y* fJY- Y* 
slope of 11ach lines x - x* 

limiting value of to for leading-edge correction 
(equation (39») 

limiting value of ta for leading-edge correction 
(equation (44» 

COMPONENTS OF STREAMWJSE PERTURBATION VELOCITY 

U.1. basic (uncorrected) perturbation velocity as given 
by solution for triangular wing (equation (6) 
for subsonic leading edge) 

Uo value of Utl at 0,=0 (equation (7) 
t:.u correction to u'" induced by cancella tion of pressure 

differences outside the wing plan form 
U a constant perturbation velocity on sector used in 

canceling triangular-wing loading 
Ub constant perturbation velocit~T on sector used in 

secondary cancellation 
U c constant perturbation velocity on sector used out-

board of tip in canceling assumed cylindrical 
field 

-~ ~- ~-~~-
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f.U* 

d~O da 
da 

(1, 

g 
o 

R 

r. p. 

symmetrical ·trailing~edge correction to Uti (equa­
tion (20» 

correction ind.uced by canceling (~u)o at leading 
edge (equation (38» 

correction to Uti due to single oblique trailing­
edge element (equation (24» 

value of tip eorrection to Uti at the point x*, y* 

ARBITRARJ{ MATHEMATJCAL SYMBOLS 

1 
value of coefl5.cient of . / IJ in Ut. at the lead-

-vmx~+,y 

ing edge (equation (53» 
decrement in Ot. due to reflection of (f.u)o at lead­

ing edge (equation (54» 

decrement in Ot. due to reflection of (~u)a at lead­
ing edge (equation (55» 

Non-dimens:lonal expression for strength of the 
leading-edge singularity (equation (59» 

value of (1 aL leading-edge tip [(1 (~) ] 

taper parameter (m~m) 
function defined by equation (79) 
inverse-cosine term of leading-edge correction 

function (equation (35» 
radical term of leading-edge correction function 

(equation (36» 
real part 

ELLIPTIC INTEGRALS AND FUNCTIONS 

k modulus of elliptic integral, defined where used 
(also with subscripts) 

k' complimentary modulus ( I-P) 
¢ 0[' if; argument of elliptic integrals, defined where used 

(also with subscripts) 
F(¢, k) incomplete elliptic integral of the first kind of 

modulus k and argument ¢ 
K, K(k) complete elliptic integral of the first kind; that is, 

K=F(i, k) 
E(¢, k) incomplete elliptic integral of the second kind of 

modulus k and argument ¢ 

E, E(k) complete elliptic integral of the second kind; that is, 

E=E(i, k) 
Ko ~K 

E ~E o 
11" 

K' K(k') 
E' E(k') 
Z zeta function (equation (41» 

Ao function used in evaluation of elliptic integral of 
the third kind, circular case (equation (16» 

n function used in evaluation of elliptic integral of 
the third kind, circular case (equation (Bl1» 

APPENDIX B 

EVALUATION OF THE INTEGRAL IN EQUATION (26) 

It is first necessary to recall that ta is a function (equation 
(23» of x, y, and a. After substitution for ta in equation 
(26), we may integrat.e by parts to obtain 

-I (I-a) Cta-mt)-(m,-a) (l-tJ dut. (a) d 
cos (I-m,) (ta-a) da a= 

[ 

-I (J +mt) ,By-2m, (x-co) 
-Uo cos (I-m,),By 

(x-,By) /{3y -m, (x-co) X 
"V x--,By-m,co 

(ao da ] (Bl) 
Jo ((3y-a~l.") --I(I-a) (ao-a) (m-a) (m+a) 

The integral term on the right-hand side of equation (Bl) 
is an elliptic.integral of the third kind which may be eval­
uated through the su.bstitution of 

_ ~ 2m (ao-- a) ",-sn 1 
- (m+ao) (m-a) 

--~-.-----

If the value of '" at the lower limit is designated by Wo, this 
substitution gives 

(ao da 

.10 (,By-ax) ...J(I-a) (ao -a) (m-a) (m+a) 

m+ao 2 

1 I 2 ("'0 I----zm- sn w 

{3y- aox\fm(l-ao).1o I+nsn2w dw (B2) 

where 

or 

(m+ao) (mx-,By) 
n 

2m (,By-aox) 

(ao da 
.1 0 :-::({3:-y- a- x-:-)-----;:;(=:=1 = a7) =;=( a=o= a=;=) "'7( m==a"")=;( m= +:=a"7) -

(B3) 

m;~,By -J m (1
2
_ ao) [wo-( 1 + ;yX~~~) Il3(wo, k, n) ] (B4) 

where 
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is the normal form of the elliptic integral of the third kind. 
It is first noted that n>O. For this case it can be shown 

that the substitution 

(B5) 

gIves 

k 2 k,)+sn(II , k')cn(II, k') Cwo (k )+ ] 
TIa(wo, ,n)=wocn (II, dn(II,k') Ko Ao , </> 11 

where 

-I In </>=tan -yp 

(B6) 

(B7) 

is the amplitude of the elliptic function II, Ao is the function 
defined in equation (16), and 11 is an angular function of k,II 
and Wo which will be discussed later. 

If 

.1. ' -I~~ ¥,=SIn --
m+ao 

(D8) 

then 
wo=F (y" k) (B9) 

From equation (B5), sn(II. k')=~ n";\2' cn(II, k')=~ n!2p 

/k 2(1 +n) . 
and dn(II, k')=-y n+P may be found, so thatequatlOn (B6) 

may be rewritten without recourse. to the Jacobian elliptic 
functions as 

(BI0) 

This expression is to be substituted in equation (B4) and 
the r esult used in equation (B1). As previously mentioned, 
the functions Ko and Ao are tabulated in reference 11 and AI} 
is plotted in figure 6. The function 11 is given by 9 

2£ (_l)i+ l q (Pl sin 2j~ sinh 2j~ 
11= tan-I J=l Ko Ko (Bll) 

1-2£ (_l)Hlq (j2l cos 2j ~cosh 2j~ 
j=l Ko Ko 

with 
"OK' 

q=e-J( 

(tabulated in reference 15). 

• T he symbol q in equation (Bill is standard notation for the nome of the Jacobian theta 
function, and is not related to the dynamic pressure q of the text. 

APPENDIX C 

INTEGRATION FOR LOSS OF LIFT AT THE TIP OF WING WITH SUBSONIC LEADING EDGE 

From equations (88a) and (6) 

(0 1) 

where 

G'(a) a-at [(a t mt-at)( / a+a
2 

a/a2(m t-a) -a+ mt-a -y mt+mt2 

a-at ] 
2..Jrn t+ mt2 ..Ja+a2 

(0 2) 

The terms in G'(a) are of two types; namely, those that 

con tain ..Ja+a2 and those that do not. The for~er combine 

with the radical ..Jm2 a2 in equation (01) to form elliptic 
integrals of the first, second, and third kinds. The latter 
give rise to terms in equation (01) which are integrable by 
elementary means. It is convenient, therefore, to consider 
the integral in two parts, writing 

where II is that part of the integral not reqUITIng elliptic 
integrals. 
Then 

(03) 

The remaining terms, involving .Ja+a2 and ..Jm2-a2
, 

are integrated by means of the substitution 

The result is 

J m-a 
snw=-y m(l +a) ~l-m 

k= --
2 

(1+m)(m t -a,)2 [(l+~+m,-m) IT (w k n)+ 
(m,-m)2 m, 1 +m, 3 I, , 

2m(1 +m) oTIaew" k, n)]} 
mt-m on 

(04) 

(C5) 



40 REPORT 105(}--NATIONAL ADVISORY COMMITTEE FOR AERO)lAUTICS 

where w,=w(a,), 1/; is its amplitude, and 

(C6) 

From equation C(4), 

(C7) 

The elliptic integral 

is evaluated in equation (BIO). Its derivative with respect 
to the parameter n may be obtained for this case (n>O) in 
the form 

OII3_~ / n { (_1 __ ~) [Ao(~, k) F( k)+ 
on -2n -y (n+k2)(l+n) l +n n+k2 Ko 1/;, . 

where ~ and n are the angles defined in equations (B7) and 
(Bll) and the elliptie functions cnw, and dnw" obtained 
from equation (C4) , hflve the values 

(C9) 
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