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THEORETICAL ANTISYMMETRIC

REPORT 1056

SPAN LOADING FOR WINGS OF ARBITRARY PLAN FORM

AT SUBSONIC sPEEDS 1

By JOHN _DEYoUNG

SUMMARY

,4 simplified lijting-su_:face theory that includes effects of

compressibility and spanwise mriation of section lift-curve slope

is used to progde charts with which a ntisgmmetric loading due
to arbitrary antisymTnetric angle q[ attack can be .found =[or

wings hagng symmetric plan .forms with a constant spanwise

sweep angle of the ouarter-ehord line. Consideration is given

to the flexible win9 in roll. Aerodynamic characteristics due to

rolling, deflected ailerons, and side._'lip of wings with dihedral
are considered. Solutions are presented for straight-tapered

wings for a range fff swept plan Jorms.

INTRODUCTION

Reference 1 has been for many years the standar(l reference

for estimating the stability and control characteristics of

wings. The lifting-line theory on which this work was

based gave generally satisfactory results for straight wings

having the aspect ratios considered ; however, the use of wing
sweep combined with low aspect ratio has made an extension

of this work desirable. Lifting-line theory cannot ade-

quately account for the increased induction effects due to
sweep and low aspect ratio; consequently, it has been found

necessary to turn to the more complex lifting-surface theories.

Of the many possible procedures, a simplified lifting-

surface theory proposed by Weissinger and further developed
and extended in reference 2 has been found especially suited

to the rapid computation of characteristics of wings of

arbitrary phm form. Comparisons with experiment have
generally verified the theoretical predictions. In reference

2, this method has been used to compute for plain, unfiapped

wings, the aerodynanfic characteristics dependent on sym-

metric loading. The same simplified lifting-surface theory
can be extended to predict the span loading resulting from

antisymmetric 2 distribution of the wing angle of attacl_.
From such loadings the damping moment due to rolling,

the rolling moment due to deflected ailerons, and the rolling
moment due to dihedral angle with the _ing in sideslip can

be determined. A recent publication (reference 3) makes

use of the simplified lifting-surface theory to find span-

loading characteristics of straight-tapered swept wings in roll

lind loading due to dihedral angle with the wing in sideslip.

Experimental checks of the theory for the damping-in-roll

coefficient and rolling moment due to sideslip were very

favorable. The range of plan forms considered in reference

3 is somewhat limited and aileron effectiveness was not

included. The loading due to aileron deflection normally
involves excessive labor when computed by means of the

simplified lifting-surface theory; however, development of

the theory, presented in reference 4, that deals with flap and
aileron effectiveness for low-aspect-ratio wings provides a

means by which the simplified lifting-surface method can be
used to obtain spanwise loa(ting due to aileron deflection.

It is the purpose of the present analysis to provide siml)le

methods of finding antisymmetric lea(ling and the associated

aerodynamic coefficients and derivatives for wings with sym-

metric plan forms limited only by a straight quarter-chord
line over the semispan. .Means will be presented for finding

quickly the aerodynamic coefficients of simon loading due to

rolling, of span loading due to deflected ailerons, and of
span loading due to sideslip of wings with dihedral. Flexible

wings, when the flexure depends principally on span loading
as in loading due to rolling, can be included in the analysis.
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NOTATION

wing span measured perpendicular to the plane of
symmetry, feet

wing chord, feet 3
aileron chord, feet 3

mean wing ehord (_), feet 3

(local lift,)local lift, coefficient \ q_

(induced drag'_induce<l drag coefficient \ qS ]

{rolling moment'_
rolling-moment coefficient k. qSb -]

rolling moment due to rolling _(pb 2 V) 'per radi_n

per radian

spanwise loading coefficient for unit rolling moment

(2Aa' 
C/

scale factor

I Supersedes NACA TN 2140 "Theoretical Antisymmelric Span Load ng for Wings of Arbitrar_ Plan Form at Subsonic 9needs" by John DeYoung, 19.50.
2 The word "anti_yrametrie" 'is understood to indicate that a distribuHnn of loading or angle of aliack is equal in absolute rnagnitnde on each half of lhe wing but of opposite sign.

3 Measured parallel to lhe plane of symmetry.
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])

pb /'2 V

]9_n

e.k factors of loading interpolation function

G spanwise loading eoeffieient or dimensionless eircu-

{c'c'_ or (_)lation \_/

G spanwise loading cocffieient due to rolling pb_2_" '
per ra(lian

G spanwise loading coefficient due to aileron deflection

(G), per radian

H_ wing geometry, compressibility, and section lift-

curve-slope parameter [d_ (1) (_)_

h, integration factors for spanwise loading due to ailer-
Oils

31 Mach ilunlber

m arbitrary number of span stations define,t by

7/_ COS --
m+l

rate of rolling, radians per second
wing-tip helix angle, radians

coefficient depending on wing geometry and indi-

cating the influence of antisymmetric loading at

span station n on the downwash angle at span
station v

q free-stream ,]ynamic pressure, pounds per square
foot

S wing area, square feet

t ratio of aileron chord to wing chord 3 (?)

V free-stream velocity, feet per secontl

w induced velocity, normal to the lifting surface,

positive for downwash, fl, et per second
y lateral coortlinate measurett from the wing root

perpendicular to the plane of symmetry, feet

a_ section angle of attack at span station v, radians a

Aa_ angle of antisymmetric twist of the tqastic wing

produce(1 by the loading due to rolling, radians 3

da rate of change of wing-section angle of attack with

d6 control-surface angh, for constant section lift
coefficient "_

/3 compressibility parameter (,,'_)

angh' of sideslip, radians

r dihedral angle measured perpendieular to the plane

of symmetry, radians
F, spanwise circulation, feet squared per second

angh, of deflection of full wing-('hord control surface,
ra,lians a

angle of ttefleetion of full-wing-(.hord control surface,

measured perpendicldar to the hinge line, radians

n dimensionlcsshtteralcoordinatc(_J2)

_,feasured parallel to the plane of symmetry,

{aileron span'_
,/_ dimensionh,ss aileron span \ _-/2- -]

_/_.p. spanwise center of pressm'e on one wing panel

0 trigonometric spanwise coordinate _, indicating the
edge of the aileron span, radians

K, ratio of section lift-curve slope at. a span station

to ?, both at the same Math nutnberP

A sweep angle of the wing quarter-ehor<l line, positive

for sweept)aek, de_ees

A_ compressibility sweep-angle parameter

[tan- _ (t_A)_, degrees

( tip chord '_
X taper ratio \r_ _t]

O trigonoInetric spanwise coordinate (cos -_ 7/), radians

SUBSCRIPTS

n, v integers pertaining to specific span stations given 1)y
/_Tr y7/"

n = cos _- or n = cos 8-

k pertaining to span station k

c.p. center of pressure
a aih,ron

t pertaining to fraction-of-wing-chord ailerons

T wing tip

R wing root

av average or mean

DEVELOPMENT OF METHOD

The simplified lifting-surface method used herein replaces

a lifting surface by a lifting vortex located at the wing one-

quarter-chord lille. The boundary condition for determining

the vortex strength tlistribution specifies that, along the

three-quarter-chord line of the wing, there shall be no flow

through the lifting surface. In effect, this specifies that, at
the three-quarter-ch,)rd line, the ratio of the velocity nornial

to the mean camber line (induced by the bound and trailing

vortices) to the velocity of the free streanl shall equal the

sine of the angle of attack.

Span loadings are theoretically adtlitive. Since the sym-

metric angle-of-attack distribution contributes only to sym-
metric loading, it folh)ws that the antisymnwtric loading is

indepemtent of s3mmwtrieally distributed wing twist or cam-

ber; hence, to fintt antisymmetric h)ading, it is only necessary

to consider the h)ading resulting form the antisymmetric

(listribution of the angle of attack across the wing span. In

the subject case, such a distribution is experienced by the

wing as induced angle due to rolling/ the effective twist due
to aileron deflection, or sideslip of the wing with dihedral-

4 In considering the case of the angle induced by rolling as equivahmt to an antisymmetric distribuli(m of twist, it must be noted that account shouhl be taken of the fact that a rolling wing
leaves a twisted vortex trail; whereas a twisted wing does not. The difference in induction effects on the wing of the straight and twisted vortex is considered insignificant here, as has becn
as_tmed in other analyses.
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For an antisymmetric angle-of-attack distribution, the

Io_lding distribution will be equal in absohlte magnitude on
efleh senfispan, but of opposite sign. The loading therefore

needs only to be found over the semispan, and, since tile

loading is zero at. the wing root, only span stations outboard
need be considered. The matlwnn_tical development of the

simplified lifting-surface method for the case of ,mtisym-
metric loading is. given in appendix A. As shown in appendix

A, (m-l)/2 linear equations in terms of loading (list ribution
are obtained wtfich satisfy the wing angle-of-attack condi-

tions 6 at the three-quarter-chord line at m stations n, where

m is an artfitrary odd integer. These equations are repre-

sented by the summations

m -- I
--7 m--1

a_---- _ p,,G,, _=1,2,3, . . .- 2
It=l

O)

where
a: antisymmetric angle of attack at wing station v

p_, coefficients that for a given wdue of m depend on
wing geometry, eompressit)ility, and section lift.

curve slope

G, loading coefficients at span stations n
The application in appendix A of the present report is with

m=7. Since the loading at the midspan station is known to

be zero, consideration is required of only three stations:

n = 1, 2, 3, equal to wing semispan po_itions of _=eos (nTr/8)

=0.924; 0.707; and 0.383. Equation (1) thus 1)ecomes

3

a_=_ p_Gn, v=1,2,3 (2)
/l--I

where the integer v pertains to span station rr=cos (vlr/S)
To obtain the h)ading coefficients G,_= (czc/2b),, it remains

only to evaluate the coeftieicnts p_, and the spanwise
variation of the antisymmetric angle of attack a,.

EVALUATION OF COEFFICIENTS P_,n

Since m is chosen, p_ becomes a fmletion only of wing

geometry, compressibility, and section lift-curve slope. The
effects of compressibility and section lift-curve slope are

3

::shown in appendix B, p_, (.an be conveniently presented as a

function of two parameters, namely, a compressil)h,-sweep-

ankle parameter defined as Aa= ta ,n-1 (tan A/fl) and a param-
eter H, involving the ratio of wing span to wing chord and

variable section lift-curve slope, defined by

where
K, ratio of experimental section lift-curve slope at span

station v to the theoretical value of 27r//_, both at the

same Maeh number

e, wing chord at span station v
Ttw value d_ is a scale factor given by

d,=0.061 fro' v= 11

=0.234 for v=21 (4)
=0.381 for v=3

E(tuation (3) can be written in alternative form that gives

H_ in terms of wing geometry parameters that are more

significant ; Ilium,
(_A._V 1 7 (5)

H_=,5 \-7_/! L(_/_o,,_(c/c.l,)J

wheFe

Kar

gv/Kav

C_/Cav

(_AI_,)

ratio of average section lift-curve slope to 2tr/_

both at the same ._Ia(.h numl)er

spanwise distribution of section lift-(.m've slope

for a given Math number

spanwise distribution of the wing chord
compressible aspect ratio and average section

lift-curve-slope parameter

1 of equation (5) gives an effective
The term -_,/_a_) (C,/C,,,)

aerodynamic taller of a wing. The distril)ution of K,/K,, may

vary with Maeh number, particularly at t.ransonic speeds

(e. g., due to spanwise variation of airfoil section). IIowever,
since the distribution contril)utes to taper effect, the loading

distribution nail not the total loading will 1)c appreciably

affected.
With H_ determined h.om equations (3) or (5) and (4), the

equivalent to a change in wing plan form 6 and can be ac' wdues of p,_, nine in all, are presented in figure 1 where p,, is
counted for by a proper adjustlnent of the p,_ values. As given as a function of H_ for various values of Aa.

-- _tv,

" . - condition was fixed assnming thai the shed vortices moved downstream In the5 The r,,ad(,r shouhl note that the boundar_ condition is given by w,= V sin a, from which (w/V)_ is seen to equal sin The substittaion ofa, for sin a,has the effect of increasing the

....... ':::2:::7,:!2,7::yah (`o[I _,ding on the wing abv;e l_,;_ l')i_{:_';_ Ibt:_:[? ;1;;; t 1"1.... er, tilt' boundar:_ " ' ._ ............ base(', read lv that if this( a d to move dow!lsl ream it_ a horizontal Ilia lie from tilt, wing tranmg e(tg,- ......... '
extended chord plane. A mort' realis _P" ' "_ : ' _ " ' " line i_ reduc(`d amt. if the boundary condition is to conlinu(, to be satisfied, the strength of the bound

oecur_ the non al eompontnt of v(,lo(,itv ndut'(,d by the trails at the thrc(,-quartcr-chord It is not known how exact tile correction is, but

vortex must increase. It follows that substitution of a, for sm a_ then has the effect of accounting for lhe bending up of th,' trailing vortices.

the calculations and experimental verification show it to be of th(` correct order.

6 Cnnqwessibility and s(`(`tion lift-curve slope art' disenssed in Ill(' seclion "Discussion" and in the appendix B.
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FW.URE I. InnuellCe eoellicients, p,,, for antisymmctrlc spanwise loading plotted, as It function of tile wing geometric parameter,
compressible sweep parameter, A_ degrees.

H,, for values of the
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Fi,;uaE 2.--Variation of the geometric parameter %_.._2L__with taper ralio), for straight-
B-I

xa r

tapered wings.

For the case of straight-tapered _ings with arbitrary
section lift-curve-slope distribution for which the chord

distribution is specified by taper ratio, evaluation of equation

(5) is given in figure 2 where (13A/_) for each of the three

span stations is shown as a fimction of taper ratio.

EVALUATION OF ANTISYMMETRIC ANGLE-OF-ATTACK DISTRIBUTION or,

The ant|symmetric angle-of-attack distributions most

commonly encountered are those resulting from rolling

wings, aileron deflection, and sidesli I) of wings with dihedral.

Evaluation of the angle-of-attack distributions for these

various cases is outlined in the sections immediately following.

Roiling wings.--For the case of the rigid wing, the induced

velocity normal to the wing surface is equal to the upwash

velocity experienced t)y the rolling wing. Thus, at span
station v

_'=Y= \2v/_' (6)

_qlere pb/2V is the tip helix angle. It shouht be noted that

the relation given by equation (6) assumes the wing structure

to be rigid in that the distribution of a, is completely defined

by the linear distribution of helix angle. In the case of
flexible wings, however, the expression for a_ must be modified

to account for the streamwise angle-of-attack change which

,. _._lny occur due to bending or torsional deflections. In this
case_

\_)/

where Ao_, represents the modifying influence of flexibility.

Normally, An, is not considered for straight wings since only

the effect of torsion (%_hich is usually small) is involved.

On swept wings, however, the effect of bending can cause

A(_: to be quite large so that the a, distribution may be

affected considerably. Due to the interaction existing
between the aerodynamic and structural forces, Aa: cannot

be determined directly, but must be fotmd through equations

of equilibrium or by iteration. With the loading for the
rigid wing provided, however, the iteration procedure

becomes relatively easy to al)ply. The first approximation

of c_, is found from the loading of the rigid wing and further

refinements of a: may be found utilizing the successive

h>adings for the flexible wing as determined.

Deflected ailerons.--Where the spanwise distribution of

the angle a, is to be considered equivalent to antis3qnmetric

aileron deflection, it must suffer a discontinuity at the span-
wise end of the control surface. The loading when such a

discontinuity is present can be duplicated by a proper

distribution of ant|symmetric twist. In appendix C, the

ant|symmetric twist distribution required by the present

theory to give accurate span loading distribution due to

ailerons is found with the aid of zero-aspect-ratio wing theory

given by reference 4. To minimize the computation involved,
it is convenient to consider both the case of outboard and
inboard ailerons.

1. Outboard ailerons.--With m=7, three different aileron

spans can be conveniently defined for the outboard ailerons.

For the aileron spans n_, measured from the wing tip inboard,

the ant|symmetric twist (|istribution required per unit

deflection of full-wing-chord ailerons, _/8, is given by

_'ase

or_

a 3

I

0.169

1.003

.0t7

.006

II

0. 444

0. 971

996

• 014

o'>l
0, 998 I

(s)

IJ_board aileron._.--With rn= 7, three (lifferent aileron spans

can be conveniently defined for tlw inboard ailerons. For
the aileron spans _, measured from the wing midspan out-

board, the antisym_metric twist distribution required per unit

deflection of full-wing-chord ailerons, a,/_, is given by

Case

_a

or I

oe3

IV

0. 556

0. 044

--.017

I, 087

0.8,31

0.013

• 96t

1. 095

vI

I.O00

1.016

•979

1 101

(9)

Sideslip of wings with dihedral. For calculating the roll-

ing moment caused by dihedral angle for the sideslipping
wing, the effect of the skewness of the vortex fiehl in altering
the effects of the dihedral angle will be assumed to be small

(as assumed in reference 3). The problem then simplifies to
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finding tile rolling mon!ent due to ant isymn_etric angle of
attack with tile unskewed vortex field. The solution to this

problem is the same as for the ailerons which has ah'eady been
solved.

The antisymmetric distribution of angle of attack for the

sideslipping wing with dilw(h'al is given by

(10)
where

o_ effective angle-of-attack distribution

angle of sideslip measured positive in the counterclock-

wise direction from the phme of symmetry
F dihedral angle

The wing parameter Y is not affected by compressibility.
Equation (10) is approximate for small values of _ and I'.

For unit flF over the span of the ailerons considered,

_I_=(i (11)

can be substituted for" 6 in equations (8) and (9).

APPLICATION OF METHOD

For the eases of antisymmetric angle-of-attack distribu-

tions resulting from rolling, aileron deflection, or sidesli I) with

dihedral, it is possible to present a set of simultaneous equa-

tions which are required for the solution of the load distribu-

tion for an arl)itrary plan form. With the loading known,

integra.tion forrnulas can be given to determine aerodynamic
coefficients.

The loading-distribution coefficient Gn determined from

the soh|tions of the simultaneous equations, are functions of

p,, which has been shown in a preceding section to be a

function of wing geometry, compressibility, and section lift-

curve slope. The aerodynamic c()emcients are integrations

of the load distribution and, therefore, will also be a function

of wing geometry, compressibility, and section lift-curve-

slope parameters. Application of the method to the general
solution for arbitrar 3, chord <tistribution is outlined and solu-

tions are presented for the case of straight tat)or.

GENERAL SOLUTION

Aerodynamic characteristics due to rolling.--The solutions

for" the aerodynamic effects due to the rolling wing will be

found and loading, rolling moment, spanwise center of pres-
sure, and induced drng will be obtained.

1. Simultaneous loading equations.--The p_, values are

obtained from figure 1 and table I 7 with values of [L given by
equations (3) or (5).

The simultaneous equations (2), for the rigid and flexible
wing, respectively, become:

--0.924 =pu C,,+p,2C72 +pl:_,3 1

--0.707 =p.,,G, + p22G.2+ p.,._G3/_. (12)

--0.383=p3,G_ + p_.,C,,2+ p_.jC,3JI

where

"--pb/2V

and

--0.924+ p,2_':'I'--_PHO'+I'r'G2+I"aO'J t

--0." " .Xa_ G, + p,._G2-]- p..,_G3 (13)

3 ..Xa_ - - -
--0.38 + pbi2_,=p3_G,+pa.,.G2+p3_G_

where G,,--- G,
pb/2V and An, is the incremental angle of attack

due to aeroelastic effects.

2. Loading distribution.--The loading-distribution coef-
ficient is given by G=c_c/2b. Other forms of tlle loading

coefficient are given by the identities

l c_c C_ c,c (14)
G=2A c_--2A Czc_,.

The loading is known to be zero at _--0 and 1 and is deter-

mined at three intermediate span stations. Values of loading

at other span stations can be obtained from a loading flmction
derived in. appendix B or, with equations (1323) or (B24) of

appendix B, the loading can be found at span positions

,/=0.981, 0.831, 0.556, and 0.195.

3. Rolling moment.--The damping-in-roll derivative for the

solutions of equations (12) or (13) is derived in appendix B

and given by

_C,, r _,)ff_A_[_"+O'707(_t+_) ] (15)
_-= 1---6 K_,,-

4. Spantt, ise center of pre._.qure.--The equation giving center

of t)ressure on the wing semispan is shown in appendix B to be

,/_"=_A (O.163G,+O.248G2+O.430G,)

t%

l

0.082 ((_S_:.)-1-O. 124 ((_**t)2.4_ 0.,,215 ",(c'cC*c_,/a"_ (lO)

• • °5. I,_du.ced drag.-- Fh( reduced drag is derived in appendix

B and given by

g ] (17)

Aerodynamic characteristics due to aileron deflection.--
The solutions for the aero(iynamic effects due to ailerons will

be found for three different spans of outboard and inboard

ailerons. Cross plots of these data provide curves for

arbitrary aileron spans.

1. Simultaneous loading equations.--The p,_ values are

obtained fl'om figure 1 and table I with values of 1I, given

by equations (3) or (5).
(a) Deflected outboard ailerons.--Tlte aileron spans meas-

ured from the wing tip inboard are given by _. The simul-

taneous solution for antisymn_etric spanwise hmding due to

Values of p.. beyond th,' scope of figure I are included in table r, For values of Lr, larger than those included in figure 1 and table r, the p._ curves can be obtained from equation (B$)
which gives the linear asymptotes of the p,. function.
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deflection of any of ttle three following aileron spans can be

obtained from the appropriate set of the follox_ing equations:

Case

_a

a|

vt_

I II III

0. 169 0. 444 0. 805

1. 003 0 9"1 L 0 998

.017 .996 .991

.006 .014 ,97g
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(18)

where _,=G,/&

(b) Deflected inboard ailerons.--The aileron spans meas-

ured from the wing midspan outboard are given by w- The
simultaneous soh, tion for antisymn!etric spanwisc loading

tlue to deflection of any of the three following aileron spans

can be obtained from the appropriate set of the follo_qng

equations:

Ca_e IX:

yo 0.556

al 0044

: a_ --,017

a_

1.OS7

(1 9)

where G,=G, &

2. Loading dL_tribution.--The spanwise loading (listribu-
tions due to various aileron configurations include:

(a) Full-wil)g-ch,n'd ailerons.--The loading is known tc be
zero at n=0 and I, antt is determine<l at three intermediate

span stations. With equation (C13) anti tahles C6, BI, and

C7, the loading can be found at span stations n= 0.981, 0.831,
0.556, and 0.195 for each of the aileron spans considerett.

Witt, these given points and the knowledge that the slope of

tile loading distribution curve is theoretically infinite at the

point of angle-of-attack discontimfity (aileron spanwise end),

tim loading distribution can be faired.

(b) Con.qtant fraction oJ wing-chord ailerons.- The spanwise

h)ading of constant fraction of wing-chord ailerons is equal to
the product of the loading due to full-wing-chord ailerons and

the effective change of angle of attack with aileron angle, s

_ da/d& The factor da/da is a function of the ratio of aileron

chord to wing chord t=c,/c. The change of section angle of
attack with aileron angle da/d6 is presented in figure 3, which

is reproduced from figure 18 of reference 5.

Althottgh figure 3 taken from_ reference 5 limits the Mach

number range to Much numl)ers less than 0.2, this limitation
is believed to be unwarranted since theory indicates that

da/d6 is unaffected by compressibility for the two-dimen-

sional wing. Ih)weve L as indicated in reference 4, da/da is

strongly affected by low aspect rtttio and will change appreci-

ably if the parameter _,,l becomes much less than two; hence,

the wtlues of da/d6 from figure 3 appear to be valid for flA>2.

In using da/da here, it should be nated that the assumption is made that the effeetiv

airfoil section is taken as being paralh,l to the plane of symmetry and that the sect!on

approaches a two-dimensional section• The validity cf this assumption can be questioned

however, ]imlted checks with experiment show it to be at least approximately correct.

Theory -

d_

£4 .08 . IB

J

,,,,,, !

/
J

el,ronge gop
- -I0 ° to I0 ° _eo/ed
-- 0 ° to 20 ° seoled
" -I0 ° to I0" open

0 .16 ,_0 .24 28 32
t

FV;I'RE 3. Variation of lift-effectiveness parameter with aih, ron chord ratio, t_. Average

trailing-edge angle about 10°; _/-_<0,2. Curves from reference 5.

(c) Arbitrary ,_'panu,ise distribution of aileron chord. -The
aileron can be divided into several spans with constan!

da/da, then the lolal loading is the sum of the products of

the full-wing-chord loading of each span and its respeclive

da/da.
3. Rolling moment. The rolling mament can be found for

the following aileron configurations:

(a) Full-wing-chord ailerons. The spanwise loading due to
aileron deflection cannot be integrated with suffieien!

accuraQ" with equation (15). In appendix C, a similar
integration formula is deveh>ped that applies to each given

aileron span. Equation (C10) and table C5 give

(2+
where for each of the cases of equations (18) and (19) ihe

h, values are given by

I Case I II IIl IV V VI..... .... -0, 70-7, i /_ '

1+I I '+I_, "199 '_ i :196 :_0_ ]197 ] 9S

(b) Conslant fl'twtion oJ wing-chord ailerons.--For constant
fraction of wing-chord ailerons with aileron angle measured

parallel to the plane of symmetry, the aileron effectiveness is

given by

[_C'a'--da(_C'n_ (21)

(c) Arbitrary spanwise distribution oJ aileron chord.--The
deflection of ailerons for which t varies spanwise on the

wing can be considered as an equivalent wing-twist distrit)u-
tion. The effective antisymmetric twist of the wing is

given by

da_ (22)
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wlwre dc_/d8 is now a hmetion of spanwise position. The

anlis3-mmetric angle-of-attack distribution given l)y equal ion

(22) can be divided into spanwise steps of constant angle of
attack and the total rolling moment can t)e found t)y the

summation of the rolling moment due to e'wh _panwise step.

The rolling moments of the span'wise steps are obtained from
a curve of rolling-momcni coefficient 13C¢6/K,_ as a function

of unit antisymmetrie angle of attack h'om the wing root.
outboard. This step method is the procedure used in

reference 1.

A curve of _6/_ as a function of unit anlisymmetrie

angle of atta<'k from the wing root outboard can be obtained
from the solutions of equation (19) for the cases IV, V, and

VI. An additional point <.an t>e obtained from the solution

of ease III of equation (18), applying the relations (dis-

cussed later) existing 1)etween int)oaM and outboard ailerons.

The rolling moment due to the twist given by equation (22)
can be obtained, by a method otlwr than the step method,

from the integral given by

K_. _. d5 (ln -- dn (23)

which can be integrated numerically by taking the graphical

slopes of 13Csa/K,o which is a function of extent of refit anti-

symmetric angle of attack from the wing root outl)oard.
4. Spanwise center (_ pressure and induced drag.--Sp'm-

wise center of pressure and induced-drag integration formulas

for loading due to ailerons are not given; however, equations

(16) and (17) can give approximate integrations of the load-

ing to obtain center of pressure and induced drag.
5. Additional consideration._:

(a) Rehttion between aerodynamic characteristics for out-
board and .inboard alleron.¢.--The spanwise loading distribu-

tions due to outboard and inboard .dlerons bear a simple

relation to each other. Since loading is linearly propor-

tional to angle of attack, loadings are directly additive.

Then, for outboard and inboard ailerons with the spanwise
ends of the ailerons at the same span station,

Gmho_m= G (_= l) - G,,mb,,a,',l )

Ct_ = C'5 -- C%utbo_rd (24)
inboard (_a = 1)

r/ainboard _ 1 -- 77aoutboard

These relations do not apply for v_.,. and C_)_ since these

characteristics are not Iinearly: proportional to loading.

(b) Differential aileron, a_gles.--The effect of a differentiM
between aileron angles can be taken into account by con-

sidering the C_5 of eqeh wing panel as one-half the antisym-

metric results of equations (205, (21), or (235. The total

wing rolling mon__ent is then the sum of the products of Cz_/2

Wen by equations 120), 1215, or (23) and the angle of de-
flection of each aileron. Alttmugh the total rolling moment

can be found by this procedure, t.lle spanwise loading distri-
batten can be found only approxinmtely by the products of

the antisymn:etrie unit loading G/_ and the detlection of each
aileron, tlowever, the loading distribution so found will be

985590 52--3
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quite accurate since this proeedm'e neglects only t lm small

change due to the induced- effects of t.he differentially (lifter-

ent opposite wing panels.
(c) Aileron angle.¢ measured perpemlieular to th,e hinge

line.--The relationslfip between aileron angle measured per-

pendieular to the aileron binge line and that measured

parallel to the plane of symmetry is given by

tan _= tan _ (25)
- COS Az

where

A, sweep angle of t,he aileron hinge line

__ angle measured perl)endieulnr to the binge line,
For eonst'mt fraction of wing-chord ailerons on straight-

tapered wings, M is given by

1--X
_. 4(0.75--t) (1---_) (26)tan &=tan _ _/4--

where t is the fraction of _-ing-chord aileron measured h'om

the wing trailing edge.
Aerodynamic characteristics due to sideslip of wings with

dihedral. The total a ntisymmetric loading due to sideslip

can be considered as t lw sum of that due to dihedral angle

and that due to zero ditwdral angle. For the unswept wing,

the rolling moment due to sideslip for zero dilwdraI angle is

generally considered negligible; however, for the swept wing,
this effect can t)e apFreciablc. In the present report, onl 3

that part duc to dihedral angle will be considered for the

swept and nonswept wings.
1. Simultaneous loading equ.atio_s.--The p,, values are

obtained frem figure 1 and table I with values of H_ given by

equations (3) or (5).
The simultaneous equations resultin_ from the substitu-

tion of (_=_F (see equation (11)5 and G--=G/_F in equations

118) and (19) are qpplicable in the det.ermination of the
effects of unit outboard or inboard dihedral angle over the

sp,m of the ailerons considered.
2. Rolling m0ment.--The rolling moment due to wMous

dihedral angle (listril)utions include:
(a) Con._ta,t spanwise dih.edral angle.--For dihe(Iral anglo

coast.rot for t lm entire _ing semispan, the loading is given

by the solution of ease VI in equa.tion (19) for _ -G/fir and

tl'ie rolling moment from equation (205 becomes

flC'_= _A ((). 140_, t+ 0.19 8_ + 0.140_a) (275
_avl _ Kar

(b) Gulled .wi_.q.- For tlw gulled wing, solutions oF equa-

t.ion (19) for _,,=G/_l' gives the loading, and the rolling

mona&it from equation (20) becomes

Kay[' _a_

A plot of the results of cases IV, V, and VI gives the extent
of unit dihedral angle fi'om the wing root outboard. Then,

for a gulled wing, the total rolling moment equals the sum

of products of dihedral angle of each span section and the

rolling-moment contribution of the respective span sections.

(c) Variable spamelse dihedral angle.--If r varies span-
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wise, the rolling moment Call be obtained by integr_tion as

in equation (23). The integral becomes

r(,) (29)
where d(_(7_;/_"_O "is the slope of the curve described in

du
part. (b) above.

SOLUTION" FOR STRAIGHT-TAPERED WINGS

Charts of aerodynamic characteristics far straight-ta-

pered wings can be presented in terms of geontetric, com-
pressibility, and average section lift-curve-slope parameters

These elmrts provide a ready means of obtaining data
directly.

Aerodynamic characteristics due to rolling. The applica-
tion of equation (12) for a constant value of section lift-

curve slope _ provides the spanwise loadings at span stations

0.383, 0.707, and 0.924 which are presented in fi_m2re 4 for a
wide range of t)l'm forms. The interpolation fornmla of

equ_ltion (B24) will give values of loading due to rolling at
span stations other than those presented. With equation

(15), the damping-in-roll coefficients _C_p/_,_ can be obtained

and are presented in figure 5 for a wi(te range of plan forms.
Aerodynamic characteristics due to aileron deflection.-

The application of equation (19), case III of equation (18),
and equation (20) provide aileron effectiveness in the coeffi-

cient form _C,6,.Ix_, for several aileron spans. In figllre 6,

t_Ct6/_ is plotted against extent of unit antis3mmmtric angle

of attack from the wing semispan root outboard for a range
of wing parameters.

As presented, figure 6 #yes directly the effectiveness of

full-wing-chord inboard ailerons for aileron spans measured

from the plane of symmetry outboard. The effectiveness

of fidl-wing-chord outboard ailerons for aileron spans meas-

ured from the wing tip inboard is given t)x" figure 6 directly

by the relations of equation (24). For fulI-wing-chord
ailerons located arbitrarily on the wing semispan, the aileron

effectiveness can be obtained directly from figure 6 as indi-
cated in the following examph, sketch.

o
r/

With tile full-wing-chord values given ,bore, the effec-

tiveness of eOllStant fraction of wing-chord ailerons or ailerons

of arbitrary spanwise chord distribution can be found through

use of equations (21) or (23) with the do_/d_ values or figure q.

0 Throughoui the figures, _, is the constant spanwise section lift curve slope or the average
of a small variation. For largo spanwise vartMIons of _ that follow the funet on given by

equation (Bll) developed in appendix B, the parameters #1/_, and Xcan be replaced by the
/_A _tr

parameters (_a+_rX)/(l+X) and _-- X, respectively.. For large spamv|se vat|aliens of *¢
fltat do not follow the curve of equation (Bll), the gimultaneous equations for the general

sOhllion can be soh'ed for arbitrary distributions of _. The II, values can be obtained from
figure 2.
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FIGURE 4. Variation of loading due to rolling coefficient _ with compressible sweep

parameter A_, degrees, for straight-tapered wings.
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FICURE 4.--Continued.
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Aerodynamic characteristics due to sideslip of wings with
dihedral, The application of equation (19), case III of

equation (18), l)ut with _=_I', and _-G/_V, and tlle use of

equalion (28) provides rolling moments due to dihedral angle
for the wing in sideslip. These rolling moments are given

in lhc eoefl]cien! form flC_;/_¢_o£ whMl is tile same functi(m

of _ as f_Cq/_, and is presented with flCq/_ in figure 6.
Figure 6 with equation (29) will provide lhe rolling moment
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4 _'o_ , , " _
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zl.A

(e) n = 0.9239.

FIq_._RE 4.- Concluded.

due sidesli[) for any symmetric spanwise distribution of

dihedral angle.

For dihedral angle constant spanwise, the rolling moment

is given by the value at _--1 in figure 6. These values for

constant spanwise dihedral angle are presented in figure
7 as a function of aspect ratio for various values of sweep

angle and taper ratio.

DISCUSSION

Effects of plan-form parameters on aero(lynamic charac-

teristics for straight-tapered wings are shown by plots against

the various parameters. Compressibility is discussed and

formulas given for a range of plan forms at sonic speeds.
Theoretical considerations and experimental comparisons

indicate tile order of reliability of the present theoretical
results.

STRAIGHT-TAPERED WINGS

The spanwise h)ading distribution clue to rolling for several

plan forms is presented in figure 8. These curves arc the
result of aI)plying figure 4 and the loading interpolation

formula of appendix B. The loading coefficient is given as

nc.p. (c,c'_
Olc._,.)._:o \C_c._/ to nmke the total loading on the semispan

constant and thus show more clearly [lie (4ranges of dis-

tribution due to sweep and taper ratio. Figure 8 shows

large changes in h)ading distrilmtion for the zero tapered

wing. The effects of sweep arc generally as expected,
namely, that sweepback shifts the loading outboard.

Effects of plan form on the rolling moment due to rolling is

shown from cross plots of figure 5 which are presented in figures

9 and 10. For higher aspect ratio, figures 4, 9, and ] 0 show the

marked lowering of rolling moment due to sweep. Figure

..... ......
". -- -- - _Y_ _ - _ = 6 -- I ....

-
:>

=52 ---

_ "--"'/0

-.48- .......... -- --

- -

---/:---A:.-.=;--_- , 2.5 "_=

,--'-" I I

o (]o)
-5o-4o-3o=2o-/o o io 20 30 40 50 so zo 8o _o

(a) X=O.

(b) x=o.25.

FW,,UR_ 5.--Varialion ofdamping-ln-roll parameter _C_ with compressible sweep parameter

_at,

h¢_,degrees, for straight-taI_'red wings.

9 indicates that for low aspect ratio, the rolling moment

becomes essentially independent of sweep and taper. The

taper effects on rolling moment as seen in figure 10 are

small except for vahtes of taper ratio less than 0.25.

Typical spanwise loading distributions due to full-wing-
chord aileron deflection arc shown in figure 11. These curves

were faired with the aid of the loading interpolation function

of appendix C and, at the aileron spanwise end, care was
takeu to ntakc the slope large.

Wing geometry effects on aileron effectiveness for full-

"chord outboard partial-span ailerons (with aileron angle

measured parallel to the plane of s3mmn'try) are given in

figure 12. The geome'try effects on t3Cq/g,_, are similar to
those on the damping-in-roll coefficient. Comparison of

figure 12 (a) wit]l figure 9 shows that C_s approaches the

zero-aspect-ratio value in the same nmnncr as does C_.

Figure 13 _ves comparative effectiveness of inboard and
outboard ailerons for swept wings. As sweep increases, the
difference of eff,,,'.tiveness between inboard and out-
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FI(iURE 5, -Continued,

board ailerons (leereases showing that, inboard ailerons for

hitzhly swept-back wings approat'h the effectiveness of out-
S'board ailerons. ,. race rh_/d5 becomes large rapidly at small

values of t (fig.3), tl,en, for a given aileron area, narrow full-

span ailerons for swept-ba('k win_ may be more desirabl6

titan larger-chord oulboard aih, rons. The relalive effects of

figures 12 and 13 apply equally well for cotlstant fra('/ion of

chord ailerons, since the da [a woi|ht differ only by a constant

factor d_/da.
COMPRESSIBILITY

From [lie three-dimensional liiiearized-eompressible-flmv

equation, it can be shown lh.tt the effects of compressibility

will be properly 1aken into account if the longitudinal corn-
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FIC,URE 6. Aileron rolling-momcnl parameter -K_' per radian, and rolling moment due to

si(b,slip wilh dihc dral _i,l,l per radian squared, for extent of unit antisymmetric anght oF

attack from the wing root ou|board.
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ponents of a wing plan form are increased by the factor 1//3.
Or, allernatively, if the linearized compressible flow equation
be divided through by _'0, then the lateral aml vertical com-
ponents of a plan form are decreased by the factor B. In
both cases, dw incompressible h>cal lift is increased by the
factor 1/_ and the compressible h>cal lift coefficient can be
written as the parameter _cz.

With these relations known, an incompressible theory
can be made into a compressible theory subject to the
lindtations of the linearized compressible flow equation.

The geometric parameters of a wing are simply sub-

stituted by fl+i,A_=tan-' tan_ :_ and fib. With local lift.

coefficient given by flc_, the dimensionless loading

becomes ,.:_c:c:. The wing-chord distribution remains
_--2_b--2b

unaltered.
The sonic speed results of reference 4 can be used as a

limit point in tim present theory for a curve of the variation
of antisymn_etric aero<lynamic characteristics with Mach
number. The following equations apply at the speed of
souml to plan forms with all points of the trailing edge at
or behind the upstream line of maxinmm xxing span:

.9

_Cz_' 5
.-7--'-

_"v 4 _ _ --

KavF . / .........

0 .1 2 3 4 5 ,8 7 8 9 /.0
tl

(e) x= _.o.

FIP, URE 6.--Conehlded.

For outboard ailerons,

C,-----A sin '_0, where n:= 1--cos 0

For inboar<l ailerons,

Cl6= A (1 --sin '_0), where _,,=cos 0

Reference 4 shows that aileron effectiveness at the speed of

soun<l is independent of the chordwise location of tim ai-
leron hinge line, provided the hinge line remains ahead of
all points of the trailing edge.

ACCURACY OF THE SEVEN-POINT SOLUTION FOR AILERONS

Tim prediction of aileron effectiveness for given aileron
spans with w:ing twist determined by zero-aspect-ratio
theory at only seven span points to satisfy the boundary
conditions has been theoretically shown to be sufficient by
comparing results with the computation of a typical :/.5
aspect ratio, 45 ° swept wing with 15 span points satisfying
the boundary conditions. The process of filming aileron
spans for the 15-point method was the same as that in
appendix C. The curves showing the variation of C,, with
aileron span for the 7- and 15-point computations were
identical.

The solution for the angle,-of-attack-distribution that

includes a diseontimlity can be compared with the solution
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for the continuous angle-of-attack distribution by consid-

ering an aileron such that the angle-of-attack distribution

is equiwdent to that of the rolling _ing. The damping-

in-roll coefficient then can be found by use of equation (23)
which reduces to the form

o d C l_C,=. a d,7 d,

{ pb "_
for a_---_,_), and integrating by parts

_1 C'u.C_, = Ci, dr/-- =I

This relation states that C_p is equal to the area between a
curve of figure 6 and the line of C_a for _-1. The curves of
figure 6 were found by the simplified lifting-surface theo_-

with antisymmetric twist deternfined l)y zero-aspect-ratio

theory. The values of C b obtainetl in this manner from
fi_mlre 6 were identical to the C__ values given by simplified
hftmg-surface theory for continuous hnear antls.vm-metr_c-
twist distribution.

As further theoretical check, the values of rolling moment

due to constant spanwise dihedral angle are obtained from
15-point computations in reference 3 for taper ratio equal to

one, with which the present theory for the 7-point method

is in exact agreement.
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F]aVRE 7.--Rolling moment due to sideslip of "" g "'t _me(aral _ _ per radian squared,

for unit constant spanwIse dihedral angle for straight-taperrd wings•
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FIGURE 8. Spanwise loading due to rolling of wings with various taper-ratio and sweep-angle

parameters of aspect-ratio parameter O,,t =.t. The curve for A =0 serves as a basis for com-

vl¢_

parian al_d the factor _, , , _,,,t-'_ =w gives the curves constant area equal to 3.454,
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COMPARISONOF THEORETICAl,ANDEXPERIMENTALRESULTS

The electro-magnetic analogy method of reference 6

provides dam.ping-in-roll coefficients for an aspect-ratio

range of (mswept, tapered wings. The results of the present

theory and those of reference S are compared in figure 14.

Except for the taper ratio effects on C_v the comparison is

good. The rounded-wing-tip values of C_ given by NACA
Rep. 635 (reference 1) are included in figure 14. Since

rounded _ing tips generally give values of Czp about 6

percent lower than straight wing tips, the vahies of NACA

Rep. 635 appear to be appreciably too high for lower-aspect-

ratio wings. The present theory and the theory of refer-

o 2

_Ctr with aspect-ratio parameter
FJc, URE 9. Variation of 1he damping-in-roll parameter K.--'_

B.11 for various sweep angles and taper ratios.
gal
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FIC, VRE ]0.--Variation of the damping-In-roll paramete _ with lals,r ratio for wings

with various aspect-ratio and sweep-angle parameters.

ence 6 approach the value given by the zero-aspect-ratio

theory of reference 4 quite satisfactorily. The results

of the present theory may be further assessed by the com-

parison with the results of low-speed experiment as given

in figure 15 for the range of phm forms presented. For
further experimental verification of the accuracy with which

C,_ can be determined by the present theory, the reader is
referred to reference 3 which supports the theory as well

or better than figure 15 of the present report.
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Tile loading distributions due to rolling as given by the

present theory are compared in figure 16 with low-speed

experimental results for a range of swept wings. The sweep

angle seems to have considerably more influence on loading
distribution as given by experiment than tlle theory indicates.

The experimental pressure data, however, were very erratic
and no firm conclusion can be made.

Experimental values of rolling effectiveness due to aileron
deflection are compared with theorotically predicted values

in a correlation diagram given by figure 17. IncludeiI are

the results of a wide range of plan forms which do not vary

consistently with an 3- geometric parameter or aileron con-

figuration. Sketches of the plan forms and ailerons are

drawn about the points of correlation. The theory makes

use of the curve of figure 3 giving daft8 for a sealed-gap
aileron over a range of deflection of ± 10% Experimental

results for aileron (leflections greater than 15 ° measured per-

pendicular to the hinge line were not included. The correla-

tion points of figure 17 scatter appreciably; however, the
w.ean line of the points does approxiw_ate the line of perfect
correlation.

Figure 17 does not account for effective plan-form change

due to daft& Only the effectiveness of tile low-aspect-ratio

triangular wing of figure 17 is exceedingly in error, which is

the result of neglecting plan-form change.

The phm-form change due to da/d_ can, in part, be con-
sidered analogous to that due to section lift-curve-slope

change. Thus, the total section lift of a _ing, the chord of

which is reduced by da/d_ and which is at an angle of attack

6, is equal to the lift of the wing-aileron section for which

the aileron only is deflected at the angle & This change in

plan form, unlike the section lift-curve-slope change for

which the chordwise loading remains constant, does not ac-

count for a large change in chordwise loading. If tile lifting

line is considered to be at the chordwise center of pressure,
then, for partial-wing-span ailerons, the lifting line is in

effect broken at the aileron spanwise end and the present

theory becomes invali(l. For the case of full-wing-span ai-
lerons, the lifting line in effect: remains unbroken and lies

along the center of chordwise pressure. For tiffs case tlle

wing chord can be reduced by da/d_ to account for plan-form
change; however, although in the limit of zero aspect ratio

the results are the same as those of reference 4, this procedure

does not with sufficient accuracy aceomd for the chordwise
loading shifting aft at intermediate aspect ratios. For con-

trol surfaces, the effective plan-form change due to dafit_ is

appreciable for the low-aspect-ratio wings such that in the

limit of zero aspect ratio the spanwise loading is independent

of the ratio of aileron chord to wing chord (reference 4).
However, for moderate aspect ratios, da/d6 can be used with-

out accounting for plan-form changes as comparison with
experiment indicates.

Experimental values of Cs/F are not con)pared with the

present theory since reference 3 gives ample support of the

theory.

CONCLUDING REMARKS

The detern)ination of a ntisymnietric h)ading for arbitrary
wings is sho_a_ to be easily obtained by the solution of three
simultaneous equations. The coefficients of the simulta-

neous equations are presented in charts of parameters t]mt

include wing geometry, compressibility, and section lift-

curve slope as arbitrary quantities. Thus the loading for
an arbitra,ry antisymmetric angle-of-attack distribution can

be simply found once the angle-of-attack distribution is
chosen.

For the important cases of antis3mmletric loading, roll,
and aileron deflection, the angle-of-att'ack distribution is

given and the simultaneous equations are formed. Loading

for these cases can be found by simply obtaining from charts

the coefficients corresponding to the wing geometry, Math
number, and lift-curve slope, inserting in the appropriate

equations and solving.

Integration formulas for the loading distributions are

given which enable tile aerodynamic coefficients C 9 and Ct_

to be found. The rolling moment due to sideslip of a wing
with dihedral is shoxxm to be equivalent to that of aileron

(leflection and a procedure for determining its value is given.

For the special case of straight-tapered wings, the loading

distributions and values of Czv and Cts are given in the chart

form for a range of wing plan forms.

Experimental and theoretical verification of the theory
is sho_m to be good. The theory is applicable for large

aerodynamic angles, provided the flow remains unseparated.

The compressibility considerations are reliable to the speed
of sound subject to the linfitations of the linearized com-

pressible-flow equation.

:_MES AERONAUTICAL LABORATORY,

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS,

_[OFFETT FIELD, CALIF., December 29, 19_9.
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APPENDIX A

EQUATIONS FOR THE DETERMINATION OF ANTISYMMETRIC LOADING

UNSYMMETRIC LOADING

From NACA Rep. 92I (reference 2), tile aerodynamic

loading is obtained by solution of linear simultaneous equa-
tions

where

W m/ \
,.=,--I =7_=A.,,G,, v=l, 2, m (A1)

\V/, .:, " " "

Pc
G -- b V (A 2)

for _.>0 or u <'11-?1
-- 2

b.. and b.. are coefficients independent of l)lan form.

--1 [L(v,O)f,_+L(v,.l,÷ 1)f,M+,+ .,r ]g'"-- 2 (.17-+ 1) 2 " " _ L(v, u).f..

(A4)

where

.f.. are coefficients independent of plan form.

The L @, u) fi,nctions, which can have '7_ negative to find

unsymmetrical loading, are Wen by

f , 7_ / b \2

and

> siS+ 1for __< O or ,, --
2

1
1

f _ 7_' t b".2

I[ -,,L(..,)= % '+ t.n A(I,.! + ,.)J +( <.) (,.-- ,. -

, (,,,i+,,),im,,

,a-AVr[,+I,.1(.L) tan*]W(L ):,,,:

[1 -{-(_) (, rl,[-- r#,)

( '
1 -b)7; (_,-ED

tan A] [I q-(_!_)([r1,1+_,)tim A]

(A5)

where

rTr spanwise position at which downwash is computed
,,= cos ,a+ 1

plr
_,= cos 31+ 1 spanwise position of incremental loading at the one-quarter-chord lhw.

The above equations involve coml)utations over the entire

wing. However, if the loading is assumed to be symmetric

or antisymmetric, the computations can be reduced to less

titan half the work. The case of symmetric loading is

developed in reference 2 and the antisynmwtric case is
developed in the follo_:ing section.

ANTISYMM ETRIC LOADING

For antisymmetric loading, the loading on each side of the

wing has the same magnitvde and distribution but with

opposite sign, or

a_=-- a,. + l_, } (A6)
G.=--G.,+I_., or G.=--G.,+I_.

Equation (A1) can then be _q'itten as

Yn--I

2

_,_-- _ (A,,,,-- .1 ..... +,_,,)O. (AT)
'11=1

m -- 1
where the summation is only t.o _-, since G_+,=0 for

• 2-

antisymmetric loading.
With equations (A3), equation (A7) becomes

a,=[2 (b,,--b ..... +,_,)+(b ) (g,,--g,, _+,__)] (;,--

....
27
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('File prime indicates the value for n=, is not summed.)

Now, from equation (A4)

-- 1 FL(v, O)Qfno--.f.,+, .... ) 4-
g_+g ..... +'-' = 2-(,3/-]- 1) [_ 2

where

and

L(v, .'If+ 1) (f,,..,,+,--.f,,,+,-., ,,+,) +
2

L(v, _) (.[.,--.f,,, +,.... ,) (A9)

2 5 u, sin #l(_n cos t(Ll(_bi (AI 0)
"f""=m + 1 ._=,

_Tr

4',, =_ + i , qb.=_ 1

From equation (A9), .f._--.f.,+,_.., can be defined as

.f*,.=.f,,.- f,,, +, .... .

then, using equation (A10),

""--m ,+ 1 u,=l

=- g_ cos ULG sin u_. (1 +cos UlTr)

m+l .,=_

and, since the term_ of the summation for odd ut vanish,

4 _ u_ sin u,6. cos p_¢. (All)
"f "" m+l .,=2,_,,...ew_

(A]2)

From' equation (M 1),

.f ng=.[ n,3f + l--p

Combining equation (A9) with (A12) and defining

g ..=g..--g.. m+,-_

M+I

[L(v, u) + L(v, 3[+ 1 -- g)]f*,,_
t_=O

(A _3)

then

31+ 1
where for u=0 and _, J*.. is equal to half the values

given by equation (A11) in order that the products can be
fitted into the sumnmtion. With equation (AI3), equation

(A8) can be written as

m--I

m -- 1
v=1,2,3, . . • 2

C,=b.--b,, ,,,+___

where

From reference 2,

sin 4,,
b,. (cos _,,±c0s _)_ E ) --(--2((m+l)l)"-_TJ

which gives zero values for b., for even (n--v) wdues.

since m is odd,

b .... _,_,=0

Then,

and

(L= b.

It shouht be noted that L(v,g) sin)plifies somewhat for the

antisymmetrieally loaded wing since n now is only positive

in equation (AS). If only positive values of _ are used, then

equation (A5) can be written as

L*(u, u)= L*..= L(n, _) + L(n,--_)

=L(v, u)+L(_, 31+ 1 --_)

In summary, the foregoing analysis for the ant,isymnwtfi-

eally hm(ted wing gives

DI--]

2

,_,= _2 p.,O. (M5)

r/_. -- 1

v=1,2,3, . . . 2

where

p.. = 2 b.+?. *g _ for n=u (A16)

b
=--2c..+C_ g*.. for n#u

m+l
b'=4 sin ¢_

sin +,, El--(-- 1)'-_']b_"=(eos _--_os ¢_)_ 2_ 1) _1

g .=g ,_ forn=v

31+ 1

, 1 2 L rd _s
g ""= 2(:1I-+-1)_ * *

j*_o -'[*'" for 02 g=

f*., to,. 31+ 1
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For 3l--m,.f ,,. simplifies to

f. r2(-_).+_ _i. 2+.1 ( -_i,, 4_,, "_
+ Lcos -+.--cos _.J.#.=\l--_-os _4_,_)',,=.

7"* -f ""
..... --_-_- for u = 0

.f .. _ + 1
f* _+_-- fOl" /z
" "_- 2 2

l

, to,,_,j+tz) ("'-+_>'-'}+
]

(,.9_+++++>

--1

(')1+2 e. "o_tan.'x

+,.,,.,_[,+(_.)+_t,,,,.,J++(,_)+
(')

_u 2

_7i"
+,=cos ¢+ where ++--

m+l

29

+.=cos ¢. where +"--3[+ 1

_,,=cos 0,, where ¢,,--
m-F1

For a discussion of the relative accuracies obtained for a

choice of values of M and m, see reference 7. The most
favorable application is with M= m.



APPENDIX B

DERIVATION OF RELATIONS USED IN THE METHOD

APPLICATION OF APPENDIX A

With appendix A, the antisymmetrical loading on a plan

form for any antisymmetrical distribution of a_ can be found.

The principal work in the computations is to obtain tile co-
effMents of the simultaneous equations (A15). These co-

efficients can be presented in charts for the con:plete range

of geometric plan-form parameters into which are introduced
the effects of compressibility and section lift-curve slope.

With tile loading due to rolling known, the coefficients and

derivatives are obtained by integration formulas.

Section lift-curve-slope effeet,--For a two-dimensional

wing with the loaded line at the quarter-chord position, tit('

position x aft of the loaded line where the induced down_ash

equals the angle of attack of the wing can be obtained by the
Blot Savart Law as

OF

or

then

F c - _ (_('V

u'----_ where G =--_

W ClC

V" 4_'x

da c

x c ,,c,
where dcdda is the section lift-curve slope. Two dimen-

sional section compressibility effects that do not follow the
Prandtl-Glauert rule can be given consideration by taking

tlw ratio of (dcjda)¢o=, .... ible at a .'_[ach number to 2r/_.

Let K be the rMio of the section lift-curve slope at a given

Math number to 2_',!fl or (dcjda)eomp .... 1h1_= 2_K,/_, then

_.=K(c/2)

Then the induced angh', K(c/'2) aft of the loaded line, is

equal to the angh, of attack of the wing. For _=l, this
is at the three-quarter-chord line. For section lift-curve

slope less than 2r, K is less than one and the downwash is

equal to tile angle of attack at some point between the

one-quarter- aml three-quarter-chord line.
To take into account the section lift-curve-slope variation

in the present theory, the downwash must be found at a

distance K(c/2) aft of the loaded line. From the formulas
of the summation in appendix A, b/c, shouht lie taken as

b/_.G, where K, is the ratio of section lift-curve slope for a

given Mach numtter at span station r, to 27r/_3.

Derivation of parameters for p_.. -The p,, coefficients, as

defined by equation (A16) in appendix A, depeml on I)lan-

3o

(b/c.)L,, functions only, or p,, is aform geometry in lit(, _ " .,
function of b/c, and sweep angle. As previously shown,

b/c_ is also a function of lit(, spanwise variation of section
lift-curve slope al_d is effectively equivalent to b/K_c, where

,, is the ratio of section lift-curve slope for a given Maeh

number at span station v to 2_/fl. The p,, coefficients can

be plotted against b/K,c_ with sweep angle as a parameter; ,
however, b/_c, will vary fi'om zero to very large values for

a range of 1)hm-form geometry, and the plots become un-
wiehty. For a range of aspect ratio, the values of b/K_c,
are a maximum fox" the zero tapered wings when n,>0.5

(i)rovidcd plan-form edges arc not concave) and a maximum
for the inverse-tapered wings for n_g0.5. The ratio of

b&,c_ for n_>_0.5 fi)r any plan form to those of the zero

tapered wing or the ratio of b/_c_ for n,<0.5 for any l)laIt
form to those of the inverse-tapered wing gives a geo-

metric parameicr for an3- plan fot'm that has maximum

values that depend only on aspect ratio.
The chord distril)ution for straight-tapered wings is

given l)y

b At1 + X) (B l)
c. 2[1-1,7_I0-x)]

Then, for X=0,

and for X 1.5

b _ 1 (B2)

b 5 (B3)
_1c_=2(2 +'.,,l)

Tile ratio of b/_w_ to equations (B2) and (B3) gives,

respectively, a geometric parameter as

b/K_c_ ( b ) for 0.5 <,_<12(1 -- _) \K,c,
(B4)

b/Kr('_ 2(2 +5 n_) b )(K:C_ for 0_<,7__<0.5J(b/dc,)_=l._--

I,et H_ be defined as two-fifths times the values of equa-

lion (B4) (the fraction two-fifths is introduced to give I1,

lhe approximate values of p_,, to simplify plotting pro-

cedures), then adding effe('ts of compressibility (see Dis-

cussion sect ion)

IL \_c_/ (B5)

"_vhe i'e

<I_ 4(1 --n_) for 0.5_n_<l
5

d (O --

--_" _ for 0 < _ < 0.5
25
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For tapered wings, H_ simplifies to

lL-_[1--n-2i-zx-)l , for 0.5_<,_<l

2(2 3 r/_)(1 + k) (flA) (B6)=25[1-- _7.(1-- X)1 _-. for 0 _< '0. _<0. 5

Plots of p,, against H, in tile range of H, 0 to 4 will

give p,,, coefficients for wings of any chord distribution fol
aspect ratios up to 10 or 12.

Linear asymptotes of p,,,.--For large wdues of IL, the
p,, fimctions become linearly proportional t to H,. Since

• this linear characteristic appears at relatively low vahies
of H., the simple linear relation between p_,, aml IL is
quite usable.

The L*,,_ function of appendix A is multiplied by b/c,
and the product is linearized.

\(!,),: 2.+: , ,"--cos n,_2 \_7t3_) sin A--

1 tan_
i
=-

'
2'0 tall 3. " " "

--2"0(1 l) l tanA -

(B7)

,
2_ iaT_X .j... for _>,

=(co_SA +t,,, ' b" ,A)(_)--_+ !sin A--
_7

1 A

_tang... for _=n

__ 2 (b "] 2 + 2 sin A . for _ = 0
cos _i',,c,l- n- ,7

With the vahles of equa.tion (B7) substituled into equa-

tion (A16) the values of p,, for arbitrary sweep angle are

obtained. Thus, for m=7, the following equation (BS)
gives values for p_, as

/3.928 A)II_+ 7.968--PH=tCOSff+l.026 tan 1.494 sin A+

0.0l 4 tan 230.082 (1 -- '"1 30-0016 tan2 A)_tall A
i

0.008(1--_t#] 30,0177 tan2 A){ illi A 3

i

0.034 (.l __,t, +O.1717 ta,, 2 A)liili A

/0.851 )p,2=t,_-_.s-_- 2.901 tall A 11_--3.138+1.080 sin A--
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O.034tan A (1--_1+ o.0016tan2A)2--0.034 tliil 3,

( )0.096 l--_1+0.1717 tan2A
tall A

/--0.176 )lh3=t, cos.t- 31.026 tan3_ H1+0.129--0.869 sinA3

A (1 --,/1 +0.0016 tan2 A)0.082 tan 2+0.014 tan A --- 4-

0.068(1--,'l +0.0177 tail-" A_)tan A +

0.034 (1-- ,'1 30.1717 tan 2 A)t all A

, /0.221 , 0 ) . _.p2_=t_--t- .534 tan A II.--9 088--0.383 sin A--

A (l --,(i +0.0177 tan2 ,_)0.018 tan _-- 0.088 -. _ _I lilt A

0.044(1- v'l 30.0294 ta,,i' A)tan A

0.037(1--,/1 + 0.0886 tan2 A)tlili A

,,_oo. ,,,,,,2+

( )0.125 I---_1+0.0177 tan_A _
tall A

0.044(1--_'1+0.0294 liin 2A_t_ina /-

0.125( 1- ,'1 +0.0886 t.n _A)
[1111 A d

/0.221 )pz_=_, co s A--0.534 tall A H2--1.912+0.221 sin A3

0.107ian_---0.044( 1-`i1+0'0177 iali-"A+
[tin A

0.018(1--,'1 +0.0294 till, 2 ")3tan A

( )0.044 1--,.130.0886hm 2A
tan A

/--0.028 )]a_= t- e_-sA 0.104tanA 1I_+0.149+0.3248inA+

0.034 tan _--0.082 (!-- "1 +0" 1717 tan2 A)_tlill st

0.163(1--,'1 30.0886 (/|il 2 A)tail A 3

0.197(1--,'130.1993 ta n_A)tall A

s,.--(°:_3.630464t,ll A)m-1.570-0.38_si. A-'" %, cos A "
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A (1--v'l+ 0"1717 (an2 A)0.082 tan 5+0.231 tan A

0.082(1--,_ +0.1993 tan"A)tan A

//0.628 )pas=\c-_s.( 0.164tan3- 113+3.417+0.083 sinA+

A (1--,'l +0-1717 tan2 X)+0.197 tan 5--0.082 tan A

0.163( ! --,rl +0.0886 tan-" A)+tan A

(1--,:1+0.1993 tan 2 A) (BS)0.034 tan A

Linear spanwise distribution of (KC),/(KC)a,. With the
condition that the product of section lift-curve slope and

wing chord varies linearly spanwise, then

2b

Kc- A, [l + (Kr/KR)X] ( 1o_ Tt_[1 -- (Kr/KR)X] }

and equation (3) becomes

1 + (KT/Ka)X (B9)
IL: d. (_ ;L) 2 i 1 -- n. I1 -- (Kr/K,)XI }

where zl_ is the aspect ratio based on the wing (,herd equal

to Kc. In equation (Bg), [I, is reduced to terms of two param-
eters. Expressions of ,1, in terms of aspect ratio for

straight-tapered wings and the distribution of section lift-

curve slope can be found.

For straight-t apered wings

2b
A-

en(l +X)

and since _c is linear

2b

then
A

zl, =(rn+ rrX)../1 + X

aim equation (Bg) t)eeomes

_,.l ] 1 + (_/_,)x (B10)IL.=d, -(K,e4_.K7_5/,1 +x 2( I--n,[1--(KT,'KR)X]}

The dist ril)ution of. for straight-tapered wings is given b.v

K,= (_c)_ = _,_ 1 -- _ [1 -- (Kr/"R_)X] (B 11)
e, 1 - ,1, (l --X)

Equation (B10) is in terms of two parameters given by

_A
E<Ku+ K-_:I + Xl and (Kr/K.)X. Solutions for spanwise load-

ing in terms of these two parameters and A_ are valid for the
distribution of section lift-curve slope given by equation

(BI1). Equation (BI1) indicates ttmt at X=l, _, is a linear
function and at X=0, K, is a constant. For values of X

t)etween 0 and 1, K, is a curve in the region between the linear

function and a constant.

E(luation (B10) is given by figure 2 for m=7, 1)ut with
H,

the ordinate given by the parameter _,4/[(_R+KrX)/(1 +X)]

and the abscissa by (Kr/KR)X.
For the ease of linear distribution of (_c), and straight-

tapered wings for which the (.herd and section lift-curve
slope can be specified in three parameters, the loading and
associated aerodynamic ehara('leristies can be presented for

a range of the parameters Ao, {3A/[(KR+KrX)/(I+X)], and

(_,,1_,,)X.
lNTEGRATmN O_ ,NTmVMM_TmC to,n[_c.

Rolling-moment coetfi.cient and derivatives.--Rolling-
moment coeffi('ient is given by

_,vh cl'e

(B ] 2)

whi('h, t)y an integration formula,

;_ _r _,, f(_,) sin ¢,• Vf('_)d-_ m-+l ,,=,

l/t'('oIn es

_-flA _ G,, cos 4,_ sin _,
_C=-2(m + _) .=,

(BI3)

re/,1 _ G,, sin 2_,,
-:_(m + _) ,,=,

Since the h)ading is ant isymmetrie, G., +_=0, and• 2

r¢_,l _ G, sin 2q_, (B14)
_("=-'2(m + 1) ,,=_

For sl)anwise loading due to rolling, the loading is found
as a function of pbi21", then equation (B14) divided by

pb/2 V gives
m -- 1

rrf_;l _ 6'_ sin 2¢, (BI5)
_(_" 2(m + 1) ,,=_

where

0 G/(pb/2V)

The rolling moment due to aih, rons will be found in

appendix C.
Induced drag. -The induced drag coefficient is, with equa-

tion (BI3), given by

f_ _rf_A _ •{_A. mOdv=-- G.m. sin 4_,_('_,= _ m+l _=_

where a_, is one-half the induced angle of the wing wake

given by equation (Al4) for c,---- co, then for antisymmetric

loading '
m-I m--1

2 _"

2_r,."l@. (b.G.'--G. ___ C_.G.)sin 4). (B,6)
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where tlle prime imli('ates tile value of i_=_, is not summed.

$panwise center of pressure. -Tile center of pressure on
tile wing half panel is given by

fo IG'_d'_

The numerator is equal to _Ct/'fl.:t. If the Fourier series
for loading is assunaed,

G(4,)= _, a._ sin _, _, the denominator becomes
t =pvPn

-: c'( "'A
#1= Pvell 1,11_ _ = (.VOla "

then

/3G
n: ,.-- (B l 7)

where a., are the Fourier coefficients.

Loading-due-to-rolling function and interpolation table.--

The Fourier series that approximates the antisymmetrie
loading with only a few terms is given ])y

G(_)= _2, a,, sin u14_ (B18)
/Zl = pvon

The loading G,, is determined at span positions of _=eos ¢,,

nr The are given l)ywhere dp,,-- m + ! a.,

2fo"a.t=_. G(q9 sin ,u_,_d¢ 0319)

With the quadrature formula of equation (BI3), equation
(B 19) becomes, for ant isymme! tic loading,

m--I

4
a.t--m + l _ G,, sin _1¢_ 032O)

For m=7, the a_,1 coefficients are equal to (for even _)
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l

a_=_ (a,- G)

ff6--_

Equation (BIS) with (B21) can be arranged to give

)G(4_)=, 1). sin 24_+sin 44)+_- sm 6¢ G_+

1
(sin 2C--sin 6@G2+

¢ )-/ sin 24_--sin 4q_+ sin 6(_ G_
2

With equation (B22) the loading due to rolling can be deter-

mined
any span position. Letting q,=¢_=___r and tabu-

at

lating the factors of Gn as en,, an interpolation table may be
obtained to determine loading at span station, k.

i "qk

\\ I

1 .............
2

3 ............

TABLE P,I, e.a

Ira=T]

0, 981

L',)

0, _155

--..'2'7O6

• I084

0. 831

3/'2

O. 5449

• 6533

--. 1622

0, 556

5f2

--0.1622

• 6533

,5419

g, 195

0,1081

--. 2706

• 8155

(B21)

(B 2 2)

3

G= _-_, e,,,G,, 0323)
//=1

Equation (B23) may be used for interpolation of any form of
loading eoeflqcienl, thus

e: _ ( cj_c "_(_)_.= ___ e,,,. 0324)

\



APPENDIX C

DETERMINATION OF ANTISYMMETRIC WING TWIST FOR FINDINGSPANWISE LOADING DUE TO AILERON DEFLECTION

WING TWIST FOR A GIVEN AILERON SPAN

The determination of loading for an angle-of-attack

distribution thai contains a discontinuity by a method which

satisfies the 1)oundary conditions at a finite nunfl)er of points

can be made 1)y increasing the nunfl)er of points until the

solutions become sufficiently accurate. For the method as

given in appendix A, the munber of points that satisfy the
boumtary conditions is given t)y m. For the large value of

m required for accurate resuhs, the computations t)ecome

exceedingly laborious; however, a procedure using a moderate
value of mean t)e determined by use of a low-aspect-ratio

theory with which a wing twist can 1)e found that duplicates

the r('sults of the discontinuous angle-of-attack distrit)ulion.
A theoretical 1)ut relatively simph' lnethod of finding

spanwise loading due to iilboard and cull)card ailerons for
wings of h)w aspect ratio is given t)y reference 4. In the

present theory, as aspect ratio approaches zero, g*_ wdues

of appendix A become zero and the p_,, coefficients given t)y

equation (AI 6) become constant or independent of phln-form

shape and equal to

P'_= --2("" 1 (C I)

p_='2b_, )

These coefficients are given by the relations under equal ion

(A15) aim p,,, can 1)e tabulated.

TABLE CI. p_,,

[For m=7and A=n]

---7--! 0-ZLTI 0

With equatioxi (A15), antisymmetric loading can be found

for zero-aspect-ratio wings. As a comment on the accu-
racy of the present theory for m=7, the solution of etluation

(AiS), with the ,1 0 p_,, values fi)r loading due to rolling

gave the same values at the three semispan st,llions as does
(pb;2V) sin 24,

reference 4, namely, G(4,)= 4 "

The zero-aspeel-ratio theory of reference 4 shows that

all span loading characteristi('s are independent of plan-

form shal)e for zero aspect ratio. This independence mal,:es

that theory ideal for obtaining the boundary conditions of

the present theory for zero aspect ratio, whieh shouhl apply
with the present theor.v for higher aspect ratios for which

phm-form shape has an effect on spanvcise h)ading. The

boundary conditions of the present theory are given by the
antisvnmn'tric wflues of a_ in equation (A15). The problem

is to find what antisymmetrical distrilmtion of a_ is re-

quired for the present theory to dul)licale the exact loading

34

distrilmlion given by reference 4 for a given aileron span.

The aileron spans are arbitrarily chosen for the present

theory as the mean vahle of the spanwise trigonometric
coordinate of the downwash point at a section angle of

attaek equal to zero. For m=7, three aih,ron spans can be
(lefined for both outboard and inboard ailerons. Let n_ t)e

the aileron span, and 0 the spanwise point of the end of

the aileron, then

n,_= l--cos 0 for outt)oard ailerons

n_=cos 0 for tat)caM ailerons

For the present theory, the aileron spans defined are tabu-

lated as follows:

TABLE C2

Outboard

" I lI llI

3_ I 5_ / 7_

[ll|)oard

/ v
,_ ] ,6 [

For the aileron spans listed in tal)le C2, the exact span

loading distribution can be found from refi, rence 4. Wilh

the p,,, values listed in lat)le C1 and the exact values of

g_, G_, and Ca from reference 4, equation (A15) gives the
twist required for the present theory to give the loading

distrilmtion for each case listed in table C2 or

a---£__ l 0.4524 (_')-- 3.6954 (@)

The spanwisc loading distril)ution fi'om refl, rencc 4 for out-

board ailerons is given t)y

I tsin 0+ 4,1
r +n -'-
L _ Joo,,,o=_- _ IsIn ---2-1

0+4,I 
COS-- .

COS

(ca)
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71"

For ill(, full-wing-span aileron, 0=2 or ft.= 1

rat0)7 2 T1+sin 0
-- = cos OIn (C4)
(_ _ rJ,z= 1 71"

For inboard ailerons, with the same value of 0

(;(¢)7 FG(O)7 I-G(0)7
a J,,,,,o_..=L _-J...=,-_ _,,o,_... (c5)

With equations (C3), (C4), and (C5), the spanwise loading

G1, G,, and G_ at span stations 0=7r/8, _'/4, an(t 37r/8, or
n=0.9239, 0.7071, and 0.3827 can be tabulated for eacll of
the cases given in table C2.

T

'(/,2

5

TABLE C3

Case 1

0. 1136

0. 500

• 0190

T, t Ii, J i,. I v

• .'),800 / .38.51 . [ 16,1 / 3161

.1022 t .36'20 . '2922 I .3754

I

VI

O. 2373

• 39¢)4

• 3941

The twist distribution required for each case is el)rained

with equation (C21 and tabh, C3, tabulating

,, t

[ Case I

°' ]T 2. oo29

o'2

T ] .0174
o___

[ .0056

TABLE C4

II

O, 9713

• 9957

• 0139

in

0.9979

•9913

• 9777

-0109j

With the twist distribution given by table C4, equation (A15)
can be used to solve for spanwise h)ading due to ailerons for
any of the six eases.

ROLLING MOMENT DUE TO AILERON DEFLECTION

The rolling moment is given by

c,=A I""G (0) sin 2 _,d0
4 ,!o (C6)

For span loading due to ailerons, the loading distribution is
distorted suffi('iently su(.h that tlle quadrature formula

given by equation (BI3) is not suf_cientIy accurate for

m_7 to integrate equation (C6). With equation (B18)

C,----_ a: (C7)

Expanding equation (B1S) for _=7r/8, _'/4, and 3_'/8, or
obtaining GI, (72, and C,3 in series of a's, the sum of the G's
gives

1

a2=- 2 (0.7071G_+G2+O.7071G3)+a.--a,s+a:_o_a_4 (C8)

35

The higher harmonic coefficients can be I)ut as factors of tlm
(7,,. Tile rolling-moment coefficient, becomes

C,: 1_0'7071 _r [ (a,,--al_+a._o--a3_)]G,+"( i-6 1_ 1.2071G_

7r [ (aj_--a|s+aao--aaO-]]-6 l+ 1.207lG_ jG_+

°'7_°_1_"[ '-t ,.2o7_ -.J ":3 (C9)

When h,, is (h'fined as the eoeffMents of U,.

Q, = zt (h iOl @ It 2G2 + h aO:,) (C 1 0)

The ratio of (a14--a_s+aao--a:)_) to a. can be evaluated by
the zero-aspect-ratio theory. It is expech,d this ratio will

not vary appreciably with aspe(.t ratio. Fronl refl'rence 4,
ttle loading series expansion gives for equation (B18)

_
a /,,,,,hoa,.d _'U, (U__- 1) (cos 0 sin u_O--

,ul

/,7.= 1 #2 1

(_ /inboard \ _ ,/7/.=1

u_ sin 0 cos u,O)

These high llarmonic eoeffi('ients are small, I)u(
negligible for loading due (o ailerons•
for each of the eases

(C1 l)

are no(
The h,_ are tabulated

TABLE C5

! _° I c._,i . / iii iv / v v_
•1.0i 13., 13, .00 :i., I /

SPANWISE LOADING DISTRIBUTION

The spanwise h)ading (lislril)u(ions due to (he twist

dis(ril>mions of table C4 are f_m(l at three span stations,
and, since these loadings are not coml)h, tely defined l)y a few

(erms of tlle assmned loading series, (lie values of loading at

other span slations cannot be found acem'ately by direct
use of equation (B23) and table BI. For zero-aspect-ratio

wings, {he spanwise loading distribution due to aileron

deflection is given to all span stations by equation (C31.

The loading distribution for other than zero-aspe(.(-ratio

wings will fluctuate al)out tlw value given by equation (C3)

m a manner similar to the manner that loading (lue to rolling

varies a bou( tile fun('tion sin 20 of zero-aspe(,l-ratio (lwory.

Since the interpolation table of equation (B23) applies only

(o ]oadings tllat vary al)ou( (he function sin 20 the lea(ling
due to aileron defle('tion can be divide(1 by tlle ratio of equa-

tion (C3) to sin 20 and the resulting hm(ling will 1)e approx-
irnately given by sin 20.

The zero-aspect-ratio values of equation (C3) can be

tabuhtted as ratios of G..(N'/8 Define
sm 20

R.=G"(O")/6 (C12)
snl 20.
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The zero-aspect-ratio values of R. call be tabulated for each

aileron-span case considered.

TABLE C6.--R_

Case

.... 2:::
3[[[:.....

Otll bO_ I'd

I_--t II t III

-- 0. 168,5 0. 4444 ' 0. 804_

:°_'_i .1,45] 51,9

REPORT 1056--NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

Plan Form. NACA Rep. 921, 1948. (Formerly NACA TN's

Inboard

0. 5556 i 0.8315 1. 0000 1

The interpolation series of equation (B23) becomes

(C: 3)

where _=-_ and e,,_. are given by table B1. With R_ tab-
t'Tr

ulated, values of loading at span stations n_:=cos "g- are

obtained.
TABLE C7.--Rk

...._I_- o:_:_-- o:, 0_, : ' 1o:_ i ! 0:_
I .831 3]2 .105fi .4566
I "'_a 5 '2 } 0.341 .7575-y_ ,_ .o_.,_i 72°I:_°_'_I :°_I"
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