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DESIGN OF TWO-DIMENSIONAL CHANNELS WITH PRESCRIBED VELOCITY DISTRIBUTIONS
ALONG THE CHANNEL WALLS*®

By Jomn D. StaNrTZ

SUMMARY

A general method of design is developed for two-dimensional
unbranched channels with preseribed velocities as @ function of
arc length along the channel walls. The method is developed
Jor both compressible and incompressible, irrotational, non-
viscous flow and applies to the design of elbows, diffusers, noz-
zles, and so forth. Two types of compressible flow are con-
sidered: the general type, with the ratio of specific heats v equal
to 1.4, for example, and the linearized type, in whick v 18 —1.0.
Two methods of solution are used: In part I solutions are
obtained by relaxzation methods; in part II solutions are
obtained by a Green’s function.

Five numerical examples are given in part I including three
elbow designs with the same prescribed velocity as a function of
arc length along the channel walls bui with incompressible,
linearized compressible, and compressible flow. It 18 con-
cluded that if a nonviscous gas with arbitrary v (1.4, for ex-
ample) were to flow through @ channel designed for linearized
compressible flow (y=—1.0), the resulting velocity distribution
along the channel walls would be nearly the velocity distribution
prescribed for the linearized compressible flow.

One numerical example is presented in part 11 for an acceler-
ating elbow with linearized compressible flow, and the time
required for the solution by a Green’s function in part II was
considerably less than the time required for the same solution
by relazation methods in part I.

INTRODUCTION

There are two general types of theoretical problem in
two-dimensional fluid motion: (1) the direct problem, in
which the distribution of velocity is determined for a pre-
scribed shape of boundary, and (2) the inverse problem, in
which the shape of boundary is determined for a prescribed
distribution of velocity along the boundary. The direct
problem is an anlaysis problem; the inverse problem is a
design problem. This report is concerned with the inverse,
or design, problem for two-dimensional, irrotational flow in
unbranched channels with prescribed velocities as a function
of arc length along the channel walls.

The design of channels with prescribed velocities is impor-
tant because: (1) Boundary-layer separation losses can be
avoided by prescribed velocities that do not decelerate rap-
idly enough to cause separation, (2) shock losses in com-

pressible flow and cavitation in incompressible flow can be
avoided by prescribed velocities that do not exceed certain
maximum values dictated by these phenomena, and (3) for
compressible flow the desired flow rate can be assured. by
prescribed velocities that do mnot result in ‘“‘choke flow”
conditions.

Several methods of channel design have been developed
for particular application (refs. 1 and 2, for example). In

reference 1 a design method is developed for accelerating
elbows in which the velocity increases monotonically along
the channel walls. The method is developed for incompress-
ible and linearized (y=—1.0) compressible flow. The veloc-
ity distribution along the channel walls is not arbitrary and
the design method applies to elbows only. In reference 2
a design method is developed for straight, symmetrical chan-
nels with contracting or expanding walls. The method is
developed for incompressible flow and the velocities are
prescribed not as a function of arc length along the channel
walls but as a function of circle angle in the transformed
circle plane. A more general design is suggested in reference 3,
but no attempt is made to develop and apply the method.
In the present report a general method of design is devel-
oped for two-dimensional, unbranched channels with pre-
scribed velocities as a function of arclength along the channel
walls. The method is developed for both compressible and
incorapressible, irrotational, fionviscous flow and applies to
the design of elbows, diffusers, nozzles, and so forth. Two
types of compressible flow are considered: the general type

. with arbitrary value of v (1.4, for example) and the linearized

type with v equal to —1.0. In general, if the prescribed
velocity along one channel-wall differs from that along the
other, the channel turns so that the downstream flow direc-
tion is different from the upstream direction. This change
in flow direction cannot be arbitrarily chosen but depends on
the prescribed velocity distribution along the walls. Equa-
tions are developed for computing this change in flow direc-
tion for an arbitrary prescribed velocity distribution with
incompressible or linearized compressible flow. Two meth-
ods of solution have been developed for the design method
and are presented in separate parts of this report. In
part I solutions are obtained by relaxation methods (ref. 4).
This method of solution results in complete information
concerning the distribution of flow conditions throughout the
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channel and, in addition, can be used to obtain nonlinear
solutions for compressible flow with arbitrary values of .
In part II solutions are obtained by means of a Green’s
function. This method of solution is limited to incom-
pressible and linearized (y=—1.0) compressible flow, but
the method is more rapid than relaxation methods, provided
information within the channel is not required.

The design method reported herein was developed at the
NACA Lewis laboratory during 1950 and is part of 2 doctoral
thesis conducted with the advice of Professor Ascher H.
Shapiro of the Massachusetts Institute of Technology.

PART 1

GENERAL THEORY AND SOLUTION BY
RELAXATION METHODS

A general method of design is developed for two-
dimensional, unbranched channelswith preseribed velocities as
functions of arc length along the channel walls. The method
is developed for both incompressible and compressible, irro-
tational, nonviscous flow. Two types of compressible flow
are considered: the general type with arbitrary value for the
ratio of specific heats v (1.4, for example), and the linearized
type in which vy is equal to —1.0. The solutions in part I
of this report are obtained by relaxation methods and give
complete information concerning the flow throughout the
channel. Five numerical examples are given, including three
elbow designs with the same preseribed velocity as a function
of arc length along the channel walls but with incompressible,
linearized compressible, and compressible flow.

THEORY OF DESIGN METHOD

The design method is developed for two-dimensional chan--

nels with prescribed velocities along the channel walls. The
prescribed velocity is arbitrary except that stagnation points
cannot be prescribed. This exception limits the design
method to unbranched channels.

PRELIMINARY CONSIDERATIONS

Assumptions.—The fluid is assumed to be nonviscous and
either compressible or incompressible. The flow is assumed
to be two dimensional and irrotational.

The assumption of two-dimensional, nonviscous, irrota-
tional motion limits the design method in practice to channels
with thin (negligible) boundary layers, such as exist near the
entrance to the channel or after a rapid acceleration of the
flow through a contraction in the channel. Even if the
boundary layer is thin, the design method is limited to (and
finds its most useful application for) prescribed -velocity
distributions that, from boundary-layer theory, do not decel-
erate fast enough to result in separation of the boundary
layer, which separation alters the “effective’” shape of the
channel and completely changes the character of the flow.

In some channels with fully developed turbulent boundary
layers, the design method might be expected to yield results
that are satisfactory, although approximate, because for this
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type of flow the rotational motion occurs primarily in regions
close to the channel walls. In channel walls with thick or
fully developed laminar boundary layers the design mothod
cannot be used, because not only is the rotation of the flow
important in most of the channel but, if the channel bends,
important secondary flows develop that are not considered
by the two-dimensional design method.

Flow fleld.—The flow field of the two-dimensional chan-
nel is considered to lie in the physical zy-plane where z and
y are Cartesian coordinates expressed as ratios of a charac-
teristic length equal to the constant channel width down-
stream at infinity. (All symbols are defined in appendix A.)

At each point in the channel (fig. 1) the velocity vector has
a magnitude @ and a direction 8 where @ is the fluid velocity
expressed as the ratio of a characteristic velocity equal to the
constant channel velocity downstream at infinity. For con-
venience, the velocity @ is related to a velocity ¢ by

9=0Q4q (1)

where ¢ is the velocity expressed as a ratio of the stagnation
speed of sound and the subscript d refers to conditions down-
stream at infinity. .

The flow direction 6 at each point in the channel is measured
counterclockwise from the positive z-axis. From figure 1

dz=ds cos ¢ (20)
| (2b)

where ds is a differential distance in the direction of @, that
18, along a streamline.

L

dy=ds sin 6

Y

F1aURE L.—Magnitude and -direction of veloolty at point in zy-plano,
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Stream function and velocity potential.—If the condition
of continuity is satisfied, a stream function ¥ can be defined
such that

dy=pQ dn @)

where p is the fluid density expressed as the ratio of a charac-
teristic density equal to the stagnation density and where dn
is a differential distance measured normal to the direction
of @, that is, normal to 2 streamline. Along a streamline,

dn i8 zero so that from equation (3) the stream function ¢

is constant.
If the condition of irrotational fluid motion is satisfied,
velocity potential ¢ can be defined such that

de=Q ds 4)

Normal to a streamline, ds is zero so that from equation (4)
the velocity potential ¢ is constant. Thus lines of constant
¢ and ¥ are orthogonal in the physical zy-plane.

Outline of method.—Solutions of two-dimensional flow
depend on known conditions imposed along the boundaries
of the problem. In the inverse problem of channel design,
the geometry of the channel walls in the physical zy-plane is
unknown. This unknown geometry apparently precludes
the possibility of solving the problem in the physical plane
and necessitates the use of some new set of coordinates, that
is, o transformed plane, in which to solve the problem.
These new coordinates must be such that the geometric
boundaries along which the velocities are prescribed are
known in the transformed plane. It is also desirable, for
mathematical simplicity, that the coordinate system in the
transformed plane be orthogonal in the physical plane. A
set of coordinates that satisfies these requirements is provided
by ¢ and ¢, which are orthogonal in the physical zy-plane and
for which the geometric boundaries are known constant
values of ¢ in the transformed ¢y-plane.. The distribution of
velocity as a function of ¢ along these boundaries of constant
¥ is known because, if

Q=0(s)
is prescribed, equation (4) integrates to give

p=0p(s) ;
from which equations,

Q=0Q(o)

The technique of the proposed method of channel design is
therefore to obtain a differential equation for the distribution
of velocity in the gy-plane. The velocity distribution ob-
tained from the solution of this equation is then used to obtain
the distribution of flow direction, from which distribution the
channel walls in the physical zy-plane are obtained directly.
The differential equation for the distribution of velocity in
the ¢-plane is nonlinear (for compressible flow with vy other
than —1.0) and is solved by numerical methods (relaxation
methods).

DIFFERENTIAL EQUATION FOR DISTRIBUTION OF VELOCITY IN
TRANSFORMED oy-PLANE

The differential equation for the distribution of velocity in

the transformed ¢y-plone is obtained from the equations for

continuity and irrotational fluid motion expressed in terms of
the transformed coordinates ¢ and .

Continuity.—The continuity equation expressed in terms
of ¢ and ¢ becomes (appendix B):

1 (b log, L 0 IOgc Q)_l____() (5)

Irrotational fluid motion.—The equation for irrotational
fluid motion, expressed in terms of ¢ and ¢, becomes (ap-
pendix B):

0 log, @ Q 00

Differential equation for distribution of velocity.—The
second-order partial differential equation for the distribution
of log, @ in the transformed ¢y-plane is obtained by differenti-
ating equations (5) and (6) with respect to ¢ and v, respect-

ai

ively, and combining to eliminate =—— 307 Thus,

0%log, p , 0*log, @ 0O log, p blog, p,0 log. Q>+
T

Y de

0 log, Q dlog, p o log, @

Equation (7), together with a relation between p, ¢, and g,
determines the distribution of log,  in the ¢y-plane for com-
pressible flow with a given value of g4 and for arbitrarily pre-
scribed variations in log, @ along the boundaries of constant .

Density.—The density p is related to the velocity g by
(vef. 5, p. 26, for example)

: Y
p=<1—zg—1' q2>1_1 (8&)

which, from equation (1), becomes

1
(1T )
Equation (8b) relates the density p to the velocity @ for a
given value of gg.
Incompressible flow.—For incompressible flow p is con-
stant and equal to 1.0 so that equation (7) becomes

(8b)

0% log, @ , 0*log, @

Equation (9) determines the distribution of log, @ in the
ev-plane for incompressible flow.

CHANNEL-WALL GEOMETRY

After equation (7) or (9) has been solved to obtain the
distribution of log, @ in the transformed ¢y-plane (for the
arbitrary specified variations in log, @ with ¢ along the
boundaries: of constant y), the geometry of the channel
walls'in the physical zy-plane can be determined from the
resulting distribution of flow direction 6.
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Flow direction 6.—The distribution of flow direction ¢
along a streamline (constant ) is obtained from equa-
tion (6), which integrates to give

a__f blog.Qd

where the subscript ¢ indicates that the integration is taken
along a line of constant ¢ and where the constant of integra-
tion is selected to give a known value of 6 at one value of ¢
along each streamline. The integrand in equation (10a) is
obtained from the distribution of log. @, which is known
from the solution of equation (7) or (9).

The distribution of flow direction 6 along a velocity-
potential line (constant ¢) is obtained from equation (5),
which integrates to give

0___J‘ (E) log, p+b log. Q) v

where the subscnpt ¢ indicates that the integration is taken
along & line of constant ¢ and where the constant of integra-
tion is selected to give a known value of 8 at one value of
¥ along each velocity-potential line. As for equation (10a),
the integrand in equation (10b) is known from the distribu-
tion of log, @ obtained from the solution of equation (7)
or (9).

Channel-wall coordinates.—The variation in z along a
line of constant y in the g¥-plane is given by

(10a)

(10b)

(d
ds do/,
which, combined with equations (2a) and (4),.'1nt.egra.t% to
give
:c=f cos b de (11a)
v @
Likewise,
= (11b)
sin
y=f de (11c)
v €
cos 0 ' (11d)

where the constants of integration are selected to give known
values of z or ¥ at one value of ¢ along each streamline or at
one value of ¥ along each velocity-potential line. Hquations
(11a) to (11d) determine the distribution of z and ¥ in the
transformed ¢y-plane or, which is the same thing, the shape
of the streamlines and velocity-potential lines in the physical
zy-plane. In particular, equations (112) and (11c) when in-
tegrated along the boundaries of constant ¥ in the gy~plane
determine the shape of the channel walls.

Turning angle.—In general, if the prescribed velocity dis-
tribution along one channel wall differs from the distribution
along the other wall, the channel deflects an amount A9,
which is the difference in flow direction far downsiream and
far upstream of the region in which the prescribed velocity
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distribution varies. In part II it is shown.that for incom:
pressible flow the turning angle Af is given by

Ab=0,—10,

[ (059, (9 e

where the subsecript u refers to conditions upstream at infinity

-and where the subscripts 0 and 1.0 refer to the channe
boundaries along which ¥ equals 0 and 1.0, respectively. A
similar equation will be given later for the case of linearizec
compresmble flow. )

LINEARIZED COMPRESSIBLE FLOW

The nonlinear differential equation (7) for the distributior
of velocity in the gy-plane with compressible flow becomes
linear and is considerably simplified if 2 linear variation ir
pressure with specific volume (1/p) is assumed. This lineaz
relation between pressure and specific volume was first sug-
gested by Chaplygin (ref. 6) in order to linearize the differ-
ential equations for two-dimensional compressible flow ir
the hodograph plane.

Density—If a linear variation in pressure with specific

* volume is assumed, the density p* is related to the velocity

¢* by (appendix C) -

p*=Q1+4g*H" (13,
where
=kip (13a°
and . :
g*=kaq (130

where the constants ; and %; have been determined so that
values of p given by equation (13) equal the values of ;
given by equation (8a) for any two selected values of ¢ (des-
ignated by g, and ¢»). Thus,

’ 1— Pala 3
1 1234
ks o (14a}
Payf 1 &)
Q> .

< ) -1
(%)

where p, and p, are determined by equation (8a) for the se-
lected values of ¢, and gs, respectively. A discussion of the
selection of g, and ¢, is given in appendix C. It will be
noted that, if v 18 equal to —1.0, equation (8a) has the same
form as equation (13).

Stream function and velocity potential.—For the case o
linearized compressible flow it is convenient to define the
stream function y* and the velocity potential ¢* by

and

(14b°

dy*=p*¢* dn (185,
and ‘
de*=q*ds (18
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Continuity.—The continuity equation expressed in terms
of ¢* and ¢* becomes (appendix D)

0 log,
+b 111‘_0 (17)
where
q*
= 18
I ae)
or, conversely,
¥ 2U )
¢=1—p \ (19)

Irrotational fluid motion.—The equation fer irrotational
fluid motion, expressed in terms of o* and 1,(/* becomes
(appendix D)

blog, o
o ol 20

Differential equation for distribution of log,u.—The partial
differential equation for the distribution of log, u in the
¢*y*-plane is obtained by differentiating equations (17)
and (20) with respect to ¢* and ¢*, respectlvely, and com-

bining to eliminate ?'b v Thus
o* log, 0% log, u

Equation (21) determines the distribution of log, # in the
p*y*-plane for linearized compressible flow with a given
value of ¢4 and for arbitrarily prescribed variations in
log, @, related to log, # by equations (1), (13b), and (18),
along the boundaries of constant ¢*. Equation (21) is
linear and is, like equation (9) for the case of incompressible
flow, the equation of Laplace. Thus an incompressible
flow! solution for the distribution of log, @ in the ¢y~plane is
also a linearized compressible flow solution for the distribution
of log, % in the p*y*-plane. The transformation from the
ey-plane is different, however, from the transformation from
the ¢*y*-plane so that different channel shapes result in the
zy-plane. '

Flow direction 6—The distribution of flow direction 6
along a streamline (constant y*) is obtained from equa-
tion (20), which integrates to give

Ologyu g e (22a)

Y

Likewise, the distribution of flow direction g along a velocity-
potential line (constant ¢*) is obtained from equa-
tion (17), which integrates to give

=

0 log, u

o dy* (22b)

0= —
L4
Equations (22a) and (22b) for linearized compressible flow
correspond to, and are used in the same manmner as, equa-
tions (10a) and (10b) for the usual type of compress1ble or
incompressible flow.

Channel-wall coordinates.—The variation in z along a
line of constant ¥* in the *y*-plane is given by_f

ox _(dz ds
de* \ds do* /¢

which combined with equations (2a) and (16) integrates
to give
cos 8

—f 2030 a* (23a)
Likewise,
- gin
—_—— dv* 23b
z SeE v (23b)
y=| g (23¢)
v q
(/]
=] SEw (23d)

Equations (23a) to (23d) determine the distribution of ¢ and
y in the transformed ¢*y*-plane or, which is the same thing,
the shape of the streamline and velocity-potential lines in the
physical zy-plane. In particular, equations (23a) and (23c),

* when integrated along the boundaries of constant ¥* in the

o*y*-plane, determine the shape of the channel walls.
Equations (23a) to (23d) for linearized compressible flow
correspond to, and are used in the same manner as, equa-
tions (11a) to (11d) for the usual type of corhpressible or
incompressible flow.

Turning angle.—In part II it is shown that for linearized
compressible flow the turning angle, or difference in flow
direction far downstream and far upstream of the region in
which the prescribed velocity distribution varies along the

channel walls, is given by
)]d* 24)

so—e o [ o). o

where Ay* is the value of y* along the left boundary (channel
wall) when faced in the dire¢tion of flow if the value of y*
along the right boundary is zero, and where the subscript
Ay* refers to the boundary along which y* is equal to Ay*.

NUMERICAL PROCEDURE
The channel design method in part I of this report was

‘developed for three types of fluid flow: (1) compressible,

(2) incompressible, and (3) linearized compressible. Al-
though the numerical procedures of the design method are
similar for each type of fluid, the procedures differ in detail
and are therefore considered separately in this section.

COMPRESSIBLE FLOW

The numerical procedure for channel design with com-
pressible flow (y=1.4, for example) is as follows: .

(1) The velocity is specified as a function of arc lenO'th
along that portion of the channel walls over which the ve-
locity varies

' g=q(9)
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or ¢4 is specified and

Q=Q() ' @5)

where s is arbitrarily equal to zero at that point along one
channel wall where the velocity first begins to vary.

(2) The channel-wall boundaries of the flow field in the
transformed ¢y~plane are straight, parallel lines of constant
¢ extending indefinitely far upstreamn and downstream
between ¢ equals 4 =, where ¢ is arbitrarily equal to zero
at that point on the channel wall at which s is equal to zero.
The value of y along the right channel wall when faced in the
direction of flow (direction of positive ¢) is arbitrarily set
equal to zero in which case the value of ¢ along the left
channel wall (Ay) is obtained by integrating equation (3)
acrogs the channel at a position far downstream where flow
conditions are uniform

AYy=p, (26)

(3) The distribution of log, @ as a function of ¢ along the
boundaries in the gy-plane is obtained by integrating equa-
tion (4) between limits so that

o= [ @as=o(e

which together with equation (25) gives the distribution of
log, @ along the boundaries in the gy-plane

log, Q=f (0) (28)

The integration indicated by equation (27) is carried out
numerically for arbitrary distributions of @ as a function of s.

(4) If the velocities prescribed along one channel wall
differ from those along the other wall, the channel will, in
general, turn the flow. This turning angle cannot be de-
termined exactly for compressible flow until the channel
design is completed. However, it will be shown that this
turning angle is only slightly greater than that resulting for
linearized compressible flow with the same pr%cnbed
velocity and with a suitable selection for ¢, and ¢, in equa-
tions (14a) and (14b). This latter turning angle for linearized
compressible flow-is given by equation (24), Whlch can be
integrated numerically for the arbitrary distribution of
log, u=f (¢) corresponding to equation (28).

(5) In order to solve equation (7) for the distribution of
log, @ in the gy-plane, it is convenient to eliminate the
density terms from equation (7) by means of equation (8b).
Thus, equation (7) becomes

Ab g)g; Q_l_Ba lbof; QL40(aIOgl Q> +4D (blOgc q =0

(29)

where
1— 'y-l—l e

+1

B=1.0

@7)
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40
.,..
and
— =0
4D =
1——2—q

Equation (29) is nonlinear, and it can be solved by relaxation
methods (refs. 4 and 7, for example). A grid of equally
spaced points, at each of which the value of log, @ is to be
determined, is placed in the flow field between the channel-
wall boundaries. The grid is extended upstream and down-
stream sufficiently far so that constant values of log, @ are
obtained across ‘the channel by the relaxation methods. In
the numerical examples to be presented six or eight grid
spaces were used across the channel. In example III the

_number of grid spaces was reduced from eight to four with

negligible effect on the resulting channel design. The values
of log. @ at each grid point were relaxed to five significant
figures. If the same velocity distribution is prescribed along
both, walls, the channel is symmetrical so that the velocity
distribution in only one half of the channel need be deter—
mined by relaxation methods.

(6) After log, Q has been determined at each grid pomt in
the ¢y-plane, the distribution of 9 is determined by equa-
tions (102) and (10b), which are integrated numerically. The
constants of integration in equations (10a) and (10b) are
determined to give a specified value of 9 at one point in the
channel (far upstream, for example). The integrands in
equations (10a) and (10b) are determined by numerical
methods (tables I to VLI, ref. 4, for example) from the known
values of p and log, Q at each of the grid points. If it is
desired to know the flow direction along the channel-walls

. only, equation (10a) can be solved along the channel-wall

boundaries y=0 and y=Ay only. If it is desired to know
6 everywhere in the channel, the recommended procedure is to
determine the variation in 6 along the mean streamline
Y=(ay) /2) by equation (10a) and to determine the
variation in 6 along each velocity-patential line from the
previously determined values on the mean streamline by
equation (10b).

(7) After the distributions of log, @ and 6 are known in the
¢y-plane, the shapes of the streamlines and the velocity-
potential lines in the physical zy-plane or, which is the same
thing, the distributions of z and ¥ in the transformed ¢y~
plane are determined by the numerical integration of equa-
tions (11a) to (11d). The constants of integration in these
equations are determined so that specified values of = and y
occur at one point in the flow field. The recommended
procedure is to determine the variation in z and ¥ along the
mean streamline by equations (11a) and (ilc¢) and to deter-
mine the variation in z'ahd y along each velocity-potential
line for the previously determined values on the mean
streamline by equations (11b) and (11d). If it is desired to
know the z and y coordinates for the channel walls only,
equations (1la) and (11c) can be solved along the channel-
wall boundaries y=0 and y=Ay only.
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INCOMPRESSIBLE FLOW

The numerical procedure for channel design with incom-

pressible flow (p=1) is similar to that just outlined for

compressible flow, but with the following differences:

(1) The velocity is specified as a function of arc length by
equation (25) alone.

(2) The value of ¢ along the left channel wall (Ay) is equal
to 1.0 instead of the value given by equation (26).

(3) The distribution of log, @ as a function of ¢ along the
channel-wall boundaries in the gy-plane is the same as that
obtained from equations (25) and (27) and given by equa-
tion (28). .

(4) The turning angle A6 of the channel is given by
equation (12).

(6) The distribution of log, @ in the ¢y-plane is obtained
from the solution of equation (9) by relaxation methods.

(6) After log, @ has been determined at each grid point .

between the channel-wall boundaries in the ¢y-plane, the
distribution of 8 is determined by equations (10a) and (10b)
as indicated previously for compressible flow, but with p
" equal to unity.

(7) After the distributions of log, ¢ and 6 are known in the
oy-plane, the shapes of the streamlines and velocity-potential
lines in the physical zy-plane are determined by eque-
tions (11a) to (11d) as indicated previously for compressible
flow, but with p equal to unity.

LINEARIZED COMPRESSIBLE FLOW

The numerical procedure for channel design with line-
arized compressible flow (y=—1.0) is similar to that pre-
viously outlined for compressible flow, but with the following
differences: ’

(1) The velocity ¢ is specified as a function of arc length
along the channel walls by ¢(s) or by ¢; and equation (25).
For each prescribed velocity, there are an infinite number of
linearized compressible flow solutions depending on the
selected values of ¢, and ¢, in equations (14a) and (14b).
However, for valuesof g, and ¢, withintherange of g prescribed
along the channel walls (and therefore everywhere in the
channel), the solutions, that is, channel shapes, probably
differ only in small detail. The best solution is that most
nearly like the nonlinear compressible solution with arbitrary
value of v (1.4, for example). In the numerical examples of
this report it is shown that, if ¢, and ¢, are equal to the maxi-
mum and minimum values of ¢, a good solution results, at
least if the ratio of these prescribed velocities is not too large
(2:1 in the numerical examples). On the other hand, if con-
tinuity is to be satisfied for a gas with the correct value of v
(1.4, for example) upstream and downstream of the region
of the channel in which the prescribed velocities vary, then
¢. and ¢, must equel ¢, and gs.

After ¢, and g, have been selected, the velocity distribution
g(s) is expressed as ¢*(s) by equation (13b) where % is given
by equation (14b) so that

g*=q*(s) 30)

The velocity ¢* is then expressed as u by equation (18) so
that

w=u(s) (31)

In the particular case where the selected value of ¢, is equal
to ¢», the value of ks is given by equation (C4b) in appendix C,
where the significance of this particular case is also discussed.

(2) The solution is obtained in the transformed e*y*-
plane where ¢* and y* are defined by equations (16) and (15),
respectively. If the value of ¢* along the right channel wall
when faced in the direction of ¢* is zero, the value of * along
the left wall (Ay*) is obtained by integrating equation (15)
across the channel at a position far downstream where flow
conditions are uniform -

AY*=ps*qs* ’ (32)

(3) The distribution of log, « as a function of ¢* along the
channel-wall boundaries in the ¢*y*-plane is obtained by
integrating equation (16) between limits similar to those
discussed previously for compressible flow so that

o= 0" ds=e"0) (33)
which together with equation (31) determines the distribu-
tion of log, u along the channel-wall boundaries in the p*y*-
plane

log, u=f(¢*) (34

(4) The turning angle A6 of the channel is given by equa-
tion (24). )

(5) The distribution of log, u in the ¢*y¥*-plane is obtained
from the solution of equation (21) by relaxation methods.

(8) After log, » has been determined at each grid point
between the channel-wall boundaries in the *y*-plane, the
distribution of 8 is determined by equations (22a) and (22b)
in & manner similar to that outlined previously for compress-
ible flow. . ’

(7) After the distributions of log, # and 8 are known in the
o*y*-plane, the shapes of the streamlines and the velocity-
potential lines in the physical zy-plane are determined by
equations (232) to (23d) in a manner similar to that outlined
previously for compressible flow. The velocities ¢* in equa-
tions (23) are obtained from the known values of u, and the
densities p* are given by equation (13).

NUMERICAL EXAMPLES

The channel design method has been applied in part I to
the five examples listed below:

Examples Type of channel Type of flow
I Reducing section Incompressible
o Converging section Incompressible
mx Elbow Incompressible
v Elbow Linearized compressible
v Elbow Compressible (y=1.4)
EXAMPLE 1

The first numerical example is the design of a reducing
section'm a straight channel such that the upstream velocity
is half the downstream velocity. The solution is for incom-
pressible flow.
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From equations (35) and (36), log, @ is & known function of o,

+@
1-0f which function is plotted in figure 3.
Results.—The results of example I are presented in-
.8l figures 4 to 7. '
In figure 4, lines of constant velocity @ and flow direction
o 6 are plotted in the transformed ¢y-plane. The flow direc-
o tion 8 is constant and equal to zero along the mean streamline
($=0.5), indicating that the center line of the channel is
.af straight. The maximum absolute values of § occur along the
channel walls. The solution is svinmetrical about the mean-
Ll . streamline. The lines of constant @ and ¢ are orthogonal.
)
¢ 1 1 0 T L0 T 20 +o
) 10 2.0 3.0.

<

F1GURE 2.—Preseribed velocity distribution as function of are length along channel wall for
examples I, ITT, YV, and V. Equation (35).

Prescribed velocity distribution.—The prescribed velocity
as a function of arc length s along both channel walls is

given by

@=0.5 (<0)
1,8 s® )
,Q_-?:_l"ﬁ——f (0<8<3.0) (35)
Q=1.0 (8<3.0)
The prescribed velocity given by equation (35) is plotted in
figure 2.
Equation (35) together with equation (27) results in
' 0=0.55 (s<0)
s, 8 gt
o=—0.757}2 (8<£3.0) F1GURE 3.—Preseribed distribution of Jog, Q as fanction of ¢ along channel walls for examplo I,
P
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FI1GURE 4.—Lines of constant velocity Q and flow direction 6 in transformed gy-plans for example L. Incompressible flow; prescribed velocity given In figure 2.
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FI1GURE §—Lines of constant z and g coordinates in transformed gy-plaus for example I. Incompressible flow; preseribed velocity given in figore 2,
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F10URE 6,—Streamlines and veloolty-potential lines on physical zp-plane for example I. Incompressible flow; presccibed velocity given in figure 2,

In figure 5, lines of constant = and y are plotted on ths
transformed ¢y-plane. Along the mean streamline (¥=0.5)
the value of v is constant and equal to zero indicating, as
before, that the center line of the channel is straight. The
lines of constant z and ¥ are orthogonal, and the system of
curves forms a square network. The solution is symmet-
ricel.

321606—866——12 -

In figure 6, lines of constant ¢ and ¢ (velocity potential
and streamlines, respectively) are plotted in the physical 2y~
plane. The shape of the channel walls is that required to
result in the prescribed velocity distribution given by equa-
tion (35) and plotted in figure 2. The downstream channel
width is 1.0 by definition. The upstream channel width is
2.0 in order that the upstream velocity be half the down-
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FIGURE 7.~Lines of constant velocity Q and flow direction 8 in physical zy-plane for example L Incompressible flow; preserfbed velocity given in figure 2.
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F16URE 8.—Prescribed volocity distribution as function of arc length along channel wall for
example II. Equation (38).

stream velocity. As usual, the streamlines and velocity po-
tential lines are orthogonal and, with equal increments of
¢ and ¢, form a square network for incompressible flow.

In figure 7, lines of constant @ and 8 are plotted in the
physical zy-plane. The lines of constant @ and 8 are orthog-
onal.

EXAMPLE IT

The second numerical example is the design of & converging

section that funnels the fluid from an infinite expanse into &

‘ ¢=r6—2)

stra.lght channel of unit width. Far upstream the channel
walls are straight and converge at a 90° angle. The solu-
tion is for incompressible flow.

Prescribed velocity distribution.—The prescribed velocity
as a function of arc length s along both channel walls is given
by '

—2 (s<0)

e e CONNEE

Q=1.0 (s=4)

The prescribed velocity given by equ&tlon (87) is plotted in

figure 8.
Equation (37) together with equation (27) results in

—2
ga=—— 10g¢ (1- —;—)
‘°= 21 2 i (27 2)
2
33 (r 1) 7

8
. 50—3—1;—2-‘-8

(6<0) |

~v—

(38)
(0<s<4)

(s>4)

J

From equations (37) and (38), log, Q is a known function of
-¢, which function is plotted in figure 9.
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Fiaure 9,—Preseribed distribution of log, Q as function of ¢ along channel walls for example IT.

Results.—The results of example II are presented in
figures 10 to 12. .

In figure 10, lines of constant velocity @ and flow direction
6 are plotted in the transformed gy-plane. The flow direc-
tion 6 is constant and equal to zero along the mean stream-
* line (¢=0.5), indicating that the center line of the channel
is straight. The solution is symmetrical about the mean

streamline. As for example I, the lines of constant Q and -

are orthogonal.
In figure 11, lines of constant ¢ and ¢ are plotted in the
physical zy-plane. The shape of the channel walls is that

38
-.8 -6 -4 -.2 [0) 2 4 .6 8 1.0
T

required to result in the prescribed velocity distribution
given by equation (37) and plotted in figure 8. ~As usual, the
streamlines and velocity-potential lines are orthogonal and,
for incompressible flow with equal increments of ¢ and ¥,
form a square network.

In figure 12, lines of constant ¢ and 6 are plotted in the
physical zy-plane. The lines of constant ¢ and 6 are orthog-
onal.

EXAMPLE I

The third numerical example is the design of an elbow for
which the upstream velocity is half the downstream velocity.
The prescribed velocities are such that no deceleration occurs
anywhere along the channel walls. The solution is for in-
compressible flow.

Prescribed velocity distribution.—Along both walls up-
stream of the elbow the velocity Q is equal to 0.5, and along
both walls downstream of the elbow @ is equal to 1.0. The
transition from @ equals 0.5 to 1.0 along both walls of the
albow will be the prescribed velocity distribution as a func-
tion of arc length given by equation (35) for example I and
plotted in figure 2. In terms of log, @ as a function of ¢, this
prescribed velocity distribution is given by equation (36)
and is plotted in figure 3. Although this velocity distribu-
tion i8 the same for both walls, the distribution on the outer
wall (wall with larger radii of curvature) is shifted in the
positive ¢ direction an amount equal to 2.25 relative to the
distribution on the inner wall. Thus, a velocity difference
exists on the two walls at equal values of ¢, as shown in
figure 13. The greater this difference in velocity and the
greater the range in ¢ over which velocity differences exist,
the greater is the elbow turning angle. For the prescribed
velocity distribution given in figure 13, the elbow turning
angle given by equation (12) was 89.37° compared with a
value of 89.36° obtained from the relaxation solution.

Results.—The results of example IIT are presented in
figures 14 to 16 and in tables I and II. (The numerical

1.2 1.4 16 1.8 20 22 .24 26 28 32
™1 T T T T T T 7 T T 1T ¥+ 1T 0 1 T 11 L D N S S N I SR O S N L N R R L
g ]
1.0 b oo 1o
.8 7 .8
. n -.| -
]

.6 = i -1.6
¥ . @ g -] 20l 2% 30 3% AS B0 X{ 8 S0 .93 99 i W
4 —1.4
2F —1.2
or -1.0
t 3 3ot vor v vt v v ot 1 1) 3 1 1 3 | I U SO N NN DU N N N 1 Lttt 1 1

-8 -6 -4 -2 0 .2 4 5 8 1.0
[

: 1
L2 1.4 16 1.8 20 2.2 24 26 2.8 3.2

F16URE 10.—Lines of constant velocity Q and flow direction 8 in transformed g-plane for example II. Incompressible flow; preseribed veloclty given In figure 8. ’
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1

FI10URE 11.—Streamlines and velocity-potential lines in physlcal zy-plane for example IT. Incompressible flow; prescribed velo&lty given in figure 8,
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F1GURE 12.—Lines of constant velocity Q and flow direction 6 in physical zy-plans for exampls II, Incompressible flow; prescribed velocity given In figure 8.
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FIGURE 13.—Prescribed distribution oflog, Q as function of @ along channel walls for examples
1,1V, and V., .

results for examples ITI, IV, and V are tabulated in tables
I to VI to enable a detailed comparison of the three elbow
designs with the same prescribed velocity @ distribution as
a function of arc length but with incompressible (example
IIT), linearized compressible (example IV), and compressible
(example V) flow.)

. In figure 14, lines of constant @ and 6 are plotted in the
¢¥-plane. The flow direction 6 varies along the mean
streamline (y=0.5),-indicating that the channel is curved.
The solution is unsymmetrical. As for examples I and II,
the lines of constant @ and ¢ are orthogonal.

In figure 15, lines of constant ¢ and ¢ are plotted in the
physical zy-plane. The shape of the channel walls is that
required to result in the prescribed velocity distribution
given by equations (35) and (36) and plotted in figures 2
and 13. The upstream channel width is twice the down-
stream width in order that the upstream velocity be half
the downstream velocity. It is interesting to note that,
before curving in the direction of the elbow turning angle,
the inner wall first curves in the opposite direction. This
behavior of the inner-wall geometry is necessary in order to

-2 0 2 4 6 8
T T
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meintain the prescribed constant velocity along the outer
wall where the velocity would otherwise decelerate because
of the necessary curvature in the direction of elbow turn-
ing. 'This feature of the elbow geometry will also be noted in
examples IV and V. As usual, the streamlines and velocity-
potential lines are orthogonal and, for equal increments of
@ and ¢, form a square network.

In figure 16, lines of constant @ and ¢ are plotted in the
physical zy-plane. The lines of constant @ and 6 are

orthogonal.
EXAMPLE IV

The fourth numerical example is the design of an elbow
with the same prescribed velocity @, as a function of are
length, used in example ITI but for linearized compressible
flow (yv=—1.0).

Prescribed velocity distribution.—The prescribed velocity
distribution @ is the same as that for example III and with
¢: equal to 0.80176. The variation in @ with ¢ along one
channel wall is plotted in figure 2. The values of ¢, and g,
in equations (14a) and (14b) are equal to ¢, and g or
0.40088 and 0.80176, respectively. For these values of g,
and ¢, and for the prescribed velocity distribution with
linearized compressible flow, the elbow turning angle given
by equation (24) was 104.08° compared with a value of
104.07° obtained from the relaxation solution and a value of
89.36° obtained for incompressible flow (example III).

Results.—The results of example IV are presented in
figures 17 to 19 and in tables ITI and IV.

In figure 17, lines of constant ¢ and 6 are plotted in the
transformed ¢*y*-plane. The solution is unsymmetrical
and the lines of constant ¢ and 6 are orthogonal.

In ﬁgure 18, lines of constant */Ay* and ¢*/A1,b"' are
plotted in the physical zy-plane (where the constant Ay*
is given by equation (32) and is equal to 0.73782 for ¢4
equal to 0.80176). The shape of the channel walls is that
required to result in the prescribed velocity distribution used
in example IIT but with linearized compressible flow and
for gs equal to 0.80176. From continuity considerations
the upstream channel width is 1.5385 times the downstream
width. As in example III, the inner wall of the elbow first
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F1GURE 14.—Lines of constant velocity Q and flow direction ¢ in transformed gy-plane for example ITI. Incompressible flow; prescribed velocity given in figures 2 and 13,
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F1auRE 17,—Lines of constant veloclty gand flow djrection 6 in transformed p*y*-plane for example IV. Linearized compressible flow; preseribed velocity as function of arc length along channel
walls same as for example ITT (fig. 2) and with gz equal to 0.80178.

turns in the opposite direction to the elbow turning angle.
As usual, the streamlines and velocity-potential lines are
orthogonal.

In figure 19, lines of constant ¢ and 6 are plotted in the-
physical zy-plane. The lines of constant ¢ and 8 are not, in
. general, orthogonal.

EXAMPLE V

The fifth numerical example is the design of an elbow with
the same prescribed velocity @, as a function of arc length,
used in examples IIT and IV but for compressible flow
(y=14). :

Prescribed velocity distribution.—The prescribed velocity
distribution @ is the same as that for examples IIT and IV
but with ¢s equal to 0.79927. The variation in @ with s
along one channel wall is plotted in figure 2.

Results,—The results of example V are presented in
figures 20 and 21 and in tables V and VI.

In figure 20, lines of constant /Ay and /Ay are plotted in
the physical zy-plane (where the constant Ay is given by
equation (26) and is equal to 0.71054 for ¢, equal to 0.79927).
The shape of the channel walls is that required to result in
the prescribed velocity distribution used in examples 1T and
IV but with compressible flow (y=1.4) and for g, equal to
0.79927. The upstream channel width is 1.5412 times the
downstream width, and the turning angle is 105.31° com-
pared with 104.07° for linearized compressible flow (example
IV) and 89.36° for incompressible flow (example III). The
streamlines and velocity-potential lines are orthogonal.

The shape of the elbow for compressible flow (example V,
fig. 20) is nearly the same as the shape of the elbow for
linearized compressible flow (example IV, fig. 18). There-
fore, in figure 21 the contours of the walls for both examples
are compared. The difference in contours is very small and
it is concluded that, if & nonviscous gas with arbitrary v (1.4,
for example) were to flow through a channel designed for
linearized compressible flow (y=—1.0), the resulting velocity
distribution along the chennel walls would be nearly the
velocity distribution preseribed for the linearized compress-
ible flow, at least if the linearized flow were selected (by
the choice of ¢; and ¢;) so that the densities were equal for
both types of flow at the maximum and minimum velocities

and if the ratio of these prescribed velocities is not too large
(2:1 in the numerical examples). This conclusion is impor-
tant because the design method for linearized compressible
flow is considerably faster than the design method for com-
pressible flow with v other than —1.0.

PART I
SOLUTION BY GREEN’S FUNCTION

In part II a method of solution for the design of two-
dimensional channels with prescribed velocity distributions
along the walls is developed by means of the appropriate
Green’s function. The method applies to incompressible and
linearized compressible, irrotational flow. One numerical
example is presented for an accelerating elbow with linear-
ized compressible flow and with the same prescribed condi-
tions as example IV of part I.

METHOD OF SOLUTION

The method of sblution by Green’s function is in conjunc-
tion with a formule derived from Green’s theorem.

PRELTMINARY CONSIDERATIONS

Stream function ¥.—In part IT it is convenient to define
the stream function by ¥, where for incompressible flow

d\I'=% dy (39a)
and for linearized compressible flow (y=—1.0)
d *
< de=T0% A:‘; (39b) |

For both types of flow ¥ varies from zero along the right side
of the channel, when faced in the direction of flow, to =/2
along the left side. .
Velocity potential ®.—In part IT it is convenient to define
the velocity potential by &, where for incompressible flow

' d«p=§ de (408)
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. 83 for example TIT (fig. 2) and withfgs equal to 0.80176,
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FI1GURE 19.—Lines of constant velocity ¢ and flow direction 8 in physical zp-plane for example IV, Linearized compressible flow; prescribed veloeity as function of arc length along channel
walls same as for example IIT (fig. 2) and with g equal to 0.80176.
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F1GURE 20.—8treamlines and velocity-potential lines in physlcal xy-plane for example V. Compressible flow (y=1.4); prescribed velocity as function of aro length along channal walls samo ag
for examples III and IV (fig. 2) but with g¢ equal to 0.79927.
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F16URE 2!, —Comparison of channel-wall shapes for compressible flow (example V) with y equal to 1.4 and for linearized compressible flow (exampls IV) for same preseribed velocity as funotion

of arc length along channel walls (fig. 2).



174

and for linearized compressible flow
(40Db)

Channel-wall coordinates,—From part I the distribution
of channel-wall coordinates z and y along the boundaries of
constant ¥ equal to 0 and #/2 in the transformed ®¥-plane is
given by

=2 A¢*f 080 15 (41a)
and

2 g [ S0

y=2av [ Bl ae (41b)

for linearized compressible flow, and for incompressible flow
is given by

_ 2 cosb
:E—;_' " Q dtIJ (428')
and
sin 4
—_Z i33 42b
y=2[ 222 (42b)

where the constants of integration are selected to give known
(specified) values of z or y at one value of @ along each bound-
ary. Because ¢* and @ are known functions of ® from the
prescribed velocity as a function of arc length along the
channel walls, the shape of the channel walls in the physical
zy-plane is given by equation (41) or (42) if ¢ is determined
as a function of & along the channel walls. In part II the
solution for 6 as a function of & along the channel walls in the
$¥-plane is obtained by Green’s function.

SOLUTION BY GREEN’S8 FUNCTION

Continuity.—From part I the continuity equation becomes
in the transformed ®¥-plane ‘

o log. VvV, 08

t55="0 (43a)
where for incompressible flow
V=@ (43Db) -
and for linearized compressible flow
| L (430)
T |

Irrotational motion.—From part I the equation for irro-
tational motion becomes in the transformed ®¥-plane

0 log, V_Q?_= 0

e 5% (44)

Integral equation for 6(®,,¥,).—From equations (43a) and
(44)

A 2 (45)
go that from appendix E the value of § at a point (®,,¥,)

.
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within, or on, the channel walls in the transformed ®¥-plane
is given by the integral equation

o, T =52 f_m [(G M) (G 0 log, V) ] o (46)

where the subscripts 0 and 3 Z refer to the channel-wall bound-

aries along which ¥ is 0 and %, respectively, and @ is the
Green’s function of the second kind for the channel, which
is an infinite strip of TVidthg- extending in the ®-direction to

+ . .
Green’s function @.—The Green’s function of the second
kind @ for the infinite channel in the ®¥-plane is given along

the channel-wall boundaries (¥ equals 0 and %) by (appen-
dix F)

Goor 2= —log, [cosh? (2—&,)—cos? (¥ —T,)] 47
where (&, ¥) is any point on the channel-wall boundary and
(®,,%,) is the point in the channel or on the boundaryJat
which 8 is to be determined.

Numerical integration for 6(®,,¥,).—From equations (46)
and (47)

278 (@,,w,5=f

{b log,V log. [cosh? (@—&,)—

: sin? \If,,]}fd(@—@a)—

f { Z)k’g‘vlog,, [cosh? (& —&,)—

cos® ] }od @—a) (48)

" in which the independent variable of integration has been

changed from d® to d(®—%®,) so that the origin, for purposes
of integration, lies at &, rather than ®=0. If for small

changes in (3—®,), that is, for small A®, the term M

may be considered constent and equal to its average vo.lue
over the interval A®, then

Olog,V _Alog,V
oP AP

and equation (48) becomes

@ (T—D,)+AT
e E, %= 5 {A log.V T og, [oosh (B —)—
—¢ 3 - 0,
sin? \I/o]'d(cb——i:.,)}f—-
K
(P—=2,)+-Ad

o {A log,V
@-dJ=—w

2(PHamep,)omm
Ad otn lqg. [cosh? (@—a,)

cos® ¥,] d (<§——r1>0)}0 | (49)



DESIGN OF TWO-DIMENSIONAL CHANNELS WITH PRESCRIBED VELOCITY DISTRIBUTIONS ALONG CHANNEL WALLS 175

where the summation sign is understood to mean that the
quantity within the braces is summed over the entire range of
(—®,) between 4 o,

Equation (49) determines 8 at any point in the flow field
(channel). For a point (&,,¥,) on the channel walls ¥, is
equal to 0 or #/2 and the integrands in equation (49) become

2 log, cosh |(2—®,)|
or
2 log, sinh [(#—3,)|.

8o that equation (49) becomes

O@ET)= [(A log, V AI) (ke log,V AI)J (508)
where
Al=Ig_syra0—La-n, (50b)
Ir=aif %,=0 )
Ir=gif ‘I'o—“
: 2 1 (50¢c)
I=aif ‘I’o=%
Io=ﬁ if \I'0=0 o
where
=) )
J— fo log, cosh |@—&)|d|@—&)|  (50d)
|(@—2.)| .
p== [ log, sinh [@—s)ldl@—2)]  (509)

where the - signs apply for positive values of (#—%®,) and
the — signs apply for negative values of (2—®,). Methods
of evaluating @ and B are given in appendix G, and tabulated
values are given for a wide range of |(#—®,)| in table VIIL.
Equation (502) determines 6(®,¥, at any point on the
channel-wall boundaries. Thus from equations (41a) and
(41b) or (42a) and (42b) the coordinates for the channel-wall
shape in the physical zy-plane can be determined:

NUMERICAL PROCEDURE

The numerical procedure for the channel design solution
by Green’s function is the same, except for minor details,
for incompressible and linearized compressible flow. The
stepwise procedure is outlined as follows:

(1) For incompressible flow the velocity @ and for linear-
ized compressible flow the velocity ¢, or which is the same
thing the velocity ¢ and the constant downstream velocity
s, are specified as functions of arc length along the channel

walls
Q=Q(s)

q=q(8)

(51a)
or
(51b)

where s is arbitrarily equal to 0 at that point along one chan-
nel wall where the velocity first begins to vary.

(2) Compute V as a function of s from equations (43b) and
(51a) for incompressible flow or from equations (13b), (14b),
(43¢), and (51b) for linearized compressible flow

V=V() (52)

(3) Compute & as a function of & from equations (4) and
(40a) for incompressible flow or from equations (16), (32),
(40b), and (51b) for linearized compressible flow. In equa-
tion (32) ps* is obtained from equations (8a), (132), and (14a).
For arbitrary distributions of @ or ¢ equation (40a) or (40b)
is integrated numerically by using, for example, Simpson’s
one-third rule. Thus

&=>5(s) ) (53)

(4) From equations (52) and (53) V and & are known
functlons of 8 so that

V=V (@) (54)

Thus V is a known function of & along the channel-wall
boundaries in the transformed $¥-plane.

(5) If the prescribed velocity distribution along one wall
is different from that along the other, the channel will, in
general, turn the flow. This turning angle A8 is given by
equation (H5) in appendix H. If the turning angle is unsat-
isfactory, a new distribution of velocity as a function of &
(egs. (51a2) and (51b)) is pr%cribed and steps (1) to (5)
repeated until the desired value of Af is obtained. Equation
(H5) is integrated numerically by usmg Simpson’s one-third
rule, for example, and equation (54).

(6) The channel-wall boundaries are straight parallel
lines of constant ¥ equal to 0 and =/2, and extending to & «
in the &-direction. Along these boundaries of constant ¥, a
series of equally spaced points are located at each of which
the flow direction 6 and the z,y-coordinates of the channel
walls will be determined by numerical integration. In
order to use the tables of @ and 8 presented in this report,
the point spacing A® must be an even multiple of #/24. Thus
the smallest point spacing =/24 is equal to Y: of the channel
width (=/2). For a particular prescribed velocity distribu-
tion along the channel walls the accuracy of the solution
increases, and so does the amount of computing, as the
point spacing is reduced. The error for a given point spacing
depends on the prescribed velocity distribution, and its order
of magnitude is given by the leading term of the error series
of the formula used for numerical integration (table VIII,
ref. 4, for example). For the numerical example presented
in part IT of this report the point spacing AP was «/12.
From equation (54)

Alog, V_(log, Veras—(log: Vs
- AP AP

(55)

where the subscripts ® and ®-}+:A® refér to adjacent points
along the channel boundaries.

(7) The value of 6 at each point (®,,¥,) on the channel-
wall boundaries is obtained from equation (50a) in which
(A log, V)/A® is given by equation (55) and Al is given by
equations (50b), (50c), and table VII. Note thatin equation

~
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(50a) the origin has been moved to &, by changing from &
to (#—&,). Thus the value of (A log, V)/A® for a given value
of (#—,) varies with &,. )

(8) The physical z,y-coordinates at each point on the
channel-wall boundaries are obtained by the numerical
integration of equations (42a) and (42b) for incompressible
flow, or equations (41a) and (41b) for linearized compressible
flow where Ay* is given by equation (32). The constants of
integration in equations (41) and (42) are selected to give
known values of z and ¥ at upstream or downstream positions
where flow conditions can be considered uniform.

NUMERICAL EXAMPLE

The channel design method of part IT has been applied to
the design of an elbow for the same conditions as example
IV of part I. The design is for an accelerating elbow with
no local decelerations of the preseribed velocities along the
channel walls and with linearized compressible flow.

‘Prescribed velocity distribution.—The prescribed velocity
distribution along the channel walls is the same as that for
example IV of part I. The prescribed velocity as a function
of ® is plotted in figure 22.

Results.—As indicated in table VIII, the elbow design
resulting from the prescribed velocities given in figure 22
is the same as that obtained by relaxation methods (fig. 21)
for the same preseribed conditions (example IV, part I).

The solution obtained by Green’s function (part II)
required one experiepced computer 3 days, whereas the
solution by relaxation methods (part I) required about
10 days. The relaxation solutions provide additional
information, such as the distribution of velocity across the
channel; but for the most part this additional information
is of secondary importance, and the design of channels by
Green’s function is more rapid and therefore to be preferred
over the design by relaxation methods.

(o)
=1y
o

inner wall
(¥=0)

£
X
T

-1.41~

F10URE 22—Variation in prescribed values of log, V with & along channe! walls of numerical
example in part IT.

.SUMMARY OF RESULTS AND CONCLUSIONS

A general “method of design is developed for two-
dimensional unbranched channels with prescribed velocities
as a function of arc length along the channel walls. The
method is developed for both compressible and incompress-
ible, irrotational, nonviscous flow and applies to the design
of elbows, diffusers, nozzles, and so forth. Two types
of compressible flow are considered: the general type with
arbitrary value for the ratio of specific heats v (1.4, for
example) and the linearized type in which v is equal to
—1.0. In part I solutions are obtained by’ relaxation
methods on & transformed plane the coordinates of which
are the streamlines and velocity-potential lines in the physi-
cal plane; in part II solutions are obtained by 2 Green’s
function. The method of solution in part I gives complete
information concerning the flow throughout the channel,
whereas the method of solution in part IT gives the channel-
wall coordinates only.

Five numerical examples are given in part I and the results
are presented by (1) lines of constant velocity and flow
direction or lines of constant physical coordinates in the
transformed plane and (2) streamlines and velocity-potential
lines or lines of constant velocity and flow direction in the
physical plane. Among-the five -examples are three elbow
designs for the same prescribed velocity as o function of
arc length along the channel walls but with incompressible,
linearized compressible, and compressible flow. The numer-
ical results of these three elbow designs are tabulated to
enable a detailed comparison of the three designs.

The shapes of the elbows for compressible flow and for
linearized compressible flow are very nearly the same; and it
is concluded that, if a.nonviscous gas with arbitrary -~
(1.4, for example) were to flow through a channel designed
for linearized compressible flow (y=—1.0), the resulting
velocity distribution along the channel walls would be
nearly the velocity disfribution prescribed for the linearized
compressible flow. This conclusion is important because
the design method for linearized compressible flow is con-
siderably faster than that for compressible flow.

One numerical example is presented in part II for an
accelerating elbow with linearized compressible flow. The
elbow shape obtained from the solution by Green’s function
in part I is the same as that obtained from 2 solution by
relaxation methods in part I for the same prescribed con-
ditions. The time required for the calculations was con-
siderably less for the solution by Green’s function.

Lewis FrLigET PROPULSION LLABORATORY
NarioNAL ADVvIsSORY COMMITTEB FOR ABRONAUTICH
CrLeEveLAND, OnIlo, July 25, 1961
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APPENDIX A
SYMBOLS

The following symbols are used in this report:

A, B, C D
A B

B, By, ..
[

a

I
key
Ita
l

n

wy wl; Ul

Y

O > R nlw

coefficients, equation (29) )

arbitrary constants, equation (Cla)

Bernoulli’s numbers

constant, equation (E3)

Green’s function of the second kind, equa-
tions (1£2) and (47)

integral (« or B)

coefficient, equation (144a)

coefficient, equation (14b)

length of closed boundary

distance in zy-plane measured normasal to
direction of flow (expressed as ratio of
characteristic length equal to channel
width downstream at infinity)

static pressure {expressed as ratio of stag-
nation density multiplied by stagnation
speed of sound squared)

velocity (expressed as ratio of characteristic
velocity equal to constant channel veloc-
ity downstream at infinity)

velocity (expressed as ratio of stagnation
speed of sound)

velocity used in linearized compressible
flow and related to ¢ by equation (13b)

distance from any point in ®¥-plane to
point (®,, ¥,) at which logarithmic singu-
larity exists

distance in zy-plane measured along direc-
tion of flow (expressed as ratio of char-
acteristic length equal to channel width
downstream at infinity)

velocity parameter related to ¢* by equa-
tion (18) N

velocity parameter defined by equations
(43b) and (43c) for incompressible and
linearized compressible flow, respectively

complex functions defined by equations
(F3), (Fla), and (F2a), respectively

Cartesian coordinates in physical plane
(expressed as ratios of characteristic
length equal to channel width down-
stream at infinity)

complex coordinate, equation (F1b)

conjugate of z

integral, equation (50d)

integral, equation (50e)

ratio of specific heats

finite increment

increment of

0

¢ and o*

¥ and ¢*

Ay*

w

Subscripts:
a,b

> & © &

‘l/*

(q)_@o)

(Q_@o) +A®

o ¥, 0% ¥

0

1.0

ICTE]

flow direction in physical zy-plane (meas-
ured in counterclockwise direction from
positive z-axis)

channel turning angle, equation (12)

density (expressed as ratio of stagnation
density)

density in linearized compressible flow and
related to p by equation (132)

velocity potential used as Cartesian co-
ordinate in transformed &W¥-plane and
related to ¢ or o* by equation (40a) or
(40b), respectively

velocity potential for incompressible and
linearized compressible flow, respectively,
equations (4) and (16)

stream function used as Cartesian coordi-
nate in transformed ®¥-plane and related
to ¢ or ¢* by equation (39a) or (39b),
respectively :

stream function for incompressible and
linearized compressible flow, respectively,
equations (3) and (15)

boundary value of ¢*, for linearized com- *
pressible flow, along left channel wall
when faced in the direction of flow,
equation (32)

any harmonic function in ®¥-plane

quantities related to two velocities (g, and
s, respectively) for which density given
by equation (82) is equal to density p
given by equations (13), (13a), and (13b)

conditions downstream at infinity

point in $¥-plane at which 6 is determined

conditions upstream at infinity

left channel wall, when faced in direction of
flow, along which y* is equal to Ay*

point at (#—®,) on either channel-wall
boundary

point at [(P—P,)+AP] on either channel-
wall boundery

along lines of constant ¢, ¢, ¢*, and ¢*, re-
spectively

right channel wall, when faced in direction
of flow, along which ¥, ¢, or ¢* is equal
to 0

left channel wall, when faced in direction
of flow, along which ¢ is equal to 1.0

left channel wall, when faced in direction

of flow, along which ¥ is equal to 7—21-
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APPENDIX B

EQUATIONS OF CONTINUITY AND IRROTATIONAL FLUID MOTION IN TERMS OF TRANSFORMED ¢, ¥-COORDINATES

Consider the two-dimensional irrotational motion of a
fluid particle in the physical zy-plane. The fluid particle is
"defined by adjacent streamlines (constant y) and wvelocity-
potential lines (constant ¢) spaced én and &s apart as
indicated in figure 23. The velocity @ is parallel to the
streamlines and normal to the velocity-potential lines.

Continuity.—From continuity considerations of the fluid
particle in figure 23

2 (pQan)=0

or

dlog, o, dlog, @, 1 d(m)_
% T o8 ‘tom os O (B1)
y
¥+ 3y
or
@ +3¢p e By

y{or y*)

X

F1GURE 23.—Fluid particle bounded by streamlines and velocity-potential lines in physical
zp-plane.

But, from geometrical considerations (ref. 5, p. 167, for
example)
1 o(sn) 06
n o8 on

(B2a2)

and

'1.0(5s)_ 86 : (B2b)

= e — YA

58 on 08

so that equation (B1) becomes

0 log, p , 0 log,

Q, 08
o8 .' 08 +%=O

or
dlog, p dp , Olog, Q dep , 00 dy
o7 ds " Op ds 'Oy dn

0

which, combined with equations (3) and (4), becomes

1 alog.p;alog.Q%aa 0
P\ O ' dp /J'OY

(8

Equation (5) is the continuity equation expressed in terms
of ¢,y-coordinates. ]

Irrotational fluid motion.—For irrotational motion of the
fluid particle in-figure 23 -

2 (Qss)=0

or .
0log, @, 1 0(8s) 0
on  '&s on

But, from equations (B2b) and (B3)
0 log, Q__Zio_

bn_ 08

(B3)

or

dlog, @ d¥ 00 de 0
oYy dn O¢ ds

which, combined with equationé (3) and (4), becomes

olog, @ _20_,
oy O¢
Equation (6) is the equation for irrotational fluid motion
expressed in terms of the ¢,¥-coordinates.

(6)

APPENDIX C
RELATION BETWEEN VELOCITY AND DENSITYZFASSUMING LINEAR VARIATION IN PRESSURE WITH SPECIFIC VOLUME

The approximate, linear relation between pressure p and
specific volume 1/p first suggested by Chaplygin (ref. 6) is
given by

p=a—EB (C1a)

p
from which

== (C1b)

where A and B are arbitrary constants.

If p denotes the static pressure expressed as a ratio of the
stagnation density multiplied by the stagnation speed of
sound squared, Bernoulli’s equation is

‘—ipz;l-qda=0
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which combined with equation (C1lb) integrates to give the
approximate relation between velocity and density

B ¢

2—'p2—§'=CODBt&D.t (02)
For convenience equation (C2) can be written as
1
—_——g*=1
PR q
or
p#=(1+q*z)-—1/2 (13)
where .
p*=kip (13a)
and
¢*=ky (13b)

The constants Z, and %; replace the two arbitrary constants
in equation (C2), and their values are determined so that
for any two arbitrary values of ¢ (designated by ¢, and ¢;)
the values of p given by equation (13) equal the values of p
given by equation (82). Thus the values of p given by
equation (13) for ¢ equal to g, or g, are correct; for all other
values of ¢ the values of p are approximate. The. constants
ky and k, are determined from the conditions

Pa*=k1Pa
q::*=kﬂ¢z
(C3)
Pb*=k1Pb
1b*=kaqb

From equation (13) and the conditions given by equation (C3)

and

1 ( ) -
k= 43 (Paq )
1743
where p, and p, are determined by equation (8a) for the
selected values of ¢, and ¢,, respectively.

The values of g, and ¢, might, for example, be selected to
equal the maximum and minimum values of ¢ (which values
of ¢ must occur on the channel walls and are therefore known).
Also, the values of g, and g, might be selected to equal the
upstream and downstream velocities ¢, and g4. In this case
the upstream and downstream channel widths would then
satisfy continuity for a gas with the correct value of v (1.4,
for example). If the upstream and downstream velocities
are equal, their value and the value of some other velocity
(the maximum or minimum -velocity, for example) can be

selected for ¢, and ¢y; or, if desired, g, can be equal to ¢, in
which case if

(14b)

=¢q-}+¢ where ¢e—0
=q ; )
it can be shown from equations (14a) and (14b) that

(C4a)
and
1
Y s ©h)
2

This latter case, in which g,=g,=¢q, corresponds to the
method used by Chaplygin (ref. 6) and Kérmén-Tsien (ref. 8)

1— (Z“g" in which the correct relation between p &nd%is replaced
34D,
pa‘/ > (142) by a straight line (eq. (Cla)) that is tangent to the correct
e relation at one point (where g,=g¢3).
APPENDIX D
EQUATIONS OF CONTINUITY AND IRROTATIONAL FLUID MOTION IN TERMS OF TRANSFORMED ¢%, Y*-COORDINATES
Consider the two-dimensional irrotational motion of a 0 log, p* do* | Dlog, ¢* do* | 08 dz,b"‘_o
fluid particle in the physical zy-plane. The fluid particle is do* ds ' doF ds 'OYF dn

defined by adjacent streamlines (constant ¢*) and velocity-
potential lines (constant ¢*) spaced én and és apart as indi-
cated in figure 23. The velocity ¢* is parallel to the stream-
lines and normal to the velocity-potential lines.

Continuity.—From continuity considerations of the fluid
particle in figure 23

O/ w ws \_
b—s(p q* én)=0
or

2 log, p* , dlog, ¢* , 1 d(n)

98 | 08 +6n oY) =0

which combined with equation (B2a) becomes

or, from equations (15) and (16) .

? blg% p +blog. '>+__£_0 1)
But, from equation (13) ' . N
1 dlog, p* _ —g** dlog. ¢*
TPt 0t itge o
" 8o that equation (D1) becomes
et =0 D2)
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Finally, if
¢ (18)
Y=
14++1+4¢*
then
| olog. ¢* :
—5t 1 _3log, u (D3)
Nee

so that equation (D2) becomes

blog, +W”" 0

17
Equation (17) is the continuity equation expressed in terms
of ¢*, ¢*-coordinates and log,

Irrotational fluid motion.—For irrotational -motion of
the fluid particle in figure 23

d o
55 (47 88)=0

or

0.log, ¢* J_ 1 o(5s) 0
on &8 On

which combined with equation (B2b) becomes

dlog, ¢* dy* 20 do*
oYf dn  Op* ds

or, from equations (13), (15), and (16)

0

1 dlog ¢* 08

W a‘p* a¢t_‘0 ®4)
Finally, from equations (D3) and (D4)
0 log, 00
e 2y =

Equation (20) is the equation for irrotational fluid motion
expressed in terms of ¢*, y*-coordinates and log, u

APPENDIX E

INTEGRAL EQUATION FOR 6(®.,¥,)

If the distribution of the angle 8(®,¥) in the transformed
$¥-plane is harmonic, that is, satisfies equation (45) within

and on the channel walls (\I' equals 0 and > then from

Green s theorem and the theorem of mean value it can be
shown that the value of 0 at & point (<I’,,, ) within (or on)
the channel walls is given by (ref. 9, p. 204, for example)

%[f_:(ag—a—aﬁ do—
f‘”( 081 a2 d@] 1)

where the two integrals on the right side of equation (EI)
represent the line integral around the channel walls in the
counterclockwise direction with the signs adjusted so that

D?If represents the inner normal to the path of integration.

The function G($,¥) in equatlon (E1) is of the form
(ref. 9, p. 204)

0 (o, \I'o) =

G(i’:\I’).=loge ;+ [} (@:\I’) (E2)

.

where r is the distance from any point (®,%¥) to the point
(®,,%,) and where w(®,¥) is an arbitrary function that is
harmonic within and on the channel walls. (Thus from
equation (B2), G(®,¥) is harmonic within and on the channel
walls except at the point (®,,%,) where a logarithmic singu-
larity exists.) Because the harmonic function «(®,¥) is
arbitrary, the function G(®,7) can be selected so that along

the channel-wall boundaries (\I' equals 0 and %) g—g is & con-

stant ¢ given by the following equation (obtained from notes
presented by Tamarkin and Feller in the 1941 Summer
Session for Advanced Instruction and Research in Mechanics

at Brown Univ.):

=2 (E3)

where [ is the length 6f the path along which the line integral
is taken. For the path under consideration [ is infinite and

therefore G(3,¥) can be selected so that %

channel walls. A function with this property is a Green’s
function of the second kind. Equation (E1) becomes

I e [oJ 2
0(‘1’0, ‘I’o)=ﬂ f_m [(G ﬁ)};—(g ﬁ 0] dd
f 2 .
or, combined with equation (432)

8(., ~If,)=—;—71 f_: [(G 0 log. V) (G o log, V) ] d® (46)

Along the channel walls 91;247
velocity distribution so that, after the proper Green’s func-
tion. @ has been determined (appendix F), equation (46) de-
termines the value of 8 at any point (®,,%,). The value of
6(®,,%¥,) given by equation (46) can be adjusted by an arbi-
trary constant of integration to give a specified value of 0 at
one point in the flow field.

is zero along the

is known from the prescribed
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APPENDIX F

GREEN’S FUNCTION OF SECOND KIND

From appendix E Green’s function of the second kind G
satisfies the condition

0@
ET

along the channel walls, which are straight and parallel
boundaries (\I' equals 0 and %) extending to + «'in the &-

direction, and satisfies the equation

'@ |, 9%GQ
% Tor 0

everywhere in the channel except at the point (®,%,)
where @ has a logarithmic pole. For these conditions the
Green’s function @ can be obtained by analogy from the
velocity potential for incompressible flow into a point sink at
(®,,7,) between straight parallel boundaries at ¥ equal to 0

and =- The logarithmic pole for @ at (&,,%,) corresponds
2

to the pbint sink, and the condition g—g=0 at the boundaries

corresponds to zero velocity, that is, no flow normal to the
boundaries.

The velocity potential for fluid flow with the boundary
conditions just described is obtained from two infinite
series of point sinks with the sinks of each series spaced =
distance apart in the ¥-direction.and the two series arranged
by the method of images in such & manner that no flow crosses
the boundaries, that is, %qu=0' This arrangement of point
sinks is shown in figure 24.

Thé complex function w; for the first infinite series of
point'sinks is given by (ref. 10, p. 112, for example)

wy=—log, sinh (z—z2,) (Fla)

(F1b)

The complex function wy for the second infinite series of

where
=0+ 1¥

point sinks (mirror image of the first series in order to prevent

flow across the boundaries ¥ equals 0 and %) isgiven by

'w2=_19ge sinh (2—%,) (F2a)

(¥2b)

The complex function w for the combined flow becomes from
equations (Fla) to (F2b) ’

where
Z=0—1¥

w=wy-ws=—log, sinh [(B—&,)+i(¥—¥,)]—

log, sinh {(2—&,)+i(¥+¥,)] (F8)

Point sinks given by
iv o w *-loge sinh[(@-&) + H¥-%)]
o wp *-log, sinh [(d)—d).,) + i(‘¥+‘¥o)]

T
) /2
ASAANNRAARRNNANNRER MMM
y
I,{
Channel wolls--(i L -
) el B
. ¥,
\ & l @-d)
T T TR
-3,
R S N
-w/2

i

F16URrE 24.—T'wo infinite series of point sinks required in the development of Green’s function
of the second kind G.

The Green’s function of the second kind & corresponds to
the velocity potential for the incompressible flow and is there-
fore given by the real part of equation (¥3)

G— _% log, [cosh? (@—&,)—cos? (T—¥,)][cosh? (& —&;)—

cos® (T 41, @4)
But along the channel walls ¥ is equal to 0 or% so that
cos? (¥+¥,)=cos? (;If—\I'a)
and equation (F4) becomes
Goor§=—log, [cosh? (B—®,)—cos? (T —¥F,)]  (47)

Equation (47) gives the Green’s function of the second kind
along the channel walls (straight parallel lines of constant ¥

equal to 0 and % and extending to + « in the $-direction).
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APPENDIX G

EVALUATION OF « AND 8

Several techniques, depending on the magnitude of the
upper limit [(®—&,)|, were used to evaluate the integrals
a and B given by equations (50d) and (50e).
18 treated separately in this appendix, and the values of
(®—®,) for the upper limit [(®#—,)] are considered positive.
For negative values of (#—®,) the magnitudes of I (that
is, of @ or B) are equal for corresponding values of |(®3—®,)|
but opposite in sign. As a result the values of Al have the

same sign.
INTEGRAL «

Smell and medium values of ($-——&,).—For small and
medium values of the upper limit of integration (®—%,)
in equa.t.ion (50d), that is, for 0<(®—&,) <60x/24, the
integral « is evaluated by Simpson’s one-third rule using
increments of (#—&,) equal to #/48.

Large values of {&—&,).—For large values of (—3&,),
that is, for (®—®;)>60x/24, the integrand in equa-
tion (50d) becomes

log, cosh (P—&,) =~ (2—&,)—log, 2

so that equation (50d) becomes
60x /24 '
s f log, cosh (@—;) d(@—a)-+

(-2,
f (@—2)—log, 2] d@~%)

60T /34

ss2‘5.809782+[@——;’°)—3—0.693147(@- o)-—25.398552]

w0.411230—0.693147(¢—¢o)+% @—o) (G2)
Equation (G2) gives values of « for values of (@—&,)
equal to or greater than 60x/24. Values of the integral « are
tabulated in table VII for a range of [(®—®&,)| between 0
and 100x/24 in increments of #/24. For negative values
of (#—®,) the sign of « is negative.

INTEGRAL 8

Small values: of (®—&,).—For (@—®,) equal to zero the
integrand of equation (50e) becomes infinite so that Simpson’s
one-third rule cannot be used to evaluate 8 in this region of
(®—%,), as was ‘done for «. However, equation (50e)
integrates by parts to give

Each integral®

(G1)

fo 7 1og, sinh (B —8,) d@—B,)=(@—&,) log, sinh (&—&.)—
57 @—a oton @—2) d@—2) (@)

where the integrand (2—®,) ctnh (®—&,) on the right side
of equation (G3) can be expanded in the following series form:

_ - o V— 22-B1 (‘1"—¢o)2 24-B3 (‘I""‘I’O)Al
(¢ Qo) Ctnh (é éo)— 1 + 2! - 4! +
2°B5(d—3,)° 2°B,(®—%,)° +2‘°Bg(¢>—<1>a)‘°_
61 81 101 o
12 — 12
2Bu@—), . (@)

121

where B;, B;, and so forth, are Bernoulli’s numbers (ref. 11,
p- 90, for example). From equations (G3) and (G4)

B=@—a,) log, sinh (&—&,)— @—)— 22 | @20

f 9 T 225
R & 1 13
2@—2)  @—%,)° 2@—&)" , 1382(@—3, .. (G5)

6615 ' 42,525 1,029, 105 8,300,667,375

Equation (G5) was used to obtain g as a function of (d—®,)
for 0L (@—&,) <8x/24.

Medium values of (#—&,).—For medium values of the
upper limit of integration ($—&,) in equation (50e), that is,
for 87/24<(®—&,) <60x/24, the integral B is evaluated by
Simpson’s one-third rule as was done for .

Large values of (& —®,).—Forlarge values of (3—&,), that
is, for (®—®,)>60x/24, the integrand in equation (50e)
becomes

lOg‘ sinh (‘§+‘I>a) = (i_q’o) —log, 2
so that equation (50e) becomes

B= fm'm log. sinh (‘p_‘I’o) d(‘I’—‘I)o)-I—

f O (@ —)—log, 2] d (@—a,)
60x/24
&)

(G6)

=24, 576082+[(§’ 0.693147(<I>—<I>o)——25.398552:|

=—0.822470—0.693 147(@-4’0)-]-% (®—®,)* (cY))
Equation (G7) gives values of 8 for values of (®—®,) equal to
or greater than 60=/24. Values of the integral g are tabulated
in table VII for a range of |(2—®,)| between 0 and 100#/24
in increments of «/24. For negative values of (2—%&,), the
31gn of B changes.

APPENDIX H
CHANNEL TURNING ANGLE

If the prescribed velocity distribution along one channel
wall differs from the distribution along the other wall, then
in general the channel deflects an amount A6, which is the
difference in flow direction far downstream and far upstream

of the region in which the prescnbed velocity distribution
varies. Thus,

AO=0;—0, (H1)
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For large values of |(@—®,)| such as occur far upstream
and far downstream of the region in which the prescribed
velocity varies along the channel walls

cosh? (d—&,)>> cos? (T—T,)
80 that from equation (47)
/
| Go=Ge=—2(|@—3)| —log, 2] H)

Far upstream #,<® so that

[(@—,)|=(@—2,)
and because V is harmonic

f I:blog, blog.V)ﬂ'_'quJ 0

go that equation (H2) substituted into equation (46) gives
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Likewise, far downstream &,>® so that
l (‘I)_'}o) l = (Q_(I’o)

and equation (H2) substituted into equation (46) gives

f="" f_:«p € g, V)f 9 log, V);ldq: (H1)

From equations (H1), (H3), and (H4)

2 o[ CHEY), 2T ] o

Equation (H5) determines the channel turning angle A4.
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TABLE I—DISTRIBUTION OF VELOCITY Q AND FLOW DIRECTION ¢ IN TRANSFORMED «-PLANE FOR EXAMPLE III

(ELBOW WITH INCOMPRESSIBLE FLOW)
[Prescribed variation in Q with arc length & along channel walls plotted in fig. 2; Q,=0.5, OJ-I,D, Afm=80.36°]

1.000

N R S RN R Ry R 28RS AN S SRR NSNS RVRBEEES
mmmn%ma&%um&umumm%mmwmwwmmnmmwmmwwmwwwwwmm
PR i e r e T T T e et et e e e it

0.750

0.625

BRUVVTIRSRYBERYIEY
%%wmnnnmuummmmmm%m

—88. 53
—80.40
—89.45
—89.43
—88.41
—89.39
—808. 38
—89.38
—89.37
—89.87
—89.37
—80.37
—80.36

—11.09
—13.88
—-17.20
—20.74
—24.56
~28.62
—32.90
—37.87
6415 | —42.01
—46.78
—51.68

0.500

5000
5000
5000
5001
5001
5002
5003
5005
5007
5011
. 5016
5023
5034
5050
5072
5103
. 5145
5200
6289
5351
544
5544
5647
5751
5852
6949
6041
6126
6204
6278
6347
6438
8569
6671
6805
677
7188
743
7680
743
8205
8460
8700
8923
9125
9305
9462
9598
9705
0792
o857
0004
0935
0957
9971
. 9881
9987
0092
9095
9996
0968
0999
8999
38 0000

IARER2EH
mm%mm&mﬂ%mumummmmm&uammmammmwmmmwmmmmmmmw
HEER

88c2588258= 20t eaERREs
I

0.250

.mwnwmmnwmmummmmnmnwwmmunmamwmwumwmmmuumm
SR %%aam%nnmmm&&ammmmmummmmm%mmmm%mm

00
ol
02
3
04
07
10
H
21
30
45|
65
91
20
64
73
1.33
.33

P I R A ) -

0.125

3258838832 RIBBIIATI22E
O R i1 g

0
—3.76
—-7.18

CLEEEEELE ERRE B R E R BB R p e R

3538838888883 BREARB LS T ERERASRS YR8 BLIRIEIRR NI IBINANARNITLRS
MR 4k a s o R Ak A AR e

l

P R e

rrrr s r e e * A L e lale il la e Ll Lo L Lo T PR PR PR PR PR P B

ERS SRESTREESRRRORES5RERER SRR ER DT RE R T Tt ggReE

.ﬂ RN _. e * ]LLLLLLliZZZlZZl&&&&&&&&LLiLLLLL&&&&

—2.000
—L875
~L7%0
—1.625
~L 500
-1.375
—L 250
-1.125
000
875
750
625
250




DESIGN OF TWO-DIMENSIONAL CHANNELS WITH PRESCRIBED VELOCITY DISTRIBUTIONS ALONG CHANNEL WALLS 185

Tt et v g gt e el et 9l rrrn

L EEEEEET i R R DL L L L P P L LR LT e E L
TN R TR T T T

5
|| eRENERERERENERENIEIRSASEE N ANR AR e R RATANaNERRR A ERARANARARAAARY
" e e R b b L e e R e RS R
| aEretesenesssRRrARaL258983Rn88AaRL T aRNa2S NP NERERIRERETERAE"
P L S R e T T St L e SR Bt
S || seeageeaznes L EEL L ELE PR,
ﬂ%ﬁﬁﬂﬂd DR R R R R R R R e P R R R R R R B

R e R e LR e e e e N S RS e e RS e
e , T TR S PRI I TT T
S| . |ercazneseresznansaseeansRassanaIEeER225020a0E0REEREI08885223ys

ﬁ%%%ﬂﬂﬂﬂ%LLL_ﬁﬂ_ e e e T e o e P F o e P T PR R R R B B R R R R R J0 L B R B P P R P R R B

. | 3979898898577 94 RS2 26 20nNAI80902092982R 0080280 CERIRRARTNRAEY
| - | SRS e i L
| | erescneneacsyse EsRaRaTaE S8R a1 8305052883 85008588Sa0 02288

&&&2121LLLL_ﬂﬁm. Gl AAd NN NGBS GGl dd bl Gl e dmdededodod

mmmmmmmmmmmmmmmmmmmmmmmmu R R R E PR RE SRR EE R B EREEERE

............... T LT TIT T TT FTT [Tt At GG A S e e T 3117 1 115

g
° |, | sreAereseRIREREqEReERREEREtsSaS 85 ER 200 SRR L BRRERRREERARRREEES
L LD e KR el ol o ol of od e e o o o o o 6 o o o 0 o o0 5 5 o o 0 e o o 5o o8 0 0 o o o 05 0
. | #%%eReteERETRRE3RARRAINAYR0EYIREECAEE NN ASERS 0 R0ERERRATRRELS
1

mﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁm..ﬁﬁﬁ_ﬁﬁﬂﬁﬂﬁﬁﬁﬁﬁﬁﬁaqﬂﬂq4444444444&&&&&&&%%%%4%%4&

0.375

RN SO I PR R R BRI PRI R SRR EPE MR ER R REPEE B b PRI
FEETIYITT

ekt I e e L e e L e L L e e e e e e e e e e B R e T

WITH INCOMPRESSIBLE FLOW)

0.250

[Prescribed variation in @ with arc length s along channel walls plotted in fig, 2; Q,m0.5, Qg==1.0, A0=89.36°]
z

0.125

ﬂ%%ﬂ%ﬁﬁm_ ...... LL....2221122211&&1&&1&&&&&&&&&&&&&&&&&&&&&&

. | BRENERCNERERBRYREIRRS NCRR83Y5RREEY mmwmmmmmmmmmmmmmmmmmmmmmmmmm
%%ﬁ%ﬂﬂﬂd%%%%_ﬁﬂ_ ...... LllL12211111131&&&3&&&&&3&&&&&&&&&&&&&&&&&&&‘

LR RS S S R HE PIREE R bR R EERE R R R R R R
LR I O N B O O I O O B i e S L b e i i i i

. | BRENE RN R RER oS 2R SR A e R RS ARy REE I NERCRTSRNRA22882293033888
ﬂﬂ%%ﬂﬂﬂﬂﬂ%%%ﬁﬁﬁﬁ. ..LlLL11ZZZ1221&&&&&&&&&&&3&&&&&&&&&&&&&&&&&&&

N T e I L P LT E  FLr L ErCrCITTTLIEELEEELEED
ﬂﬂﬁﬂﬁﬁﬁ_ﬁﬁﬁﬁ_ﬁﬂﬁﬁﬂﬁﬁﬂﬁﬁﬁﬂﬁﬂﬂﬂ%dﬂﬂ%%%ﬂ%ﬂ1114dﬂﬂﬂﬂﬁ AEAREARRRRRRRN

. | BEENERERERERERERRER 208 0EE833887 08222385 =0NRRR2RECRRRARARREANRE
A

TABLE II—DISTRIBUTION OF PHYSICAL COORDINATES z AND y IN TRANSFORMED ¢-PLANE FOR EXAMPLE IIT (ELBOW

821690—85——18



186

REPORT 1115—NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TABLE III—DISTRIBUTION OF VELOCITY ¢ AND FLOW DIRECTION § IN TRANSFORMED ¢**-PLANE
FOR EXAMPLE IV (ELBOW WITH LINEARIZED COMPRESSIBLE FLOW)

[Prescribed variation in Q with arc length s along channel wallg plotted in fig. 2; Qu=0.5, Qi=1.0, gs=0.80176, A¢*=0.73782, A9=104.07°]

% ¥ ¥4 38 56 1.0
[ q a q ;) q 8 q [ q [ q ]
0. 4009 0 0.4009 0 0. 4009 0 0. 4009 0 0. 4009 0. 4009
.01 L4009 .01 . 4009 .00 4009 .00 . 4009 .c0 .4000 —.01 . 4000 -.01
.01 4009 . .0L .4010 .01 .4010 .00 .4010 —.01 .4009 -.01 . 4009 —-.01
.03 .4010 .02 .4010 .01 .4010 .00 .4010 =.0l .4010 —.02 .4000 -.02
.03 .4010 .03 .4011 .01 .4011 .00 .4011 —.01 .4010 —.02 .4000 -3
.03 .4011 04 4012 .02 .4013 .00 .4012 -—.02 .4011 —.04 L4000 —.056
.08 4012 .07 .4015 .04 .4015 .00 .4014 —.04 .4012 —.07 . 4009 -
4 .4015 .12 .4019 .07 . 4020 .00 .4018 -.07 L4014 - 11 . 4009 - 13
24 .4019 .20 L4025 A1 .4027 -.01 L4024 -1 .4017 —.18 . 4009 -.21
.40 . 4026 .33, . 4037 .17 .4039 —.03 . 4033 —-.20 L4022 —.31 .4000 -
.70 .4041 .57 . 4057 7 . 4059 —.05 L4048 -3 .4030 —. 50 .4009 -, 50
131 .4070 .96 .4093 .36 .4000 —-.17 .4071 —.58 4042 —.84 .4009 -0
282 L4141 149 . 4155 .43 .4139 —.40 L4104 —.99 .4058 —-1.34 .4009 ~1,43
3.88 .4268 L77 . 4251 .24 4207 —-.87 . 4148 —~1.63 .4080 —2.07 .4009 —-2.22
4.00 L4444 1.46 4377, —.38 . 4205 -~1.70 .4202 —2.50 .4106 -3. . 4009 -3.28
3.17 L4654 .50 .4528 —1.49 .4398 —2.92 . 4285 —3.90 .4135 —4.48 4009 —4,05
L4 .4882 - =117 . 4689 —3.16 . 4508 —4.62 .4333 —5.63 .4167 —6.21 . 4009 —6.41
—.08 . 5118 —3.43 . 4857 —5.34 .4621 —6.76 . 4403 —7.75 . 4200 —8.33 ', 4000 —8.52
—4.00 . 5362 —6.23 . 5024 —8.01 4734 —9.35 L4472 —10.20 .4233 —10.85 4000 —=11,04
—7.48 . 5578 —9.48 . 5186 —=11.10 L4844 —12.34 .4539 —-13.22 .4262 —13.74 . 4000 ~13.01
—1L.35 .5783 —13.12 . 5340 —14. 57 4047 —15.70 .4601 —16.49 .4201 —16.97 .4009 ~17.13
—15.5 . 5904 —17.09 . 5482 —18.37 . 5043 —19.38 L4659 —20.09 .4317 —20.52 .4009 —20.0
—19.96 .6178 —21.33 . 5613 —22.46 . 5181 —23.34 .4712 —23.98 . 4341 —24,37 4000 —24.40
—24,02 . 6346 —25. 80 . 5732 —28.79 . 5210 —27.56 4759 -28, .4362 —~28.46 .4009 —28,
—29.46 . 6498 —30. 47 . 5837 —31.32 . 5281 —32.00 .4801 —32.49 . 4381 —32.70 .4009 —~32
—34.45 . 6629 —35.31 . 5831 —36.03 . 543 —36.62 .4838 —37.05 .4308 —37.31 4009 —~37.40
—30.56 6744 —40.27 .6013 —40.89 . 5398 —41.39 L4872 —41.77 L4413 L4009
—44.78 .6842 - —45.34 . 6084 —45.86 . 5447 —46.30 L4902 —46.64 L4427 —46.85 . 4009 —46.93
—50.02 . 6021 —50.47 . 6146 —50.90 5492 —51.30 .4931 51,63 . 4440 —51.85 4000 —51.03
—85.27 . 0991 —55. 61 . 6202 —55.98 . 5837 —58.38 . 4961 —50.72 . 4456 —58.98 4009 ~57.08
—60.49 . T045 —60.72 . 6257 —6L.08 . 5588 —61.47 .4999 —6L.91 4477 —62.28 4000 —62.44
—05. 55 . 7091 —65 . 6315 —66.03 . 5647 —66.53 . 5055 —67.13 . 4515 —67.79 4009 —08.16
—70.32 .7185 —70.45 . 6385 —70.85 . 5780 —7L.49 . 5142 —~72.37 . 4508 —73.46 .4072 —~74.80
—74.81 . 7188 —74 G471 —75.43 . 5840 —76.22 . 5272 —77.88 4745 —78.01 4243 —81.03
—78.97 745 —7.15 .857:3 |- —T78.68 . 5978 —80. 59 . 5441 —81. 63 .4048 —~83.79 4489 —~86,33
—82.82 yzipt —83.01 . 6690 —83.59 .6138 —84, 57 . 5641 ~—88.02 . 5190 —88.01 .4780 ~—90. 09
—88. . 7381 ~88.48 .6816 -87.07 .6313 —88. . 5860 -89, 55 . 5485 —91. 85 5094 —04,10
28/8 | —84.37 L7482 —89. 56 . 647 —90.16 -6104 —oL 14 . 6089 —92.57 .5720 —04.48 5416 ~00, 03
26 . 8018 —02.07 . 7523 ~92.25 LT077 —02 81 . 8676 —93.75 . 6318 —95.10 . 6002 —08.88 . 6732 —08,11
28/ .8018 —04.40 . 7691 —04. 57 . 7203 —95.09 . 6852 —95.97 . 8540 —g7.21 . 6268 —08.83 . 6038 —100.83
20/8 . 8018 —06.39 . 7654 —96. 54 L7331 —97.02 . 7020 —07.82 .6753 —08. 64 L6522 —100.39 . 6329 -~102.17
30/8 .8018 -—£88.05 .73 —08.20 . 7432 —08. 62 .77 -—09, . 6952 —100. . 6769 —10L.63 . 6003 ~103,19
31/6 L8018 —99.44 L7166 —99.58 .7532 —99.94 .7321 —100. 58 . 7135 —101.48 . ~102, 59 . 0856 -103,
32/8 . 8018 ~—100. 58 . 7813 —100, 67 L7623 —10L.0L L7451 —101. 56 . 7301 —102. L7178 —103.3] . 7088 —104.49
33/8 . 8018 —101.47 . 7855 —10L. 57 L7702 —10L . 7566 —102.33 - 7449 —102,99 . ~103. 7293 ~104.
34/8 .8018 —102.18 . 7890 —102.28 .72 —102. 51 . 7667 —102.01 . 7680 —103.47 . 7615 —104.18 4T —105.03
346 8018 —102.73 2L —102.80 . 7831 —103.00 LTIS3 —103.34 . 7691 —103.80 . 7851 —104.30 . 7638 ~105.10
36/6 . 8018 —103. 14 . 7946 ~103.20 . 7880 —103.37 . 7825 ~—103. 84 . 7785 —104.01 .TI64 -104.48 . 7769 —108.
37/8 . 8018 —103.45 . 7566 —103.49 7920 —103. 62 . 7883 —103.83 . 7860 10412 . 7855 —104.49 . 7876 —104.01
38/8 .8018 —103. 66 . 7082 —103. 69 . 7850 —103.79 L7027 ~103.95 . 7017 ~104.16 .7923 —104.42 . 7053 -~104.71
39/6 .8018 —103.81 .7T004 —103.83 . 7973 —103. 90 ..7960 —104.02 . 7957 —104.16 . 7968 —104.33 . 8001 —104. 49
40/8 . 8018 —103.90 . 5002 —103.92 . 7089 —103.97 . 7882 —104.05 . 7082 —104.14 . 7993 —104.23 . 8018 ~104.
41/8 .8018 —103. 987 . 5008 —103.98 . 8000 —104.01 . 7096 —104.08 . 7097 —104.11 . 8004 —104.16 . 8018 —104.18
42/6 . 8018 —104.00 . 8011 —104.01 . 8008 —104.03 . 8004 —104.08 . 8005 —104.09 .8010 —104.12 .8018 —=104.1
43/8 . 8018 —104.03 . 8014 —104.03 . 8011 —104.056 . 8009 —104.08 . 8010 —104.08 . 8013 —104.10 .8018 —104.10
44/6 . 8018 —104.04 . 8016 —104.03 .5013 —104.05 .8013 —104.08 . 8018 —~104. 08 .8015 —104.08 . 8018 —104.09
45/6 . 8018 —104.05 . 8016 —104.05 . 8015 —104.06 .8015 —104.07 . 8015 —104.07 . 8016 —104.08 .8018 —104.08
46/8 .8018 —104.08 8017 —104.08 .8018 —104.08 . 8016 —104.07 . 8016 —104.07 . 8017 ~104.07 . 8018 —104.07
47/6 .5018 —104.08 L8017 —104.08 8017 —104 08 ; 8018 -104.07 .8017 —104.07 L8017 —104.07 .8018 —104.07
48/8 . 8018 —104.06 8017 —104.08 .8017 —104.06 L8017 —104.07 L8017 —104.07 8017 —104.07 .8018 ~104,07
49/6 . 8018 —104.08 . 8017 —104.06 8017 —104.06 .8017 ~104. 07 . 8017 ~104.07 . 8017 —104. .8018 —104.07
50/6 . 8018 —104.08 .8018 —104. 08 -8018 —104.06 . —104.07 . 8018 —104.07 L8018 + | —104.07 .8018 ~104.07
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TABLE IV—DISTRIBUTION OF PHYSBICAL COORDINATES z AND y IN TRANSFORMED ¢**PLANE FOR EXAMPLE IV

(ELBOW WITH LINERARIZED COMPRESSIBLE FLOW)
[Prescribed variation in Q with arclength s along channel walls plotted in fig, 3; Qu=0.5, Qz=1.0, Qu=0.80176, Ay *=0.73782, AG=104.07°]
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TABLE V—DISTRIBUTION OF VELOCITY g AND FLOW DIRECTION ¢ IN TRANSFORMED #—PLANE FOR EXAMPLE V (ELBOW
WITH COMPRESSIBLE FLOW (y=1.4)) .

[Prescribed variation In Q with arc length s along channel walls plotted in fig. 2; Qa=0.5, Qu=1.0, ga=0.79927, Ay=0.71054, AJ=r105.31°]

¥ 0 % ¥ ¥ ) 3 5 10
Ay
2

ay [§ [} q 8 q [ q [ g [ 4 (] q [

—12/8 0.3998 0 0. 3998 0 Q. 3998 0 0. 3998 0 0. 3996 0 0.3006 0 0. 3908 0
—=11/8 . 3996 .00 .3097 .00 .00 .3097 .00 .00 .3997 .00 . 3090 .00
-10/8 . 3996 .0 .3097 .01 3007 .00 . 3997 -00 3097 .00 . 3097 -.01 . 3006 -.01
—9/6 .3098 .01 .3997 .0L . 3007 .01 3997 .00 3997 —.01 3997 —. a1 . 3990 -0l
—8/8 . 3006 .02 3997 .2 .3988 .01 .3998 .00 . 3098 —. 0L 3997 —.02 . 3998 —-.03
(1] .3998 .03 3998 .03 .3909 .02 .3009 .00 3998 —-.02 . 3008 —. 03 . 3996 - 03
—6/6 . 3908 .05 .3008 .04 . 4000 .03 . 4000 .00 4000 —.03 .3908 —~.04 . 3096 —.05
—5/6 . 3906 .09 . 4000 .08 .4002 .04 . 4003 .00 4002 —. 04 4000 —.07 . 3008 —.08
—4/6 . 3900 .15 .4002 .13 . 4008 .07 .4008 .00 . 4000 —-.07 .4002 ~.13 . 3098 —-.14
-3/8 . 3096 .25 4007 .22 4014 .12 .4015 —. 0L .4012 —.12 .4005 —-20 . 3096 - 23
—2/6 . 3906 .43 4018 .38 . 4028 .18 .4028 —.03 -4022 —-.22 .4011 -3 . 3008 —-.38
—1/6 .3996 .77 4030 .62 . 4047 .30 4049 —.08 .4038 —.38 .4019 —. 56 . 3990 —.02
0 . 3008 1.45 . 4082 1.06 .4088 .39 .4083 —.19 . 4062 —. 04 .4031 —-.92 . 3008 ~1.02
1/8 . 4088 313 4137 1.64 .4152 .46 4134 —.45 .4097 ~1.09 L4049 —1.48 . 3990 —1.01
26 . 4.28 <4275 . 1.63 . 4255 .24 —.98 4144 -1.81 .4072 —2.30 . 3008 —~2.40

38 ~A519 4.31 4464 1.5¢ .4389 — 4300 —-1.92 . 4202 —2.89 . 4099 —3.46 . 3000 -3
3/6 E 3.28 .4887 .40 457 ~L74 . 4408 —3.30 .4268 —4.35 L4131 —4,97 . 3096 ~6,17
5/6 .5162 121 .4928 -L5 4719 —3.64 4524 =521 .4340 -—6.20 4164 —06.92 . 3000 —-7.13
6/6 . 5499 ~1.61 L5175 —4.11 L4805 ~6.10 4643 —7.61 .4413 —8.66 4108 —9.28 . 3990 -—0,49
/8 . 5828 —5.05 5119 —7.7 . 5069 —9.09 .4762 —10.50 .4485 —11.49 4231 —12.08 . 3090 —-12.28
8/ . 6l44 —8.99 . 5652 —10.92 . 5236 —12.85 . —13.82 4654 —14.74 4263 —15.20 . 3990 —15.47

9/6 6441 ~13.32 . 5871 —14.98 5393 —16.40 4981 —17.84 -4618 —18.37 —18.80 . 3008 —19
10/6 .6n7 —17.98 . 6074 —19.38 . 5538 —20. 61 . 5078 -21.61 4677 —22. 4319 —22.79 . 3098 —22.01
11/8 . 6970 —~22.89 . 6258 —24.06 . 5869 —25.12 . 5168 —25. 98 4730 —26.02 4343 —27.02 3996 —27.16
12/8 797 —28.02 .6424 —28.98 . 5788 —20.87 . —30. 62 477 —3L.18 4384 —31.62 3080 —31.63
13/8 7399 —33.31 . 8569 —34.00 . 5889 —34.84 . 5314 —35.48 .4818 —35. .4383 —36.28 . 3996 —30.36
4/8 7573 —38.74 . 6698 —39.35 . 5978 —30.98 . 5375 —40. 52 .4855 —40.04 .4400 —41.20 . 3008 —41.30
15/6 L7719 —44.28 . 6803 —44.74 . 6056 —45.25 . 5428 —46.72 .4888 —486.09 4415 —48,33 . 3090 —46.41

. T838 —49.84 . 6891 —50.20 6123 —50. 62 . 5178 —51.03 .4918 —51.37 4420 —b51. 61 . 3000 ~51
17/8 L7022 —5544 . 6963 —55.70 6183 —568.04 5522 —56.43 K —56.80 . —~57 3000 —67.18
7975 —060.96 . 7019 —61.13 6238 —6L.44 . 5573 —61.85 .4990 —62.30 .4468 —62.69 . 3080 ~02. 80

19/8 7903 —68.35 . —06.45 6297 —66.78 . 5635 —67.25 . 5047 —67.87 4507 —08. 57 —68.
7993 —71.43 L7110 —71.83 6367 —~TL.88 5720 —72.51 38 —78.42 .4505 —T4. 4000 —70.09

21/6 —76.1¢ L7163 —76.31 8456 —76.73 . 5835 —=T77.50 6274 —78.69 .4753 —80. —82,
. 7983 —80. 67 .T224 —80. 80 . 8562 —8L.27 . 5979 —82.14 . 5163 —83.48 . 4009 —85.45 .45619 —88.20
23/8 .7083 —84.69 . —81.83 . —85.33 . 6145 —88.27 —87.72 . 5226 —89.70 4 —02,02
2418 7003 —83.32 . —88.47 .68816 —88.97 .6327 —89.92 —91,38 . 5603 —03.41 5162 —08,11
25/8 . 7083 —~91. 55 7442 —01. 69 . —02.17 . 65168 —03.08 6129 —04, 41 - 75789 —06.29 . 5409 —~08.76
7993 —04,33 .7516 —94.48 7087 —04.90 . 6705 —95.72 —08. . 6073 —08. 05 . —100.82
27/8 7903 —086.70 . 7587 —04.81 7219 —97.21 . 6388 —07.94 6597 —09.04 6347 —100. 52 .6144 —102.30
28/8 .7083 ~08.68 . 7653 —038.78 .T342 —00.14 . 7062 —09.77 . 8815 —100.72 . 6807 —101.69 6441 —103, 57
29/6 . 7093 —100.31 L7714 —100. 40 7456 —100.71 T3 —101.25 7019 —102.08 . 6849 ~103.13 L0717 —104.46
30/8 . 7093 —10L. 84 7789 —10L.72 . 7559 —10L.97 e —102.43 - 7206 —103.10 . 7070 —103.99 . 6070 -105.07
31/8 . 7003 —102. 63 L7817 —102.78 . 7651 —102.97 7502 —103.34 .33 —103. 89 L7270 —104. 61 .07 —105,49
32/6 .3 —103.48 .'7858 =103.54 [ .7781 —103.72 L1617 —104.03 . 7520 —104.47 7446 —105. 05 . 7309 ~108, 78
338 7003 ~104.09 7883 —104.14 . 7800 —104.28 L7718 —104. 53 . T648 —104. 88 . 7509 —105, 33 7573 —106. 87
34/6 7003 —104 63 . —104. 58 . 7858 —104 67 L7799 —104.87 LTI5L —105.14 —105.49 L7190 ~105. 80
35/6 . 7993 —104. 83 . 7915 —10L.88 . 7901 —104.95 7865 —105. 09 —105.29 7828 —105. 64 . —108, 84
36/8 7003 —105. 04 . —105.05 T935 —105. 11 .T014 —106.21 7003 —105.36 T904 —105. 52 . —105.71

37/6 93 —105.16 7078 —105.17 | _.795 —105.21 . 7048 —105.28 -T945 —105. 36 7053 —105.46 . 076 —105.
38/8 . 7093 —105. 22 7983 —105. 24 . 7074 —105. 26 . 7689 —106.30 . 7070 —105.34 7977 —105. 39 7093 —106. 41
39/8 7093 —105.28 . —105.27 7983 -105.28 . 7981 —105. 31 7982 —106.33 7988 —106. 356 . 7003 --105. 38
40/8 . 7093 —105. 29 L7090 —105. 20 7088 —105.30 . 7087 —105.31 7987 —105.32 . —103. 83 7003 —105.33

41/6 7093 —105.30 7991 -105.30 . 7000 —105.30 . 7990 —105. 31 7990 —105.31 7001 —105.32 7003 —105.
42/8 . 7098 —1085. 31 .7092 —105.31 7902 —105.3L L7901 —105.3L . 7092 —105.31 —105.31 7993 —106.31
43/8 . 7093 —105.31 7903 —105.31 . 7092 —105.31 [« .7092 —105. 31 7992 —103.31 7003 —}05. 31 7003 —106,31
44/6 7903 —106.31 . 7993 ~-105.31 7983 —105.31 . 7993 —105.31 7993 —105.31 7003 —105,31 7003 —1056,31
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WITH COMPRESSIBLE FLOW (y=1.4))
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[Prescribed varlation in Q with arc Iength s along channel walls plotted in fig. 2; Qum0.5, Og=1.0, 24:=0.79027, Ay =0.71054, A§=105,31°]
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TABLE VI—DISTRIBUTION OF PHYSICAL COORDINATES z AND y IN TRANSFORMED ¢¢-PLANE FOR EXAMPLE V (ELBOW
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TABLE VII—TABULATED VALUES OF THE INTEGRALS « AND g FOR A RANGE OF |[(2—&.)
[Computational methods given {n appendix GJ] -

. Al=Aa Al=AS
[@—2al atd BW
Awx Anx A Asf
(A= x[24) (ADw=2x/24) (A%mx/24) (A% =2x/24)
0 0 0
0. 000373 —0. 396937
1(x/24) . 000373 0. 002970 —. 390837 —0. 611660
. 002597 —. 214728
- 2x/24) . 002070 —. 611860
. 006972 . —. 144748
3(x/34) 009942 . 020331 —. 756408 —. 242791
. 013359 —. 008045
4(=x/20) . 023301 —. 854451
. 021574 —. 062035
5(x/20) 044875 . 052078 —. 016488 —. 084070
031402 —. 032044
8(x/24) 076277 —. 948530
. 042620 —. 005816 .
7(=x{24) . 118867 . 097632 —. 934346 . 012002
055012 017908
8(x/24) . 173009 —. 936438
. 068374 . 039896
9(x/29) . 242283 .. 150003 —.8968542 . 100542
. 0825290 . 060646
10(x/24) 824812 —. 835308
. 097324 . 080497
11(xf24) 422138 . 200951 —. 755309 . 180181
el -~ 112827 prm . 090684
x, . 534 -
. 128835 . 118877
13(x/24) 663098 . 272697 —. 537338 . 255075
. 144362 . 136608
14(x/24) 807460 —. 400640
. 1606368 . 164739
15(x/24) - 968098 837741 —. 245001 . 327305
. 177105 . 172566
18(x/24) 1.145201 —. 073335
. 193725 . 100252
17(x/24) 1.338928 . 404188 116897 . 393006 ,
. 210463 . 207774
18(x/24) 1 540389 324671 -
. 227200 225221
10(x/24) 1.776679 . 471478 . 548302 . 467817
. 244188 . 242596
20(x/24) 2. 020867 . 702488
. 261141 . 250015
21(=/24) 2 282008 . 539278 1.052403 . 537108
. 218135 . 277101
22(x/34) 2 560143 - 1320504
. 205161 . 204435
23(x/24) 2. 855304 . 607373 1. 624029 . 606089
.312212 .311654
U(x[24) 3.167516 1. 935683
. 329283 .328853
25(x/31) 3. 496709 . 6756562 2. 284536 . 674800
26(x/24) 3.843168 2 610573
. 363465 +363210
27(x)24) 4 206833 . 744036 2. 973783 . 743685
. 380570 . 380375
2B(=x/24) 4 587203 8.354158
397682 . 397631
20(=/24) 4. 934885 .812482 3. 751689 812216
414800 . 414684
30(x/24) 5.300686 4.186373 -
. 431022 . 431833
31(=/24) 5.831607 - . 880967 4. 583205 . 880808
. 449045 . 448076
32(x/24) 8. 280852 5.047181
468173 . 466120
33(x/24) 6. 746825 L049474 5. 513301 . 940380
. 483301 h . 483260
34(x[24) 7. 230128 5. 996561
. 500431 . 500400
35(x/24) 7. 730557 1.017983 6. 406061 1.017938
517562 . 517638
36(xf24) 8. 248119 7.014499
- 534604 . 534676
37(x/24) 8.782813 1.086521 7. 549175 1.088488
551827 . 561812 .
38(x/24) 9.334640 8.100087
. 568960 . 563049
39(x/24) 9. 903600 1.156053 8. 660036 1155034
. 536093 : 536085
40(x/24) 10. 489693 9. 256031
. 603227 . 603220
41(x/24) 11092920 1. 223588 9.850241 - 1. 223576
prvarT " " . 620361 " . 820356
X 713% 79597
. 637496 . 637492
B2 12.350777 1.292125 11. 117089 1.202118
. 654629 < 654628
44(x/34) 13. 005406 1L 771715
671784 671762
45(x/24) 13. 677170 1. 360662 12. 443477 1.360858
48(x[29) 14. 366068 . 13132373 . -
X
. 706033 . 706032
47(x/24) 15.072101 1. 420200 13. 838405 1. 420108
-T23167 .723186
48(x/24) 16. 705268 14. 561571
. 740303 . TA0302
40(=x/24) 16. 535571 1. 497739 15.301873 1497738
. 757438 i . 757438

(0 For negative ﬁlues of (&—&,) the signs of « and § change, but the signs of Aa and AS remain unchanged.

'
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TABLE VII—TABULATED VALUES OF ‘THE INTEGRALS « AND 8 FOR A RANGE OF |(@—&,)|—Concluded.
{Computation methods given in appendix G.}

AlmAn Al=Af
[@—2)| ald) W
Alx Asa A Asf
(ADm xf24) (AT m2x[24) (AD=x/24) (AD=2x[21)
50(x/24) 17. 283007 . 16. 050300
0. 774572 1. 536278 0. 774571
51(xf24) 18. 067579 g 16. 833880 - T. 586276
. 701708 . 701705
52(x/24) 18. 859285 17. 625585
. 808840 . 808841
53(x/234) 19. 688125 1, 634816 18. 434426 1. 634816
. 825976 . 825978
54(x/24) © 20.484101 19. 260401
. 843110 . 843110
56(x/24) 21337211 1. 7033556 20.1038511 1, 703354
. 860245 = . 860244
56(x/24) 22197458 20, 963755
8773790 . 877380
57(x/24) 23.074835 1.771893 21.841185 1.771894
. 894514 - . 884514
. 58(x/24) 23. 969349 22, 735849
. 911619 . 011619
58(x/24) 24. 880998 1. 840433 23. 647208 1, 840433
928784 . 928784
60(x/26) 25. 809782 24, 576082
. 945012 . 945012
61 (x/24) 28, 755694 1. 008068 25, 521994 1, 908068
. 963066 963056
62(x/24) . 27.718750 28. 485050
. 980190 . 880190
83(xf24) 28. 698940 1, 977507 27. 465240 1. 977507
. 997317 . 997817
84(x/24) 20. 696257 28, 462557 :
1. 014460 1. 014460 .
85(x/24) 30. 710717 2. 046044 20.477017 2. 046044
1. 0315694 1. 0315694
86 (x/24) 31. 742311 30. 508611
1. 048722 1.048722
67(x/24) 32. 701033 2.114585 31. 657333 2.114585
1. 065863 1. 0656863
68(x/24) 33, 858808 32. 623108
1.082099 1.082090
89 (x/29) 34. 039895 2.183123 338. 706195 2,183123
1.100134 - 1.100134
70(xf24) 36. 040029 34, 806329 <
1.117260 1.117280
T1(x/28) 37.157289 2.251683 35, 923589 2. 251663
1.134403 ~ 1. 134408
T2(x[24) 38. 201692 37. 057992
1.151538 1.161538
T3(x/24) 39. 443230 2, 320201 38. 200530 2, 320201
1.168663 1.168663
T4(xf24) 40. 611893 - 39.3768193
1.185808 1,185808
75(x/24) 41. 797701 2. 388740 40. 564001 2, 388740
1. 202042 1. 202942
78(xf24) 43. 0600843 41, 766943
1. 220067 1. 220067
T (x/20) 44. 220710 2. 457279 42. 887010 2. 457279
1.237212 1.237212
78(x[24) 45. 457923 44, 224222
L 1.254347 : 1.254347
79(xf24) 48, 712269 2, 525818 45. 478560 2. 525818
1. 271481 1.271481
80(xf29) 47. 883750 486. 750050
1. 288608 1. 288606
81(xf24) 49, 272356 2, 594357 48. 038856 2. 594357
1.305751 C/ 1. 305751
82(x/24) 50. 578107 49. 344407
1.322885 1. 322885
83(xf24) 51. 900992 2. 662805 50. 667292 2. 662898
1. 340010 1. 340010
84(x/24) 53. 241002 52, 007302 -
1.357156 1.357156
85(x/24) 54. 598158 2. 731435 53, 364458 2. 731435
1.374289 1.374280
86(x/3%) 5. 072447 54, 738747
1.391414 ! 1.301414
87(xf24) 57. 363861 2.799974 56. 180161 2.799973
1. 408560 1. 408560
88(x/24) 58, 772421 57.538720
1. 425694 1. 425694 -
89(xr/24) 60. 198115 2.868512 58, 064415 2 868513
1.442818 1.442818
00(arr24) 61. 640933 60. 407233
1. 450064 1. 459964
91(x/24) 63. 100897 2. 037052 61. 867197 2 837052
1. 477088 1. 477088
92(x/24) , 64 577085 63. 344206
1. 404233 1.464233
03(x/24) 68, 072228 3. 005590 64. 838528 38, 005590
1. 511367 . 1511857
H(xf28) 67. 633585 68. 349885
1. 528503 - 1. 528503
95(x/24) 69.112088 3. 074130 67. 878388 3. 074130
1. 545687 1. 545637
06(x/24) 70. 657725 69. 424025
1. 562761 1. 562761
97(x/24) 72, 220486 3. 142688 70, 986786 3.142668
1. 579907 1. 570007
. 08(x/24) 73. 800393 72. 566693
1. 597042 1. 597042
99(x/24) 75, 397435 3. 211208 74.163735 3.211208 |,
1. 614164 1. 614164
100(x/24) 77011599 76. 777899
¢ M For tivevaluesof(M.)thesigmofanndéchange,butthesigmo(daandﬁmmalnunohanged.
) For values of | ($—P.){>100(x/24) use equation (G2) for a and equation (G7) for 8.
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GREEN’S FUNCTION

[Linearized compressible flow; prescribed velocity distribution given in figs. 2 and 22.]

TABLE VIII—COMPARISON OF ELBOW DESIGNS OBTAINED FROM SOLUTIONS BY RELAXATION METHODS AND BY

Ymgf2 (Outer wall)

art IT)

Bolution b&’Oreen's function

SoHB8BRANIST

-
3]
A A e
|

O___________._A

EEEERBB28RS
ERRRRRERERR Ak Mk

762
.768
750
. 740
.72
702
673
635
588
520
453
367
266
.152
022

mmmmmmmmmmmmmmmmmmmmmmmmmwmmmmmmmmmmmmmmmm
Tt A Aol ol of ol adod o oF o3 5 o8 o3 03 o8 o5 5 5 18 09 8 03 03 03 08 B 08 o8 B o o o o3

—2.466
—2, 241
—2.016
701

568

341
116

. 801
668

. 441
—.216

Bolution by relaxation
methods (Part I)

0
(deg)

v

70
770
770
778
770
769
.760
769
.768
. 7687
.765
763
.768
. 751

S LR RIS
11

S . ...........ﬁﬂ

EEEREREEE SRR R B R R B RS R IS R
eSeded o3 Hedededededdodededodedoded

R e L L T Bededededededededed

EEEEELELRREER

.4009
4009

¥=0 (Inner wall)

art 1)

Solutfon bé’ Green'’s function

[}
(deg)

ss8888

L

.14
-3
.41
74
52
78
78
8
07
38
04

BB ERERSCRRERRITERBIBRSRAYBRRL
ummnmumﬂw&mwmummmmnumwmmmmnmwunmm
RN RS R NN A AR R R Rt

0

T

Solution by relaxation
methods (Part D)

.0
.0L
.02
.03
.05
.08
.14
24
.40
70
131
82
88
00
17
44
68

g
Sledded s

—11.
—15.52
—19.98
—24.62
—29.46
—34.45
—39. 56
—44.76
—50.02
—585.27
—60.49
—65. 56
70.32
—74.81
—78.97
—82 82
—88.28
—89.37
—92.07
—94.40
—06.39
—08.05
—00.44
—100. 56

—101.
—102.18
—102.73
—103.14
—103.45
—103. 68
—103, 81
—103.90
—103.97

—. 769

—.q

—3.301
—3. 500
—3.609
—3.719
—3.828

—2.466 | —0.760

0. 4009
4009

9979
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