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METHOD FOR CALCULATION OF LAMINAR HEAT TRANSFER IN AIR FLOW AROUND 
CYLINDERS OF ARBITRARY CROSS SECTION (INCLUDING LARGE TEMPERATURE 

DIFFERENCES AND TRAN PIRATION COOLING) 1 

By E. R. O. ECUI\T and JOlUoI N, B. LIVINOOOI) 

SUMMARY 

The solution of heat-tranI/fer problrms hall beoomt IJ'ital/or 
many aeronautical applications, The shapes oj' objfets to be 
oooled can often be appro'J'imated by olllind rs of various cr088 
86ction8 with flow normal to the axis 08, for in8tan(J(l, hflat 
fran8fer on gas-turbine blades and on (fir foils heatfld /01' (}fic1n(l 
purp08e8. A laminar r('oion a/wayR (,liNf8 11('01' th(' 8faonat/nn 
point of 81.1.011, ooje(Jt8, 

A method previou81y pres(!nt('d by E. R, G. Eokf'1't pf'1'mits 
the calculation of local heat transfer around the periphery oj 
cylinders of arbitrary cross section in the laminar region jor 
flow of a fluid with constant property values with an accuracy 
sufficient for engineering purposes. The method is based on 
exact solutions oj the boundary-layer equations jor incompres­
sible wedge-type flow and on the postulate that at any point on 
the cylinder the boundary-lq,yer growth is the same as that on a 
wedge '1Dith comparable flow conditions. This method is 
extended herein to take into account the influence oj large tem­
perature differences between the cylinder wall and the flow as 
well as the influence oj transpiration cooling when the same 
medium as the outside flow is used as coolant. Prepared 
charts make the calculation procedure very rapid. For cylinders 
with solid walls and elliptic cross sections, a comparison is 
made of the results of calculations based on the presented method, 
the results of calculations by other known methods, and rf'sults 
obtained in experimental i.nvestigations. 

INTRODUCTION 

Calculation of the heat transferred to cylinders with 
arbitrary cross sections frolIl air flowing normal to the axis 
by a solution of the boundary-layer equations is a difficult 
problem, even when the laminar region is considered. The 
problem is especially complicated by the large number of 
parameters influencing heat transfer. Such parameters are: 
tL( shape of the cross section of the cylinder, the Mach 
number which determines the flow outside the boundary 
la) cr, the temperatures on the surface of the cylinder as 

\ II as in tIll' stream, the stream velocity determining the 
lJ i crnal heat generation, and the temperature distribution 
aroUl ld the circumference of the cylinder .. If the cylinder 
'" clIolcd by the transpiration-cooling method in which a 
, JVJUllt is {'Jected through a porous surface into the outside 
" ·('a.1 , the amount of coolant and its distribution around 
d ,' Circumference of the cross ection of the cylinder are 
u 't\i \lonal parameters. Even if a solution is obtained for 

lIuch 1\ pl'obl m, /01' in tnnc by UIIC' of nn (ll(lrtl'onir (.'onqmll I', 
thollolu tlon ill VC'l'y l'c1itl'lctNllw('n Ui(l of t))(I mnny pn J'II mc t/'I'II, 
Up to tho pl'!.'son.l tim, tlHlrt' fOI'(I , tlw prohlOHl hOi h/lNl 

nttnvlH'd only unci!.'!' implifying!'(1 Ll'lrHolli, 
Th J'(llltrictlolli mOllt commonl>' UIIClCl 01'(1: (1) low vt,lo!.'l. 

tl(lll, (2) con t/lnt P1'Opo'ty Y/lhWfi, (:l) £10nll~/lnt IVIlll ~Ilm· 
POI'/ltUl'!.'ii, find (4) impN'lnl'flbh J'Hll'£nN (no trrm ph'lItlon 
coolln~), Und(.\l' 1'(' tl'lction (2), tIll' dCwt'lopm(ln~ of thp 
houndnl'Y IflYcll' 1I10ng tho C'>rllnch'lC'fll mill 0 Ii IndopC'nllllnt 
of th h(lo.t tl'n.n f 1'; v ilo.bl lmow)(l(ig \ on th ft w bound­
o,l'y lo,y I' ciln th rofor b ucla a be. i fol' n. h n.t-tl'nl1 f l' 

calculation. Undor ih simplifying a umplion, whi h 0.1' 

n cessary in order to transform th gan 1'0.1 viscClu -flow 
equations into the boundary-layer equations, ih develop­
ment of the flow boundary layer does not depend immediately 
on the shape of the cross section of the cylindel' but only on 
the velocity distribution in the stream outside the boundary 
layer and along its surface. 

One method which was applied successfully to obtain a 
solution of the flow boundary-layer equation developed the 
stream velocity along the surface of the cylinder in a power 
series of the distance from the stagnation point measured 
along the circumference of the cylinder. In reference 1, this 
method is used to solvo the heat-transfer problem. It is also 
shown that the temperature field within the boundary layer 
can be presented in a power series.of the distance from the 
stagnation point in which the single terms contain only uni­
\Tersal functions of a dimensionless wall distance and of the 
Prandtl number of the fluid. The heat transfer to the surface 
is given by an analogous series with terms depending on the 
Prandtl number. The calculation of the universal functions, 
however, is a tedious process, and accordingly these functions 
are known only for a limited number of terms. For air with a 
Prandtl number of 0.7, they are presented in reference 1. For 
a gas with a Prandtl number of 1, they are contained in ref­
erence2, which is based on reference 3, in which the boundary­
layer flow on a yawed cylinder is calculated. The fact 
that the boundary-layer equation for the velocity component 
parallel to the axis of a yawed cylinder is identical in form to 
the boundary-layer equation describing the temperature field 
for a fluid with a Prandtl number of 1, flowing normal to the 
axis of the cylinder, was used in reference 2 to determine 
heat transfer to such cylinders. The presentation of more 
terms of the series is announced in reference 4. It was found, 
however, that. the velocity distribution for only a limited 

:' Ipersed.~ N ACA TN 2733, "Method ror Calculation or iloat Transrer In Laminar Region or Air ~'Iow Around OyIlnders or Arbitrary Oross Section (Including Large TemP4\r!lture DItTer· 
enll &nd Transpiration Cooling)" by E. R. O. Eckert and John N. B. Livingood, 1952. 
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range of cross sections of cylinders can be represented by a 
power series converging rapidly enough that the number of 
the known universal functions is sufficient to calculate the 
heat transfer. 

The difficulties connected with a solution of the boundary­
layer equations point out the need for an approximate 
approach by which, with a small expenditure of time, heat­
transfer coefficients can be determined with an accuracy 
sufficient for engineering purposes . A considerable number 
of such approaches have been tried in the past; the results 
differ greatly as shown in figure 1, taken from reference 2. 
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FIGURE I.-Heat-transfer coefficients for cyiinder (ref. 2). 

The simplest procedure is probably that in which the heat­
transfer coefficients as calculated in reference 5 are used for 
flow of constant velocity along a flat plate. The fact that in 
reality the stream velocity varies a10ng the cross section of the 
cylinder is taken into account by calculatirig the local heat­
transfer coefficients by use of the velocity found in the stream 
at the considered distance from the stagnation point. This 
method is contained in a summary presented in reference 6. 
Unfortunately, such an approach gives heat-transfer coeffi­
cients which \tre considerably .low in many cases (see fig. 1). 

Bette!' agreement was obtained by another approach (ref. 
7) which uses, instead of the flat-plate solution, a family of 
solutions of ~he boundary-layer equations which can be 
obtained in a gener~l form, namely, for the case where the 
stream velocity varies along the surface as a certain power of 
the distance from the stagnation point. Such a .velocity 
variation is obtained in incompressible flow around wedges. 
The solutions for such a t,ype of flow were used to obtain 
approximate heat-transfer coefficients for a cylinder' with 
arbitrary cross section by stipulati~g that the local heat-

transfer coefficient on any location along the cylinder is 
identical with the local heat-transfer coefficient on a wedge 
for which, at the same distance from the stagnation point, 
the stream velocity and its gradient are the same as those on 
the investigated cylinder. This approach was !,>ubsequently 
used by different authors, and is described, for instance, in 
references 8 and 9. It takes into account the stream condi­
tions which influence the boundary-layer growth at the 
location at which the heat transfer is going to be determined; 
however, it does not properly account for the development of 
the boundary layer in the range upstream of the point con­
sidered. This development may be different on the cylinder 
and on the equivalent wedge. 

Another group uses an integrated momentum equation 
for the boundary-layer flow as proposed by von Karman and 
K. Pohlhausen (refs. 10 and 11, respectively) to calculate 
the velocity boundary layer. Different procedures were 
proposed for determining local heat-transfer coefficients 
from the known velocity boundary layer. Some investi­
gators use Reynolds analogy directly (ref. 12) or with a 
correction for Prandtl numbers different from 1 (ref. 13). 
Such approaches give heat-transfer coefficients which are 
considerably high in many cases, as shown, for instance, in 
figure 1. More accurate results were obtained when the 
heat transfer was determined by solving an integrated heat­
flow equation for the boundary layer. The velocity field 
within the boundary layer has to be known in this approach, 
since the flow velocities within the boundary layer OCClli' in 
the meittioned heat-flow equation. This method was origi­
nated by Kroujiline (ref. 14) . Extensions and simplifica­
tions are contained in references 15 to 18, and an extension 
to compressible flow of a fluid having a Prandtl number 
equal to 1 is found in references 19 and 20. Useful informa­
tion is also contained in a summarizing report (ref. 21) . 

Another approaeh is based on the fact that the use of the 
heat-transfer coefficients for wedge-type profiles as described 
previously was found to give fairly accurate heat-transfer 
coefficients. It should be expected that these heat-transfer 
coefficients can be improved to a degree which is sufficient 
for nIl engineering purposes by a method which takes into 
account in some approximate way the previous history of 
the boundary layer. Such a method, called the equivalent 
wedge-type flow method, is proposed in reference 22, ex­
tended to heat transfer at high flow velocities and variable 
wall temperature in reference 23, and extended to transpira­
tion cooling with small temperature differences in reference 
24. The advantages of this method are that no .knowledge 
of the velocity boundary layer is required and that it can 
be readily extended to take into account the effects of large 
temperature differences, of transpiration cooling, and of 
variable wall t emperature as soon as the corresponding 
solutions for the wedge-type flow are available. 

Such an extension was made at the NACA Lewis.labora­
tory during 1950-51 and is described herein. It is based on 
exact boundary-layer solutions for wedge-type flow with 
large temperature differences and with transpiration cooling 
(refs. 25 and 26). Charts were prepared which make the 
calculation of heat transfer around cylinders of any arbitrary 
cross section more rapid. 
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SOLUTION OF BOUNDARY.LAYER EQUATIONS FOR WEDGE. 
TYPE FLOW 

BOUNDARY.LAYER EQUATIONS 

The following boundary-layer equations describe the 
velocity and temperature fields in a laminar steady two­
dimensional gas flow: the momentum equation, the conti­
nuity equation, and the energy equation. The momentum 
equation is 

(1) 

when body forces are neglected. (All symbols are defined 
in appendix A; consistent units are used throughout the 
report.) Since the pressure variation normal to the surface 
throughout the boundary layer may be negle!}ted, it follows 
that the pressure is prescribed by the conditions in the stream 
outside the boundary layer and can be connected with the 
velocity u. in the stream and just outside the boundary 
layer by the Bernoulli equation 

The introduction of this expression changes the momentum 
equation to the form 

(2) 

The continuity equation is 

° ° ox (pu)+oy (pv)=O (3) 

and the energy equation is 

( 
oT OT) 0 (OT) (01.£)2 op 

pCp 1.£ ox + v oy = oy k oy + jJ. oy +1.£ ox (4) 

The heat generated by internal friction, described by the 
second term on the right side of equation (4), and the temper­
ature variation connected with expansion, described by the 
third term, can be neglected as long as the difference between 
the total and the static temperature in the gas stream is small 
compared with the difference between the wall temperature 
and the temperature in the gas stream. For this condition, 
then, only the first term on the right side of equation (4) is 
retained, and the energy equation assumes the form 

( 
oT oT) 0 ( aT) 

pCp 1.£ ox + V oy = oy k oy (5) 

Equations (2), (3), and (5) include the case of transpiration 
cooling when the same medium as that in the 'outside flow is 
used as coolant and the boundary conditions are properly 
defined. 

1.£=0, v=v"" and T= T", when y=O 

1.£-71.£, and T-7T. when y-7 co 
(6) 

The property valu B J.I., k, c~, and p app aring in th quation 
depend on temperature and pr ssur. The variation with 
pressure can be neglected at the low velocitios to which the 
energy equation was already restricted by disregarding the 
internal frictiort and the expansion terms. The influence of 
the temperature dependency, however, may be appreciable 
in applications with larg temp ratul' cliff r nc within the 
boundary lay r. olutiQns of th boundary-layer quations 
which take into account the temperature variation of tho 
property values were obtained in references 9, 25, and 26, in 
which the partial differential equations were transformed into 
total differential equations. 

CHANGE OF VARIABLES 

The transformation of the partial differential equations 
into total differential equations is possible under the following 
specialized conditions: The stream velocity is assumed to 
vary as a power function of the distance from the stagnation 
point measured along the surface of the cylinder. 

1.£.=Oxm (7) 

It has recently become customary to refer to th'e exponent m 
in this equation as "Euler number." The Euler number can 
be expressed by the Bernoulli equation in the following way: 

-op/ox 
m=-~/ P.1.£. x 

(8) 

In addition, the temperature of the wall is assumed to be 
constant and the property values are assumed to vary pro­
portionally to a power of the. absolute temperature T. The 
numerical calculations were made for air. The exponents 
used were 0.7 for the viscosity, 0.85 for the heat condue;tivity, 
0.19 for the specific heat, and -1.0 for the density. 
The variables 

y-JPWU. 71= --
jJ.wx 

j 
p",.J; 

(9) 
-Vf.Lwp",x1.£. 

(J 
T-T", 
T.-T", 

are used to transform equations (2), (3), and (5) idto total 
differential equations presentingj and (J as functions of 71 only. 
The stream function .J; appearing in equations (9) is defined in 
such a way as to eliminate the continuity equation (3). 

pU= o(~;.J;) 

()(p, • .J;) 
pv=-~ 

(10) 

Introducing the new variables into the second of equations 
(10) leads to the following expression for the velocity com­
ponen t normal to the surface: 

-pv=p [1+m f 1f.L"'u~+J!.. f'(m-1) 1.£.] 
'" 2 -V p",X 2 x 

(11) 
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The velocity at the surface itself folloW's: 

v = _ l+m j !J.Lw'Ua 
tD 2 1J)-Y pwx 

(12) 

The transformation therefore prescribes a certain variation 
of the coolant velocity Vw along the surface, since the function 
JIll has to be constant (independent of x). The stream 
velocity is described by equation (7); thus, the coolant 
velocity Vlo is also proportional to some power of x. Such a 
variation of the coolant velocity leads tOll. constant wall 
temperature and is therefore consiE:tent with the assumed 
constant wall temperature when heat transfer by radiation 
may be neglected (ref. 27). The transformed equations are 
presented in references 9, 25, and 26, together with the solu­
tions for a . Prand tl number PI' of 0.7, and for a range of 
Euler number m, temperature ratio Ts/T"" and the parameter 
flO describing the cooling-air flow through a porous surface. 
The results contain expr.essions for the thickness of the flow 
boundary layer which are defined in two ways: the displace­
ment thickness 

Oa= (a>(1_~) dy 
.10 PaU, 

(13) 

and the momentum thickness 

(14) 

The thermal boundary layer is characterized in this report 
by the convection thickness 

oc= ( a> pU T- T. dy 
Jo p,U, TlO - T. 

(15) 

In addition, a thermal boundary-layer thickness, which is 
defined as follows, will be used herein: 

I"'(T-T,) 
0,= Jo T",- T, dy (16) 

Values for this boundary-layer thickness can be easily calcu­
lat d from results presented in references 25 and 26. 

APPIJ9ATION TO HIGH VE!.OCITIES 

Tll solutions described apply exactly only to flow with 
low v locities. Practically, the limiting velocity up to which 
it is possible to n glect the frictional and the expansion terms 
an b s t quite high for a gas; this fact can be understood 

from th following tra~sformation of the. energy equation, 
in whi 11 only the specific heat is regarded constant. If the 
momentum equation (1) is multiplied by the veloCity U and 
arId d to the nergy equation (4) and if, in addition, the total 
temp ratur Tr= 'l'+u2/2c ll is introduced, the following ex­
pre ion is obtained: 

c (u ~Tr+v ~T7')=~(k ~Tr)+~.E_ [ (1_l...)~(U2)J 
p 11 ~x by by by 2 by J.I. Pr by 

(17) 

The last term on the right side of the equation vanishes for a 
Prandtl number equal to 1. In this case, the energy equa­
tion has the same form as the one for low velocities in which 
the friction and the expansion terms were neglected. The 
only difference lies in the fact that the total temperature 
appears in the energy equation. When the Prandtl number 
is approximately 1, the last term in equation (17) will be 
comparatively small up to considerable velocities, and the 
energy equation (5) used in the following considerations 
applies to this condition when the temperature T is inter­
preted as total temperature. It will be shown later that as 
far as heat transfer is concerned, the range in which the 
results of a calculation with equation (5) may be used can 
be extended even further by using a properly defined ' adia­
batic wall temperature instead of the total gas tem~erature. 

The property values J.L, k, Cp , ~nd p depend for gases on the 
temperature. This dependency was taken into account in 
the described calculations. The density depends, in addi­
tion, on the pressure, and the pressme variation may become 
considerable at high Mach numbers. There are indications, 
however, that calculation~ which neglect this pressme varia­
tion can be used with sufficient accuracy over the entire 
subsonic range, as is pointed out in reference 28, in which 
an investigation of results obtained by L. Howarth (ref. 29) 
is reported. 

EXTENSION OF THEORY TO ARBITRARY BODIES 

DETERMINATION OF EQUIVALENT WEDGE 

The solutions discussed in tbe previous paragraph are in an 
exact sense restricted to a certain type of velocity variation 
along a cylindrical surface, namely, a stream velocity which 
just outside the boundary layer is proportional to some power 
of the distance from the stagnation point. Such a velocity 
distribution is realized, for instance, in incompressible flow 
around wedges. The wedge-type solutions may be used, 
however, to obtain approximate heat-transfer coefficients on 
cylinders of arbitrary cross section. In one approach in this 
direction, it is assumed that the heat-transfer coefficient on 
any point along the circumference of a profile with a~bitrary 
cross section is the same as that on a wedge at the same dis­
tance from the leading edge, provided the stream velocity and 
its gTadient on t,he wedge and on the arbitrary profile have 
the same value at the location considered and that the tem­
perature ratio T,/Tw is the same. It will be shown that such 
an approaoh takes into account the' right stream conditions 
at the 1000.1 spot for which the heat-transfer coefficient is to 
be determined. However; the previous history within the 
boundary layer is not properly considered. . Numerical 
calculations presented herein show that heat-transfer co­
efficients obtain d in such a manner are in most cases within 
about 15-percent agreement with experimental data. It is 
to be expected that a modification which accounts in some 
approximate manner for the conditions in the boundary layer 
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upstream of the point under consideration should improve 
this approximation to the desired degree. This modification 
is made in reference 22 by the stipulation that the rate of in­
crease of the boundary-layer thickness is the same on the 
considered point of an arbitrary profile and on the point of a 
wedge which has the same boundary-layer thickness, the 
same stream velocity, and the same stream velocity gradient. 
This same stipulation will be used in the present report . For 
a given temperature ratio T.IT .. , the heat-transfer coefficients 
on a wedge depend on the Euler number m and the value! .. 
characterizing the coolant flow through a porous surface. 
These parameters which define the equivalent wedge profile 
will now be expressed by the boundary-layer thickness and 
the local stream velocity gradient. 

For the wedge-type profile, the stream velocity is expressed 
by the power law 

(18) 

in which the value ~ expresses the distance from the leading 
edge measured along the wedge surface in order to distinguish 
it from the distance of the point under consideration from 
the stagnation point on the arbitrary profile, which is denoted 
by x. The variables used for the transformation of the 
original boundary-layer equations in the previous section 
may now be written 

(19) 

and 

(20) 

Corresponding to a certain value y, which indicates the 
boundary-layer thickness 0, there is a value 7/b of the coordinate 
77 defined by the equation 

(21) 

In order to eliminate the distance ~ from this equation, equa­
tion (18) is differentiated to obtain 

oU'=mO~m-l=m u, 
o~ ~ 

(22) 

Since the velocity gradient on the wedge profile is assumed 
the same as that on the profile under consideration, it follows 
that ou,/o~= ou,/ox. This equality gives for the coordinate 
~ the expression 

mu, 
~= du,/dx (23) 

When this expression is introduced into equation (21), there 
is obtained 

_~~ Pto (du.) 77b- U -- --IJ.tom dx 

In this expression, 7/b (d noted as ·(6/~)..f![i in r f . 215 and 26) 
is a function of the Eul r numb r m and of th coolant-flow 
parameter j",. Th refor , if this equation is writt n in th 
form 

2 Pto02 dUM 77& m=-- -­
}JotO dx 

(24) 

the left side is a function of m and ito , and equation (24) re­
lates both values to the boundary-layer thickness 0 and the 
velocity gradient du./dx. In order to obtain a second relation 
for m and ito, the coordinate ~ is replaced in equation (20). 
The result is 

(25) 

which is written again in such a way that the left side is a 
function of the Euler number m and the flow parameter ito, 
which can be calculated from the results in references 25 
and 26. Both equations (24) and (25) are therefore suffi­
cient to determine the equivalent wedge profile. 

EQUATIONS FOR BOUNDARY-LAYER THICKNESS AND HEAT TRANSFER 

The next step is to develop a differential equation for the 
boundary-layer thickness from the postulate that the 
boundary-layer gradient dojdx is the same for the real profile 
as for the equivalent wedge profile. For the wedge profile, 
the boupdary-layer thickness is given by the expression 

l-m 
/ }Jow t-2-

O='T/b'V OPw " 

which is obtained from equation (21) by replacing the stream 
velocity with equation (18) and solving for the boundary­
layer thickness. A differentiation of this equation and the 
use of equations (23) and (24) result in 

(26) 

This is a differential equation for the boundary-layer thick­
ness which contains only values which are known for tho 
profile under consideration or which are determined from 
equations (24) and (25) for the equivalent wedge-type flow . 
An integration of the differential equation gives the boundary 
layer along the circumference of the profile under consider­
ation. 

The local heat-transfer coefficient is defined by the follow­
ing equation: 

Introducing the dimensionless temperature ratio given in 
equation (9) and the coordinate ~ results in 

h - k 0' 077 = k 0' !!.! 
- "' .. by "' .. 0 (27) 
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The heat-transfer coefficient may be calculated from this 
expression as soon as the boundary-layer thickness D is 
known, since e~ and 1Jb are functions of m andjw contained in 
references 25 and 26. 

Up to the present time no recommendation has been 
made as to which boundary-layer thickness should be used 
in thc prescribed procedure. When the momentum thickness 
is used in the foregoing equations, it is easily understandable 
that the integrated momentum equation is satisfied and 
that the method of calculation becomes the same as the one 
proposed by von Karman in reference 10. This fact can be 
proved mathematically by a procedure completely analogous 
to the one used in appendix B. On the other hand, the use 
of the convection thickness as defined in equation (15) 
satisfies the mtegrated heat-flow equation within the bound­
ary layer, as shown in appendix B. The use of both boundary­
layer thicknesses leads to somewhat different results for the 
local heat-transfer coefficient, and a question arises as to 
which is preferable. It is pointed out by chuh in reference 
23 that, fo,: the purpose of determining heat-transfer co · 
efficients, it is more important to satisfy the heat-flow 
balance; the usC' of the convection thicluiess was therefore 
recommended. In reference 22, the use of the thermal 
boundary-layer thickness as detined in equation (16) is 
investigated, and the results of the calculation with this 
boundary-layer thickness are found to agree even better 
with measured values and with other calculations. The 
convection thickness Dc and the thermaJ thickness 0, for the 
boundary layer will therefore be used in parallel in the 
following numerical evaluations. 

CALCULATION PROCEDURE 

USE OF DIMENSIONLESS VARIABLES 

The procedure which may be followed in determining 
local heat-transfer coefficients with the relations developed 
in the preceding section is now explained. Figure '2 shows a 

r, 

11, ,0 •••• . 

Sta;r.ation,' 
paint-oJ 

__ - --Boundary layer 

L 
FlaUl\lIi 2.-Sketoh 01 oyllnder lndloeting notation used . 

k tch of a yli!1Q r with arbitrary cross section and thp 
notation used in ·the analysis. Before numerical calculat,ions 
ar mad, howev 1', it is advisable to change to dimensionless 
quantiti . . In ord l' to make this change, the distance x is 
divid d by th major axis L of the cylinder and the mass 
v ·10 ity in th dir tion of x is divided by an upstream mass 
v 1 ity. All lengths and mnss velocities parallel to yare, 
in addition, multiplied by the square root of the Reynolds 
numb l' Reo based on the major axis and the upstream mass 
v 10 ity. The dimensionless variables which are sub· 

qu ntly n eded are 

* x x =L (28) 

* o..j-o =1- Reo (29) 

u*= PwU• 
• PoU •. o 

(30) 

v;= Pu:Vw R eo 
PoU •. o 

(31) 

where 

Reo= u •. oLpo (32) 
Ji.w 

By use of these dimensionless quantities, equation (26) is 
transformed in to 

(33) 

where 

M _ 1- m 2_M (dU: .*2 *_*) - 2 1Jb- dx* u ,v .. u (34) 

according to equations (24) and (25), which, in dimensiunless 
values, are 

and 

Introduction of the dimensionless quantities into equation 
(27) leads to 

where 

and 

Nu N 
--=-", 

..jReo 0 

hL 
Nu= kw 

N=8' =N (du: 5*2 v*o*) 
.. 7/b dx*' " 

(35) 

(36) 

(37") 

CHARTS AND CALCULATION PROCEDURE FOR PRESCRIBED COOLANT 
FLOW 

Oharts have been prepared which present the functions 
M and N as expressed by equations (34) and (37) in depend­
ence on (du: Idx*) 5*2 and v:o*. The charts presented herein 
were constructed from results presented in references 25 
a.nd 26. In figures 3 and 4, the dimensionless conv-ection 
thickness of the boundary layer is used; in figures 5 and 6, 
the dimensionless thermal boundary-layer thickness is used. 

At the stagnation point of any blunt nosed cylindrical 
body, conditions are the same as those at the stagnation 
point of a plate normal to the flow. Therefore m= 1, but 
the value of 6* is unknown. However, there exists at the 
stagnation point a unique relation v:o*=F[(du:ldx*)0*2] 
which may, for instance, be read along the abscissa in figure 
3 odn figure 5. Squaring this equation and dividing both 
sides by (du:ldx*) 5*2 result in 
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'1'hrsl' relations are present('d in figure. 7 for the dimension­
, ('oTlv('etio 1 hOlll lury-Iayer thickness and in figure for 
tilt' clmH'1l tOnles th('rmul houndary-layer thickness. 

By use of thes(.l charts, the ca.lcula tions for any profile 
can be fl).ade in a very simple manner for either the dimen­
sionless convection or the dimensionless thermal boundary­
layer thickness. The method of solution for the convection 
thicknesses is described subsequently. For the thermal 
thickness, the procedure is the same. 

Tbe values of u, and du,ldx must be found for the cylinder 

profile under consideration either by measurement or by a 
solution of the inviscid-ftow equations. The coolant veloc· 
ity 1',. is prescribl'l\ by the porosity of the wall and by the 
pressure distribution around the profile. From these terms, 
the values ofu:, du: Idx*, and v! can be calculated. - The 
value of 5: at the stagnation point can be determined from 
figure 7 in the following way: The value of v!2/(du:ldx*) is 
computed, and the corresponding value of (du:ldx*)5:2 is 
rend from figure 7. A simple algebraic operation then yields 
the desired value of 5: at the stagnation point. 
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Thp dimensionless convection boundary-layer thickness 
0: along the cylindrical surface is determined from equation 
(33); for thc numerical evaluation presented herein, this 
rquation was solved by the method of isoclines with the aid 
of figure 3, depending upon which ratio of stream to wall 
temperature is applied. Equation (33) determines the direc­
tion of the tangents to the different 0: -curves which satisfy 
the equation. The task is to find that curve which contains 
the 0; -value previously calculated for the stagnation point. 
For chosen values of x* and 0:, values of (du; /dx*) 0: 2 and 
v;o; are computed and the value of M is read from the 
appropriate part of figure 3. Equation (33) then gives the 
slope of the tangent at this selected value of x* for the 
assumed 0;. Several values of 0; are used for this x*. The 
same calculations are repeated for other values of x*. If 
the chosen distance between these x*-values is small enough, 
an accurate curve of 0: against x* can be drawn which starts 
at t.he desired prpviously calculated value of 0: at the stag-

nation point and which will have the correct slope at each 
value of x* considered. Figure 9 illustrates this method of 
solution. Values of N can then be obtatned for each of the 
correct 0; -values and the considercd v:-value for each x* 
from figure 4 after (du: /dx*) 0;2 and z'!o; are computed (the 
ratio of stream to wall temperature under consineration 
determines which part of figure 4 should be used). ~ The , 
value of Nul Reo can finally be obtained from equation (35). 

The same calculation procedure ca;n be used when the 
dimensionless thermal boundary-layer thickness is considered. 
Figure 8 is used for the determination of the value of 0,* at the 
stagnation point; figure 5 is used to determine M; .and figure 
6 is used to determine N. The particular ratio of stream to 
wall temperature under consideration determines whioh parts 
of these figures apply for the nalculation of the values of M 
and N. Finally, equation (35) gives tlle desired value of 
Nu/{Reo. 
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CHARTS AND CALCULATION PROCEDURE FOR PRESCRIBED WALL 
TEMPERATURE 

The heat-transfer coefficients determinJd by the values of 
NuNReu can now be used to calculate the surface tempera­
ture of the cylinder when the outside stream temperature 
and the temperature at which the coolant is supplied to 
tbe interior of -the cylinder are known. For this purpose, a 
heat balance for an element of the wall as shown in figure 10 
is set up. The cylindrical volume element considered may 
have two plane surfaces, one surface (1) coinciding with the 
outside surface of the cylinder wall and the other (2) apart 
from the inside surface of the wall by such a distance that it 
is situated outside the boundary layer present on this side. 
(The inside surface has to be considered as a surface of a 

y 

FIGlJRlIIO.-Cross section through part of cylinder wall used in setting up heat balance. 

wall to which suction is applied and on which a boundary 
layer builds up as shown in ref. 30.) The mantle surface 
(3) of the cylinder may be normal to the wall surfaces. 
Heat is carried by convection with the cooling air through 
surfaces 1 and 2. The amount per unit time is indicated in 
figure 10. It is assumed that the coolant is heated up to 
the wall surface temperature T w when it leaves. the wall. 
This assumption is usually well fulfilled. Heat will also be 
transferred by conduction through the fluid layers immedi­
ately adjacent to the outside wall surfaces, the amount being 
-kw (oT/oY)wdA. In addition, heat may be transferred to 
the outside wall by radiation; it may be q, dA. Heat may 
also flow into the volume element by conduction in the solid 
material or by transverse flow of the cooling air. The sum 
of all these individual flows may be qc dA. Then the heat 
balance is 

The heat -k .. (oT/oy) w transferred per unit area from the 
gas to the wall is expressed in this report by a heat-transfer 
coefficient 

Combining these two equations results in 

This equation permits a calculation of the wall temperature 
for any place on the cylindrical surface when the coolant 
velocity Vw is prescribed, when the local radiative heat flow 
q, and the conductive heat flow qc are known, and when the 
heat-transfer coefficient h has been obtained. The conduc­
tive heat flow qc is usually small and can be neglected. Such 
a calculation results in a wall surface temperature which 
generally will vary along the circumference of the cylinder. 
When the variations are large, the temperature distribution 
obtained can be regarded only as an approximation, since 
the wedge solutions (refs. 22, 25, and 26) on which the 
met,hod in this paper is based were obtained for the case of a 
constant wall temperature. 

Usually, however, the problem which faces the designer in 
an application is somewhat different from the one treated. 
The purpose of transpiration cooling is mostly to keep the 
wall temperature of some structural element below the limits 
which the material can withstand. On the other hand, the 
amount oi'coolant almost always must be kept small, which 
means that local overcooling should be avoided. For the 
wall surface under these conditions, a temperature is pre­
scribed which should be uniform about the circumference of 
the cylinder and the problem is to find that distribution of the 
coolant velocity Vw which results in the desired wall tempera­
ture. Generally, such an investigation requires a trial-and-
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error procedure which is very involved. The procedure 
becomes simple and straightforward, however, when the 
radiative heat flow qr and the conductive heat flow qc can be 
neglected. Such a solution, then, is also useful as a starting 
point for the trial-and-error procedure when radiation is 
present. 

The heat balance (eq. (38)) can be transformed to 

h PwV w Tw-Tc 
CpP.u •. o P.u •. o T.- T.. (39) 

when qr=qc=O . The ratio of temperature differences in this 
equation is now a prescribed value. A similar ratio 
(T.- Tw)/(T.- Tc) often appears in turbine-cooling work and 
is denoted by <p. Introduction of this value and conversion 
to dimensionless values result in 

Nu 1-0, 
--=v*Pr --T' 
~o w <p 

(40) 

Another expression for Nul Reo is given by equation (35). 
Combining both equations gives 

1-<p 
N=v*o* Pr --

w cp (41) 

This equation expresses a relation between the pa.ramoters 
Nand v:5* in figures 4 and 6 which may be used to insert 
lines of constant cp into these figures. With the usc of these 
I ines, the calculation procedure for any specific problem 
becomes quite simple. The procedure will be described for 
T.ITw =1 (or near 1) and with the use of the convection 
boundary-layer thickness 5:. The prescribed temperatures 
fix the value of <p. 

At the stagnation point, m=l and du:/dx* is known. In 
figure 4 (a) the intersection between the line m= 1 and the 
line for the prescribed cp determines v!o: and (du: Idx*)O:2, 
and , from both values, 5: and v! may be ·calculated. 

The method of isoclines may again be used to determine the 
development of the boundary layer along tbe cylindricll'! 
surface. The use of this method implies that the gradient 
do: ldx* has to be determined for any pair of values x* and 
5:. For an assumed 5:, the value v:S: can be found in 
figure 4 (a) as the value on the prescribed cp-curve above t.he 
known abscissa value (du: Idx*) 5:2

• Figure 3 (a) then gives 
M and equation (33), the gradient d5:ldx*. A plot similar 
to figure 9 determines the boundary-layer thickness, and the 
values v: belonging to these boundary-layer thicknesses 
represent the coolant-flow distribution for the particular 
temperature-difference ratio <p. 

NUMERICAL EVALUATIONS AND COMPARISONS WITH 
KNOWN RESULTS 

SOLID SURFACES 

The results of the outlined procedure for calculating local 
heat-transfer coefficients have to be compared with experi-

mental results or calculations by some other method in 
order to check the accuracy. The only cylindrical shape for 
which experimental data or solutions of the boundary-layer 
equations suitable for such a comparison are available seems 
to be the cylinder with a circular cross section. Accordingly , 
local heat-transfer coefficients were calculated according to 
the method proposed in this report by use of the dimension­
less thermal boundary-layer thickness as well as of the dimen­
sionless convection boundary-layer thickness. The results 
of these calculations are plotted in figure 11 over the dimen­
sionless distance from the stagnation point. Also inserted 
in the figure is a curve representing the average curve through 
the experimentally determined local heat-transfer coefficients 
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mentioned in reference 31. It is shown in reference 22 that 
the measurements correlated well into a single curve when 
the experiments with Reynolds numbers near the critical 
value for transition to turbulence within the boundary layer 
were excluded. The tests with high Reynolds numbers gave 
values of Nu/~ which over the whole upstream side · of 
the cylinder were about 10 percent higher than the ones for 
the lower Reynolds numbers. The same behavior is reported 
in references 32 and 33 in which it ie shown that an increase 
up to 50 percent in the heat-transfer coefficients over the 
expected laminar values was caused by the turbulence level 
in the wind tunnels used. The result of a solution of the 
boundary-layer equation as presented in reference 1 is also 
included in figure 11. 
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This method solves the boundary-layer equations and 
obtains results as a series in the distance along the surface. 
Also inserted are values obtained by use of the Pohlhausen 
flat-plate solution when the free-stream velocity is based on 
the local values and results obtained by the methods of 
references 12 and 13. Heat-transfer coefficients on wedges 
with the same local stream velocity and velocity gradient 
at the same distance from the stagnation point are also 
included (ref. 8). Appendix Q explains how these wedge 
solutions were obtained. 

On a cylinder with a circular cross section, separation 
occurs in the subcritical range near the value x*=0.7. The 
stream velocity distribution around the surface of the cylin­
der which was needed for the calculations was obtained from 
pressure distributions given in reference 31 and is contained 
in reference 22. 

It may be seen from figure 11 that the use of flat-plate 
values results in heat-transfer coefficients which are consid­
erably lower than experimental values, whereas the methods 
in references 12 and 13 result in values which are too high. 
Much better agreement is found between the wedge heat­
transfer coefficients and the experimental results, especially 
near the stagnation point. Farther downstream, the accu­
racy is improved by the method of this report. For the 
largest distance from the stagnation point, the use of the 
dimensionless thermal boundary-layer thickness results in 
values which are higher and the use of the dimensionless 
convection t~ickness, in values which are lower than the 
experimental ones. The values calculated by Frossling's 
solution of the boundary-layer equations are also higher 
than the experimental ones. Frossling's method has to be 
considered as an exact solution of the boundary-layer equa­
tions. In reference 22 it is recommended, on the basis of 
the good agreement between Frossling's curve and the values 
obtained by the use of the thermal boundary-layer thick­
ness, that the method of the equivalent wedge flow be based 
on the thermal boundary-layer thickness. The values of 
the heat-transfer coefficients depend primarily on the veloc­
ity distribution in the stream around the cross section of 
the cylinder. The velocity distribution u\,ed for the calcu­
lation on the circular cylinder is also shown on figure 11. 
The calculations are made for a Prandtl number of 0.7, for 
a solid surface (vw= O) and a temperature ratio T./Twof 1, 
equivalent to the assumption of constant property values. 
These calculations agree within 5 percent with ' the exact 
calculation and within 8 percent with experiment when the 
immediate neighborhood of the separation point is exclud ed. 
~imilar comparisons have already been made in reference 2 
for a gas with a Prandtl number of 1 and a different velocity 
distribution (see fig. 1). This comparison shows that the 
mrthod proposed by Squire (ref. 16) gives heat-transfer 
coefficients which agree with the exact boundary-layer solu­
tion to about the same degree as those of the method of 

the equivalent wedge flow. The same fact holds for the 
method indicated in references 15 and 17 especially with 
the improvement given in reference 4. It can be stated in 
summary, therefore, that a number of methods exist today 
which, at least for the circular cylinder, permit the deter­
mination of heat-transfer coefficients on solid surfaces in the 
laminar region of a gas having constant property values 
with a very good accuracy. The advantage of the equiva­
lent wedge flow method over those methods just discussed 
is that it gives solutions in a very short time and that it 
can be readily extended to include variable property values 
and transpiration cooling, as was done in this report. The 
wedge solution, according to reference 7, is still more rapid; 
however, the results differ from the experimental values up 
to 15 percent. 

Figure 12 gives the analogous results for an elliptic cylinder 
with the axis ratio 1 :2. It may be observed that heat­
transfer coefficients on wedges differ only slightly from those 
obtained for equivalent wedge-type flow, whereas the flat­
plate values and the ones calculated with references 12 and 
13 are considerably different. I O experimental results or 
solutions of the boundary-layer equations for a cylinder with 
such a cross section which could be compared with the ap­
proximate solutions are known to the aut.hors. The ('aIeu-
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lation with Kroujiline's method, presented in reference 22, 
agrees well with the solutions obtained with the equivalent 
wedge-type flow method. Separation of the flow occurs on 
such a profile near x* = 0.8. The stream velocities used are 
calculated values contained in reference 22. 

The agreement between the wedge solutions and the results 
obtained by the method herein is still closer for the elliptic 
cylinder with axis ratio 1:4 (fig. 13). The reason for this 
fact is the type of stream velocity variation occurring on 
elliptic cylinders. Flow separation occurs on this cylinder 
near x*= 0.85. The curves in figures 12 and 13 show that 
the stream velocity is comparatively constant over a con­
siderable part of its circumference after a steep increase near 
the stagnation point.. This behavior is more pronounced for 
an axis ratio of 1:4 than for one of 1 :2. An inspection of 
figure 13 shows that, apart from the region near the stagna­
tion point, even the flat-plate values give a reasonably good 
approximation. Calculations ob tained by use of the dimen­
sionless thermal boundary-layer thickness extended to the 
flow separation point, whereas those for the dimensionless 
convection boundary-layer thickness did not. It therefore 
appears advisable to use the dimensionless thermal boundary­
layer thickness. 

Experimental heat .. transfer coefficients found at the Uni­
versity of California ft)r an elliptic cyiinder with an axis 
ratio of 1:4 (ref. 34) are about 50 percent higher than the 

theor tioal valueli h wn in figu1'o '13, ThoI' 111' lIovorn.l 
l' f\ on f l'thi di or panay. Th m a.ul' d IItr um-v" looity 
di ribution wa diff!.'1' fi t from th on on whioh th pI'Olont 
oaloulation Ill' Iliad, PI' b 1y b OO,U80 of fI, limHod width 
of tIl wind tunnal. The oylinder in th (lxporimontul in­
v tigation wali hoatad by n laotria l' ill~tana(l whlc,h pro­
duoed a oon tant heo.t flow th1'oujlh h u1'fno p OI' unit Iwa . 
Aooordini ly, th urfao temp l' tur vltrlod Idong th oil' 
urnf I' no f th ylind 1', bing Iowa t at tll(l fOl'Wllrd 
tagnation poin t and in ring in th down.tr n.rn dir tion. 
a1culation in r f r n 34 indi o.t tha t th high r vnlu I 

found in th t Btl ar mostly du to thl, fa t, Anoth l' 

increase of tho experimental heat-transfer coemcl nts may 
again be connected with the turbulence level in the wind 
tunnel used, as discussed in connection with tho experimental 
results for circular cylinders. 

From figures 11 to 13, it may be concluded that, for 
cylinders with a stream velocity which is fairly constant over 
the greater part of the circumference, local heat-transfer 
coefficients may be obtained with good accuracy from wedge 
solutions. In the region in which ~he stream velocity varia­
tion is considerable, the method of the equivalent wedge flow 
gives heat-transfer coefficients with an accuracy sufficient for 
engineering purposes. 

POROUS SURFACES 

Heat-transfer coefficients were calculated by the method 
of the equivalent wedge flow for cylinders with circular and 
elliptic cross sections for transpiration-cooled surfaces and 
different temperature ratios T,lT", by using either the thermal 
or the convection boundary-layer thickness (figs. 14 to 18). 
In these figures it was more expedient to ' base the Reynolds 
numbers appearing on the ordinate and in the coolant flow 
parameter on the density at wall temperature (Re .. ) rather 
than on the upstream density (Reo) . In figures 11 to 13 and 
19, both Reynolds numbers are identical sinco they are 
calculated for a temperat~ ratio T,/T .. = 1. Tl1e use of 
both boundary-layer thicknesses gives different results only 
for large distances from the stagnation point. The vari­
ation of the heat-transfer coefficients with the ratio of stream 
to wall temperature is comparatively small for soliel surfaces. 
This result is in agreemont with previous findip.gs, For 
transpiration-cooled surfaces, however, the effect of the 
temperature ratio on the heat-transfer coefficients becomes 
more pronounced, especially on cylinders with nearly ciroular 
cross sections. In reference 24, the clloSe of transpiration 
cooling with small temperature differences is caloulated; this 
reference includes the effect of the temperature ratio by a 
correction factor which is based on the q.ssumption that this 
effect is the same a.s that determined experimentally for 
impermeable surfaces. A comparison of results shows that 
the procedure in reference 24 underestimates the effeot of 
temperature ratio for transpiration-cooled surfaces, In 
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addition, it can be observed that transpiration cooling 
results in a considerable decrease of the heat-transfer co­
efficients. A larger amount of coolant flow is necessary to 
reduce the heat-transfer coefficients by the same amounts 
in regions in which the heat-transfer coefficients are large. 
Such a region exists at the stagnation point on a cylinder 
with an axis ratio of 1 :2, and especially on a cylinder with 
an axis ratio of 1 :4. 

The variation in coolant flow required to maintain con­
stant wall temperature for transpiration-cooled cylinders 
with circular and elliptic cross sections is shown in figure 19. 
The calculations were made for a temperature ratio Til T .. 
of 1, a value of fP of 0.5, and a Prandtl number Pr of 0.7. 
Figure 19 shows that the highest local coolant-flow rates are 
necessary near the stagnation point in order to keep the 
wall temperature down at that place. The magnitude of 
the coolant-flow rate at the stagnation point is proportional 
to the square root of the velocity gradient du: Idx*; this in 
turn is determined mainly by the value of the radius of 
curvature at this point. As this radius of curvature de­
creases, the required coolant flow increases. This is in 
agreement with figure 19, which shows that th,e maximum 
coolant flow is required at the stagnation point of the elliptic 
cylinder with the 1:4 axis ratio. Downstream of the stag­
nation point, the flow rates decrease for each cylinder. 
Figure 19 also shows that the use of the thermal rather than 
the convection boundary-layer thickness results in only a 
very minor increase in coolant flow required to maintain the 
circular cylinder wall at a constant temperature. 

EXTENSION OF CALCULATION TO HIGH·VELOCITY FLOW 

The heat generated by internal friction was neglected in 
equation (5) according to the assumption of small velocities. 

The equation 
q=h(T,- Till) (42) 

gives th h at-tran f r coeffici nt for thi eRse. It .WIl 

already explained that tl inclusion of th int rnal fl'ietioH 
for a go, with a Pl'lmdtl number of 1 reaulta only iI tlw 
ohange that tha tamparp,tura T in aqulLtion (1I) flnd th( 
temperature T, in equo.tion (42) (l,re now total temperature I 

a long a the property valu may ba regarded oonlltant. 
The heat-transf r oeffloi nt det rmined in thill rOPOl't may 
be used in this ell. e. It i shown in r f r nee 35 by u of 
results obtained in reference' 36 that the heat-transfer co­
efficients determined for low-velocity flow apply to high­
velocity flow up to a Mach number of about 4 for a gas 
with a Prandtl number different from 1, when the stream 
velocity is constant (flat plate) and the heat flow is not too 
large. The heat-transfer coefficient, however, has now to 
be defined by the equation 

(43) 

in which the temperature Tad denotes the value which an 
unheated plate assumes in the high-velocity flow. The 
adiabatic wall temperature may be determined from the 
recovery factor 

(44) 

which was found to be equal to ..jPr for laminar flow and for 
Prandtl numbers of approximately 1. The difference be­
tween the total and the static temperatures in the stream 
is connected with the stream velocity lily the equation 
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For the fiat plate with a constant stream velocity, the adia­
batic wall temperature is therefore constant. 

Conditions are more involved on a cylinder with a stream 
velocity which varies along its circumference. Even when 
the recovery factor is assumed to 'be constant, equations 
(44) and (45) give an adiabatic wall temperature which 
varies along the circumference of the cylinder. The fact 
that the low-velocity heat-transfer coefficients also repre­
sented the high-velocity values on a fiat plate, however, 
followed from the fact that the energy equation for constant 
property values is linear in T, and that a general solution 
of the nonhomogeneous equation describing the heat transfer 
including the internal friction could therefore be obtained 
by superposition of the solution of the homogeneous equation 
valid for small velocities and a particular solution of the 
nonhomogeneous equation. Such a superposition results in 
a constant wall temperature on the fiat plate when the solu­
tion of the homogeneous equation for constant wall tempera­
ture and the one describing the adiabatic wall temperature 
is used , since the adiabatic wall temperature is also constant. 
For a cylinder with an arbitrary cross section, however, the 
adiabatic wall temperature which represents a particular 
solution of the nonhomogeneous equation varies along the 
circumference. Therefore, a superposition of this particular 
solution with the low-velocity solutions for constant wall 
temperature does not give a constant wall temperature, which 
was specified for the problems investigated in this report. 
Accordingly, the heat transfer has now to be calculated with 
the equation 

(4G) 

in which T'ff has to be determined for constant wall tem­
perature conditions; that is, T," is the temperature which 
a particular spot along the surface, for which the heat­
transfer coefficient is to be determined, assumes when the 
heat flow through the wall at this particular spot is zero 
and the wall temperature along the circumference of the 
cylinder is constant. 

For flow ,around wedges, this temperature, which moy be 
referred to as the "effective temperature," can be found 
from the l'esults in reference 2:3. It is also determined fol' 
several cases in reference 37. The calculation procedure 
which determines this effective wall temperature from ref­
erence 23 is described in append'ix D. The calculation 
shows that this temperature may be again expressed by a 
recovery factor 

(47) 

The index CD is used to indicate that such a recovery factor 
could be determined experimentally by a model made of a 
material with a very large heat conductivity so that the 
internal heat conduction would eliminate all temperature 
differences along the surface. On the other hand, the recovery 
factor 9,escribing the adiabatic wall temperature in equation 
(44) has to be determined experimentally by a model made 

of a material with an infinitely small heat conductivity so 
as to eliminate internal hcat flow. Values for the recovery 
factor r", determining the effective temperature of a wedge 
are presented in figure 20. The recovery factors ro describing 
the adiabatic wall temperature according to equation (44) 
have been calculated for wedges in reference 7. This calcu­
lation had resulted in values which decreased slightly with 
increasing Euler number m. R epetition of these calculations 
on an electric computing machine, however, according to a 
communication from Arthur N. Tillord of Ohio State 
University, showed that the recovery factors for the adi­
abatic wall temperature a1:e practically independent of the 
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Euler number and hav:e the same val.ues as the recovery 
factor r", shown in figure 20 for an Euler number m equal 
to zero. 

The consideration up to now dealt with solid surfaces. 
No information was found in the literature on recovery 
factors for transpiration-cooled surfaces. Some recovery 
factors were therefore determined for a transpiration­
cooled flat plate and a flow with constant property values 
(the same for outside and coolant flow) by an integration 
of the boundary-layer equation (4).' The integration was 
carried out in the same way as in reference 5. The dimension-
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less stream functlOn f and its second derivative were taken 
from reference 30. The results of this calculation are 
presented in figure 21 and the following t.lI.ble where T. /TfIJ= 1 
and Pr=0.7: 

fw 
r 

Recovery 
factor 

-1 0.713 
-.75 . 750 
-.50 . 786 
0 .838 
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The figure shows that the recovery factors decrease consider­
ably with increasing coolant flow. The calculations were 
extended to positive values off w which apply to a surface with 
suction. 
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It might be worthwhile to mention that the accurate 
determination of the adiabatic or effective wall temperature 
appreciably influences the heat flow as calculated by equation 
(43) only when the difference Tad.- T", is of the same order of 
magnitude 'as or of .a smaller order of magnitude than the 
difference TT.,-T. (see also appendL'C D). 

RESULTS AND CONC~USIONS 

An approximate method for the calculation of heat transfer 
in the laminar region around cylinders of arbitrary cross 
section was presented. The method, called the equivalent 
wedge-type-flow method, is based on exact solutions of the 
laminar boundary-layer equations for wedge-type flow and 

tftkes into account the influence of large temperature diffor~ 
ences between the flow and the cylinder wall and the influence 
of transpiration cooling. The use of prepared charts reduces 
calculations to a graphical solution of an ordinary first-order 
differential equation. The method can be based either on 
the convection thickness or on the thermal thickness of the 
boundary layer. The results of calculations based on one 
thickness differ slightly from those based on the other 
thickness. There are nO.t enough experimental data avail­
able to decide which boundary-layer thickness should be 
used. N ear the separation point, however, the results ob­
tained with the thermal boundary-layer thickness seem 
somewhat more plausible. 

The method was applied to circular and elliptic cylinders, 
and the following results and conclusions are given: 

1. Results of experiments and exact calculations were 
available only for circular cylinders with solid surfaces. 
Calculations based on the present method and on the thermal 
boundary-layer thickness agreed within 5 percent with the 
exact calculation and within 8 percent with experiment when 
the immediate neighborhood of the separation point was 
excluded . 

2. With the present method, heat-transfer coefficients may 
be obtained without a knowledge of the flow boundary layer. 
Consequently, such calculations are more rapid than those 
based on the momentum and heat-flow equations. 

3. Heat-transfer coefficients determined from wedge solu­
tions agreed on the circular cylinder within 15 percent with 
the results of experiments. The calculation procedure is 
still more rapid. 

4. For elliptic cylinders, the differences between the results 
of calculations with the various methods decreased as the 
axis ratio increased from 1:2 to 1:4. 

5. The development of the boundary layer is determined 
by the velocity distribution around the cylinder. The 
accuracy which has to be expected for the results of calcula­
tions with the different methods will therefore depend on the 
character of tbe velocity distribution. 

6. For cylinders with solid walls, the variation of the 
heat-transfer coefficients with ratio of stream to wall tem­
perature was comparatively small. 

7. For transpiration-cooled surfaces, the effect of tempera­
ture ratio on beat-transfer coefficients became pronounced, 
especially on cylinders with nearly circular cross sections. 

8. A considerable decrease in heat-transfer coefficients 
accompanied transpiration cooling. 

9. The influence of transpiration cooling on the recovery 
factor was investigated for a flat plate and constant property 
v8;lues. It was found that the recovery factor decreased 
considerably with increasing coolant flow. 

LEWIS FLIGHT PROPULSION LABORATORY 

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

CLEVELAND, OHIO, March 19, 1952 



APPENDIX A 

SYMBOLS 

The following symbols are used in this report: 
A dimensionless wall temperature gradient taken from 

refs, 22 and 23, ~ m~ 1 e~ 
o constant 
c1J specific heat at constant pressure 
F function 
J dimensionless stream function, (Pw",)/.J~ .. p,;xu, 
h heat-transfer coefficient 
k thermal conductivity 
L characteristic dimension (major axis of cylinder) 

M=1 2 m 'l]b2=M (~~~ o*2,v:o*) (seeeq, (34)) 

m Euler number -op/ox, u =Cx m 

, p,u;/x ' • 

N =e~1/b=N(~i-': O*2,V:O*) (se0 eq, (37)) 

Nu Nusse]t number, hL/kw 
Pr Prandtl number, c1J~/k 
p pressure 
q heat flow 
q approximated heat flow 
qc heat flow by conduction 
q, heat flow by radiation 
Reo Reynolds number, u.,oLPo/~w 
Rew Reynolds number, u.,oLPw/~w 
ro recovery factor defined by (Tna- T.)/(TT,,-- T,) (eq, (44)) 
r Q) recovery factor defined by (Telf- T.) /( TT.'--': T ,) (eq, (47)) 
T temperature in boundary layer 
T, temperature in stream 
u velocity component along surface 
u, free-stream velocity 
u: dimensionless mass velocity in free stream, Pwu,/ PoU •. o 
v velocity component normal to surface 

v* dimensionless velocity normal to surface, p ",V Reo 
pou..o 

x distance from stagnation point along surface 
x* dimensionless distance from stagnation point along 

surface, x/L 
y distance normal to surface 
z dimensionl~ss boundary-layer coordinate taken from 

/m+1 
refs, 22 and 23, -Y - 2- 1/ 

24 

e 

v 

_1_ ~ /u.x 
2-fj x -y JI 

pressure gradient parameter, 2m/ (m + 1) 
boundary-layer thickness 
dimensionless boundary-layer thickness, (o/L).JJIeo 
convection boundary-layer thickness (eq, (15)) 
dimensionless convection boundary-layer thickness, 

(oe/L) -IlIio 
displacement boundary-layer thickness (eq, (13)) 
momentum boundary-layer thickness (eq, (14)) 
thermal boundary-layer thickness (eq, (16)) 
dimensionless thermal boundary-layer thickness, 

(ol/L) .JReo 
dimensionless boundary-laver coordinate, y / P",u. . -y ~fJ)X 

o / P",u. 
-y ~"'~ 

d' 'nl t t diff t' T-T", ImensLO ess empera ure- erence ra LO, r.-T", 

d' ' nl diff t ' T-T. ImensLO ess temperature- erence ra 10 , T -T 
T ,' , 

dimensionless stream function taken from ref, 27, 

_m+1 j", 
2 

absolute viscosity 
kinema tic viscosity, ~/ P 

distance along,..wedge, taken from refs, 22 and 23 
density 

d ' 'I t t diff t' T"-T,,, ImenS10n ess empera ure- erence ra 10, T.-Tc 

'" stream function 
Subscripts: 
ad adiabatic 
C coolant, when used with T 
ejJ effective 
s stream 
T total 
w wall 
(J except when used with r, refers to a fixed po~t in the 

stream 
Superscripts: 
m exponent of distance along surface from stagnation 

point for stream velocity, u,=Cxm 

denotes differentiation with respect to 1/ 



APPENDIX B 

EVALUATION OF HEAT-FLOW EQUATION 

The energy equation (S) will be integrated along y 
throughout the boundary layer under the conditions of small 
1/Iach number, constant wall temperature, and constant 
specific heat 

Su
'" (oT oT) !C '" 0 ( of) c pu --+pv- dy= - k- dy 

11 0 ox oy 0 oy oy 

The first term on the left side can be transformed by partial 
differentiation to 

pu aT =~ (puT)- T :9..(p71) 
ox ox ox 

An analogous transformation of the second term and con­
sideration that the temperature gradient bT/by is zero out­
side the boundary layer (for y= co) result in 

Su
'" 0 !C'" b(pu) I'" -- (puT) dy- T -- dy+pvT -

o bx 0 bx 0 

r'" T b(pv) dy= _ kw (bT\ 
Jo ay CII by)w 

The second and fourth terms canrol because of the con­
tinuity equation (3). In the first term, the sequence of 
differentiation and integration can be r versed. 1ntroduc­
tion of the convection thickness of the boundary layer leads 
finally to the integrated heat-flow equation 

(B1) 

It will now be proved that equation (26), used for the method 
of the equivalent wedge-type flow, is the same as this inte­
grated heat-flow equation when the convection thickness for 
the boundary layer is used. Equation (Bl) may be trans­
formed by partial differentiation of the first term into 

(B2) 

For wedge-type flow, the convection thickness is given by 
the expression 

I-m 

~ J.L wX 8 ft - 2-
Oc= 77c --= 77 c -0 x 

Pwu• . Pw 

Differentiation of this equation gives 

I+m 
doc 1 - m r;;;: --2- 1 - m /----;;;;­
dx =-2- 77c-y p;;o x =-2- 77c-y P,eXUs 

(B3) 

(B4) 

Introducing this expression as well as equations (9) and (12) 
into equation (B2) gives the equation 

l+m ( + J) Pw I - 2- P, 77c p", w = Pr Ow (BS) 

which interconnects the convection thickness with the di­
mensionless temperature gradient at the wall. The gradient 
of the convection thickness may now be determined from 
the integrated energy equation (B2) when tho expressions 
in this equation are transformed to the new variables 

Replacing the nondim n ional temperatur gradiont in this 
equation by equation (B5) results in 

doc 1-m /----;;;;- 1-m ~ iJ.w 
dx =-2- 770'V PwXU, = - 2- 77. PwODu. f 

which is the same as equation (26). 
I t can also be proved by a completely analogous calcula­

tion that the method of the equivalent wedge-type flow, 
when it is used to calculate the momentum thickness of the 
flow boundary layer, satisfies the integrated momentum 
equation which is obtained from equation (2) by an integra­
tion over y in a manner similar to the derivation 'of equation 
(B1) 



APPENDIX C 

DETERMINATION OF WEDGE SOLUTIONS 

The wedge solutions which were used as a first ~ppro:ci­
mation in figures 11 to 13 can be obtained very easily with 
the use of figure 22 reproduced from reference 9. The he~t­
transfer coefficient has to be determined on. a -wedge which 
has the same stream velocity and its gradient at the same 
distance from the stagnation point as the real profile. The 
Euler number for this wedge can be found from equation (23). 
In the dimensionless coordinates it is 

dUB 

X dX x* du: 
m=-u-=u* dx* • • 

(01) 

The parameter it/} which determines the coolant flow through 
the porous wall is found from equation (20), which reads, 
when converted to dimensionless quantities, 

(02) 

22, and Nul -JReo is finally obtained by multiplication by 

-Ju:lx*. 
When the temperature ratio <p is prescribed, figure 23 

reproduced from reference 9 can be used to obtain the 
parameter it/} for any Euler number m. Equation (02) then 
determines the value v: and the distribution of the required 
coolant flow along the profile. 
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The value (Nul Reo) -Jx*lu: can be determined from figure .40 
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APPENDIX D 
DETERMINATION OF EFFECTIVE WALL TEMPERATURE 

It is shown in reference 23 that for high-velocity flow of a 
rluid with constant property values around a wedge with 
constant wall temperature, the temperature field can be 
expressed by the equation 

T= (Tw- TT .• ) (1-0) + (TT.S- Ts) tJ+ T. (Dl) 

in which ° represents the nondimensional temperature field 
for low-velocity flow and tJ, the nondimensional temperature 
field for high-velocity flow and a wall temperature equal to the 
total stream temperature. The heat flow from the wall, 
obtained by differentiating equation (D 1), is 

qw= -k (~~t =k [ (Tw-TT .• ) (~~)w -(TT. S-Ts) (~~)J 
(D2) 

With the transformations used in reference 23 (see also 
appendix E) 

u.=Ox TII 

2m 
fj=m+l 

equation (D 2) can be transformed into 

(D3) 

qw= -12k fj ~~~ [ (Tw-TT.S) (~!)w -(TT .• -T.) (~~)J 
(D4) 

This equation is to be brought into the form 

k lu. (dO) 
qw= 2-fj -y n (Tw-T,rr) dz w (D5) 

A comparison of equations (D4) and (D5) gives 

T T T T 
(~~)w 

u;- 'rr= w- T •• -(Tr .• -T,) (dO) 
dz w 

(D 6) 

from which the difference between the total and effective gas 
temperatures can be found . The expression 

TT .• -T'[[=I_r =_ (~~)w 
TT .• -T. ., (dO) 

dz w 

(D7) 

defines this temperature difference and the recovery factor 
for the effective wall temperature. The nondimensional 
temperature gradients appearing on the right side of this 
equation are presented in references 23 and 37. In this way, 
the values in figure 20 have been determined. 

To obtain an estimate of the conditions under which the 
difference between the adiabatic wall temperature and the 
effect~ve wall temperature may be neglected, the heat flow 
into the wall will be approximated by the equation 

qw= k(T w- T ad) (~~) w (D8) 

and the error of such an approximation will be determined . 
The ratio of the exact heat-flow equation (D2) to the one 
approximated by equation (D8) is 

gw Tw - TT .• +TT.~ -T. (l-r.,) 
qw Tw- T ad T w- Tad. 

I ntroducing the recovery factor for the adiabatic wall tem­
p erature 

glves 
TT. ,- Tad.= (l-rO)(TT .• - T.) 

qw 11 TT .• -T. ( _ ) 
- - T -T r., . ro qw w ad 

For an Euler number equal to 1, which characterizes flow 
near a stagnation point and which, according to figure 20, 
shows a large difference between the recovery factors ro and 
r." the error is smaller than 5 percent when 

is larger than 2.5 . 

Tad-Tw 
TT.,-T, 
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APPENDIX E 

COMPARISON OF VARIABLES 

This appendi.x gives a comparison of the variables used in 
references 9, 25, and 26 with the ones used in references 22, 
23, and 27. All of these references deal with wedge-type 
flow. 

The values used in this report are related to the ones in the 
aforementioned references by the following equations: 

Symbol 
from 

references 
9,25, and 

26 

m (Eu) 

fw 

17 

8~ 

Symbols 
from 

references 
22,23, and 

27 

{3 

X 

z 

A 

Relation among 
symbols 

2m 
{3=m+l 

x __ m+1f 
- 2 w 

.J
m

+
1 

z= -2- 17 

I A=.J m~l 8~ I 
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